JP2018105162A - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP2018105162A
JP2018105162A JP2016250211A JP2016250211A JP2018105162A JP 2018105162 A JP2018105162 A JP 2018105162A JP 2016250211 A JP2016250211 A JP 2016250211A JP 2016250211 A JP2016250211 A JP 2016250211A JP 2018105162 A JP2018105162 A JP 2018105162A
Authority
JP
Japan
Prior art keywords
injection
spray
main
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016250211A
Other languages
Japanese (ja)
Inventor
貴政 伊藤
Takamasa Ito
貴政 伊藤
洋平 森本
Yohei Morimoto
洋平 森本
晋一郎 川北
Shinichiro Kawakita
晋一郎 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016250211A priority Critical patent/JP2018105162A/en
Priority to US15/847,170 priority patent/US20180179995A1/en
Priority to DE102017131116.5A priority patent/DE102017131116A1/en
Publication of JP2018105162A publication Critical patent/JP2018105162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine control device capable of realizing a stable diffuse combustion by avoiding rapid combustion while assuring ignitability at the time of compression ignition.SOLUTION: ECU 16 includes an injection command part 24 for ordering both a main injection and a front-stage injection to an injector 15, and a penetration force determination part 23 for determining a penetration force of the front-stage injection in such a way that the front-stage injection range may become near an injection hole 17 of the injector 15 a compared with the main injection range. With this arrangement as above, it is restricted that the front-stage injection is diffused over an entire combustion chamber 11 and then mixture gas 29 containing radicals by low temperature oxidation reaction at the front-stage injection is locally generated at a location near the injection hole 17. Due to this fact, it is possible to supply radicals of high concentration to a location near the injection hole 17 for the main injection. Accordingly, it is possible to realize a stable diffusion combustion by avoiding a rapid combustion while assuring ignitability of compression ignition. With this arrangement as above, occurrence of vibration and increasing in NOx are restricted. In addition, since combustion at a place near a wall of the combustion chamber 11 is restricted, cooling loss is reduced.SELECTED DRAWING: Figure 5

Description

本発明は、内燃機関制御装置に関する。   The present invention relates to an internal combustion engine control device.

従来、1サイクル中に燃料を燃焼室に複数回噴射可能な燃料噴射装置を備え、圧縮着火を実施する内燃機関が知られている。引用文献1では、吸気行程で初期燃焼速度制御用の第1の燃料噴射が行われてから、例えば点火プラグ等の着火トリガ手段により着火トリガが加えられ、その後の圧縮行程でトルク制御用の第2の燃料噴射が行われる。第1の燃料噴射による噴霧は、燃焼室全体に拡散して吸入空気とともに均一混合気となった後、圧縮および着火トリガにより活性化してラジカルを発生させる。   2. Description of the Related Art Conventionally, an internal combustion engine that includes a fuel injection device that can inject fuel into a combustion chamber a plurality of times during one cycle and performs compression ignition is known. In Cited Document 1, after the first fuel injection for initial combustion speed control is performed in the intake stroke, an ignition trigger is applied by an ignition trigger means such as a spark plug, for example, and the torque control first in the subsequent compression stroke. 2 fuel injection is performed. The spray by the first fuel injection diffuses throughout the combustion chamber and becomes a uniform air-fuel mixture with the intake air, and then is activated by a compression and ignition trigger to generate radicals.

特許第3911912号公報Japanese Patent No. 3911912

引用文献1では、第1噴射による噴霧が燃焼室内の全体に拡散して吸入空気とともに均一混合気となる。そのため、燃料噴射装置の噴孔から離れた場所で予混合化が進んで着火することに起因する急激な燃焼が発生するおそれがある。つまり、微細な液滴が蒸発して個別に自己発火と燃焼を繰り返し、隣の液滴に燃え広がって群としての火炎が発生するというような、一気に燃焼しないきれいな拡散燃焼が実現できない。したがって、振動の発生およびNOxの増加が懸念される。   In Cited Document 1, the spray by the first injection diffuses throughout the combustion chamber and becomes a uniform air-fuel mixture with intake air. For this reason, there is a risk of rapid combustion resulting from premixing and ignition at a location away from the nozzle hole of the fuel injection device. That is, it is impossible to realize clean diffusion combustion that does not burn at once, such that fine droplets evaporate and repeat self-ignition and combustion individually, and spread to adjacent droplets to generate a group of flames. Therefore, there are concerns about the occurrence of vibrations and an increase in NOx.

本発明は、上述の点に鑑みて創作されたものであり、その目的は、圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能な内燃機関制御装置を提供することにある。   The present invention was created in view of the above-mentioned points, and an object of the present invention is to control an internal combustion engine that can realize stable diffusion combustion while avoiding rapid combustion while ensuring ignitability of compression ignition. To provide an apparatus.

本発明による内燃機関制御装置は、噴射指令部と、噴射仕様決定部とを有している。噴射指令部は、トルクを生み出す主燃焼のための主噴射、および、主噴射の前段階の噴射である前段噴射の実行を燃料噴射装置に指令する。噴射仕様決定部は、前段噴射による噴霧の到達範囲が主噴射による噴霧の到達範囲と比べて燃料噴射装置の噴孔寄りとなるように、前段噴射による噴霧の貫徹力または前段噴射の噴射方向を決定する。   The internal combustion engine control apparatus according to the present invention includes an injection command unit and an injection specification determination unit. The injection command unit commands the fuel injection device to execute main injection for main combustion that generates torque, and pre-stage injection that is injection before the main injection. The injection specification determining unit determines the penetration force of the spray by the front injection or the injection direction of the front injection so that the spray reach by the front injection is closer to the injection hole of the fuel injection device than the spray reach by the main injection. decide.

このように構成することで、前段噴射による噴霧が燃焼室全体に拡散することが抑えられ、その噴霧の低温酸化反応によるラジカルが噴孔寄りの場所に局所的に発生する。そのため、主噴射による噴霧に噴孔寄りの場所で高濃度のラジカルを供給することができる。したがって、圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。これにより振動の発生およびNOxの増加が抑えられる。また、燃焼室の壁際での燃焼が抑えられるので冷却損失が低減される。   With this configuration, it is possible to suppress the spray produced by the pre-stage injection from diffusing throughout the combustion chamber, and radicals generated by the low-temperature oxidation reaction of the spray are locally generated near the nozzle hole. Therefore, high concentration radicals can be supplied to the spray by the main injection at a location near the nozzle hole. Therefore, stable diffusion combustion can be realized by avoiding rapid combustion while securing the ignitability of compression ignition. Thereby, generation | occurrence | production of a vibration and the increase in NOx are suppressed. Further, since the combustion at the wall of the combustion chamber is suppressed, the cooling loss is reduced.

ここで、ディーゼルエンジンにおける多段噴射について説明する。ディーゼルエンジンにおいても燃料噴射を2回行うことがある。ただし、軽油の場合は反応性が高いためにただちに燃焼反応してしまい、ラジカル等の中間生成物を2回目の噴射による噴霧に供給することは困難である。ディーゼルエンジンでは、1回目の噴射の燃料が燃焼することによる筒内温度の上昇を狙って、多段噴射が行われる。   Here, multistage injection in a diesel engine will be described. Even in a diesel engine, fuel injection may be performed twice. However, in the case of light oil, since it is highly reactive, it immediately undergoes a combustion reaction, and it is difficult to supply intermediate products such as radicals to the spray by the second injection. In a diesel engine, multistage injection is performed with the aim of increasing the in-cylinder temperature due to the combustion of the fuel of the first injection.

