JP2018104906A - Method to select soil improvement method and soil improvement method - Google Patents

Method to select soil improvement method and soil improvement method Download PDF

Info

Publication number
JP2018104906A
JP2018104906A JP2016249561A JP2016249561A JP2018104906A JP 2018104906 A JP2018104906 A JP 2018104906A JP 2016249561 A JP2016249561 A JP 2016249561A JP 2016249561 A JP2016249561 A JP 2016249561A JP 2018104906 A JP2018104906 A JP 2018104906A
Authority
JP
Japan
Prior art keywords
hardness
time
specimen
soil
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016249561A
Other languages
Japanese (ja)
Other versions
JP6384540B2 (en
Inventor
村島 正憲
Masanori Murashima
正憲 村島
裕治 松谷
Yuji Matsutani
裕治 松谷
陽悦 神田
Haruyoshi Kanda
陽悦 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2016249561A priority Critical patent/JP6384540B2/en
Publication of JP2018104906A publication Critical patent/JP2018104906A/en
Application granted granted Critical
Publication of JP6384540B2 publication Critical patent/JP6384540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method to select a soil improvement method capable of preventing a delay of a construction period for a soil improvement.SOLUTION: A method to select a soil improvement method is provided with: a process to sample soil; a process to produce a test piece using sampled soil and solidification material; a measurement process to measure hardness of the test piece at a period shorter than a period predetermined as a solidification period; a process to determine whether to adopt a columnar improvement method based on whether the hardness of the test piece is more than or equal to a predetermined threshold value; a provision process to provide the predetermined threshold value. In the provision process, the threshold value is set based on a hardness measured at the arrival of measurement time, of the test piece determined to meet a hardness standard value at the arrival of a solidification time.SELECTED DRAWING: Figure 1

Description

本発明は、地盤改良工法の選定方法及び当該選定方法により選定された地盤改良工法を用いた地盤改良方法に関する。   The present invention relates to a method for selecting a ground improvement method and a ground improvement method using the ground improvement method selected by the selection method.

従来、宅地などにおける地盤改良工法の一つとして、柱状改良工法が知られている。この工法は、セメント系固化材と水を混合したスラリーを地中において現地の土と混合攪拌することにより当該土を固化させ、建物を支える改良柱体を地中に造成するという方法である。   Conventionally, a columnar improvement method is known as one of ground improvement methods in residential land and the like. This construction method is a method in which a slurry obtained by mixing a cement-based solidifying material and water is mixed and stirred with soil in the ground to solidify the soil, and an improved pillar supporting the building is created in the ground.

しかし、現地の土には、腐植土(有機質土)のように固化材と混合しても十分に固化せず、固化不良を起こし易い性状のものが含まれる場合がある。このような固化不良は、建物の不同沈下の原因となり得るため、柱状改良工法の施工前に地盤の硬軟、締まり具合及び土層の構成を予め確認し、柱状改良工法を採用可能であるか否かを判断する必要がある。下記特許文献1には、柱状改良工法に適した土質であるか否かについて事前に判断する標準貫入試験(ボーリング調査)を行うための装置について記載されている。   However, there are cases where local soil, such as humus soil (organic soil), does not solidify sufficiently even when mixed with a solidifying material, and is prone to solidification failure. Since such solidification failure may cause uneven settlement of the building, whether or not the columnar improvement method can be adopted by confirming the hardness of the ground, the degree of tightening and the structure of the soil layer before construction of the columnar improvement method. It is necessary to judge whether. The following Patent Document 1 describes an apparatus for performing a standard penetration test (boring investigation) for determining in advance whether or not the soil is suitable for the columnar improvement method.

特開2001−288732号公報JP 2001-288732 A

ボーリング調査の結果に基づいて柱状改良工法にあたって土質に問題がないと判断されると、柱状改良工法の本施工を行うための重機などが現地に搬入される。そして、本施工が開始される前に、現地において試掘調査が行われることにより土質が再度確認される。   If it is judged that there is no problem with the soil quality in the columnar improvement method based on the results of the boring survey, heavy machinery for carrying out the actual construction of the columnar improvement method will be brought to the site. And before this construction is started, the soil quality is confirmed again by conducting a test excavation at the site.

ここで、ボーリング調査では土質に問題がないと判断された場合でも、試掘調査において固化し難い可能性がある土(腐植土など)が確認される場合がある。これは、ボーリング調査では地盤に10cm程度の径を有する孔を空けて1箇所のみで土質調査を行うのに対して、試掘調査では地盤に20cm程度の径を有する孔を2〜3箇所空けて土質調査を行うため、調査対象範囲の広狭によって生じる問題である。   Here, even if it is determined that there is no problem with the soil quality in the boring survey, soil (such as humus soil) that may be difficult to solidify may be confirmed in the test excavation survey. This is because the borehole survey has a hole with a diameter of about 10 cm in the ground and the soil is surveyed only at one location, while the test excavation survey has a hole with a diameter of about 20 cm in the ground. This is a problem caused by the narrowness of the survey area because soil surveys are conducted.

この場合、現地から重機を一旦引き揚げ、試掘調査で採取された土壌試料を別の場所にある試験所に搬送する。そして、この土壌試料と固化材を混合することにより供試体を作製し、当該供試体を用いて一軸圧縮試験を行うことにより土の固化具合を確認する(室内配合試験)。通常、この試験には1週間程度の時間を要する。そして、土が固化することが確認された場合には再び重機を搬入し、一方で土の固化具合が不十分であった場合には他の工法への変更が検討される。   In this case, the heavy machinery is once lifted from the site, and the soil sample collected in the prospecting survey is transported to a test laboratory in another location. And a test body is produced by mixing this soil sample and a solidification material, and the solidification condition of soil is confirmed by performing a uniaxial compression test using the said test body (indoor compounding test). This test usually takes about a week. When it is confirmed that the soil is solidified, the heavy machinery is carried in again. On the other hand, when the soil is not sufficiently solidified, a change to another construction method is considered.

このように、従来では、本施工前の試掘調査による土質の再確認時に固化し難い可能性がある腐植土等が確認された場合、重機の引き揚げや現地から離れた場所での室内配合試験を行う必要が生じるため、工期が大幅に遅れるという問題があった。   In this way, conventionally, when humus soil, etc., that may be difficult to solidify during the re-confirmation of the soil quality by the test excavation before the main construction, heavy equipment is lifted or an indoor compounding test at a place away from the site is conducted. There was a problem that the construction period was greatly delayed because it was necessary to do this.

本発明は、上記課題に鑑みてなされたものであり、その目的は、地盤改良における工期の遅延化を防ぐことが可能な地盤改良工法の選定方法及び当該選定方法により選定された地盤改良工法を用いた地盤改良方法を提供することである。   The present invention has been made in view of the above problems, and its purpose is to provide a method for selecting a ground improvement method capable of preventing a delay in the work period in ground improvement and a ground improvement method selected by the selection method. It is to provide a ground improvement method used.

本発明の一局面に係る地盤改良工法の選定方法は、土壌試料を採取する採取工程と、前記採取工程で得られた前記土壌試料と予め設定された量の固化材とを用いて、供試体を作製する作製工程と、前記供試体について予め設定された固化時間よりも短い測定時間において前記供試体の硬度を測定する測定工程と、前記測定工程で得られた硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する判断工程と、前記閾値を準備する準備工程と、を備える。前記準備工程では、前記固化時間の到来時において強度の基準を満たすと判断される前記供試体の前記測定時間の到来時における硬度を測定し、測定された前記硬度に基づいて前記閾値を設定する。   A method for selecting a ground improvement method according to one aspect of the present invention includes a sampling step of sampling a soil sample, the soil sample obtained in the sampling step, and a preset amount of a solidifying material. A measurement process for measuring the hardness of the specimen in a measurement time shorter than a preset solidification time for the specimen, and the hardness obtained in the measurement process is a preset hardness. A determination step of determining whether or not the columnar improvement method can be adopted based on whether or not it is equal to or greater than a threshold value, and a preparation step of preparing the threshold value are provided. In the preparation step, the hardness of the specimen that is determined to satisfy the strength standard at the time of the solidification time is measured at the time of the measurement time, and the threshold value is set based on the measured hardness. .

本発明者は、鋭意検討を行った結果、供試体の固化のための時間が比較的短いときに、供試体の強度と供試体の硬度とが略比例関係を有する点に着目した。そして、通常の固化時間の経過時に強度の基準を満たす供試体について、それよりも前の時間(測定時間)での硬度を測定したところ、通常の固化時間における強度が高いほど測定時間における硬度が高いことを見出し、本発明に想到した。   As a result of intensive studies, the inventor has focused on the fact that the strength of the specimen and the hardness of the specimen have a substantially proportional relationship when the time for solidification of the specimen is relatively short. And about the test piece which satisfy | fills the standard of intensity | strength at the progress of normal solidification time, when the hardness in the time (measurement time) before it was measured, the hardness in measurement time is so high that the intensity | strength in normal solidification time is high. I found it high and came up with the present invention.

