JP2018103513A - Sealing member with protective film, method for manufacturing sealing member with protective film, and method for manufacturing organic electronic device - Google Patents

Sealing member with protective film, method for manufacturing sealing member with protective film, and method for manufacturing organic electronic device Download PDF

Info

Publication number
JP2018103513A
JP2018103513A JP2016253614A JP2016253614A JP2018103513A JP 2018103513 A JP2018103513 A JP 2018103513A JP 2016253614 A JP2016253614 A JP 2016253614A JP 2016253614 A JP2016253614 A JP 2016253614A JP 2018103513 A JP2018103513 A JP 2018103513A
Authority
JP
Japan
Prior art keywords
sealing member
protective film
film
adhesive layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016253614A
Other languages
Japanese (ja)
Other versions
JP6723149B2 (en
Inventor
匡哉 下河原
Masaya Shimogawara
匡哉 下河原
進一 森島
Shinichi Morishima
進一 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2016253614A priority Critical patent/JP6723149B2/en
Publication of JP2018103513A publication Critical patent/JP2018103513A/en
Application granted granted Critical
Publication of JP6723149B2 publication Critical patent/JP6723149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing member with a protective film, a method for manufacturing a sealing member with a protective film and a method for manufacturing an organic electronic device, by which deformation of a sealing member with a protective film due to air bubbles in a heating dehydration process can be suppressed.SOLUTION: A sealing member 1 with a protective film 20 comprises a sealing member 10 having a sealing substrate 11 and an adhesive layer 12 deposited on the sealing substrate 11, and a protective film 20 laminated via the adhesive layer 12 on the sealing member 10, in which the protective film 20 has a film substrate 21 stuck to the adhesive layer 12 and a plurality of bubble ejection parts formed in the film substrate 21. A method for manufacturing the sealing member 10 with the protective film 20, and a method for manufacturing an organic electronic device are also provided.SELECTED DRAWING: Figure 1

Description

本発明は、保護フィルム付き封止部材、保護フィルム付き封止部材の製造方法及び有機電子デバイスの製造方法に関する。   The present invention relates to a sealing member with a protective film, a method for producing a sealing member with a protective film, and a method for producing an organic electronic device.

有機電子デバイスは、基板と、基板上に設けられる第1の電極、有機層を含むデバイス機能部及び第2の電極を有する。デバイス機能部は有機層を含むため水分などにより劣化しやすい。この劣化を防止するために、有機電子デバイスは、デバイス機能部を封止する封止部材を更に有する。例えば特許文献1には、封止基材と、封止基材に積層された接着層とを有する封止部材が開示されている。この封止部材は、有機電子デバイスが有するデバイス基材(特許文献1において、基板上に有機EL構造体が形成された部材に対応)に接着層を介して貼合されている。   The organic electronic device has a substrate, a first electrode provided on the substrate, a device function unit including an organic layer, and a second electrode. Since the device function part includes an organic layer, it easily deteriorates due to moisture. In order to prevent this deterioration, the organic electronic device further includes a sealing member that seals the device function unit. For example, Patent Document 1 discloses a sealing member having a sealing base material and an adhesive layer laminated on the sealing base material. This sealing member is bonded to a device base material (corresponding to a member in which an organic EL structure is formed on a substrate in Patent Document 1) of an organic electronic device via an adhesive layer.

特開2015−215952号公報Japanese Patent Laying-Open No. 2015-215952

封止部材が有する接着層が露出していると、接着層へゴミが付着するという問題、封止部材を例えばローラで搬送する際に接着層がローラへ付着するという問題等が生じ、封止部材のハンドリング性が低下する。これを防止するためには、保護フィルムとしてのフィルム基材が接着層に貼合された保護フィルム付き封止部材を使用すればよい。   When the adhesive layer of the sealing member is exposed, there are problems such as dust adhering to the adhesive layer, problems such as adhesion of the adhesive layer to the roller when the sealing member is conveyed by a roller, etc. The handling property of the member is lowered. In order to prevent this, a sealing member with a protective film in which a film substrate as a protective film is bonded to an adhesive layer may be used.

ところで、有機電子デバイスが有するデバイス機能部への水分浸入をより確実に防止するために、封止部材でデバイス機能部を封止する前に、封止部材を加熱脱水処理することが考えられる。しかしながら、保護フィルムが接着層に貼合された保護フィルム付き封止部材を加熱脱水処理すると、例えば接着層からの水分放出に起因して発生した気泡によって、封止基材の変形、フィルム基材の接着層からの剥離などの保護フィルム付き封止部材の変形が生じる。その結果、例えば、封止部材の封止性能の低下、保護フィルム付き封止部材のハンドリング性の低下などが生じる。   By the way, in order to prevent more reliably the water | moisture content permeation into the device function part which an organic electronic device has, it is possible to heat-dehydrate the sealing member before sealing a device function part with a sealing member. However, when the sealing member with the protective film having the protective film bonded to the adhesive layer is heated and dehydrated, for example, deformation of the sealing substrate, film base due to bubbles generated due to moisture release from the adhesive layer, Deformation of the sealing member with a protective film such as peeling from the adhesive layer occurs. As a result, for example, the sealing performance of the sealing member is lowered, and the handling property of the sealing member with a protective film is lowered.

そこで、本発明は、加熱脱水時の気泡による保護フィルム付き封止部材の変形を抑制できる保護フィルム付き封止部材、保護フィルム付き封止部材の製造方法及び有機電子デバイスの製造方法を提供することを目的とする。   Then, this invention provides the sealing member with a protective film which can suppress the deformation | transformation of the sealing member with a protective film by the bubble at the time of heat | fever dehydration, the manufacturing method of the sealing member with a protective film, and the manufacturing method of an organic electronic device. With the goal.

本発明の一側面に係る保護フィルム付き封止部材は、封止基材及び上記封止基材に積層された接着層を有する封止部材と、上記封止部材に接着層を介して積層された保護フィルムと、を備え、上記保護フィルムは、上記接着層に貼合されるフィルム基材と、上記フィルム基材に形成された複数の気泡排出部と、を有する。   A sealing member with a protective film according to one aspect of the present invention is laminated on a sealing substrate and a sealing member having an adhesive layer laminated on the sealing substrate, and the sealing member is laminated via an adhesive layer. The protective film has a film base material bonded to the adhesive layer, and a plurality of bubble discharge portions formed on the film base material.