また、ディーセルエンジンでは、燃焼室内の酸素を有効利用するために1回目と2回目とで噴射場所を異ならせることが効果的であるとされている。それには例えばスワール流が利用される。これに対して、本発明では、主噴射による噴霧にラジカルを供給するために主噴射による噴霧が前段噴射による噴霧範囲を通るようにすることが効果的である。   Further, in the diesel engine, it is considered effective to make the injection location different between the first time and the second time in order to effectively use oxygen in the combustion chamber. For example, a swirl flow is used. On the other hand, in the present invention, in order to supply radicals to the spray by the main injection, it is effective to allow the spray by the main injection to pass through the spray range by the pre-stage injection.

本明細書において、「圧縮着火を実施する内燃機関」とは、点火プラグを備えておらず圧縮着火のみを実施する内燃機関と、点火プラグを備えており火花点火モードと圧縮着火モードとを切り替えて実施する内燃機関とを含む。   In this specification, “an internal combustion engine that performs compression ignition” refers to an internal combustion engine that does not include an ignition plug and performs only compression ignition, and an ignition plug that switches between a spark ignition mode and a compression ignition mode. And an internal combustion engine to be implemented.

本発明の第1実施形態によるECUが適用された内燃機関を説明する模式図である。It is a mimetic diagram explaining an internal combustion engine to which ECU by a 1st embodiment of the present invention is applied. 図1のインジェクタの噴射量および噴射時期を示すタイムチャートである。It is a time chart which shows the injection quantity and injection timing of the injector of FIG. 図1のIII部分の拡大断面図であって、前段噴射時の噴霧の到達範囲を模式的に示す図である。It is an expanded sectional view of the III section of Drawing 1, and is a figure showing typically the arrival range of the spray at the time of front stage injection. 図1のIV部分の拡大断面図であって、主噴射時の噴霧の到達範囲を模式的に示す図である。It is an expanded sectional view of the IV section of Drawing 1, and is a figure showing typically the arrival range of the spray at the time of main injection. 図1のECUが有する機能部を説明するブロック図である。It is a block diagram explaining the function part which ECU of FIG. 1 has. 図2のときよりも前段噴射割合が多く設定されたときのタイムチャートである。FIG. 3 is a time chart when a pre-stage injection ratio is set higher than that in FIG. 2. FIG. 図2のときよりも前段噴射割合が少なく設定されたときのタイムチャートである。FIG. 3 is a time chart when the pre-injection ratio is set lower than that in FIG. 図1のECUによる処理を説明するフローチャートである。It is a flowchart explaining the process by ECU of FIG. 本発明の第2実施形態によるECUが適用された内燃機関を説明する模式図である。It is a schematic diagram explaining the internal combustion engine to which ECU by 2nd Embodiment of this invention was applied. 図9のECUが制御する内燃機関の断面図であって、前段噴射時の噴霧の到達範囲を模式的に示す図である。FIG. 10 is a cross-sectional view of the internal combustion engine controlled by the ECU of FIG. 9, and schematically shows a spray reach range at the time of pre-injection. 図9のECUが制御する内燃機関の断面図であって、主噴射時の噴霧の到達範囲を模式的に示す図である。FIG. 10 is a cross-sectional view of the internal combustion engine controlled by the ECU of FIG. 9, schematically showing a spray reach range during main injection. 本発明の第3実施形態によるECUが適用された内燃機関を説明する模式図である。It is a schematic diagram explaining the internal combustion engine to which ECU by 3rd Embodiment of this invention was applied. 図12のECUが制御する内燃機関の断面図であって、前段噴射時の噴霧の到達範囲を模式的に示す図である。It is sectional drawing of the internal combustion engine which ECU of FIG. 12 controls, Comprising: It is a figure which shows typically the reach | attainment range of the spray at the time of front | former stage injection. 図12のECUが制御する内燃機関の断面図であって、主噴射時の噴霧の到達範囲を模式的に示す図である。It is sectional drawing of the internal combustion engine which ECU of FIG. 12 controls, Comprising: It is a figure which shows typically the reach | attainment range of the spray at the time of main injection. 本発明の第4実施形態によるECUが有する機能部を説明するブロック図である。It is a block diagram explaining the function part which ECU by 4th Embodiment of this invention has. 図15のインジェクタの噴射量および噴射時期を示すタイムチャートである。It is a time chart which shows the injection quantity and injection timing of the injector of FIG. 図15のECUによる処理を説明するフローチャートである。It is a flowchart explaining the process by ECU of FIG. 本発明の第5実施形態によるECUが有する機能部を説明するブロック図である。It is a block diagram explaining the function part which ECU by 5th Embodiment of this invention has. 本発明の第6実施形態によるECUが有する機能部を説明するブロック図である。It is a block diagram explaining the function part which ECU by 6th Embodiment of this invention has. 図19のインジェクタの噴射量および噴射時期を示すタイムチャートである。It is a time chart which shows the injection quantity and injection timing of the injector of FIG.

以下、本発明の複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。
[第1実施形態]
本発明の第1実施形態による内燃機関制御装置としてのECUは、図1に示す内燃機関10を制御する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In the embodiments, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
[First Embodiment]
The ECU as the internal combustion engine control apparatus according to the first embodiment of the present invention controls the internal combustion engine 10 shown in FIG.

(内燃機関)
図1に示す内燃機関10は、燃料として例えばガソリンを用いるとともに圧縮着火を実施するエンジンである。圧縮着火は、燃焼室11内の圧縮加熱空気に噴射された燃料が自己発火することを利用する点火方法である。このときの燃焼は、噴霧中の微細な液滴が蒸発して個別に自己発火と燃焼を繰り返し、隣の液滴に燃え広がって群としての火炎が発生する拡散燃焼となる。燃焼の噴射は、シリンダヘッド12とシリンダ13内のピストン14との間に区画される燃焼室11に直接燃焼を噴射する直接噴射式のインジェクタ15により行われる。
(Internal combustion engine)
An internal combustion engine 10 shown in FIG. 1 is an engine that uses, for example, gasoline as fuel and performs compression ignition. Compression ignition is an ignition method that utilizes the self-ignition of fuel injected into the compressed heated air in the combustion chamber 11. The combustion at this time is diffusion combustion in which fine droplets in the spray evaporate and repeat self-ignition and combustion individually, spread to adjacent droplets, and generate a flame as a group. Combustion injection is performed by a direct injection injector 15 that directly injects combustion into the combustion chamber 11 defined between the cylinder head 12 and the piston 14 in the cylinder 13.

インジェクタ15は、ECU16からの指令に応じて作動し、吸入・圧縮・膨張(燃焼)・排気の各行程を経る1サイクル中に燃料を少なくとも2回噴射可能である。インジェクタ15による燃料噴射には、トルクを生み出す主燃焼のための主噴射、および、主噴射の前段階の噴射である前段噴射がある。本実施形態では図2に示すように、主噴射は圧縮行程から膨張行程にかけて1回行われ、また、前段噴射は主噴射に先立ち圧縮行程で1回行われる。第1実施形態では、前段噴射時期および主噴射時期は毎サイクルで一定である。   The injector 15 operates in accordance with a command from the ECU 16 and can inject fuel at least twice during one cycle through each stroke of intake, compression, expansion (combustion), and exhaust. The fuel injection by the injector 15 includes main injection for main combustion that generates torque, and pre-stage injection that is injection before the main injection. In this embodiment, as shown in FIG. 2, the main injection is performed once from the compression stroke to the expansion stroke, and the pre-injection is performed once in the compression stroke prior to the main injection. In the first embodiment, the upstream injection timing and the main injection timing are constant every cycle.