上記地盤改良工法の選定方法では、採取した土壌試料と固化材とを用いて供試体を作製し、所定の測定時間において供試体の硬度を測定する。そして、測定された供試体の硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する。この測定時間は、供試体について予め設定された固化時間よりも短い。このため、固化時間の到来時において供試体の強度を測定する場合に比べて、柱状改良工法の採用の可否を判断するのに要する日数をより少なくすることができる。しかも、この硬度測定は、持ち運び可能な硬度計を用いて現地で行うことができるため、土壌試料を試験所へ搬送する作業や重機の引き揚げ作業も不要になる。従って、上記地盤改良工法の選定方法によれば、地盤改良における工期の遅延化を防ぐことができる。   In the method for selecting the ground improvement method, a specimen is prepared using the collected soil sample and the solidified material, and the hardness of the specimen is measured for a predetermined measurement time. Then, based on whether or not the measured hardness of the specimen is equal to or higher than a preset hardness threshold, it is determined whether or not the columnar improvement method can be adopted. This measurement time is shorter than the solidification time set in advance for the specimen. For this reason, compared with the case where the intensity | strength of a test piece is measured at the time of the solidification time arrival, the number of days required to judge whether the adoption of the columnar improvement method can be reduced. In addition, since this hardness measurement can be performed locally using a portable hardness meter, the work of transporting the soil sample to the laboratory and the lifting work of heavy machinery are not required. Therefore, according to the method for selecting the ground improvement method, it is possible to prevent a delay in the construction period in the ground improvement.

上記地盤改良工法の選定方法において、前記準備工程では、前記固化時間の到来時において強度の基準を満たさないと判断される前記供試体の前記測定時間の到来時における硬度を測定してもよい。そして、前記準備工程において、前記固化時間の到来時に強度の基準を満たす前記供試体の前記測定時間の到来時における硬度値と、前記固化時間の到来時に強度の基準を満たさない前記供試体の前記測定時間の到来時における硬度値と、の間に前記閾値を設定してもよい。   In the method for selecting the ground improvement method, in the preparation step, the hardness of the specimen that is determined not to satisfy the strength standard at the time of the solidification time may be measured. And, in the preparation step, the hardness value at the time of the measurement time of the specimen satisfying the strength standard at the time of the solidification time, and the specimen of the specimen not satisfying the strength standard at the time of the solidification time. You may set the said threshold value between the hardness value at the time of measurement time arrival.

これにより、固化時間の到来時に強度の基準を満たす供試体の測定時間の到来時における硬度値のみに基づいて閾値を設定する場合に比べて、当該閾値をより容易に設定することができる。   Thereby, the threshold value can be set more easily than the case where the threshold value is set only based on the hardness value at the time when the measurement time of the specimen that satisfies the strength criterion when the solidification time arrives.

上記地盤改良工法の選定方法は、前記採取工程で得られた前記土壌試料が固化し易い土質であるか否かを判定する判定工程をさらに備えていてもよい。そして、前記判定工程で前記土壌試料が固化し難いと判定した場合のみ、前記作製工程、前記測定工程及び前記判断工程が行われてもよい。   The selection method of the ground improvement construction method may further include a determination step of determining whether or not the soil sample obtained in the sampling step is easily soiled. And only when it determines with the said soil sample being hard to solidify at the said determination process, the said preparation process, the said measurement process, and the said determination process may be performed.

これにより、土壌試料が固化し難いと判定した場合にのみ供試体の硬度測定が行われるため、不必要な試験を行う必要がなくなり、工期の遅れを防ぐことができる。また土壌試料が固化し易い場合には、供試体の硬度を測定可能な時間が短く制限されるが、上述のように土壌試料が固化し難い場合には、硬度測定が可能な時間の幅をより広げることができる。   Thereby, since the hardness measurement of the specimen is performed only when it is determined that the soil sample is difficult to solidify, it is not necessary to perform an unnecessary test, and a delay in the construction period can be prevented. In addition, when the soil sample is easily solidified, the time during which the hardness of the specimen can be measured is limited to a short time. It can be expanded.

上記地盤改良工法の選定方法において、前記測定工程では、山中式土壌硬度計を用いて、バネ体の引張又は圧縮の量が30mm以下となる前記測定時間において前記供試体の硬度を測定してもよい。バネ体の引張又は圧縮の量が30mm以下となる時間範囲では、供試体の硬度と強度との間に強い相関関係が見られるため、より信頼性の高い測定値を得ることができる。   In the method for selecting the ground improvement method, in the measurement step, the hardness of the specimen is measured at the measurement time when the amount of tension or compression of the spring body is 30 mm or less using a Yamanaka soil hardness meter. Good. In the time range in which the amount of tension or compression of the spring body is 30 mm or less, a strong correlation is observed between the hardness and strength of the specimen, so that a more reliable measurement value can be obtained.

上記地盤改良工法の選定方法において、前記作製工程は、前記土壌試料と前記固化材と水とを混合することにより、混合試料を得る混合工程と、前記混合試料を筒体内に充填する充填工程と、を含んでいてもよい。前記測定工程では、前記筒体内に収容された状態の前記供試体の硬度を測定してもよい。これにより、測定中に供試体の形状が崩れるのを防ぐことができるため、硬度測定を正確に行うことができる。   In the method for selecting the ground improvement method, the production step includes a mixing step of obtaining a mixed sample by mixing the soil sample, the solidifying material, and water, and a filling step of filling the cylinder with the mixed sample. , May be included. In the measurement step, the hardness of the specimen that is housed in the cylinder may be measured. Thereby, since it can prevent that the shape of a test piece collapses during a measurement, hardness measurement can be performed correctly.

本発明の他局面に係る地盤改良方法は、上記地盤改良工法の選定方法を用いて選定された工法により地盤を改良する方法である。このため、工法の選定段階で要する時間が少なく、工期の遅延化を防ぐことができる。   A ground improvement method according to another aspect of the present invention is a method for improving the ground by a method selected using the method for selecting a ground improvement method. For this reason, less time is required in the method selection stage, and the delay in the construction period can be prevented.

以上の説明から明らかなように、本発明によれば、地盤改良における工期の遅延化を防ぐことが可能な地盤改良工法の選定方法及び当該選定方法により選定された地盤改良工法を用いた地盤改良方法を提供することができる。   As is apparent from the above description, according to the present invention, the ground improvement method using the ground improvement method selected by the selection method and the ground improvement method selected by the selection method can be prevented according to the present invention. A method can be provided.

本発明の実施形態1に係る地盤改良方法及び地盤改良工法の選定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the selection method of the ground improvement method and ground improvement construction method which concern on Embodiment 1 of this invention. 筒体内に混合試料が充填された様子を示す模式図である。It is a schematic diagram which shows a mode that the mixed sample was filled in the cylinder. 山中式土壌硬度計の構成を示す模式図である。It is a schematic diagram which shows the structure of a Yamanaka type soil hardness meter. 山中式土壌硬度計の円錐部を供試体に貫入させる前の様子を示す模式図である。It is a schematic diagram which shows a mode before making the cone part of a Yamanaka type soil hardness meter penetrate a test body. 山中式土壌硬度計の円錐部を供試体内に貫入させた時の様子を示す模式図である。It is a schematic diagram which shows a mode when the cone part of the Yamanaka type | system | group soil hardness meter is penetrated in the test body. 供試体の材齢と強度との関係を示すグラフである。It is a graph which shows the relationship between the age of a test body and intensity | strength. 柱状改良工法を説明するための模式図である。It is a schematic diagram for demonstrating a columnar improvement construction method. 鋼管杭工法を説明するための模式図である。It is a schematic diagram for demonstrating a steel pipe pile construction method. 山中式土壌硬度計を用いて測定した硬度値と圧縮強度との関係(圧縮量が35mm以下の範囲)を示すグラフである。It is a graph which shows the relationship (the amount of compression is 35 mm or less) between the hardness value measured using the Yamanaka type soil hardness meter, and compressive strength. 山中式土壌硬度計を用いて測定した硬度値と圧縮強度との関係(圧縮量が30mm以下の範囲)を示すグラフである。It is a graph which shows the relationship (the range of compression amount of 30 mm or less) between the hardness value measured using the Yamanaka type soil hardness meter, and compressive strength.