上記保護フィルム付き封止部材は、封止部材に貼合された保護フィルムに気泡排出部が設けられている。よって、保護フィルム付き封止部材を加熱脱水処理した際に、例えば接着層からの水分放出に伴う気泡が発生しても、気泡は気泡排出部から保護フィルム付き封止部材の外部に排出されるので、上記気泡による保護フィルム付き封止部材の変形を抑制できる。   As for the said sealing member with a protective film, the bubble discharge part is provided in the protective film bonded by the sealing member. Therefore, when a sealing member with a protective film is heated and dehydrated, even if, for example, bubbles are generated due to moisture release from the adhesive layer, the bubbles are discharged from the bubble discharging portion to the outside of the sealing member with a protective film. Therefore, deformation of the sealing member with the protective film due to the bubbles can be suppressed.

上記接着層が吸湿剤を含んでもよい。これにより、上記保護フィルム付き封止部材を利用して製造された有機電子デバイスにおいて、有機層への水分浸入をより低減できる。   The adhesive layer may contain a hygroscopic agent. Thereby, in the organic electronic device manufactured using the said sealing member with a protective film, the water permeation to an organic layer can be reduced more.

本発明の他の側面に係る保護フィルム付き封止部材の製造方法は、封止基材に接着層が積層された封止部材を有しており、有機電子デバイスの製造に用いられる保護フィルム付き封止部材の製造方法であり、フィルム基材に気泡排出部を形成するための加工を施して保護フィルムを形成する加工工程と、上記封止基材に上記接着層を介してフィルム基材を貼合するフィルム基材貼合工程と、を備え、上記加工工程を、上記フィルム基材貼合工程の前又は後に実施する。   The manufacturing method of the sealing member with a protective film which concerns on the other side surface of this invention has the sealing member by which the contact bonding layer was laminated | stacked on the sealing base material, and with a protective film used for manufacture of an organic electronic device A method for producing a sealing member, a processing step of forming a protective film by applying a process for forming a bubble discharge part on a film base, and a film base on the sealing base via the adhesive layer A film base material bonding step to be bonded, and the processing step is performed before or after the film base material bonding step.

上記保護フィルム付き封止部材の製造方法によれば、気泡排出部を有する保護フィルムが接着層を介して封止基材に貼合された保護フィルム付き封止部材が得られる。この保護フィルム付き封止部材を加熱脱水処理した際に、例えば接着層からの水分放出に伴う気泡が発生しても、気泡は気泡排出部から保護フィルム付き封止部材の外部に排出される。よって、上記気泡による保護フィルム付き封止部材の変形を抑制できる。   According to the said manufacturing method of the sealing member with a protective film, the sealing member with a protective film by which the protective film which has a bubble discharge part was bonded to the sealing base material through the contact bonding layer is obtained. When the sealing member with a protective film is subjected to heat dehydration treatment, for example, even if bubbles are generated due to moisture release from the adhesive layer, the bubbles are discharged from the bubble discharge portion to the outside of the sealing member with a protective film. Therefore, deformation of the sealing member with the protective film due to the bubbles can be suppressed.

上記接着層及び上記フィルム基材のうち少なくとも一方を、上記貼合工程の前に加熱脱水処理する工程を有してもよい。これにより、上記製造方法で製造された保護フィルム付き封止部材を利用して製造された有機電子デバイスにおいて、有機層への水分浸入を更に低減できる。   You may have the process of heat-dehydrating at least one among the said contact bonding layer and the said film base material before the said bonding process. Thereby, in the organic electronic device manufactured using the sealing member with a protective film manufactured by the above manufacturing method, moisture intrusion into the organic layer can be further reduced.

保護フィルム付き封止部材及び保護フィルム付き封止部材の製造方法における上記気泡排出部の例としては、スリット又は円孔が挙げられる。   As an example of the said bubble discharge part in the manufacturing method of the sealing member with a protective film, and the sealing member with a protective film, a slit or a circular hole is mentioned.

本発明の更に他の側面に係る有機電子デバイスの製造方法は、基板上に第1の電極と、有機層を含むデバイス機能部と、第2の電極とが順に設けられたデバイス基材を形成するデバイス基材形成工程と、封止基材に接着層が積層された封止部材に、フィルム基材に複数の気泡排出部が形成された保護フィルムが上記接着層を介して貼合された保護フィルム付き封止部材を製造する保護フィルム付き封止部材の製造工程と、上記保護フィルム付き封止部材を加熱脱水処理する脱水工程と、上記脱水工程を経た上記保護フィルム付き封止部材から上記保護フィルムを剥離して、上記封止部材を、上記接着層を介して上記デバイス基材に貼合する封止部材貼合工程と、を備え、保護フィルム付き封止部材の製造工程では、上述した保護フィルム付き封止部材の製造方法で上記保護フィルム付き封止部材を製造する。   According to still another aspect of the present invention, there is provided a method for manufacturing an organic electronic device, comprising: forming a device base on which a first electrode, a device function unit including an organic layer, and a second electrode are sequentially provided on a substrate; A protective film in which a plurality of bubble discharge portions are formed on a film base material is bonded to the sealing member in which the adhesive layer is laminated on the sealing base material through the adhesive layer. From the manufacturing process of the sealing member with a protective film for manufacturing the sealing member with a protective film, the dehydration process for heat-dehydrating the sealing member with the protective film, and the sealing member with the protective film after the dehydration process In the manufacturing process of the sealing member with a protective film, the protective film is peeled off, and the sealing member is bonded to the device substrate via the adhesive layer. With protective film The production of the protective film with a sealing member in the manufacturing method of the sealing member.

上記有機電子デバイスの製造方法が有する保護フィルム付き封止部材の製造工程では、上述した保護フィルム付き封止部材の製造方法で上記保護フィルム付き封止部材を製造する。よって、上記脱水工程で、保護フィルム付き封止部材を加熱脱水処理しても、加熱脱水処理で生じる気泡による保護フィルム付き封止部材の変形を抑制できる。そのため、例えば、気泡による変形が生じていない封止基材を含む封止部材をデバイス基材に貼合でき、封止性能の低下を抑制できる。   In the manufacturing process of the sealing member with a protective film which the manufacturing method of the said organic electronic device has, the said sealing member with a protective film is manufactured with the manufacturing method of the sealing member with a protective film mentioned above. Therefore, even if the sealing member with a protective film is heated and dehydrated in the dehydration step, deformation of the sealing member with the protective film due to bubbles generated in the heating and dehydration process can be suppressed. Therefore, for example, a sealing member including a sealing base material that is not deformed by bubbles can be bonded to the device base material, and a decrease in sealing performance can be suppressed.