前段噴射による噴霧は、主噴射までの間に低温酸化反応し、主噴射時期と重なる時期にラジカルを発生させる。ラジカルは、反応性の高い中間生成物であり、冷炎とも呼ばれ、燃料の着火性を高めることができる。このラジカルは、その化学的不安定性からごく限られた時間のみしか高濃度に存在せず、例えば吸気行程に噴射された噴霧から生成されるラジカルは圧縮行程の終盤には消失している可能性がある。この点を考慮して、第1実施形態における前段噴射時期は、ラジカル発生時期が主噴射時期と重なるように圧縮行程に設定されている。   The spray by the pre-stage injection undergoes a low-temperature oxidation reaction before the main injection, and generates radicals at a time overlapping with the main injection time. Radicals are highly reactive intermediate products, also called cold flames, and can improve the ignitability of fuel. This radical is present in high concentration only for a very limited time due to its chemical instability, for example, radicals generated from spray injected in the intake stroke may disappear at the end of the compression stroke. There is. Considering this point, the pre-injection timing in the first embodiment is set to the compression stroke so that the radical generation timing overlaps with the main injection timing.

第1実施形態では図3および図4に示すように、インジェクタ15は2種類の噴孔17、18を有している。噴孔18は、図3に示すように前段噴射が行われるときに燃料を噴射する孔である。噴孔17は、図4に示すように主噴射が行われるときに燃料を噴射する孔である。両方の噴孔17、18とも、噴射方向はピストンキャビティ19に向けられる。また、噴孔18は噴孔17よりも内径(以下、噴孔径)が小さい。噴孔径が小さいということは、次式(1)に表される噴霧到達距離xが短くなるということである。式(1)において、ρfは燃料密度であり、ρaは空気密度であり、dnは噴孔径であり、θは噴霧の広がり角であり、tは噴射時間である。W0は噴霧の速度であって噴射圧の平方根に比例する。そのため、前段噴射による噴霧(以下、前段噴霧)の貫徹力は、主噴射による噴霧(以下、主噴霧)の貫徹力よりも小さくなる。2種類の噴孔を備え、一方が他方よりも噴孔径が小さくされるインジェクタに関しては、例えば特開2013−119836号公報に開示されているため、詳細な構成についての説明を省略する。

Figure 2018105162
In the first embodiment, as shown in FIGS. 3 and 4, the injector 15 has two types of injection holes 17 and 18. The injection hole 18 is an injection hole for injecting fuel when pre-injection is performed as shown in FIG. The injection hole 17 is an injection hole for injecting fuel when main injection is performed as shown in FIG. Both injection holes 17, 18 are directed toward the piston cavity 19 in the injection direction. The nozzle hole 18 has a smaller inner diameter (hereinafter referred to as a nozzle hole diameter) than the nozzle hole 17. The fact that the nozzle hole diameter is small means that the spray reach distance x expressed by the following equation (1) is shortened. In equation (1), ρf is the fuel density, ρa is the air density, dn is the nozzle hole diameter, θ is the spray spread angle, and t is the injection time. W 0 is the spray speed and is proportional to the square root of the injection pressure. For this reason, the penetration force of the spray by the pre-injection (hereinafter, the pre-stage spray) is smaller than the penetration force of the spray by the main injection (hereinafter, the main spray). An injector having two types of injection holes, one of which has a smaller injection hole diameter than the other, is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-119636, and thus a detailed description thereof is omitted.
Figure 2018105162

(ECUの機能)
図5に示すように、ECU16は、情報取得部21、噴射量決定部22、貫徹力決定部23、および噴射指令部24を有している。貫徹力決定部23は、噴射仕様を決定する噴射仕様決定部を構成している。
(ECU function)
As shown in FIG. 5, the ECU 16 includes an information acquisition unit 21, an injection amount determination unit 22, a penetration force determination unit 23, and an injection command unit 24. The penetration force determining unit 23 constitutes an injection specification determining unit that determines an injection specification.

情報取得部21は、温度センサ25および燃料性状センサ26の検出値と、他の制御部が算出する内燃機関10の目標負荷とを取得する。温度センサ25は、例えばシリンダヘッド12等に設けられ、燃焼室11の温度(以下、燃焼室温度)を検出する。温度センサ25は、噴霧との干渉を避けるために燃焼室11内に突き出さないか、もしくは突き出し量が微量となるように設置される。これにより、温度センサ25が高温となって着火源となることが抑制される。燃料性状センサ26は、例えば燃料タンクまたは燃料供給経路の途中に設けられ、燃料のオクタン価等の性状を検出する。   The information acquisition unit 21 acquires the detection values of the temperature sensor 25 and the fuel property sensor 26 and the target load of the internal combustion engine 10 calculated by another control unit. The temperature sensor 25 is provided, for example, in the cylinder head 12 or the like, and detects the temperature of the combustion chamber 11 (hereinafter, combustion chamber temperature). The temperature sensor 25 is installed so that it does not protrude into the combustion chamber 11 in order to avoid interference with the spray or the amount of protrusion is very small. Thereby, it is suppressed that the temperature sensor 25 becomes high temperature and becomes an ignition source. The fuel property sensor 26 is provided in the middle of a fuel tank or a fuel supply path, for example, and detects properties such as the octane number of the fuel.

噴射量決定部22は、先ず目標負荷に基づき総噴射量を決定する。総噴射量は、主噴射の燃料噴射量と前段噴射の燃料噴射量との合計である。続いて、噴射量決定部22は、総噴射量に占める前段噴射の噴射量の割合(以下、前段噴射割合)を目標負荷に基づき決定する。具体的には、噴射量決定部22は、目標負荷が低負荷であるほど(すなわち、圧縮着火しにくいほど)図6に示すように前段噴射割合を大きくし、目標負荷が高負荷であるほど(すなわち、圧縮着火しやすいほど)図7に示すように前段噴射割合を小さくする。これにより、圧縮着火しにくいときは図6のように前段噴霧の低温酸化反応により発生するラジカルの量(以下、ラジカル量)が比較的多くなる。また、圧縮着火しやすいときは図7のようにラジカル量が比較的少なくなり、主噴射量が比較的多くなる。   The injection amount determination unit 22 first determines the total injection amount based on the target load. The total injection amount is the sum of the fuel injection amount of the main injection and the fuel injection amount of the pre-stage injection. Subsequently, the injection amount determination unit 22 determines the ratio of the injection amount of the pre-stage injection in the total injection quantity (hereinafter, the pre-stage injection ratio) based on the target load. Specifically, the injection amount determination unit 22 increases the pre-injection ratio as shown in FIG. 6 as the target load is lower (that is, the more difficult the compression ignition is), and the higher the target load is, the higher the target load is. As shown in FIG. 7, the pre-injection ratio is reduced (that is, compression ignition is easier). Thereby, when compression ignition is difficult, the amount of radicals generated by the low-temperature oxidation reaction of the pre-stage spray (hereinafter, radical amount) is relatively large as shown in FIG. Further, when compression ignition is easy, the radical amount is relatively small as shown in FIG. 7, and the main injection amount is relatively large.

貫徹力決定部23は、前段噴霧の到達範囲(以下、前段噴霧範囲)が主噴霧の到達範囲(以下、主噴霧範囲)と比べて噴孔17寄りとなるように、前段噴霧の貫徹力を決定する。すなわち、貫徹力決定部23は、前段噴霧によるラジカルの生成場所を貫徹力により制御する。具体的には、貫徹力決定部23は、主燃料のための主噴射に先立つ前段噴射時には、主噴射時の噴孔17よりも噴孔径が小さい噴孔18から燃料を噴射することを決定する。つまり、前段噴射時には比較的に噴孔径が小さい噴孔18が選択され、主噴射時には噴孔径が比較的大きい噴孔17が選択される。これにより、図3に示す前段噴霧範囲Rpが図4に示す主噴霧範囲Rmと比べて噴孔17寄りとなる。   The penetration force determining unit 23 determines the penetration force of the front stage spray so that the reach range of the front stage spray (hereinafter, the front stage spray range) is closer to the nozzle hole 17 than the reach range of the main spray (hereinafter, the main spray range). decide. That is, the penetration force determining unit 23 controls the generation site of radicals by the previous stage spraying with the penetration force. Specifically, the penetrating force determination unit 23 determines that fuel is injected from the nozzle hole 18 having a nozzle hole diameter smaller than that of the nozzle hole 17 at the time of main injection at the time of preceding injection prior to main injection for main fuel. . That is, the nozzle hole 18 having a relatively small nozzle hole diameter is selected during the front-stage injection, and the nozzle hole 17 having a relatively large nozzle hole diameter is selected during the main injection. As a result, the front spray range Rp shown in FIG. 3 is closer to the nozzle hole 17 than the main spray range Rm shown in FIG.