以下、図面に基づいて、本発明の実施形態に係る地盤改良工法の選定方法及び地盤改良方法について詳細に説明する。図1は、地盤改良方法の全体の流れを示すフローチャートである。本実施形態に係る地盤改良方法では、まず、工程S10〜S80の地盤改良工法の選定方法を用いて柱状改良工法を採用可能であるか否かを判断し、その判断に基づいて地盤改良の本施工(S90)が行われる。   Hereinafter, based on the drawings, a method for selecting a ground improvement method and a ground improvement method according to an embodiment of the present invention will be described in detail. FIG. 1 is a flowchart showing the overall flow of the ground improvement method. In the ground improvement method according to the present embodiment, first, it is determined whether or not the columnar improvement method can be adopted using the selection method of the ground improvement method in steps S10 to S80, and the ground improvement book is based on the determination. Construction (S90) is performed.

まず、搬入工程S10が行われる。この工程S10では、前工程で行われた標準貫入試験(ボーリング調査)において腐植土が確認されず、柱状改良工法にあたって現地の土質に問題がない(土が固化材により十分に固化する)と判断された後、柱状改良工法の本施工に使用する重機が現地に搬入される。   First, the carrying-in process S10 is performed. In this step S10, humus soil is not confirmed in the standard penetration test (boring survey) performed in the previous step, and it is determined that there is no problem with the local soil quality in the columnar improvement method (the soil is sufficiently solidified by the solidifying material). After that, the heavy machinery used for the actual construction of the columnar improvement method is brought into the site.

次に、採取工程S20が行われる。この工程S20では、柱状改良工法の本施工を開始する前に、当該本施工が予定された現地から土壌試料を採取することにより、現地の土質を再度確認する(試掘調査)。具体的には、搬入した重機により現地の地盤において200mm径程度の孔を2〜3箇所空け、各孔から所定の深さ(例えば1m)までの土壌試料を採取する。   Next, sampling process S20 is performed. In this step S20, before starting the actual construction of the columnar improvement method, the soil quality is confirmed again by collecting a soil sample from the site where the actual construction is scheduled (experimental survey). Specifically, two to three holes with a diameter of about 200 mm are made in the local ground by the heavy equipment that has been carried in, and a soil sample is collected from each hole to a predetermined depth (for example, 1 m).

次に、判定工程S30が行われる。この工程S30では、採取工程S20で得られた土壌試料を目視観察等することにより、当該土壌試料が固化し易い土質であるか否かを判定する。具体的には、採取した土壌試料の中に腐植土等の固化し難い土が含まれるか否かを目視等により確認し、その有無に基づいて柱状改良工法にあたって土質に問題がないか否かを判定する。そして、腐植土等が確認されず土質に問題がない(土壌試料が固化し易い)と判定した場合には(S30:YES)、柱状改良工法の採用をそのまま決定する(S70)。   Next, determination process S30 is performed. In this step S30, by visually observing the soil sample obtained in the collecting step S20, it is determined whether or not the soil sample is easily soiled. Specifically, it is confirmed by visual inspection whether the collected soil sample contains soil that is hard to solidify, such as humus soil, and whether there is any problem in soil quality in the columnar improvement method based on the presence or absence. Determine. When it is determined that humus soil or the like is not confirmed and there is no problem in soil quality (soil sample is easily solidified) (S30: YES), the adoption of the columnar improvement method is determined as it is (S70).

腐植土は、柱状改良工法においてセメント系固化材と混合しても固化し難い性質を有する。このため、現地の地盤に少量でも腐植土が含まれる場合には、固化不良に起因して地盤を十分に強化することができない可能性があり、建物の不同沈下を招く虞がある。   Humus soil has the property that it is difficult to solidify even when mixed with cement-based solidifying material in the columnar improvement method. For this reason, when the humus soil is contained even in a small amount in the local ground, there is a possibility that the ground cannot be sufficiently strengthened due to poor solidification, and there is a possibility that the building will be unevenly subsidized.

また先に行われるボーリング調査では腐植土が確認されなかった場合でも、試掘調査において腐植土が確認される場合がある。これは、ボーリング調査では地盤に10cm径程度の孔を1箇所のみ空けて土壌試料を採取するのに対して、試掘調査では上述の通り20cm径程度の孔を2〜3箇所空けて土壌試料を採取するため、土質調査の対象範囲の違いに起因するものである。   Even if humus soil is not confirmed in the previous drilling survey, the humus soil may be confirmed in the prospecting survey. This is because, in the boring survey, a soil sample is collected by drilling only one hole with a diameter of about 10 cm in the ground, whereas in the test excavation survey, a hole sample with a diameter of about 20 cm is drilled in two or three locations as described above. This is due to the difference in the scope of the soil survey.

判定工程S30で腐植土等が確認された場合には、土壌試料が固化し難いと判定する(S30:NO)。この場合、柱状改良工法の採用をそのまま決定せず、土壌試料と固化材とを混合し、その強度等を測定することにより土の固化具合を確認する試験をさらに行う必要がある。これは、目視確認等だけでは、土が固化材により十分に固化するか否かを判断するのが困難であるからである。   When humus soil or the like is confirmed in the determination step S30, it is determined that the soil sample is difficult to solidify (S30: NO). In this case, it is necessary to further perform a test for confirming the degree of solidification of the soil by mixing the soil sample and the solidified material and measuring the strength and the like without directly determining the adoption of the columnar improvement method. This is because it is difficult to determine whether or not the soil is sufficiently solidified by the solidifying material only by visual confirmation or the like.

通常、このような土の固化試験を行う場合には、現地から重機を一旦引き揚げ、採取された土壌試料を別の場所にある試験所に搬送する。次に、この土壌試料と固化材とを混合することにより供試体を作製し、当該供試体について予め設定された固化時間(例えば28日間)養生した後、当該供試体を用いて一軸圧縮試験を行う。そして、測定された圧縮強度に基づいて土が正常に固化するか否かを判断する。   Usually, when such a solidification test is performed, a heavy machine is once lifted from the site, and the collected soil sample is transported to a laboratory in another place. Next, a specimen is prepared by mixing the soil sample and the solidifying material, and after curing the preset solidification time (for example, 28 days) for the specimen, a uniaxial compression test is performed using the specimen. Do. Then, it is determined whether or not the soil solidifies normally based on the measured compressive strength.

これに対して、本実施形態では、現地から採取した土壌試料と固化材とを用いて供試体を作製し、上記固化時間よりも短い測定時間において供試体の硬度を現地で測定する。そして、測定された供試体の硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する。   On the other hand, in this embodiment, a specimen is produced using a soil sample collected from the field and a solidifying material, and the hardness of the specimen is measured on the spot for a measurement time shorter than the solidification time. Then, based on whether or not the measured hardness of the specimen is equal to or higher than a preset hardness threshold, it is determined whether or not the columnar improvement method can be adopted.

このため、本実施形態では、通常の一軸圧縮試験のように固化時間の到来時に供試体の強度を測定する場合に比べて、柱状改良工法の採用の可否を判断するのに要する日数をより少なくすることができる。しかも、この硬度測定は、持ち運び可能な硬度計を用いて現地で行うことができるため、土壌試料を試験所へ搬送する作業や重機の引き揚げ作業も不要になる。従って、地盤改良における工期の遅延化を防ぐことができる。以下、供試体の硬度測定について詳細に説明する。   For this reason, in this embodiment, compared with the case where the strength of the specimen is measured when the solidification time arrives as in the normal uniaxial compression test, the number of days required to determine whether or not the columnar improvement method can be adopted is smaller. can do. In addition, since this hardness measurement can be performed locally using a portable hardness meter, the work of transporting the soil sample to the laboratory and the lifting work of heavy machinery are not required. Accordingly, it is possible to prevent the construction period from being delayed in the ground improvement. Hereinafter, the hardness measurement of the specimen will be described in detail.

まず、作製工程S40が行われる。この工程S40では、混合工程S41及び充填工程S42が順に行われることにより、採取工程S20で得られた土壌試料と予め設定された量の固化材とを用いて供試体が作製される。   First, the production step S40 is performed. In this step S40, the mixing step S41 and the filling step S42 are performed in order, whereby a specimen is produced using the soil sample obtained in the sampling step S20 and a preset amount of solidified material.

まず、混合工程S41では、採取工程S20で得られた土壌試料と予め設定された量の固化材と水とを現地において混合する。具体的には、採取工程S20で得られた土壌試料を所定の混合容器(図示しない)内に投入すると共に、予め設定された量の固化材及び水を当該混合容器内に投入する。固化材としては、柱状改良工法で用いられるものと同様に、セメント系固化材が使用される。そして、当該混合容器内において土壌試料と固化材と水とを混合攪拌することにより、土壌試料と固化材と水とが均一に混ざり合った混合試料が得られる。   First, in the mixing step S41, the soil sample obtained in the sampling step S20, a preset amount of solidified material, and water are mixed on site. Specifically, the soil sample obtained in the collecting step S20 is put into a predetermined mixing container (not shown), and a preset amount of solidifying material and water are put into the mixing container. As the solidifying material, a cement-based solidifying material is used as in the columnar improvement method. Then, by mixing and stirring the soil sample, the solidifying material, and water in the mixing container, a mixed sample in which the soil sample, the solidifying material, and water are uniformly mixed is obtained.