上記脱水工程では、上記加熱脱水処理を真空下で実施してもよい。また、上記保護フィルム付き封止部材に赤外線を照射することによって、上記加熱脱水処理してもよい。   In the dehydration step, the heat dehydration process may be performed under vacuum. Moreover, you may heat-dehydrate the said sealing member with a protective film by irradiating infrared rays.

本発明によれば、加熱脱水時の気泡による保護フィルム付き封止部材の変形を抑制できる保護フィルム付き封止部材、保護フィルム付き封止部材の製造方法及び有機デバイスの製造方法を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the sealing member with a protective film which can suppress a deformation | transformation of the sealing member with a protective film by the bubble at the time of heat | fever dehydration, the manufacturing method of the sealing member with a protective film, and the manufacturing method of an organic device can be provided. .

図1は、一実施形態に係る保護フィルム付き封止部材の側面図である。FIG. 1 is a side view of a sealing member with a protective film according to an embodiment. 図2は、図1に示した保護フィルム付き封止部材の平面図である。FIG. 2 is a plan view of the sealing member with the protective film shown in FIG. 図3は、図1に示した保護フィルム付き封止部材の製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method of manufacturing the sealing member with the protective film shown in FIG. 図4は、図1に示した保護フィルム付き封止部材を用いた有機ELデバイス(有機電子デバイス)の製造方法を示すフローチャートである。FIG. 4 is a flowchart showing a method for manufacturing an organic EL device (organic electronic device) using the sealing member with a protective film shown in FIG. 図5は、図4に示した有機ELデバイスが有するデバイス基材の構成の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the configuration of a device substrate included in the organic EL device shown in FIG. 図6は、有機ELデバイス(有機電子デバイス)の製造方法における封止部材貼合工程を説明するための図面である。FIG. 6 is a drawing for explaining a sealing member bonding step in a method for manufacturing an organic EL device (organic electronic device).

以下、本発明の実施形態について図面を参照しながら説明する。同一の要素には同一の符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are assigned to the same elements, and duplicate descriptions are omitted. The dimensional ratios in the drawings do not necessarily match those described.

図1に示した保護フィルム付き封止部材1は、封止部材10と、保護フィルム20とを備える。保護フィルム付き封止部材1は、有機電子デバイスの一例である有機ELデバイスの製造に用いられる。保護フィルム付き封止部材1は、帯状でもよいし、枚葉状でもよい。以下、断らない限り、保護フィルム付き封止部材1は、帯状を呈する。   The protective film-equipped sealing member 1 shown in FIG. 1 includes a sealing member 10 and a protective film 20. The sealing member 1 with a protective film is used for manufacturing an organic EL device which is an example of an organic electronic device. The sealing member 1 with a protective film may be strip-shaped or single-wafer-shaped. Hereinafter, unless otherwise indicated, the sealing member 1 with a protective film exhibits a strip shape.

封止部材10は、有機ELデバイスに含まれる有機層の劣化を防止するための部材である。封止部材10は、封止基材11と、接着層12とを有する。   The sealing member 10 is a member for preventing deterioration of the organic layer included in the organic EL device. The sealing member 10 includes a sealing substrate 11 and an adhesive layer 12.

封止基材11は、水分バリア機能を有する。封止基材11の水分透過率の例は、温度40℃、湿度90%RHの環境下で5×10−5g/(m・24hr)以下である。封止基材11は、ガスバリア機能を有してもよい。封止基材11の例としては、金属箔、透明なプラスチックフィルムの片面又はその両面にバリア機能層を形成したバリアフィルム、或いはフレキシブル性を有する薄膜ガラス、プラスチックフィルム上にバリア性を有する金属を積層させたフィルム等が挙げられる。封止基材11の厚さの例は、10μm〜300μmである。金属箔としては、バリア性の観点から、銅箔、アルミニウム箔、ステンレス箔が好ましい。封止基材11が金属箔である場合、金属箔の厚さとしては、ピンホール抑制の観点から厚い程好ましいが、フレキシブル性の観点も考慮すると10μm〜50μmが好ましい。 The sealing substrate 11 has a moisture barrier function. An example of the moisture permeability of the sealing substrate 11 is 5 × 10 −5 g / (m 2 · 24 hr) or less in an environment of a temperature of 40 ° C. and a humidity of 90% RH. The sealing substrate 11 may have a gas barrier function. Examples of the sealing substrate 11 include a metal foil, a barrier film having a barrier functional layer formed on one side or both sides of a transparent plastic film, a thin film glass having flexibility, and a metal having a barrier property on the plastic film. Examples include laminated films. An example of the thickness of the sealing substrate 11 is 10 μm to 300 μm. As the metal foil, copper foil, aluminum foil, and stainless steel foil are preferable from the viewpoint of barrier properties. When the sealing substrate 11 is a metal foil, the thickness of the metal foil is preferably as thick as possible from the viewpoint of suppressing pinholes, but is preferably 10 μm to 50 μm in view of flexibility.

接着層12は、封止基材11の一方の面11aに積層されている。接着層12は、有機ELデバイスにおける封止部材10で封止すべき部分を埋設可能な厚さを有していればよい。接着層12の厚さの例は、5μm〜100μmである。   The adhesive layer 12 is laminated on the one surface 11 a of the sealing substrate 11. The adhesive layer 12 should just have the thickness which can embed the part which should be sealed with the sealing member 10 in an organic EL device. An example of the thickness of the adhesive layer 12 is 5 μm to 100 μm.

接着層12の材料の例は、光硬化性又は熱硬化性のアクリレート樹脂、光硬化性又は熱硬化性のエポキシ樹脂等が挙げられる。その他一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、ポリブタジエンフィルム等の熱融着性フィルムを接着層12として使用できる。熱可塑性樹脂も接着層12の材料に使用でき、例えば、オレフィン系エラストマーやスチレン系エラストマー、ブタジエン系エラストマー等が挙げられる。   Examples of the material of the adhesive layer 12 include a photocurable or thermosetting acrylate resin, a photocurable or thermosetting epoxy resin, and the like. Other commonly used resin films that can be fused with an impulse sealer such as ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, polyethylene (PE) film, polybutadiene film, and the like as the adhesive layer 12 Can be used. A thermoplastic resin can also be used as the material of the adhesive layer 12, and examples thereof include olefin elastomers, styrene elastomers, and butadiene elastomers.