噴射指令部24は、インジェクタ15を駆動する駆動回路等を含んでおり、所定の噴射時期に決められた噴射量および貫徹力で主噴射と前段噴射とが実行されるようにインジェクタ15に指令する。   The injection command unit 24 includes a drive circuit for driving the injector 15 and commands the injector 15 to execute main injection and pre-stage injection with an injection amount and penetration force determined at a predetermined injection timing. .

(ECUによる処理)
ECU16は図8に示す処理を実行する。
先ずステップS1では、情報取得部21は、燃焼室温度、燃料のオクタン価、および内燃機関10の目標負荷を取得する。
(Processing by ECU)
The ECU 16 executes the process shown in FIG.
First, in step S <b> 1, the information acquisition unit 21 acquires the combustion chamber temperature, the fuel octane number, and the target load of the internal combustion engine 10.

ステップS1の後のステップS2では、噴射量決定部22は、目標負荷に基づき総噴射量および前段噴射割合を決定する。目標負荷が低負荷であるほど前段噴射割合が大きく設定され、目標負荷が高負荷であるほど前段噴射割合が小さく設定される。   In step S2 after step S1, the injection amount determination unit 22 determines the total injection amount and the upstream injection ratio based on the target load. The lower the target load, the larger the upstream injection ratio is set, and the higher the target load, the smaller the upstream injection ratio.

ステップS2の後のステップS3では、貫徹力決定部23は、前段噴霧範囲が主噴霧範囲と比べて噴孔17寄りとなるように、前段噴射時には主噴射時の噴孔17よりも噴孔径が小さい噴孔18から燃料を噴射することを決定する。   In step S3 after step S2, the penetration force determining unit 23 has an injection hole diameter larger than that of the injection hole 17 at the time of main injection so that the front spray range is closer to the injection hole 17 than the main spray range. It is decided to inject fuel from the small nozzle hole 18.

ステップS3の後のステップS4では、噴射指令部24は、所定の噴射時期に、ステップS2で決められた噴射量およびステップS3で決められた貫徹力で主噴射と前段噴射とが実行されるようにインジェクタ15に指令する。
ステップS4の後、処理は図5のルーチンを抜ける。
In step S4 after step S3, the injection command unit 24 performs main injection and pre-stage injection at a predetermined injection timing with the injection amount determined in step S2 and the penetration force determined in step S3. To the injector 15.
After step S4, the process exits the routine of FIG.

(効果)
以上説明したように、第1実施形態では、ECU16は、主噴射および前段噴射の実行をインジェクタ15に指令する噴射指令部24と、前段噴霧範囲が主噴霧範囲と比べてインジェクタ15の噴孔17寄りとなるように前段噴霧の貫徹力を決定する貫徹力決定部23とを有している。
(effect)
As described above, in the first embodiment, the ECU 16 instructs the injector 15 to execute the main injection and the pre-stage injection, and the injection hole 17 of the injector 15 in which the pre-stage spray range is compared with the main spray range. A penetrating force determining unit 23 that determines the penetrating force of the pre-stage spray so as to be closer is provided.

このように構成することで、前段噴霧が燃焼室11全体に拡散することが抑えられ、図4に示すように前段噴霧の低温酸化反応によるラジカルを含む混合気29が噴孔17寄りの場所に局所的に発生する。そのため、主噴霧に噴孔17寄りの場所で高濃度のラジカルを供給することができる。したがって、圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。これにより振動の発生およびNOxの増加が抑えられる。また、燃焼室11の壁際での燃焼が抑えられるので冷却損失が低減される。   With this configuration, it is possible to suppress the pre-stage spray from diffusing throughout the combustion chamber 11, and as shown in FIG. 4, the air-fuel mixture 29 containing radicals due to the low-temperature oxidation reaction of the pre-stage spray is located near the nozzle hole 17. It occurs locally. Therefore, high concentration radicals can be supplied to the main spray at a location near the nozzle hole 17. Therefore, stable diffusion combustion can be realized by avoiding rapid combustion while securing the ignitability of compression ignition. Thereby, generation | occurrence | production of a vibration and the increase in NOx are suppressed. Further, since the combustion at the wall of the combustion chamber 11 is suppressed, the cooling loss is reduced.

ここで、ラジカルは、その化学的不安定性からごく限られた時間のみしか高濃度に存在せず、例えば吸気行程に噴射された噴霧から生成されるラジカルは圧縮行程の終盤には消失している可能性がある。また、吸気行程に噴射された噴霧は、吸入空気の流れにより燃焼室11全体に拡散される。これに対して第1実施形態では、前段噴射は圧縮行程に行われるので、主噴射時期と重なるようにラジカル発生時期を設定することができ、また、ラジカルを噴孔17付近に局所的に配置することができる。   Here, radicals are present in a high concentration only for a very limited time due to their chemical instability, for example, radicals generated from spray injected in the intake stroke disappear at the end of the compression stroke. there is a possibility. Further, the spray injected in the intake stroke is diffused throughout the combustion chamber 11 by the flow of intake air. On the other hand, in the first embodiment, since the pre-stage injection is performed in the compression stroke, the radical generation time can be set so as to overlap with the main injection time, and the radical is locally arranged in the vicinity of the nozzle hole 17. can do.

また、第1実施形態では、前段噴射時の噴孔18の噴孔径が主噴射時の噴孔17の噴孔径と比べて小さくされることで、前段噴霧の貫徹力が主噴霧の貫徹力と比べて小さくされ、前段噴霧範囲が主噴霧範囲と比べてインジェクタ15の噴孔17寄りにされる。
これにより、前段噴霧の低温酸化反応によるラジカルが噴孔17寄りの場所に局所的に発生する。
Moreover, in 1st Embodiment, the penetration diameter of the front stage spray is made into the penetration force of the main spray by making the nozzle hole diameter of the injection hole 18 at the time of front stage injection smaller than the nozzle hole diameter of the nozzle hole 17 at the time of main injection. Compared to the main spray range, the front spray range is made closer to the injection hole 17 of the injector 15.
Thereby, radicals due to the low-temperature oxidation reaction of the pre-stage spray are locally generated near the nozzle hole 17.

また、第1実施形態では、内燃機関10の負荷に関する情報を取得する情報取得部21を備えている。噴射量決定部22は、内燃機関10の負荷が低いほど前段噴射割合を大きくし、内燃機関10の負荷が高いほど前段噴射割合を小さくする。
これにより、圧縮着火しにくい条件のときにはラジカル量が比較的多くなるので、着火性が向上する。また、圧縮着火しやすい条件のときにはラジカル量が比較的少なくなり、主噴射量が比較的多くなるので、等容度が向上して熱効率が高まる。
Moreover, in 1st Embodiment, the information acquisition part 21 which acquires the information regarding the load of the internal combustion engine 10 is provided. The injection amount determination unit 22 increases the upstream injection ratio as the load on the internal combustion engine 10 is low, and decreases the upstream injection ratio as the load on the internal combustion engine 10 is high.
As a result, the amount of radicals is relatively large under conditions where compression ignition is difficult, so that the ignitability is improved. In addition, the radical amount is relatively small and the main injection amount is relatively large under the condition where compression ignition is easy, so that the isovolume is improved and the thermal efficiency is enhanced.