次に、充填工程S42では、まず図2に示す円筒形状の筒体10が準備される。筒体10は、軸方向の一方(上方)に開口11が設けられると共に軸方向の他方(下方)が底部12により塞がれたものであり、混合試料13を充填可能な中空部10Aを有する。筒体10の内径D1は例えば50mmであり、高さH1は例えば100mmである。その後、図2に示すように、混合試料13が筒体10の中空部10A全体に均一に充填される。これにより、円柱形状を有する硬度測定用の供試体14が作製される。   Next, in the filling step S42, first, the cylindrical tubular body 10 shown in FIG. 2 is prepared. The cylindrical body 10 is provided with an opening 11 on one side (upper side) in the axial direction and the other side (lower side) in the axial direction closed with a bottom part 12, and has a hollow part 10 </ b> A that can be filled with the mixed sample 13. . The inner diameter D1 of the cylindrical body 10 is, for example, 50 mm, and the height H1 is, for example, 100 mm. Thereafter, as shown in FIG. 2, the mixed sample 13 is uniformly filled in the entire hollow portion 10 </ b> A of the cylindrical body 10. Thereby, the specimen 14 for hardness measurement which has a cylindrical shape is produced.

次に、供試体14の硬度を測定する測定工程S50が行われる。まず、この工程S50で用いられる硬度計1の構成及び仕組みについて図3〜図5を参照して説明する。   Next, a measurement step S50 for measuring the hardness of the specimen 14 is performed. First, the configuration and mechanism of the hardness meter 1 used in this step S50 will be described with reference to FIGS.

硬度計1は、山中式土壌硬度計であって、図3に示すように、円錐部2と、支持部6と、バネ体3と、突き当て鍔5と、遊動指標部4と、を備える。円錐部2は、供試体14において測定面となる円柱上面14A(図4,5)に押し付けることにより、当該供試体14内に貫入させるための部分である。支持部6は、円筒形状を有し、円錐部2が支持部6の軸方向に移動可能となるように当該円錐部2を支持する。   The hardness meter 1 is a Yamanaka-type soil hardness meter, and as shown in FIG. 3, includes a conical portion 2, a support portion 6, a spring body 3, a butting rod 5, and an idle indicator portion 4. . The conical part 2 is a part for penetrating into the specimen 14 by being pressed against a cylindrical upper surface 14A (FIGS. 4 and 5) serving as a measurement surface in the specimen 14. The support portion 6 has a cylindrical shape, and supports the cone portion 2 so that the cone portion 2 can move in the axial direction of the support portion 6.

バネ体3は、供試体14から円錐部2に加わる力により支持部6に対して円錐部2が軸方向に移動することに応じて圧縮変形可能となるように支持部6と円錐部2との間に設けられている。具体的には、図4及び図5に示すように円錐部2を供試体14に押し付けたときに、供試体14から受ける力によって円錐部2が支持部6内に押し込められるのに応じて、バネ体3が圧縮可能となっている。図3に示すように、バネ体3は、支持部6内に収容されており、一端が円錐部2の底部側に接続されると共に、他端が支持部6の底部側に接続されている。   The spring body 3 has the support portion 6, the cone portion 2, and the spring portion 3 so that the spring portion 3 can be compressed and deformed in accordance with the axial movement of the cone portion 2 with respect to the support portion 6 by the force applied to the cone portion 2 from the specimen 14. It is provided between. Specifically, as shown in FIGS. 4 and 5, when the cone 2 is pressed against the specimen 14, the cone 2 is pushed into the support 6 by the force received from the specimen 14. The spring body 3 is compressible. As shown in FIG. 3, the spring body 3 is accommodated in the support portion 6, and one end is connected to the bottom portion side of the conical portion 2 and the other end is connected to the bottom portion side of the support portion 6. .

突き当て鍔5は、円錐部2を供試体14内に貫入させるときに、図5に示すように供試体14の円柱上面14Aに接触させるための部分である。突き当て鍔5は、支持部6よりも径が大きい円板形状を有している。硬度計1においては、突き当て鍔5が円柱上面14Aに接触するまでに円錐部2が供試体14内に貫入する深さが、「円錐部2の供試体14に対する貫入深さ」として予め設定されている。   The butting rod 5 is a portion for bringing the cone portion 2 into contact with the cylindrical upper surface 14A of the specimen 14 as shown in FIG. The butting rod 5 has a disk shape having a diameter larger than that of the support portion 6. In the hardness meter 1, the depth at which the cone portion 2 penetrates into the specimen 14 before the butting rod 5 contacts the cylindrical upper surface 14A is set in advance as "the penetration depth of the cone portion 2 with respect to the specimen 14". Has been.

遊動指標部4は、支持部6の外周面の一部を軸方向に沿って切り欠いたスリット部6Aに設けられている。図4及び図5に示すように、遊動指標部4は、円錐部2を供試体14に押し付けたときのバネ体3の圧縮量に応じて、スリット部6Aに沿って軸方向に移動する。スリット部6Aの周りには目盛が設けられており、これによりバネ体3の圧縮量を読み取ることができる。   The idle indicator portion 4 is provided in a slit portion 6A in which a part of the outer peripheral surface of the support portion 6 is cut out along the axial direction. As shown in FIGS. 4 and 5, the floating index portion 4 moves in the axial direction along the slit portion 6 </ b> A according to the compression amount of the spring body 3 when the conical portion 2 is pressed against the specimen 14. A scale is provided around the slit portion 6A, whereby the compression amount of the spring body 3 can be read.

なお、硬度計1は、山中式土壌硬度計に限定されるものではなく、同様の機能を備えるものであれば(供試体14の硬度測定が可能であれば)、その構造は特に制限されない。   The hardness meter 1 is not limited to the Yamanaka soil hardness meter, and the structure thereof is not particularly limited as long as it has a similar function (if the hardness of the specimen 14 can be measured).

ここで、測定工程S50で得られる供試体14の硬度の合否を判断するための、供試体14の硬度の閾値を準備する準備工程について説明する。この準備工程は、搬入工程S10よりも前に事前に行われる。   Here, a preparation process for preparing a threshold value of the hardness of the specimen 14 for determining whether or not the hardness of the specimen 14 obtained in the measurement step S50 is acceptable will be described. This preparation process is performed in advance before the carrying-in process S10.

準備工程では、以下のようにして供試体14の硬度の閾値S2が設定される(図6)。まず、複数種の土壌試料(1)〜(3)を準備し、これらの土壌試料と固化材とを用いて供試体をそれぞれ作製する。そして、供試体の材齢(供試体の作製時点からの経過時間)と、供試体の強度と、の関係について調査し、図6に示すようなグラフを得る。図6のグラフにおいて、横軸が供試体の材齢を示し、縦軸が供試体の強度を示している。また横軸中の「T1」が測定工程S50において供試体14の硬度を測定する「測定時間」を示し、「T2」が通常の一軸圧縮試験が行われる「固化時間」を示している。図6に示すように、(1)及び(2)の供試体は固化時間T2の到来時において強度の基準S1を満たし、(3)の供試体は固化時間T2の到来時において強度の基準S1を満たしていない。また図10は、測定時間T1における供試体14の硬度(横軸)と供試体14の圧縮強度(縦軸)との関係を示している。図10のグラフの通り、測定時間T1においては供試体14の硬度と供試体14の圧縮強度とは略比例関係を有している。   In the preparation step, the hardness threshold S2 of the specimen 14 is set as follows (FIG. 6). First, a plurality of types of soil samples (1) to (3) are prepared, and specimens are respectively prepared using these soil samples and a solidifying material. Then, the relationship between the age of the specimen (elapsed time from the preparation time of the specimen) and the strength of the specimen is investigated, and a graph as shown in FIG. 6 is obtained. In the graph of FIG. 6, the horizontal axis indicates the age of the specimen, and the vertical axis indicates the strength of the specimen. Further, “T1” in the horizontal axis represents “measurement time” for measuring the hardness of the specimen 14 in the measurement step S50, and “T2” represents “solidification time” in which a normal uniaxial compression test is performed. As shown in FIG. 6, the specimens (1) and (2) satisfy the strength standard S1 when the solidification time T2 arrives, and the specimen (3) has the strength standard S1 when the solidification time T2 arrives. Does not meet. FIG. 10 shows the relationship between the hardness (horizontal axis) of the specimen 14 and the compressive strength (vertical axis) of the specimen 14 at the measurement time T1. As shown in the graph of FIG. 10, at the measurement time T1, the hardness of the specimen 14 and the compressive strength of the specimen 14 have a substantially proportional relationship.