保護フィルム付き封止部材1は、封止基材11の他方の面(接着層12に接する面と反対側の面)11b上に樹脂フィルム30を有してもよい。樹脂フィルム30の材料としては、例えばポリエチレンテレフタレート(PET)、ポリイミド(PI)などが挙げられる。図1では、樹脂フィルム30を備えた保護フィルム付き封止部材1を例示しているが、保護フィルム付き封止部材1は、樹脂フィルム30を備えなくてもよい。   The sealing member with a protective film 1 may have a resin film 30 on the other surface (the surface opposite to the surface in contact with the adhesive layer 12) 11b of the sealing substrate 11. Examples of the material of the resin film 30 include polyethylene terephthalate (PET) and polyimide (PI). In FIG. 1, the sealing member 1 with the protective film provided with the resin film 30 is illustrated, but the sealing member 1 with the protective film may not include the resin film 30.

保護フィルム20は、接着層12の一方の面12aに積層されている。すなわち、保護フィルム20は、接着層12を介して封止基材11に積層されている。保護フィルム20は、接着層12から剥離可能な剥離フィルムである。   The protective film 20 is laminated on one surface 12 a of the adhesive layer 12. That is, the protective film 20 is laminated on the sealing substrate 11 via the adhesive layer 12. The protective film 20 is a release film that can be peeled from the adhesive layer 12.

保護フィルム20は、フィルム基材21を有する。フィルム基材21の材料の例としては、PEN、PET、PP、PE、PI、シクロオレフィンポリマー、シクロオレフィンコポリマー等が挙げられる。フィルム基材21の厚さ(保護フィルム20の厚さに相当)の例としては、9μm〜50μmが挙げられる。   The protective film 20 has a film substrate 21. Examples of the material of the film substrate 21 include PEN, PET, PP, PE, PI, cycloolefin polymer, cycloolefin copolymer, and the like. Examples of the thickness of the film substrate 21 (corresponding to the thickness of the protective film 20) include 9 μm to 50 μm.

図2に示したように、フィルム基材21には、複数の気泡排出部22が形成されている。気泡排出部22は、保護フィルム付き封止部材1を加熱脱水処理した際に、接着層12又はフィルム基材21からの水分放出に起因して発生する気泡を排出するための通路となる部分であり、フィルム基材21に対して加工処理を施すことで形成されている。気泡排出部22は、フィルム基材21の一方の面(接着層12に接する面と反対側の面)21aと他方の面(接着層12に接する面)21b(図1参照)との間を貫通していなくても、上記加熱脱水時に発生した気泡によって開くことで気泡を排出可能な通路(換言すれば、気泡の逃げ道)が形成されるように構成されていればよい。したがって、気泡排出部22は、ハーフカット状態で形成されていてもよい。気泡排出部22の例は、スリット又は円孔である。   As shown in FIG. 2, a plurality of bubble discharge portions 22 are formed on the film base 21. The bubble discharge portion 22 is a portion that becomes a passage for discharging bubbles generated due to moisture release from the adhesive layer 12 or the film substrate 21 when the sealing member 1 with the protective film is heated and dehydrated. Yes, it is formed by processing the film substrate 21. The bubble discharge part 22 is between the one surface (surface opposite to the surface in contact with the adhesive layer 12) 21a and the other surface (surface in contact with the adhesive layer 12) 21b (see FIG. 1) of the film substrate 21. Even if it does not penetrate, it may be configured to form a passage (in other words, a bubble escape passage) that can be discharged by opening the bubbles generated during the heat dehydration. Therefore, the bubble discharge part 22 may be formed in the half cut state. The example of the bubble discharge part 22 is a slit or a circular hole.

本明細書において、スリットには、保護フィルム20の平面視(保護フィルム20の厚さ方向からみた場合)において、幅(スリットの延在方向に直交する方向の長さ)が実質的に0である「切り込み」の概念も含む。したがって、スリットは、一定の幅を有してもよいし、幅が実質的に0であってもよい。図2では、気泡排出部22が、スリットの一例である切込みである場合を例示している。   In the present specification, the slit has a width (length in a direction perpendicular to the extending direction of the slit) substantially zero in plan view of the protective film 20 (when viewed from the thickness direction of the protective film 20). It also includes the concept of “cutting”. Therefore, the slit may have a certain width, or the width may be substantially zero. In FIG. 2, the case where the bubble discharge part 22 is the notch which is an example of a slit is illustrated.

気泡排出部22がハーフカット状態で形成される場合、気泡排出部22は、例えば、フィルム基材21の一方の面21a側から形成される。この場合、気泡排出部22の端部(フィルム基材21の他方の面21b側の端部)と他方の面21bとの間の距離は、気泡によって破断される程度の長さとする。気泡排出部22がハーフカット状態で形成される場合、気泡排出部22は他方の面21b側から形成されていてもよい。   When the bubble discharge part 22 is formed in a half cut state, the bubble discharge part 22 is formed from the one surface 21a side of the film substrate 21, for example. In this case, the distance between the end portion of the bubble discharge portion 22 (the end portion on the other surface 21b side of the film base material 21) and the other surface 21b is set to a length that can be broken by bubbles. When the bubble discharge part 22 is formed in a half cut state, the bubble discharge part 22 may be formed from the other surface 21b side.

保護フィルム20が有する気泡排出部22の大きさは、気泡を十分に排出可能な大きさであればよい。複数の気泡排出部22がスリットである場合、スリット加工の場合はスリットの間隔が0.5mm以下であることが好ましく、気泡排出部22が円孔である場合、円孔の面積が保護フィルムの面積の10%から50%であることが好ましい。気泡排出部22がスリット又は円孔であって、一方の面21aと他方の面21bの間の貫通している形態では、接着層12が一方の面21aから漏れない大きさであることが好ましい。気泡排出部22がスリットである場合、スリットの長さの例は、0.1mm〜1mmである。   The size of the bubble discharge part 22 which the protective film 20 has should just be a magnitude | size which can fully discharge | release a bubble. When the plurality of bubble discharge portions 22 are slits, the slit interval is preferably 0.5 mm or less in the case of slit processing. When the bubble discharge portions 22 are circular holes, the area of the circular holes is that of the protective film. The area is preferably 10% to 50%. In the form in which the bubble discharge portion 22 is a slit or a circular hole and penetrates between the one surface 21a and the other surface 21b, it is preferable that the adhesive layer 12 has a size that does not leak from the one surface 21a. . When the bubble discharge part 22 is a slit, the example of the length of a slit is 0.1 mm-1 mm.