[第2実施形態]
本発明の第2実施形態では、図9に示すECU31の貫徹力決定部32は、前段噴霧範囲が主噴霧範囲と比べてインジェクタ15の噴孔17寄りとなるように前段噴霧の貫徹力を決定する。つまり、貫徹力決定部32は、主燃料のための主噴射に先立つ前段噴射時には、主噴射時と比べて噴孔径および噴射圧を小さくして燃料を噴射することを決定する。
[Second Embodiment]
In the second embodiment of the present invention, the penetration force determining unit 32 of the ECU 31 shown in FIG. 9 determines the penetration force of the front stage spray so that the front stage spray range is closer to the nozzle hole 17 of the injector 15 than the main spray range. To do. That is, the penetrating force determining unit 32 determines that the fuel is injected with the nozzle hole diameter and the injection pressure being smaller at the time of the pre-injection prior to the main injection for the main fuel than at the time of the main injection.

前段噴射時の噴孔18の噴孔径は主噴射時の噴孔17の噴孔径と比べて小さくされるとともに、前段噴射時の噴射圧は主噴射時の噴射圧と比べて小さくされる。噴孔径および噴射圧が小さいということは、前記式(1)に表される噴霧到達距離xが短くなるということである。式(1)において、W0は噴霧の速度であって噴射圧の平方根に比例する。これにより、前段噴霧の貫徹力が主噴霧の貫徹力と比べて小さくなり、図10に示す前段噴霧範囲Rpが図11に示す主噴霧範囲Rmと比べてインジェクタ15の噴孔17寄りとなる。噴射圧が可変であるインジェクタに関しては、例えば特表2009−545701号公報に開示されているため、詳細な構成についての説明を省略する。 The diameter of the nozzle hole 18 at the time of the previous injection is made smaller than the diameter of the nozzle hole 17 at the time of the main injection, and the injection pressure at the time of the previous injection is made smaller than the injection pressure at the time of the main injection. The fact that the nozzle hole diameter and the injection pressure are small means that the spray reach distance x expressed by the equation (1) is shortened. In equation (1), W 0 is the spray speed and is proportional to the square root of the injection pressure. Thereby, the penetration force of the front stage spray is smaller than that of the main spray, and the front stage spray range Rp shown in FIG. 10 is closer to the injection hole 17 of the injector 15 than the main spray range Rm shown in FIG. An injector having a variable injection pressure is disclosed in, for example, Japanese Translation of PCT International Publication No. 2009-545701, and thus a detailed description thereof is omitted.

このように前段噴射時の噴射圧を主噴射時の噴射圧と比べて小さくしても、前段噴霧範囲を主噴霧範囲と比べてインジェクタ15の噴孔17寄りとすることができる。したがって、第1実施形態と同様に圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。
また、前段噴射時の噴孔径および噴射圧の両方を小さくすることで、一方だけを小さくする場合よりも前段噴霧範囲を一層噴孔17寄りとすることができる。
Thus, even if the injection pressure at the time of the front stage injection is made smaller than the injection pressure at the time of the main injection, the front stage spray range can be closer to the injection hole 17 of the injector 15 than the main spray range. Therefore, as in the first embodiment, it is possible to achieve stable diffusion combustion by avoiding rapid combustion while ensuring the ignitability of compression ignition.
Further, by reducing both the nozzle hole diameter and the injection pressure at the time of the front injection, the front spray range can be made closer to the nozzle hole 17 than when only one of them is reduced.

[第3実施形態]
本発明の第3実施形態では、図12に示すECU41の貫徹力決定部42は、前段噴霧範囲が主噴霧範囲と比べてインジェクタ43の噴孔44寄りとなるように前段噴霧の噴射方向を決定する。つまり、貫徹力決定部42は、主燃料のための主噴射に先立つ前段噴射時には、主噴射時と比べて噴射方向を燃焼室11の区画壁寄りにして燃料を噴射することを決定する。
[Third Embodiment]
In the third embodiment of the present invention, the penetration force determination unit 42 of the ECU 41 shown in FIG. 12 determines the injection direction of the front spray so that the front spray range is closer to the injection hole 44 of the injector 43 than the main spray range. To do. That is, the penetrating force determination unit 42 determines that the fuel is injected with the injection direction closer to the partition wall of the combustion chamber 11 in the pre-stage injection prior to the main injection for the main fuel as compared with the main injection.

図13および図14に示すように、インジェクタ43は2種類の噴孔17、44を有している。
図14に示すように主噴射時の噴孔17の噴射方向はピストンキャビティ19に向けられる。一方、図13に示すように前段噴射時の噴孔44の噴射方向は、燃焼室11の区画壁の1つであるピストン14の上面45に向けられる。前段噴射時の噴射方向が主噴射時の噴射方向と比べて燃焼室11の区画壁寄りに向けられることで、図13に示す前段噴霧範囲Rpが図14に示す主噴霧範囲Rmと比べてインジェクタ43の噴孔17寄りとなる。2種類の噴孔を備え、一方の噴射方向が他方の噴射方向と異ならせるインジェクタに関しては、例えば特開2013−119836号公報に開示されているため、詳細な構成についての説明を省略する。
As shown in FIGS. 13 and 14, the injector 43 has two types of injection holes 17 and 44.
As shown in FIG. 14, the injection direction of the injection hole 17 at the time of main injection is directed to the piston cavity 19. On the other hand, as shown in FIG. 13, the injection direction of the injection hole 44 at the time of the front injection is directed to the upper surface 45 of the piston 14 that is one of the partition walls of the combustion chamber 11. Since the injection direction at the time of the front injection is directed closer to the partition wall of the combustion chamber 11 than the injection direction at the time of the main injection, the front spray range Rp shown in FIG. 13 is an injector compared to the main spray range Rm shown in FIG. 43 near the nozzle hole 17. An injector that includes two types of injection holes and makes one injection direction different from the other injection direction is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-198136, and thus detailed description thereof is omitted.

このように前段噴射時の噴射方向を主噴射時と比べて燃焼室11の区画壁寄りに向けても、前段噴霧範囲を主噴霧範囲と比べてインジェクタ43の噴孔17寄りとすることができる。したがって、第1実施形態と同様に圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。   Thus, even if the injection direction at the time of the front stage injection is directed closer to the partition wall of the combustion chamber 11 than at the time of the main injection, the front stage spray range can be closer to the injection hole 17 of the injector 43 than the main spray range. . Therefore, as in the first embodiment, it is possible to achieve stable diffusion combustion by avoiding rapid combustion while ensuring the ignitability of compression ignition.

[第4実施形態]
本発明の第4実施形態では、図15に示すECU51の噴射時期決定部52は、前段噴霧の低温酸化反応によるラジカルの発生時期が主噴射の噴射時期と重なるように、燃焼室温度および燃料のオクタン価に基づき前段噴射の噴射時期を決定する。すなわち、噴射時期決定部52は、ラジカルの発生時期を前段噴射の噴射時期により制御する。
[Fourth Embodiment]
In the fourth embodiment of the present invention, the injection timing determination unit 52 of the ECU 51 shown in FIG. 15 performs the combustion chamber temperature and fuel control so that the generation timing of radicals due to the low-temperature oxidation reaction of the pre-stage spray overlaps the injection timing of the main injection. The injection timing of the pre-stage injection is determined based on the octane number. That is, the injection timing determination unit 52 controls the radical generation timing by the injection timing of the pre-stage injection.