図6の(1)及び(2)の供試体の測定時間T1における硬度を硬度計1により測定すると共に、(3)の供試体の測定時間T1における硬度を硬度計1により測定する。そして、(1)及び(2)の硬度値と(3)の硬度値との間に硬度の閾値S2を設定する。測定時間T1において閾値S2を超える場合((1)及び(2)の供試体)には固化時間T2においても基準S1を満たし、測定時間T1において閾値S2を超えない場合((3)の供試体)には固化時間T2においても基準S1を満たさないことになる。従って、上記の通り設定した閾値S2に基づいて、通常の固化時間T2よりも短い測定時間T1において土壌試料が正常に固化するか否かを高い信頼性をもって評価することができる。   The hardness at the measurement time T1 of the specimens of (1) and (2) in FIG. 6 is measured by the hardness meter 1, and the hardness at the measurement time T1 of the specimen at (3) is measured by the hardness meter 1. Then, a hardness threshold value S2 is set between the hardness values of (1) and (2) and the hardness value of (3). When the measurement time T1 exceeds the threshold value S2 (specimens (1) and (2)), the solidification time T2 also satisfies the standard S1, and when the measurement time T1 does not exceed the threshold value S2 (specimen (3) ) Does not satisfy the standard S1 even in the solidification time T2. Therefore, based on the threshold value S2 set as described above, it can be evaluated with high reliability whether or not the soil sample is normally solidified at the measurement time T1 shorter than the normal solidification time T2.

測定工程S50では、供試体14について予め設定された固化時間T2よりも短い測定時間T1(図6)において円錐部2を供試体14に押し付けたときのバネ体3の圧縮量に基づいて、測定時間T1における供試体14の硬度を測定する。具体的には、測定者が硬度計1を手に持ち、図4に示すように円錐部2の先端を供試体14の測定面(円柱上面14A)の中央に垂直に突き立てる。次に、円錐部2の先端を供試体14の測定面に押し付けることにより、当該円錐部2を供試体14内に貫入させる。そして、図5に示すように、突き当て鍔5が測定面(円柱上面14A)に接触するまで円錐部2全体を供試体14内に貫入させる。この時のバネ体3の圧縮量を目盛から読み取り、これに基づいて供試体14の硬度を測定する。   In the measurement step S50, measurement is performed based on the amount of compression of the spring body 3 when the cone portion 2 is pressed against the specimen 14 at a measurement time T1 (FIG. 6) shorter than the solidification time T2 set in advance for the specimen 14. The hardness of the specimen 14 at time T1 is measured. Specifically, the measurer holds the hardness meter 1 in his hand and projects the tip of the cone portion 2 vertically to the center of the measurement surface (cylindrical upper surface 14A) of the specimen 14 as shown in FIG. Next, by pressing the tip of the cone portion 2 against the measurement surface of the specimen 14, the cone portion 2 is penetrated into the specimen 14. And as shown in FIG. 5, the whole cone part 2 is penetrated in the test body 14 until the butting rod 5 contacts the measurement surface (cylindrical upper surface 14A). The amount of compression of the spring body 3 at this time is read from the scale, and the hardness of the specimen 14 is measured based on this.

測定時間T1は、円錐部2を予め設定された貫入深さまで供試体14内に貫入可能となるように(つまり突き当て鍔5が円柱上面14Aに接触可能なように)予め設定されており、例えば18時間とすることができる。これにより、例えば前日の午後4時頃に供試体14を準備した後、翌日の午前10時頃に硬度測定を開始することができるため、試験をスムーズに進めることができる。   The measurement time T1 is set in advance so that the cone portion 2 can be penetrated into the specimen 14 to a preset penetration depth (that is, the butting rod 5 can contact the cylindrical upper surface 14A). For example, it can be 18 hours. Thereby, for example, after preparing the specimen 14 at about 4 pm on the previous day, the hardness measurement can be started at about 10 am on the next day, so the test can proceed smoothly.

本実施形態では、供試体14の硬度測定において、バネ体3の圧縮量が30mm以下となる範囲で供試体14の硬度と強度との間に強い相関関係が見られるため、より信頼性の高い測定値を得ることができる。   In the present embodiment, in the hardness measurement of the specimen 14, since a strong correlation is observed between the hardness and strength of the specimen 14 in a range where the compression amount of the spring body 3 is 30 mm or less, the reliability is higher. Measurements can be obtained.

また本実施形態では、図4及び図5に示すように、筒体10内に収容された状態の供試体14に対して円錐部2を押し付ける。これにより、円錐部2を押し付けたときに供試体14の形状が崩れるのを筒体10により防ぐことができるため、硬度測定を正確に行うことができる。   Moreover, in this embodiment, as shown in FIG.4 and FIG.5, the cone part 2 is pressed with respect to the test body 14 of the state accommodated in the cylinder 10. As shown in FIG. Thereby, since it can prevent by the cylinder 10 that the shape of the test body 14 collapse | crumbles when the cone part 2 is pressed, hardness measurement can be performed correctly.

次に、判断工程S60が行われる。この工程S60では、測定工程S50で得られた硬度が予め設定された硬度の閾値S2(図6)以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する。そして、測定工程S50で得られた硬度が閾値S2以上である場合には(S60:YES)、現地の土が固化材により正常に固化するものと判断し、柱状改良工法の採用を決定する(S70)。一方、測定工程S50で得られた硬度が閾値S2未満である場合には(S60:NO)、土が固化不良を起こすものと判断する。この場合、柱状改良工法以外の工法を地盤改良工法として決定する(S80)。具体的には、鋼管杭工法や既製コンクリート杭を用いた工法を柱状改良工法の代わりの工法として決定する。以上の工程S10〜S80により地盤改良工法を決定することができ、本実施形態に係る地盤改良工法の選定方法が終了する。   Next, determination process S60 is performed. In this step S60, it is determined whether or not the columnar improvement method can be adopted based on whether or not the hardness obtained in the measuring step S50 is equal to or greater than a preset hardness threshold S2 (FIG. 6). When the hardness obtained in the measurement step S50 is equal to or greater than the threshold value S2 (S60: YES), it is determined that the local soil is normally solidified by the solidifying material, and the adoption of the columnar improvement method is determined ( S70). On the other hand, when the hardness obtained in the measurement step S50 is less than the threshold value S2 (S60: NO), it is determined that the soil causes poor solidification. In this case, a construction method other than the columnar improvement construction method is determined as the ground improvement construction method (S80). Specifically, a steel pipe pile method or a method using a ready-made concrete pile is determined as an alternative to the columnar improvement method. The ground improvement method can be determined by the above steps S10 to S80, and the selection method of the ground improvement method according to the present embodiment is completed.

次に、施工工程S90が行われる。この工程S90では、判断工程S60において決定された地盤改良工法を用いた本施工が開始される。柱状改良工法に決定した場合には(S70)、図7(左)に示すように、スクリュー21を貫入させて地盤を掘削しつつ、当該スクリュー21の先端からセメントミルクを注入する。そして、設計深さまで掘り下げた後(図7(中央))、スクリュー21を回転させて土とセメントミルクを攪拌しつつスクリュー21を引き上げる。これにより、図7(右)に示すように、所定の設計長さ及び支持力を有するセメントからなる改良柱体22が地中に造成され、これによって地盤を強化することができる。   Next, construction process S90 is performed. In this step S90, the main construction using the ground improvement method determined in the judgment step S60 is started. When the columnar improvement method is determined (S70), as shown in FIG. 7 (left), cement milk is injected from the tip of the screw 21 while the screw 21 is inserted to excavate the ground. And after digging down to design depth (FIG. 7 (center)), the screw 21 is rotated and the screw 21 is pulled up, stirring soil and cement milk. As a result, as shown in FIG. 7 (right), an improved pillar 22 made of cement having a predetermined design length and supporting force is created in the ground, thereby strengthening the ground.

一方、柱状改良工法以外の工法(例えば鋼管杭工法)に決定した場合には(S80)、図8に示すように、重機を用いて鋼管杭31を回転させつつ地盤に貫入し、複数本の鋼管杭31を継ぎ足しつつ所定の設計深さまで打ち込むことにより地盤を強化する。以上のようにして住宅の建設にあたっての地盤強化が行われ、本実施形態に係る地盤改良方法が完了する。   On the other hand, when a construction method other than the columnar improvement construction method (for example, steel pipe pile construction method) is determined (S80), as shown in FIG. 8, the steel pipe pile 31 is rotated using a heavy machine and penetrates into the ground. The ground is strengthened by driving to the predetermined design depth while adding the steel pipe pile 31. As described above, the ground is strengthened in the construction of the house, and the ground improvement method according to the present embodiment is completed.