次に、保護フィルム付き封止部材1の製造方法の一例を説明する。保護フィルム付き封止部材1の製造方法は、図3に示したように、加工工程S11と、フィルム基材貼合工程S12とを備える。   Next, an example of the manufacturing method of the sealing member 1 with a protective film is demonstrated. As shown in FIG. 3, the manufacturing method of the sealing member 1 with a protective film includes a processing step S11 and a film base material bonding step S12.

[加工工程]
加工工程S11では、複数の気泡排出部22を形成するための加工をフィルム基材21に施すことによって保護フィルム20を形成する。気泡排出部22がスリットである場合、スリット加工を施す。スリット加工では、例えばカッターナイフ等でフィルム基材21の一部を切り抜き、スリットを形成すればよい。気泡排出部22が円孔である場合、例えば、打ち抜きプレス式、熱針式、レーザー照射式等によって円孔を形成すればよい。なお、スリットが例えば円孔以外の孔(例えば長孔)である場合、例示した打ち抜きプレス式、熱針式、レーザー照射式でスリットを形成してもよい。
[Processing process]
In the processing step S <b> 11, the protective film 20 is formed by applying processing for forming the plurality of bubble discharge portions 22 to the film base material 21. When the bubble discharge unit 22 is a slit, slit processing is performed. In the slit processing, for example, a part of the film substrate 21 may be cut out with a cutter knife or the like to form a slit. When the bubble discharging part 22 is a circular hole, the circular hole may be formed by, for example, a punching press method, a hot needle method, a laser irradiation method, or the like. In addition, when a slit is holes (for example, long holes) other than a circular hole, for example, you may form a slit with the illustrated punching press type, a hot needle type, and a laser irradiation type.

[フィルム基材貼合工程]
フィルム基材貼合工程S12では、加工工程S11を経ることによって、気泡排出部22が形成された状態のフィルム基材21(すなわち、保護フィルム20)を、接着層12を介して封止基材11に貼合する。これにより、封止基材11と接着層12と保護フィルム20がこの順に積層されてなる保護フィルム付き封止部材1が得られる。接着層12は、接着層12となる材料(接着剤)を封止基材11の一方の面11aに予め塗布しておけばよい。
[Film base material bonding process]
In the film base material bonding step S12, the film base material 21 (that is, the protective film 20) in a state in which the bubble discharge portion 22 is formed by passing through the processing step S11 is sealed via the adhesive layer 12. 11 is pasted. Thereby, the sealing member 1 with a protective film obtained by laminating the sealing substrate 11, the adhesive layer 12, and the protective film 20 in this order is obtained. For the adhesive layer 12, a material (adhesive) to be the adhesive layer 12 may be applied in advance to the one surface 11 a of the sealing substrate 11.

図1に示したように、保護フィルム付き封止部材1が樹脂フィルム30を備える形態では、封止基材11の他方の面11bに予め樹脂フィルム30が積層された封止基材11に接着層12を介して保護フィルム20を貼合してもよいし、保護フィルム20を、接着層12を介して封止基材11に貼合した後に(すなわち、図3におけるフィルム基材貼合工程S12の後に)、上記他方の面11bに樹脂フィルム30を積層してもよい。 As shown in FIG. 1, in the form in which the sealing member 1 with the protective film includes the resin film 30, it adheres to the sealing substrate 11 in which the resin film 30 is previously laminated on the other surface 11 b of the sealing substrate 11. The protective film 20 may be bonded via the layer 12, or after the protective film 20 is bonded to the sealing substrate 11 via the adhesive layer 12 (that is, the film substrate bonding step in FIG. 3). After S12), the resin film 30 may be laminated on the other surface 11b.

図3に示した製造方法では、加工工程S11をフィルム基材貼合工程S12の前に実施している。しかしながら、加工工程S11をフィルム基材貼合工程S12の後に実施してもよい。すなわち、接着層12を介して封止基材11にフィルム基材21を貼合した後、接着層12に積層されたフィルム基材21に加工工程S11を施して、気泡排出部22がフィルム基材21に形成されてなる保護フィルム20を得てもよい。   In the manufacturing method shown in FIG. 3, the processing step S11 is performed before the film base material bonding step S12. However, you may implement processing process S11 after film base material bonding process S12. That is, after bonding the film base material 21 to the sealing base material 11 through the adhesive layer 12, the film base material 21 laminated on the adhesive layer 12 is subjected to the processing step S11, so that the bubble discharge part 22 is formed into a film base. A protective film 20 formed on the material 21 may be obtained.

上記説明では、封止基材11の一方の面11aに形成された接着層12にフィルム基材21(又は保護フィルム20)を貼合する形態を説明した。しかしながら、例えば、接着層12の両面にフィルム基材が貼合された両面テープのうち、片方のフィルム基材を剥離して、露出した接着層12を封止基材11に貼合してもよい。この場合、両面テープのうち剥離されていないフィルム基材が、保護フィルム20のフィルム基材21として機能する。この場合であっても、両面テープの段階で、接着層12の両面に形成されたフィルム基材の一方に加工工程S11を施してもよいし、封止基材11に貼合した後に、接着層12に貼合されているフィルム基材に加工工程S11を施してもよい。   In the said description, the form which bonds the film base material 21 (or protective film 20) to the contact bonding layer 12 formed in the one surface 11a of the sealing base material 11 was demonstrated. However, even if, for example, one of the double-sided tapes having the film base material bonded to both surfaces of the adhesive layer 12 is peeled off and the exposed adhesive layer 12 is bonded to the sealing base material 11. Good. In this case, the non-peeled film base material of the double-sided tape functions as the film base material 21 of the protective film 20. Even in this case, at the stage of the double-sided tape, the processing step S11 may be applied to one of the film bases formed on both sides of the adhesive layer 12, or after bonding to the sealing base 11, You may give processing process S11 to the film base material currently bonded by the layer 12. FIG.