具体的には、図16に示すように、噴射時期決定部52は、燃焼室温度が高いほど(すなわち、低温酸化反応が進行しやすいほど)前段噴射の噴射時期を遅角し、燃焼室温度が低いほど(すなわち、低温酸化反応が進行しにくいほど)前段噴射の噴射時期を進角する。また、噴射時期決定部52は、燃料のオクタン価が低いほど(すなわち、低温酸化反応が進行しやすいほど)前段噴射の噴射時期を遅角し、燃料のオクタン価が高いほど(すなわち、低温酸化反応が進行しにくいほど)前段噴射の噴射時期を進角する。   Specifically, as shown in FIG. 16, the injection timing determination unit 52 retards the injection timing of the pre-injection as the combustion chamber temperature is higher (that is, the low-temperature oxidation reaction is more likely to proceed) to determine the combustion chamber temperature. Is lower (that is, the lower the temperature oxidation reaction is, the more difficult the advancement is). Further, the injection timing determination unit 52 retards the injection timing of the preceding injection as the octane number of the fuel is lower (that is, the low-temperature oxidation reaction is more likely to proceed), and as the octane number of the fuel is higher (that is, the low-temperature oxidation reaction is performed). Advancing the injection timing of the preceding injection)

ECU51は図17に示す処理を実行する。ステップS11、S12、S14、S15は、第1実施形態の図8のステップS1〜S4と同様の内容である。
ステップ12の後のステップS13では、噴射時期決定部52は、前段噴霧の低温酸化反応によるラジカルの発生時期が主噴射の噴射時期と重なるように、燃焼室温度および燃料のオクタン価に基づき前段噴射の噴射時期を決定する。
The ECU 51 executes the process shown in FIG. Steps S11, S12, S14, and S15 have the same contents as steps S1 to S4 in FIG. 8 of the first embodiment.
In step S13 after step 12, the injection timing determination unit 52 performs the pre-injection based on the combustion chamber temperature and the octane number of the fuel so that the generation timing of radicals by the low-temperature oxidation reaction of the pre-stage spray overlaps the injection timing of the main injection. Determine the injection timing.

このように燃焼室温度および燃料のオクタン価に基づき前段噴射の噴射時期を変更することで、ラジカルの発生時期を主噴射の噴射時期と重ねることができる。そのため、主噴霧に噴孔17寄りの場所で高濃度のラジカルを供給することができる。したがって、第1実施形態と同様に圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。   In this way, by changing the injection timing of the pre-stage injection based on the combustion chamber temperature and the octane number of the fuel, the radical generation timing can be overlapped with the main injection timing. Therefore, high concentration radicals can be supplied to the main spray at a location near the nozzle hole 17. Therefore, as in the first embodiment, it is possible to achieve stable diffusion combustion by avoiding rapid combustion while ensuring the ignitability of compression ignition.

[第5実施形態]
本発明の第5実施形態では、図18に示すECU61の貫徹力決定部62は、第3実施形態と同様に前段噴射時の噴射圧を主噴射時と比べて小さくすることに加えて、噴射時期決定部52による前段噴射の噴射時期の進遅角度合いに応じて前段噴射時の噴射圧を増減する。具体的には、貫徹力決定部62は、前段噴射の噴射時期が進角されるほど前段噴射時の噴射圧を小さくして前段噴霧の貫徹力を小さくし、前段噴射の噴射時期が遅角されるほど前段噴射時の噴射圧を大きくして前段噴霧の貫徹力を大きくする。
[Fifth Embodiment]
In the fifth embodiment of the present invention, the penetrating force determining unit 62 of the ECU 61 shown in FIG. 18 performs the injection in addition to reducing the injection pressure at the time of the pre-stage injection as compared with the time of the main injection as in the third embodiment. The injection pressure at the preceding injection is increased or decreased according to the advance / delay angle of the injection timing of the preceding injection by the timing determining unit 52. Specifically, the penetration force determining unit 62 decreases the injection pressure at the front stage injection to reduce the penetration power at the front stage spray as the injection timing of the front stage injection is advanced, and retards the injection timing of the front stage injection. The injection pressure at the front stage injection is increased to increase the penetration force of the front stage spray.

例えば噴射時期が進角された場合には混合気が拡散する時間が長くなるためにラジカルを噴孔付近に局所的に配置しづらくなる。これに対して、第5実施形態では、前段噴射の噴射時期が進角されるほど前段噴霧の貫徹力が小さくされることで、混合気の拡散が抑えられている。   For example, when the injection timing is advanced, it takes a long time for the air-fuel mixture to diffuse, making it difficult to place the radicals locally near the nozzle holes. On the other hand, in the fifth embodiment, the diffusion force of the air-fuel mixture is suppressed by reducing the penetration force of the front stage spray as the injection timing of the front stage injection is advanced.

[第6実施形態]
本発明の第6実施形態では、図19に示すECU71の噴射量決定部72は、前段噴霧の低温酸化反応によるラジカルの発生時期が主噴射の噴射時期と重なるように、前段噴射割合を燃焼室温度およびオクタン価に基づき決定する。すなわち、噴射量決定部72は、ラジカルの発生時期を前段噴射の前段噴射割合により制御する。
[Sixth Embodiment]
In the sixth embodiment of the present invention, the injection amount determination unit 72 of the ECU 71 shown in FIG. 19 sets the front injection ratio to the combustion chamber so that the generation timing of radicals due to the low temperature oxidation reaction of the front spray overlaps the injection timing of the main injection. Determine based on temperature and octane number. That is, the injection amount determination unit 72 controls the radical generation timing based on the pre-injection ratio of the pre-injection.

具体的には、図20に示すように、噴射量決定部72は、燃焼室温度が高いほど(すなわち、低温酸化反応が進行しやすいほど)前段噴射割合を小さくし、燃焼室温度が低いほど(すなわち、低温酸化反応が進行しにくいほど)前段噴射割合を大きくする。また、噴射量決定部72は、燃料のオクタン価が低いほど(すなわち、低温酸化反応が進行しやすいほど)前段噴射割合を小さくし、燃料のオクタン価が高いほど(すなわち、低温酸化反応が進行しにくいほど)前段噴射割合を大きくする。   Specifically, as shown in FIG. 20, the injection amount determination unit 72 decreases the pre-injection ratio as the combustion chamber temperature is higher (that is, as the low-temperature oxidation reaction proceeds more easily), and as the combustion chamber temperature is lower. The pre-injection ratio is increased (that is, the low-temperature oxidation reaction is difficult to proceed). Further, the injection amount determination unit 72 decreases the injection ratio as the octane number of the fuel is low (that is, the low-temperature oxidation reaction is likely to proceed), and as the fuel octane number is high (that is, the low-temperature oxidation reaction is difficult to proceed). Increase the front injection ratio.

このように燃焼室温度および燃料のオクタン価に基づき前段噴射割合を変更することで、主噴射の噴射時期により多くのラジカルを発生させることができる。そのため、主噴霧に噴孔17寄りの場所で高濃度のラジカルを供給することができる。したがって、第1実施形態と同様に圧縮着火の着火性を確保しつつも急激な燃焼を回避して、安定した拡散燃焼を実現可能である。   Thus, by changing the pre-injection ratio based on the combustion chamber temperature and the octane number of the fuel, more radicals can be generated at the injection timing of the main injection. Therefore, high concentration radicals can be supplied to the main spray at a location near the nozzle hole 17. Therefore, as in the first embodiment, it is possible to achieve stable diffusion combustion by avoiding rapid combustion while ensuring the ignitability of compression ignition.

低温酸化反応速度は、雰囲気温度と当量比とオクタン価との関数である。第6実施形態のECU71は、低温酸化反応速度を逐次算出し、主噴射時期にラジカル濃度が最も高くなるように前段噴射の噴射時期および噴射量を制御する。   The low temperature oxidation reaction rate is a function of the ambient temperature, the equivalence ratio, and the octane number. The ECU 71 of the sixth embodiment sequentially calculates the low-temperature oxidation reaction rate, and controls the injection timing and the injection amount of the pre-stage injection so that the radical concentration becomes the highest at the main injection timing.