なお、上記した実施形態は本発明の例示であり、本発明では例えば以下のような変形例も採用することができる。   The above-described embodiment is an exemplification of the present invention, and for example, the following modifications can be employed in the present invention.

上記実施形態のように、測定工程S50で供試体14の硬度を測定した後、この硬度値に基づいて測定時間T1における圧縮強度を推定してもよい。さらに、測定時間T1における圧縮強度に所定の係数を掛けて補正することにより、通常の固化時間T2における圧縮強度を算出してもよい。   Like the said embodiment, after measuring the hardness of the test body 14 by measurement process S50, you may estimate the compressive strength in the measurement time T1 based on this hardness value. Further, the compression strength at the normal solidification time T2 may be calculated by correcting the compression strength at the measurement time T1 by a predetermined coefficient.

上記実施形態では、供試体14を筒体10内に収容した状態で硬度測定を行う場合について説明したが、供試体14を筒体10から取り出した上で硬度測定を行ってもよい。   In the above embodiment, the case where the hardness measurement is performed in a state where the specimen 14 is housed in the cylinder 10 has been described. However, the hardness measurement may be performed after the specimen 14 is taken out from the cylinder 10.

上記実施形態では、円錐部2の移動に応じてバネ体3が圧縮変形可能な硬度計1を用いる場合について説明したが、円錐部2の移動に応じてバネ体3が引張変形可能な硬度計が用いられてもよい。この場合、円錐部2を供試体14に押し付けたときのバネ体3の引張量に基づいて測定時間T1における供試体14の硬度を測定することができる。   In the above-described embodiment, the case where the hardness meter 1 in which the spring body 3 can compressively deform in accordance with the movement of the cone portion 2 has been described, but the hardness meter in which the spring body 3 can be tensile deformed in accordance with the movement of the cone portion 2. May be used. In this case, the hardness of the specimen 14 at the measurement time T1 can be measured based on the tensile amount of the spring body 3 when the conical portion 2 is pressed against the specimen 14.

また上記実施形態では、測定工程S50において山中式土壌硬度計を用いる場合について説明したが、上述の通りこれに限定されるものではない。測定工程S50において、山中式土壌硬度計とは異なる硬度計であって、円錐部と、円錐部が移動可能となるように円錐部を支持する支持部と、供試体から円錐部に加わる力により支持部に対して円錐部が移動することに応じて引張又は圧縮変形可能となるように支持部と円錐部との間に設けられたバネ体と、を備えると共に、硬度測定のための円錐部の供試体に対する貫入深さが予め設定された硬度計を用いてもよい。そして、円錐部を上記貫入深さまで供試体内に貫入可能となるように予め設定された測定時間において円錐部を供試体に押し付けると共にバネ体の引張又は圧縮の量に基づいて、上記測定時間における供試体の硬度を測定してもよい。また本発明では、円錐部と支持部とバネ体とを備える硬度計以外のものを用いて供試体の硬度を測定してもよい。   Moreover, although the said embodiment demonstrated the case where a Yamanaka type soil hardness meter was used in measurement process S50, as above-mentioned, it is not limited to this. In the measurement step S50, the hardness meter is different from the Yamanaka type soil hardness meter, and includes a cone portion, a support portion that supports the cone portion so that the cone portion is movable, and a force applied to the cone portion from the specimen. A spring body provided between the support portion and the conical portion so as to be able to be deformed by tension or compression in accordance with the movement of the conical portion with respect to the support portion, and a conical portion for hardness measurement You may use the hardness meter by which the penetration depth with respect to the specimen of this was preset. Then, the cone portion is pressed against the specimen at a preset measurement time so that the cone portion can be penetrated into the specimen to the penetration depth, and based on the amount of tension or compression of the spring body, The hardness of the specimen may be measured. Moreover, in this invention, you may measure the hardness of a test body using things other than the hardness meter provided with a cone part, a support part, and a spring body.

上記準備工程において、図6のように固化時間T2の到来時に基準S1を満たす複数(例えば2つ)の供試体について測定時間T1の到来時における硬度を測定し、その低い方の値を閾値S2として設定してもよい。また固化時間T2の到来時に基準S1を満たす1つの供試体についてのみ測定時間T1の到来時における硬度を測定し、その硬度値の公差を考慮して閾値S2を設定してもよい。   In the preparation step, as shown in FIG. 6, the hardness at the time of arrival of the measurement time T1 is measured for a plurality of (for example, two) specimens satisfying the standard S1 when the solidification time T2 arrives, and the lower value is set as the threshold value S2. May be set as Alternatively, the hardness at the time of arrival of the measurement time T1 may be measured for only one specimen that satisfies the standard S1 when the solidification time T2 arrives, and the threshold value S2 may be set in consideration of the tolerance of the hardness value.

山中式土壌硬度計を用いて測定した硬度値と、一軸圧縮試験による圧縮強度と、の相関関係について確認するため、以下の実験を行った。   In order to confirm the correlation between the hardness value measured using the Yamanaka type soil hardness tester and the compressive strength by the uniaxial compression test, the following experiment was conducted.

まず、砂質土を準備し、これにセメント系固化材及び水を混合することにより供試体14を作製した。そして、硬度計1(山中式土壌硬度計)を用いて円錐部2を供試体14内に貫入させたときのバネ体3の圧縮量(mm)及び硬度(kN/m)を測定した。この測定を、材齢1時間、2時間、3時間、4時間、5時間、6時間、9時間、18時間及び24時間のそれぞれについて行った。また同じ供試体14を用いて一軸圧縮試験を行い、供試体の圧縮強度(kN/m)を測定した。 First, a sandy soil was prepared, and a specimen 14 was prepared by mixing a cement-based solidifying material and water. And the compression amount (mm) and hardness (kN / m < 2 >) of the spring body 3 when the cone part 2 was penetrated in the test body 14 using the hardness meter 1 (Yamanaka type soil hardness meter) were measured. This measurement was performed for each of the material ages of 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 9 hours, 18 hours and 24 hours. Moreover, the uniaxial compression test was done using the same specimen 14, and the compressive strength (kN / m < 2 >) of the specimen was measured.

また粘性土及び軟弱粘性土を準備し、山中式土壌硬度計による硬度測定及び一軸圧縮試験による圧縮強度の測定について、砂質土の場合と同様に行った。   Moreover, cohesive soil and soft cohesive soil were prepared, and the hardness measurement by the Yamanaka soil hardness tester and the compression strength measurement by the uniaxial compression test were performed in the same manner as in the case of sandy soil.

下記表1は砂質土を用いた場合の実験結果を示し、下記表2は粘性土を用いた場合の実験結果を示し、下記表3は軟弱粘性土を用いた場合の実験結果をそれぞれ示している。図9のグラフは表1〜表3のデータをプロットしたものであり、図10のグラフは表1〜表3のデータのうち圧縮量が30mm超えるものを除外してプロットしたものである。   Table 1 below shows the experimental results when sandy soil is used, Table 2 below shows the experimental results when viscous soil is used, and Table 3 below shows the experimental results when soft viscous soil is used. ing. The graph of FIG. 9 plots the data of Tables 1 to 3, and the graph of FIG. 10 plots the data of Tables 1 to 3 excluding the data whose compression amount exceeds 30 mm.

Figure 2018104906
Figure 2018104906

Figure 2018104906
Figure 2018104906

Figure 2018104906
Figure 2018104906

(考察)
図9及び図10のグラフから明らかなように、山中式土壌硬度計による硬度値(横軸)と圧縮強度(縦軸)との間には、土質に依らず一定の比例関係があることが分かった。しかし、図9のグラフのように、硬度値(硬度計支持強度)が大きくなるとデータのばらつきが大きくなり、圧縮強度との相関が悪くなる(相関係数Rの二乗値が0.7468)。一方、図10のグラフのように、バネ体3の圧縮量が30mm以下の範囲であれば、硬度値と圧縮強度との間に強い相関関係が見られた(相関係数Rの二乗値が0.9937)。
(Discussion)
As is apparent from the graphs of FIGS. 9 and 10, there is a constant proportional relationship between the hardness value (horizontal axis) and the compressive strength (vertical axis) measured by the Yamanaka soil hardness tester regardless of the soil quality. I understood. However, as shown in the graph of FIG. 9, when the hardness value (hardness meter support strength) increases, the data variation increases and the correlation with the compression strength deteriorates (the square value of the correlation coefficient R is 0.7468). On the other hand, as shown in the graph of FIG. 10, when the amount of compression of the spring body 3 is within a range of 30 mm or less, a strong correlation was observed between the hardness value and the compression strength (the square value of the correlation coefficient R is 0.9937).