次に、図1に示した保護フィルム付き封止部材1を用いた有機ELデバイスの製造方法の一例について説明する。図4に示したように、有機ELデバイスの製造方法は、デバイス基材形成工程S21と、保護フィルム付き封止部材の製造工程S22と、脱水工程S23と、封止部材貼合工程S24とを備える。以下では、ロールツーロール方式を利用して、基板側から光を発する形態の有機ELデバイスを製造する方法について説明する。   Next, an example of the manufacturing method of the organic EL device using the sealing member 1 with a protective film shown in FIG. 1 will be described. As shown in FIG. 4, the manufacturing method of an organic EL device includes a device base material forming step S21, a manufacturing step S22 of a sealing member with a protective film, a dehydrating step S23, and a sealing member bonding step S24. Prepare. Below, the method to manufacture the organic EL device of the form which emits light from the board | substrate side using a roll-to-roll system is demonstrated.

[デバイス基材形成工程]
デバイス基材形成工程S21では、図5に示したように、基板41上に、陽極(第1の電極)42、有機EL部(有機層を含むデバイス機能部)43及び陰極(第2の電極)44を順に積層することによってデバイス基材40を形成する。デバイス基材40について説明する。
[Device substrate formation process]
In the device base material forming step S21, as shown in FIG. 5, an anode (first electrode) 42, an organic EL part (device function part including an organic layer) 43, and a cathode (second electrode) are formed on the substrate 41. ) 44 in order to form the device substrate 40. The device substrate 40 will be described.

[基板]
基板41は、製造する有機ELデバイスが出射する光(波長400nm〜800nmの可視光を含む)に対して透光性を有する。本実施形態において、有機ELデバイスの製造に使用する基板41は帯状を呈する。基板41の厚さの例は、30μm〜700μmである。
[substrate]
The substrate 41 has translucency with respect to light (including visible light having a wavelength of 400 nm to 800 nm) emitted from the organic EL device to be manufactured. In this embodiment, the board | substrate 41 used for manufacture of an organic EL device exhibits strip | belt shape. The example of the thickness of the board | substrate 41 is 30 micrometers-700 micrometers.

基板41は、可撓性を有し、基板41の例はプラスチックフィルム又は高分子フィルムである。基板41は、水分バリア機能を有するバリア層を更に有してもよい。バリア層は、水分をバリアする機能に加えて、ガス(例えば酸素)をバリアする機能を有してもよい。   The substrate 41 has flexibility, and an example of the substrate 41 is a plastic film or a polymer film. The substrate 41 may further include a barrier layer having a moisture barrier function. The barrier layer may have a function of barriering gas (for example, oxygen) in addition to the function of barriering moisture.

[陽極]
陽極42は、基板41上に設けられている。陽極42には、光透過性を示す電極が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。陽極42は、導電体(例えば金属)からなるネットワーク構造を有してもよい。陽極42の厚さは、光の透過性、電気伝導度等を考慮して決定され得る。陽極42の厚さは、通常、10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
[anode]
The anode 42 is provided on the substrate 41. As the anode 42, an electrode having optical transparency is used. As the electrode exhibiting light transmittance, a thin film of metal oxide, metal sulfide, metal or the like having high electrical conductivity can be used, and a thin film having high light transmittance is preferably used. The anode 42 may have a network structure made of a conductor (for example, metal). The thickness of the anode 42 can be determined in consideration of light transmittance, electrical conductivity, and the like. The thickness of the anode 42 is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.

陽極42の材料としては、例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅等が挙げられ、これらの中でもITO、IZO、又は酸化スズが好ましい。陽極42は、例示した材料からなる薄膜として形成され得る。陽極42の材料には、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物を用いてもよい。この場合、陽極42は、透明導電膜として形成され得る。   Examples of the material of the anode 42 include indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, and copper. Among these, ITO, IZO, or tin oxide is preferable. The anode 42 can be formed as a thin film made of the exemplified materials. As the material of the anode 42, organic substances such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used. In this case, the anode 42 can be formed as a transparent conductive film.

陽極42は、真空成膜法、イオンプレーティング法、メッキ法、塗布法などにより形成され得る。塗布法としては、インクジェット印刷法、スリットコート法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法及びノズルプリント法等が挙げられる。これらの中でもインクジェット印刷法が好ましい。   The anode 42 can be formed by a vacuum film forming method, an ion plating method, a plating method, a coating method, or the like. Application methods include inkjet printing, slit coating, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, spray coating, screen printing, flexographic printing, and offset printing. And a nozzle printing method. Among these, the inkjet printing method is preferable.

[有機EL部]
有機EL部43は、陽極42及び陰極44に印加された電力(例えば電圧)に応じて、電荷の移動及び電荷の再結合などの有機ELデバイスの発光に寄与する機能部であり、発光層を有する。
[Organic EL part]
The organic EL unit 43 is a functional unit that contributes to light emission of the organic EL device, such as charge transfer and charge recombination, according to the power (for example, voltage) applied to the anode 42 and the cathode 44. Have.

発光層は、光(可視光を含む)を発する機能を有する機能層である。発光層は、通常、主として蛍光及びりん光の少なくとも一方を発光する有機物、又はこの有機物とこれを補助するドーパント材料とから構成される。従って、発光層は有機層である。ドーパント材料は、例えば発光効率の向上や、発光波長を変化させるために加えられる。上記有機物は、低分子化合物でも高分子化合物でもよい。発光層の厚さは、例えば約2nm〜200nmである。   The light emitting layer is a functional layer having a function of emitting light (including visible light). The light emitting layer is usually composed of an organic substance that mainly emits at least one of fluorescence and phosphorescence, or an organic substance and a dopant material that assists the organic substance. Therefore, the light emitting layer is an organic layer. The dopant material is added, for example, in order to improve the light emission efficiency or change the light emission wavelength. The organic substance may be a low molecular compound or a high molecular compound. The thickness of the light emitting layer is, for example, about 2 nm to 200 nm.

主として蛍光及びりん光の少なくとも一方を発光する発光性材料である有機物としては、例えば以下の色素系材料、金属錯体系材料及び高分子系材料が挙げられる。   Examples of the organic substance that is a light-emitting material that mainly emits at least one of fluorescence and phosphorescence include the following dye materials, metal complex materials, and polymer materials.

(色素系材料)
色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などが挙げられる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.

(金属錯体系材料)
金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、又はAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体が挙げられ、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などが挙げられる。
(Metal complex materials)
Examples of the metal complex material include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, and the like as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline. Examples include metal complexes having a structure as a ligand, such as iridium complexes, metal complexes having a light emission from a triplet excited state such as platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, Examples include benzothiazole zinc complex, azomethyl zinc complex, porphyrin zinc complex, phenanthroline europium complex and the like.