[他の実施形態]
本発明の他の実施形態では、前段噴射は2回以上行われてもよい。また、主噴射は2回以上行われてもよい。
本発明の他の実施形態では、ガソリン以外の燃料として、例えばアルコール燃料またはガス燃料などが用いられてもよい。
[Other Embodiments]
In other embodiments of the present invention, the pre-injection may be performed more than once. The main injection may be performed twice or more.
In another embodiment of the present invention, for example, alcohol fuel or gas fuel may be used as fuel other than gasoline.

本発明の他の実施形態では、ECUは、点火プラグを備えており火花点火モードと圧縮着火モードとを切り替えて実施する内燃機関において、圧縮着火モードにおける着火性を確保するために用いられてもよい。また、このような形態において、燃料のオクタン価は、火花点火モードでの点火時期と筒内圧力に基づき推定されてもよい。火花点火モードにおいては、一般的に、着火しやすい燃焼(低オクタン価)の場合、ノッキングを避けるために点火時期を遅らせる制御が行われる。このような制御を行った情報から燃焼のオクタン価を推定する。   In another embodiment of the present invention, the ECU includes an ignition plug and is used to ensure the ignitability in the compression ignition mode in an internal combustion engine that is switched between the spark ignition mode and the compression ignition mode. Good. In such a form, the octane number of the fuel may be estimated based on the ignition timing and the in-cylinder pressure in the spark ignition mode. In the spark ignition mode, generally, in the case of combustion that tends to ignite (low octane number), control for delaying the ignition timing is performed to avoid knocking. The octane number of combustion is estimated from information obtained by such control.

本発明の他の実施形態では、燃焼室内の温度は、筒内圧センサが検出する筒内圧力に基づき推定されてもよいし、冷却水温センサが検出する冷却水の温度に基づき推定されてもよい。冷却水温を計測することで例えば冷間時で燃焼室内の温度が上昇しにくいということを予測することができる。   In another embodiment of the present invention, the temperature in the combustion chamber may be estimated based on the in-cylinder pressure detected by the in-cylinder pressure sensor, or may be estimated based on the temperature of the cooling water detected by the cooling water temperature sensor. . By measuring the cooling water temperature, for example, it can be predicted that the temperature in the combustion chamber is unlikely to rise during cold weather.

本発明の他の実施形態では、第2実施形態と第3実施形態とが組み合わされて実施されてもよい。つまり、前段噴射時の噴射圧が主噴射時と比べて小さくされ、かつ、前段噴射時の噴射方向が主噴射時と比べて燃焼室の区画壁寄りに向けられてもよい。
本発明の他の実施形態では、前段噴射時と主噴射時とで噴孔径を変えず、かつ、前段噴射時の噴射圧が主噴射時と比べて小さくされてもよい。
本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の形態で実施可能である。
In other embodiment of this invention, 2nd Embodiment and 3rd Embodiment may be combined and implemented. That is, the injection pressure at the time of preceding injection may be made smaller than that at the time of main injection, and the injection direction at the time of preceding injection may be directed closer to the partition wall of the combustion chamber than at the time of main injection.
In another embodiment of the present invention, the injection hole diameter may not be changed between the front injection and the main injection, and the injection pressure during the front injection may be made smaller than that during the main injection.
The present invention is not limited to the embodiments described above, and can be implemented in various forms without departing from the spirit of the invention.

10・・・内燃機関
11・・・燃焼室
15・・・燃料噴射装置
16・・・ECU(内燃機関制御装置)
17・・・噴孔
23、32、42、62・・・噴射仕様決定部
24・・・噴射指令部
Rp・・・前段噴霧到達範囲
Rm・・・主噴霧到達範囲
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 11 ... Combustion chamber 15 ... Fuel-injection apparatus 16 ... ECU (internal combustion engine control apparatus)
17 ... Injection hole 23, 32, 42, 62 ... Injection specification determining part 24 ... Injection command part Rp ... Pre-stage spray reach range Rm ... Main spray reach range

Claims (13)