また土の種類毎に測定可能な時間の上限について考察すると、比較的固化し易い砂質土及び粘性土では材齢が9時間以内であればバネ体3の圧縮量が30mm以下となり、軟弱粘性土では材齢が24時間経過した時点でもバネ体3の圧縮量が30mm以下であった。また測定時間の下限について考察すると、どの種類の土でも硬度と圧縮強度との相関関係が確認できるのは材齢が6時間以上からであった。よって、6時間以上9時間以下の範囲であれば、どのような種類の土でも硬度と圧縮強度との間に強い相関関係が得られると考えられる。また軟弱粘性土の結果から考えると、腐植土のように固化し難い土の場合では24時間経過した時点でも硬度と圧縮強度との間に相関関係が得られると考えられる。よって、測定時間T1を試験のスケジュール上好ましい18時間に設定することができると考えられる。   Considering the upper limit of the time that can be measured for each type of soil, in the case of sandy soil and viscous soil that are relatively easily solidified, if the age is within 9 hours, the compression amount of the spring body 3 is 30 mm or less, and the soft viscosity is low. In soil, the amount of compression of the spring body 3 was 30 mm or less even when the material age was 24 hours. Considering the lower limit of the measurement time, the correlation between the hardness and the compressive strength can be confirmed in any kind of soil from the age of 6 hours or more. Therefore, it is considered that a strong correlation between hardness and compressive strength can be obtained in any kind of soil as long as it is in the range of 6 hours to 9 hours. Considering the result of soft and viscous soil, it is considered that a correlation between hardness and compressive strength can be obtained even when 24 hours have passed in the case of soil that is hard to solidify, such as humus soil. Therefore, it is considered that the measurement time T1 can be set to a preferable 18 hours in the test schedule.

今回開示された実施形態及び実施例は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 硬度計
2 円錐部
3 バネ体
6 支持部
10 筒体
13 混合試料
14 供試体
S20 採取工程
S30 判定工程
S40 作製工程
S41 混合工程
S42 充填工程
S50 測定工程
S60 判断工程
T1 測定時間
T2 固化時間
DESCRIPTION OF SYMBOLS 1 Hardness meter 2 Conical part 3 Spring body 6 Support part 10 Tube 13 Mixed sample 14 Specimen S20 Collection process S30 Judgment process S40 Preparation process S41 Mixing process S42 Filling process S50 Measurement process S60 Judgment process T1 Measurement time T2 Solidification time

本発明の一局面に係る地盤改良工法の選定方法は、土壌試料を採取する採取工程と、前記採取工程で得られた前記土壌試料と予め設定された量の固化材とを用いて、地盤改良の現地で供試体を作製する作製工程と、前記供試体について予め設定された固化時間よりも短い測定時間において前記現地で前記供試体の硬度を測定する測定工程と、前記測定工程で得られた硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する判断工程と、前記閾値を準備する準備工程と、を備える。前記準備工程では、前記固化時間の到来時において強度の基準を満たすと判断される前記供試体の前記測定時間の到来時における硬度を測定し、測定された前記硬度に基づいて前記閾値を設定する。前記測定工程では、筒体内に収容された状態の前記供試体の硬度を、山中式土壌硬度計を用いて測定する。 Selection of ground improvement method according to an aspect of the present invention, using a collecting step of collecting soil samples, and a solidifying material amount set in advance and the soil sample obtained in the collection step, soil improvement a producing step of producing a specimen in the local, and the measurement step of measuring the hardness of the specimen in the field in a short measurement time than a preset set time for said specimen, obtained in said measuring step The method includes a determination step of determining whether or not the columnar improvement method can be adopted based on whether the hardness is equal to or higher than a preset hardness threshold value, and a preparation step of preparing the threshold value. In the preparation step, the hardness of the specimen that is determined to satisfy the strength standard at the time of the solidification time is measured at the time of the measurement time, and the threshold value is set based on the measured hardness. . In the measurement step, the hardness of the specimen in a state of being accommodated in a cylinder is measured using a Yamanaka type soil hardness meter.

上記地盤改良工法の選定方法では、採取した土壌試料と固化材とを用いて供試体を作製し、所定の測定時間において供試体の硬度を測定する。そして、測定された供試体の硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する。この測定時間は、供試体について予め設定された固化時間よりも短い。このため、固化時間の到来時において供試体の強度を測定する場合に比べて、柱状改良工法の採用の可否を判断するのに要する日数をより少なくすることができる。しかも、この硬度測定は、持ち運び可能な硬度計を用いて現地で行うことができるため、土壌試料を試験所へ搬送する作業や重機の引き揚げ作業も不要になる。従って、上記地盤改良工法の選定方法によれば、地盤改良における工期の遅延化を防ぐことができる。また筒体内に収容された状態の供試体の硬度を測定することにより、測定中に供試体の形状が崩れるのを防ぐことができるため、硬度測定を正確に行うことができる。 In the method for selecting the ground improvement method, a specimen is prepared using the collected soil sample and the solidified material, and the hardness of the specimen is measured for a predetermined measurement time. Then, based on whether or not the measured hardness of the specimen is equal to or higher than a preset hardness threshold, it is determined whether or not the columnar improvement method can be adopted. This measurement time is shorter than the solidification time set in advance for the specimen. For this reason, compared with the case where the intensity | strength of a test piece is measured at the time of the solidification time arrival, the number of days required to judge whether the adoption of the columnar improvement method can be reduced. In addition, since this hardness measurement can be performed locally using a portable hardness meter, the work of transporting the soil sample to the laboratory and the lifting work of heavy machinery are not required. Therefore, according to the method for selecting the ground improvement method, it is possible to prevent a delay in the construction period in the ground improvement. Further, by measuring the hardness of the specimen that is accommodated in the cylinder, it is possible to prevent the specimen from being deformed during the measurement, so that the hardness measurement can be accurately performed.

上記地盤改良工法の選定方法において、前記測定工程では、前記山中式土壌硬度計バネ体の引張又は圧縮の量が30mm以下となる前記測定時間において前記供試体の硬度を測定してもよい。バネ体の引張又は圧縮の量が30mm以下となる時間範囲では、供試体の硬度と強度との間に強い相関関係が見られるため、より信頼性の高い測定値を得ることができる。 In selecting the method of the ground improvement method, the measurement step, the amount of tension or compression of the spring member of the Yamanaka type soil hardness meter may measure the hardness of the specimen at the measurement time to be 30mm or less. In the time range in which the amount of tension or compression of the spring body is 30 mm or less, a strong correlation is observed between the hardness and strength of the specimen, so that a more reliable measurement value can be obtained.

上記地盤改良工法の選定方法において、前記作製工程は、前記土壌試料と前記固化材と水とを混合することにより、混合試料を得る混合工程と、前記混合試料を前記筒体内に充填する充填工程と、を含んでいてもよい In selecting the method of the ground improvement method, the preparation step, by mixing with water the solidifying material and the soil sample, a mixing step of obtaining a mixed sample, the filling step of filling the mixed sample into the cylindrical body And may be included .

本発明の他局面に係る地盤改良方法は、上記地盤改良工法の選定方法を用いて地盤改良工法を選定し、選定された工法により地盤を改良する方法である。このため、工法の選定段階で要する時間が少なく、工期の遅延化を防ぐことができる。 A ground improvement method according to another aspect of the present invention is a method of selecting a ground improvement method using the above-described method for selecting a ground improvement method and improving the ground by the selected method. For this reason, less time is required in the method selection stage, and the delay in the construction period can be prevented.