(高分子系材料)
高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどが挙げられる。
(Polymer material)
As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. Things.

(ドーパント材料)
ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどが挙げられる。
(Dopant material)
Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.

発光層は、塗布法、真空蒸着法、スパッタリング法などによって形成され得る。塗布法の例は、陽極42の場合と同様である。   The light emitting layer can be formed by a coating method, a vacuum deposition method, a sputtering method, or the like. An example of the coating method is the same as that of the anode 42.

有機EL部43は、発光層の他、種々の機能層を有してもよい。陽極42と発光層との間に配置される機能層の例は、正孔注入層、正孔輸送層などである。陰極44と発光層との間に配置される機能層の例は、電子注入層、電子輸送層などである。   The organic EL unit 43 may have various functional layers in addition to the light emitting layer. Examples of the functional layer disposed between the anode 42 and the light emitting layer are a hole injection layer and a hole transport layer. Examples of the functional layer disposed between the cathode 44 and the light emitting layer are an electron injection layer and an electron transport layer.

有機EL部43の層構成の例を以下に示す。下記層構成の例では、陽極42と陰極44と各種機能層の配置関係を示すために、陽極及び陰極も記載している。
(a)陽極/発光層/陰極
(b)陽極/正孔注入層/発光層/陰極
(c)陽極/正孔注入層/発光層/電子注入層/陰極
(d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(g)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(h)陽極/発光層/電子注入層/陰極
(i)陽極/発光層/電子輸送層/電子注入層/陰極
記号「/」は、記号「/」の両側の層同士が接合していることを意味している。
An example of the layer configuration of the organic EL unit 43 is shown below. In the example of the following layer configuration, the anode and the cathode are also shown in order to show the positional relationship between the anode 42, the cathode 44, and various functional layers.
(A) Anode / light emitting layer / cathode (b) Anode / hole injection layer / light emitting layer / cathode (c) Anode / hole injection layer / light emitting layer / electron injection layer / cathode (d) Anode / hole injection layer / Light emitting layer / electron transport layer / electron injection layer / cathode (e) anode / hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection layer / hole transport layer / light emitting layer / Electron injection layer / cathode (g) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (h) anode / light emitting layer / electron injection layer / cathode (i) anode / Light emitting layer / electron transport layer / electron injection layer / cathode The symbol “/” means that the layers on both sides of the symbol “/” are joined together.

有機EL部43が有する発光層以外の機能層(例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層など)の材料には公知の材料が用いられ得る。有機EL部43が有する機能層の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。   A known material can be used as a material of a functional layer (for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, etc.) other than the light emitting layer included in the organic EL unit 43. The thickness of the functional layer included in the organic EL unit 43 varies depending on the material used, and is set in consideration of electrical conductivity, durability, and the like.

[陰極]
陰極44は、有機EL部43上に設けられている。陰極44の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。陰極44の厚さは、通常、10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
[cathode]
The cathode 44 is provided on the organic EL unit 43. The thickness of the cathode 44 varies depending on the material used, and is set in consideration of electrical conductivity, durability, and the like. The thickness of the cathode 44 is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.

有機EL部43からの光(具体的には、発光層からの光)が陰極44で反射して陽極42側に進むように、陰極44の材料は、有機EL部43が有する発光層からの光(特に可視光)に対して反射率の高い材料が好ましい。陰極44の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表の13族金属等が挙げられる。陰極44として、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いてもよい。   The material of the cathode 44 is from the light emitting layer of the organic EL unit 43 so that light from the organic EL unit 43 (specifically, light from the light emitting layer) is reflected by the cathode 44 and travels to the anode 42 side. A material having a high reflectance with respect to light (particularly visible light) is preferable. Examples of the material of the cathode 44 include alkali metals, alkaline earth metals, transition metals, and Group 13 metals of the periodic table. As the cathode 44, a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like may be used.

デバイス基材形成工程S21では、帯状の基板41を、ロールツーロール方式で長手方向に搬送しながら、基板41上に仮想的に設定された複数のデバイス領域上に、それぞれ陽極42、有機EL部43及び陰極44を順次積層することによってデバイス基材40を形成する。陽極42、有機EL部43及び陰極44は、前述した方法で形成され得る。有機EL部43が多層構造を有する場合は、陽極42側から順に各層を形成すればよい。   In the device base material forming step S21, the anode 42 and the organic EL unit are respectively formed on a plurality of device regions virtually set on the substrate 41 while the belt-like substrate 41 is conveyed in the longitudinal direction by a roll-to-roll method. The device substrate 40 is formed by sequentially stacking 43 and the cathode 44. The anode 42, the organic EL part 43, and the cathode 44 can be formed by the method described above. When the organic EL portion 43 has a multilayer structure, each layer may be formed in order from the anode 42 side.

[保護フィルム付き封止部材の製造工程]
この製造工程S22では、図3を利用して説明した保護フィルム付き封止部材1の製造方法により保護フィルム付き封止部材1を製造する。よって、保護フィルム付き封止部材1を製造する方法の詳細な説明は省略する。
[Manufacturing process of sealing member with protective film]
In this manufacturing process S22, the sealing member 1 with a protective film is manufactured with the manufacturing method of the sealing member 1 with a protective film demonstrated using FIG. Therefore, detailed description of the method for manufacturing the sealing member 1 with the protective film is omitted.