1サイクル中に燃料を燃焼室(11)に複数回噴射可能な燃料噴射装置(15)を備え、圧縮着火を実施する内燃機関(10)を制御する装置であって、
トルクを生み出す主燃焼のための主噴射、および、前記主噴射の前段階の噴射である前段噴射の実行を前記燃料噴射装置に指令する噴射指令部(24)と、
前記前段噴射による噴霧の到達範囲(Rp)が前記主噴射による噴霧の到達範囲(Rm)と比べて前記燃料噴射装置の噴孔(17)寄りとなるように、前記前段噴射による噴霧の貫徹力または前記前段噴射の噴射方向を決定する噴射仕様決定部(23、32、42、62)と、
を有する内燃機関制御装置。
A device for controlling an internal combustion engine (10) that includes a fuel injection device (15) capable of injecting fuel into a combustion chamber (11) a plurality of times during one cycle, and that performs compression ignition,
An injection command section (24) for instructing the fuel injection device to execute main injection for generating main torque for main combustion, and pre-injection that is injection before the main injection;
The penetration force of the spray by the preceding stage injection so that the reach range (Rp) of the spray by the preceding stage injection is closer to the injection hole (17) of the fuel injection device than the reach range (Rm) of the spray by the main injection. Or an injection specification determining unit (23, 32, 42, 62) for determining the injection direction of the preceding injection;
An internal combustion engine control device.
前記前段噴射は圧縮行程で行われる請求項1に記載の内燃機関制御装置。   The internal combustion engine control device according to claim 1, wherein the pre-stage injection is performed in a compression stroke. 前記噴射仕様決定部(23、32、62)は、前記前段噴射時の噴射圧および噴孔径の一方または両方を前記主噴射時と比べて小さくすることで、前記前段噴射による噴霧の貫徹力を前記主噴射による噴霧の貫徹力と比べて小さくし、前記前段噴射による噴霧の到達範囲を前記主噴射による噴霧の到達範囲と比べて前記燃料噴射装置の噴孔寄りにする請求項1または2に記載の内燃機関制御装置。   The injection specification determining unit (23, 32, 62) reduces the penetration force of the spray by the preceding injection by reducing one or both of the injection pressure and the nozzle hole diameter at the preceding injection as compared with the main injection. The fuel spray device according to claim 1 or 2, wherein the spray penetration force by the main injection is made smaller than the spray injection force by the main injection, and the spray reach by the main injection is closer to the nozzle hole of the fuel injection device than the spray reach by the main injection. The internal combustion engine control apparatus described. 前記噴射仕様決定部(42)は、前記前段噴射時の噴射方向を前記主噴射時と比べて前記燃焼室の区画壁(45)寄りに向けることで、前記前段噴射による噴霧の到達範囲を前記主噴射による噴霧の到達範囲と比べて前記燃料噴射装置の噴孔寄りにする請求項1〜3のいずれか一項に記載の内燃機関制御装置。   The injection specification determination unit (42) directs the injection direction at the time of the preceding injection toward the partition wall (45) of the combustion chamber as compared with the time of the main injection, thereby setting the reach range of the spray by the preceding injection. The internal combustion engine control device according to any one of claims 1 to 3, wherein the internal combustion engine control device is closer to a nozzle hole of the fuel injection device than a spray reach range by main injection. 前記燃焼室の状態量および燃料性状に関する情報を取得する情報取得部(21)と、
前記前段噴射による噴霧の低温酸化反応によるラジカルの発生時期が前記主噴射の噴射時期と重なるように、前記状態量または前記燃料性状に基づき前記前段噴射の噴射時期を決定する噴射時期決定部(52)と、
をさらに備える請求項1〜4のいずれか一項に記載の内燃機関制御装置。
An information acquisition unit (21) for acquiring information on the state quantity and fuel properties of the combustion chamber;
An injection timing determination unit (52) that determines the injection timing of the preceding injection based on the state quantity or the fuel property so that the generation timing of radicals by the low temperature oxidation reaction of the spray by the upstream injection overlaps the injection timing of the main injection. )When,
The internal combustion engine control device according to any one of claims 1 to 4, further comprising:
前記噴射時期決定部は、前記状態量としての前記燃焼室内の温度が高いほど前記前段噴射の噴射時期を遅角し、前記燃焼室内の温度が低いほど前記前段噴射の噴射時期を進角する請求項5に記載の内燃機関制御装置。   The injection timing determining unit retards the injection timing of the preceding injection as the temperature in the combustion chamber as the state quantity is higher, and advances the injection timing of the preceding injection as the temperature in the combustion chamber is lower. Item 6. The internal combustion engine control device according to Item 5. 前記噴射時期決定部は、前記燃料性状としての燃料のオクタン価が低いほど前記前段噴射の噴射時期を遅角し、燃料のオクタン価が高いほど前記前段噴射の噴射時期を進角する請求項5または6に記載の内燃機関制御装置。   The injection timing determination unit retards the injection timing of the preceding injection as the octane number of the fuel as the fuel property is lower, and advances the injection timing of the preceding injection as the octane number of the fuel is higher. An internal combustion engine control device according to claim 1. 前記噴射仕様決定部(62)は、前記前段噴射の噴射時期が進角されるほど前記前段噴射による噴霧の貫徹力を小さくし、前記前段噴射の噴射時期が遅角されるほど前記前段噴射による噴霧の貫徹力を大きくする請求項5〜7のいずれか一項に記載の内燃機関制御装置。   The injection specification determining unit (62) reduces the penetration force of the spray by the preceding injection as the injection timing of the preceding injection is advanced, and performs the preceding injection as the injection timing of the preceding injection is retarded. The internal combustion engine control device according to any one of claims 5 to 7, wherein the penetration force of the spray is increased. 前記噴射仕様決定部(42)は、前記前段噴射の噴射時期が進角されるほど前記前段噴射時の噴射方向が前記燃焼室の区画壁寄りに向けられ、前記前段噴射の噴射時期が遅角されるほど前記前段噴射時の噴射方向が前記燃焼室の区画壁から離される請求項5〜8のいずれか一項に記載の内燃機関制御装置。   The injection specification determining unit (42) causes the injection direction at the preceding injection to be closer to the partition wall of the combustion chamber as the injection timing of the preceding injection is advanced, and the injection timing of the preceding injection is retarded. The internal combustion engine control device according to any one of claims 5 to 8, wherein an injection direction at the time of the preceding stage injection is separated from a partition wall of the combustion chamber. 前記前段噴射の噴射量と前記主噴射の噴射量との合計を総噴射量と呼び、前記総噴射量に占める前記前段噴射の噴射量の割合を前段噴射割合と呼ぶ場合において、
前記内燃機関の負荷に関する情報を取得する情報取得部と、
前記内燃機関の負荷が低いほど前記前段噴射割合を大きくし、前記内燃機関の負荷が高いほど前記前段噴射割合を小さくする噴射量決定部(22)と、
をさらに備える請求項1〜9のいずれか一項に記載の内燃機関制御装置。
In the case where the sum of the injection amount of the preceding injection and the injection amount of the main injection is referred to as a total injection amount, and the proportion of the injection amount of the preceding injection in the total injection amount is referred to as a pre-injection proportion,
An information acquisition unit for acquiring information on the load of the internal combustion engine;
An injection amount determination unit (22) that increases the front injection ratio as the load on the internal combustion engine is lower, and decreases the front injection ratio as the load on the internal combustion engine is higher;
The internal combustion engine control device according to any one of claims 1 to 9, further comprising:
前記前段噴射の噴射量と前記主噴射の噴射量との合計を総噴射量と呼び、前記総噴射量に占める前記前段噴射の噴射量の割合を前段噴射割合と呼ぶ場合において、
前記燃焼室の状態量および燃料性状に関する情報を取得する情報取得部と、
前記前段噴射による噴霧の低温酸化反応によるラジカルの発生時期が前記主噴射の噴射時期と重なるように、前記状態量または前記燃料性状に基づき前記前段噴射割合を決定する噴射量決定部(72)と、
をさらに備える請求項1〜9のいずれか一項に記載の内燃機関制御装置。
In the case where the sum of the injection amount of the preceding injection and the injection amount of the main injection is referred to as a total injection amount, and the proportion of the injection amount of the preceding injection in the total injection amount is referred to as a pre-injection proportion,
An information acquisition unit for acquiring information on the state quantity and fuel properties of the combustion chamber;
An injection amount determination unit (72) for determining the pre-injection ratio based on the state quantity or the fuel property so that the generation timing of radicals due to the low-temperature oxidation reaction of the spray by the pre-injection overlaps the injection timing of the main injection; ,
The internal combustion engine control device according to any one of claims 1 to 9, further comprising:
前記噴射仕様決定部(72)は、前記状態量としての前記燃焼室内の温度が高いほど前記前段噴射割合を小さくし、前記燃焼室内の温度が低いほど前記前段噴射割合を大きくする請求項11に記載の内燃機関制御装置。   The said injection specification determination part (72) makes the said front | former stage injection ratio small, so that the temperature in the said combustion chamber as said state quantity is high, and makes the said front stage injection ratio large, so that the temperature in the said combustion chamber is low. The internal combustion engine control apparatus described. 前記噴射仕様決定部(72)は、前記燃料性状としての燃料のオクタン価が低いほど前記前段噴射割合を小さくし、燃料のオクタン価が高いほど前記前段噴射割合を大きくする請求項11または12に記載の内燃機関制御装置。   The said injection specification determination part (72) makes the said front | former stage injection ratio small, so that the octane number of the fuel as said fuel property is low, and makes the said front stage injection ratio large, so that the octane number of fuel is high. Internal combustion engine control device.
JP2016250211A 2016-12-23 2016-12-23 Internal combustion engine control device Pending JP2018105162A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016250211A JP2018105162A (en) 2016-12-23 2016-12-23 Internal combustion engine control device
US15/847,170 US20180179995A1 (en) 2016-12-23 2017-12-19 Internal combusition engine control apparatus
DE102017131116.5A DE102017131116A1 (en) 2016-12-23 2017-12-22 Engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250211A JP2018105162A (en) 2016-12-23 2016-12-23 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
JP2018105162A true JP2018105162A (en) 2018-07-05

Family

ID=62786802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250211A Pending JP2018105162A (en) 2016-12-23 2016-12-23 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2018105162A (en)

Similar Documents

Publication Publication Date Title
US10400706B2 (en) Control apparatus for internal combustion engine
JP5238097B2 (en) Method of selecting between two operating modes in a diesel-type dual fuel internal combustion engine and a diesel-type dual fuel internal combustion engine operable according to such a method
US9784207B2 (en) Control apparatus for internal combustion engine
US20170284282A1 (en) Control apparatus for internal combustion engine
JP6206364B2 (en) Internal combustion engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
JP6376289B2 (en) Internal combustion engine control device and internal combustion engine control method
US10066574B2 (en) Control apparatus for internal combustion engine
JP6112195B2 (en) Internal combustion engine control system
JP2016000969A5 (en)
KR20080103071A (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2018087521A (en) Premixing compression ignition type engine
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP2018003780A (en) Control device of internal combustion engine
JP2009036086A (en) Direct injection engine and method for controlling the same
JP2007032473A (en) Combustion control device for cylinder injection self-igniting engine
JP6471041B2 (en) Injection controller for spark ignition engine
JP4274063B2 (en) Control device for internal combustion engine
JP2018105162A (en) Internal combustion engine control device
JP5287381B2 (en) engine
EP3460223A1 (en) Internal combustion engine control device
JP2019132241A (en) Control device for engine
JP2006052686A (en) Control device of internal combustion engine
JP2009102997A (en) Spark ignition internal combustion engine
JP7345622B2 (en) Engine system and gaseous fuel combustion method