Claims (6)

土壌試料を採取する採取工程と、
前記採取工程で得られた前記土壌試料と予め設定された量の固化材とを用いて、供試体を作製する作製工程と、
前記供試体について予め設定された固化時間よりも短い測定時間において前記供試体の硬度を測定する測定工程と、
前記測定工程で得られた硬度が予め設定された硬度の閾値以上であるか否かに基づいて、柱状改良工法の採用の可否を判断する判断工程と、
前記閾値を準備する準備工程と、を備え、
前記準備工程では、前記固化時間の到来時において強度の基準を満たすと判断される前記供試体の前記測定時間の到来時における硬度を測定し、測定された前記硬度に基づいて前記閾値を設定することを特徴とする、地盤改良工法の選定方法。
A sampling process for collecting soil samples;
Using the soil sample obtained in the collecting step and a preset amount of solidification material, a production step for producing a specimen,
A measurement step of measuring the hardness of the specimen in a measurement time shorter than a preset solidification time for the specimen;
Based on whether the hardness obtained in the measurement step is equal to or greater than a preset hardness threshold, a determination step of determining whether or not the columnar improvement method can be adopted,
A preparation step of preparing the threshold value,
In the preparation step, the hardness of the specimen that is determined to satisfy the strength standard at the time of the solidification time is measured at the time of the measurement time, and the threshold value is set based on the measured hardness. This is a method for selecting a ground improvement method.
前記準備工程では、
前記固化時間の到来時において強度の基準を満たさないと判断される前記供試体の前記測定時間の到来時における硬度を測定し、
前記固化時間の到来時に強度の基準を満たす前記供試体の前記測定時間の到来時における硬度値と、前記固化時間の到来時に強度の基準を満たさない前記供試体の前記測定時間の到来時における硬度値と、の間に前記閾値を設定することを特徴とする、請求項1に記載の地盤改良工法の選定方法。
In the preparation step,
Measure the hardness at the time of the measurement time of the specimen that is determined not to meet the strength criteria at the time of the solidification time,
The hardness value at the time of the measurement time of the specimen that satisfies the strength standard at the time of the solidification time and the hardness at the time of the measurement time of the specimen that does not meet the strength standard at the time of the solidification time The method for selecting a ground improvement method according to claim 1, wherein the threshold value is set between values.
前記採取工程で得られた前記土壌試料が固化し易い土質であるか否かを判定する判定工程をさらに備え、
前記判定工程で前記土壌試料が固化し難いと判定した場合のみ、前記作製工程、前記測定工程及び前記判断工程が行われることを特徴とする、請求項1又は2に記載の地盤改良工法の選定方法。
A determination step of determining whether or not the soil sample obtained in the collecting step is easily solidified;
The selection of the ground improvement method according to claim 1 or 2, wherein the preparation step, the measurement step, and the determination step are performed only when it is determined that the soil sample is difficult to solidify in the determination step. Method.
前記測定工程では、山中式土壌硬度計を用いて、バネ体の引張又は圧縮の量が30mm以下となる前記測定時間において前記供試体の硬度を測定することを特徴とする、請求項1〜3の何れか1項に記載の地盤改良工法の選定方法。   In the said measurement process, the hardness of the said test body is measured in the said measurement time when the amount of tension | tensile_strength or compression of a spring body is 30 mm or less using a Yamanaka type soil hardness meter, The 1-3 characterized by the above-mentioned. The selection method of the ground improvement construction method of any one of these. 前記作製工程は、
前記土壌試料と前記固化材と水とを混合することにより、混合試料を得る混合工程と、
前記混合試料を筒体内に充填する充填工程と、を含み、
前記測定工程では、前記筒体内に収容された状態の前記供試体の硬度を測定することを特徴とする、請求項1〜4の何れか1項に記載の地盤改良工法の選定方法。
The manufacturing process includes
A mixing step of obtaining a mixed sample by mixing the soil sample, the solidifying material, and water;
Filling the cylinder with the mixed sample, and
The method for selecting a ground improvement method according to any one of claims 1 to 4, wherein, in the measuring step, the hardness of the specimen that is housed in the cylinder is measured.
請求項1〜5の何れか1項に記載の地盤改良工法の選定方法を用いて選定された工法により地盤を改良することを特徴とする、地盤改良方法。   The ground improvement method characterized by improving a ground by the construction method selected using the selection method of the ground improvement construction method of any one of Claims 1-5.
JP2016249561A 2016-12-22 2016-12-22 Selection method of ground improvement method and ground improvement method Active JP6384540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249561A JP6384540B2 (en) 2016-12-22 2016-12-22 Selection method of ground improvement method and ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249561A JP6384540B2 (en) 2016-12-22 2016-12-22 Selection method of ground improvement method and ground improvement method

Publications (2)

Publication Number Publication Date
JP2018104906A true JP2018104906A (en) 2018-07-05
JP6384540B2 JP6384540B2 (en) 2018-09-05

Family

ID=62786850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249561A Active JP6384540B2 (en) 2016-12-22 2016-12-22 Selection method of ground improvement method and ground improvement method

Country Status (1)

Country Link
JP (1) JP6384540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231273B1 (en) 2021-11-15 2023-03-01 エポコラム機工株式会社 ground improvement method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718127B2 (en) * 1979-07-30 1982-04-15
US6098724A (en) * 1997-12-01 2000-08-08 U.S. Oil Company, Incorporated Soil sample procuring tool and associated method of testing the soil sample
JP2002097630A (en) * 2000-09-22 2002-04-02 Tenox Corp Construction condition determining method for soil cement improved body
JP2008050880A (en) * 2006-08-25 2008-03-06 Raito Kogyo Co Ltd Growth base material, and greening method using the same
JP2009052225A (en) * 2007-08-24 2009-03-12 Sekisui House Ltd Quality control method for surface layer soil improving method
JP2010048029A (en) * 2008-08-25 2010-03-04 Machine Service:Kk Improved ground testing method and unsolidified sample collector
JP2010121354A (en) * 2008-11-19 2010-06-03 Yamashita Kogyo Kk Soil sampler
JP2010255318A (en) * 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2013088277A (en) * 2011-10-18 2013-05-13 Hideyuki Yasumoto Soil hardness measuring instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718127B2 (en) * 1979-07-30 1982-04-15
US6098724A (en) * 1997-12-01 2000-08-08 U.S. Oil Company, Incorporated Soil sample procuring tool and associated method of testing the soil sample
JP2002097630A (en) * 2000-09-22 2002-04-02 Tenox Corp Construction condition determining method for soil cement improved body
JP2008050880A (en) * 2006-08-25 2008-03-06 Raito Kogyo Co Ltd Growth base material, and greening method using the same
JP2009052225A (en) * 2007-08-24 2009-03-12 Sekisui House Ltd Quality control method for surface layer soil improving method
JP2010048029A (en) * 2008-08-25 2010-03-04 Machine Service:Kk Improved ground testing method and unsolidified sample collector
JP2010121354A (en) * 2008-11-19 2010-06-03 Yamashita Kogyo Kk Soil sampler
JP2010255318A (en) * 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2013088277A (en) * 2011-10-18 2013-05-13 Hideyuki Yasumoto Soil hardness measuring instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大和ハウス工業(株): "ダイワハウス式柱状改良工法", 基礎工, vol. 28, no. 3, JPN6018025035, March 2000 (2000-03-01), pages 39 - 41, ISSN: 0003832862 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231273B1 (en) 2021-11-15 2023-03-01 エポコラム機工株式会社 ground improvement method
JP2023072875A (en) * 2021-11-15 2023-05-25 エポコラム機工株式会社 ground improvement method

Also Published As

Publication number Publication date
JP6384540B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP4607977B2 (en) Soil sampling device
CN102162234B (en) Device and method for monitoring surface displacement of rock-soil body in real time
CN104532886B (en) A kind of bored concrete pile pile bottom sediment and pile end groundwork checkout gear and method
Low et al. Strength measurement for near-seabed surface soft soil using manually operated miniature full-flow penetrometer
US9441962B2 (en) Shaft sounding device for measuring thickness of sediments at base of drilled shafts
Halkola Keynote lecture: Quality control for dry mix methods
CN204401664U (en) A kind of castinplace pile pile bottom sediment and pile end groundwork checkout gear
KR100847096B1 (en) The foundation strength characteristic and the pile support power calculation method using driving penetration cone and this
Sobala et al. Role to be played by independent geotechnical supervision in the foundation for bridge construction
JP6384540B2 (en) Selection method of ground improvement method and ground improvement method
JP6304350B1 (en) Selection method of ground improvement method and ground improvement method
JP2013019235A (en) Soil measuring method and soil measuring apparatus for use in the same
JP2012012856A (en) Strength evaluation method of pile foot protection part in pile construction
JP2006322175A (en) Sampler for soil sample
Mirjafari et al. Determination of shear strength parameters using Screw Driving Sounding (SDS)
KR101789966B1 (en) Estimating method of the end bearing capacity of SDA augered piles on weathered rock mass and bed rock mass
Rask Indirect methods as quality control of cemented hydraulic fill: Renström mine, Boliden mineral AB
Burkett et al. Axial Load Tests on Drilled Shafts Socketed in Hard Clays and Shales
Likins et al. Evaluation of defects and tomography for CSL
CN216350197U (en) Soil cement curtain wall permeability check out test set
Becker et al. Thermal Integrity Profiling of ACIP Piles
Nyaoro et al. Correlations of DCPT and SPT for analysis and design of foundations
Rehman et al. Characterization of a Cohesive Soil Bed using a Cone Pressuremeter
Olesiak Evaluation of undrained shear strength of miocene clay from the Weight Sounding Test (WST)
Zainil et al. A Comparative Analysis of Mechanical Properties Between Granite and Basalt Rock Core Samples

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250