[脱水工程]
脱水工程S23では、製造工程S22で製造された保護フィルム付き封止部材1を、真空下で加熱脱水処理する。加熱脱水処理の方法は限定されないが、例えば赤外線を保護フィルム付き封止部材1に照射することによって加熱脱水する方法が例示され得る。保護フィルム付き封止部材1に照射する赤外線は、効率的に脱水するために水の吸収波長を含む中赤外線(波長1.8μm〜3.0μm)が好ましい。一形態において、脱水工程S23では、例えば接着層12の含有水分量が2000ppm以下となるように、保護フィルム付き封止部材1を加熱脱水処理する。脱水工程S23は、保護フィルム付き封止部材1を長手方向に搬送しながら実施され得る。本実施形態では、加熱脱水処理を真空下で行う例を説明しているが、加熱脱水できれば、真空環境でなくてもよい。真空環境以外の環境(例えば大気圧下)で、上記赤外線照射で加熱脱水してもよい。
[Dehydration process]
In the dehydration step S23, the protective film-equipped sealing member 1 manufactured in the manufacturing step S22 is heated and dehydrated under vacuum. Although the method of heat dehydration is not limited, For example, the method of carrying out heat dehydration by irradiating the sealing member 1 with a protective film with infrared rays can be illustrated. Infrared rays applied to the sealing member 1 with the protective film are preferably mid-infrared rays (wavelength 1.8 μm to 3.0 μm) including the absorption wavelength of water for efficient dehydration. In one form, in dehydration process S23, the sealing member 1 with a protective film is heat-dehydrated, for example so that the moisture content of the contact bonding layer 12 may be 2000 ppm or less. The dehydration step S23 can be performed while conveying the sealing member 1 with the protective film in the longitudinal direction. In the present embodiment, an example in which the heat dehydration process is performed in a vacuum has been described. Heat dehydration may be performed by the infrared irradiation in an environment other than a vacuum environment (for example, under atmospheric pressure).

[封止部材貼合工程]
封止部材貼合工程S24では、図6に示したように、脱水工程S23を経た保護フィルム付き封止部材1から保護フィルム20を剥離し、接着層12を介して封止部材10をデバイス基材40に貼合することによって、有機ELデバイスを得る。封止部材貼合工程S24は、保護フィルム付き封止部材1及びデバイス基材40をそれぞれ長手方向に搬送しながら実施され得る。
[Sealing member bonding process]
In sealing member bonding process S24, as shown in FIG. 6, the protective film 20 is peeled from the sealing member 1 with a protective film that has undergone the dehydration process S23, and the sealing member 10 is attached to the device base via the adhesive layer 12. By bonding to the material 40, an organic EL device is obtained. Sealing member bonding process S24 may be implemented, conveying the sealing member 1 with a protective film, and the device base material 40 to a longitudinal direction, respectively.

具体的には、保護フィルム付き封止部材1を長手方向に搬送しながら連続的に保護フィルム20を保護フィルム付き封止部材1から剥離し、保護フィルム20が剥離されることによって連続的に得られた封止部材10を長手方向に搬送する。封止部材10及びデバイス基材40を長手方向に搬送しながら、封止部材10の接着層12を、図6に示したように、デバイス基材40と対向させた状態で、封止部材10とデバイス基材40とをその厚さ方向に加圧するとともに、加熱することによって、封止部材10をデバイス基材40に貼合する。   Specifically, the protective film 20 is continuously peeled from the sealing member 1 with the protective film while the sealing member 1 with the protective film is conveyed in the longitudinal direction, and the protective film 20 is continuously peeled to obtain continuously. The sealing member 10 thus obtained is conveyed in the longitudinal direction. While the sealing member 10 and the device base material 40 are conveyed in the longitudinal direction, the sealing member 10 with the adhesive layer 12 of the sealing member 10 facing the device base material 40 as shown in FIG. And the device substrate 40 are pressed in the thickness direction, and the sealing member 10 is bonded to the device substrate 40 by heating.

図5及び図6では、デバイス基材40を簡略化して模式的に図示しているが、有機ELデバイスの製造において、陽極42及び陰極44に電圧を印加可能なように、陽極42及び陰極44のそれぞれは、封止部材10から陽極42及び陰極44それぞれの一部が引き出されるように構成され得る。或いは、陽極42及び陰極44それぞれに対応して設けられているとともに、一部が封止部材10の外側に配置される電極部を基板41上に形成しておき、陽極42及び陰極44を、対応する電極部と電気的に接続するように形成しておいてもよい。   In FIGS. 5 and 6, the device base 40 is schematically illustrated in a simplified manner. However, in the manufacture of the organic EL device, the anode 42 and the cathode 44 can be applied to the anode 42 and the cathode 44. Each of these may be configured such that a part of each of the anode 42 and the cathode 44 is drawn from the sealing member 10. Alternatively, an electrode part that is provided corresponding to each of the anode 42 and the cathode 44 and a part of which is disposed outside the sealing member 10 is formed on the substrate 41, and the anode 42 and the cathode 44 are You may form so that it may electrically connect with a corresponding electrode part.

封止部材貼合工程S24を経ることで、デバイス領域毎に有機ELデバイスが形成されている。よって、有機ELデバイスの製造方法は、封止部材貼合工程S24を経た基板41をデバイス領域毎に個片化する個片化工程を備えてもよい。個片化工程で、基板41がデバイス領域毎に分割されることで、製品サイズの有機ELデバイスが得られる。   The organic EL device is formed for every device area by passing through sealing member bonding process S24. Therefore, the manufacturing method of an organic EL device may include an individualization step for individualizing the substrate 41 that has undergone the sealing member bonding step S24 for each device region. In the singulation process, the substrate 41 is divided for each device region, whereby an organic EL device having a product size is obtained.

次に、保護フィルム付き封止部材1、保護フィルム付き封止部材1の製造方法及び有機ELデバイスの製造方法の作用効果について説明する。   Next, the effect of the sealing member 1 with a protective film, the manufacturing method of the sealing member 1 with a protective film, and the manufacturing method of an organic EL device is demonstrated.

保護フィルム付き封止部材1は、封止部材10が有する接着層12に積層された保護フィルム20を有する。したがって、封止部材10をデバイス基材40に貼合するまでに、接着層12へのゴミの付着等を防止できる。そのため、保護フィルム付き封止部材1を利用して有機ELデバイスを製造した際に、接着層12の接着力を維持可能であるため、有機EL部43を確実に封止部材10で封止できる。更に、封止部材10とデバイス基材40との間にゴミの混入を防止できるので、所望の性能を有する有機ELデバイスを効率的に製造可能である。   The sealing member 1 with a protective film has a protective film 20 laminated on the adhesive layer 12 of the sealing member 10. Therefore, it is possible to prevent dust from adhering to the adhesive layer 12 before the sealing member 10 is bonded to the device substrate 40. Therefore, when the organic EL device is manufactured using the sealing member 1 with the protective film, the adhesive force of the adhesive layer 12 can be maintained, so that the organic EL portion 43 can be reliably sealed with the sealing member 10. . Furthermore, since dust can be prevented from being mixed between the sealing member 10 and the device substrate 40, an organic EL device having desired performance can be efficiently manufactured.

接着層12に保護フィルム20が貼合されていることから、ロールツーロール方式で帯状の保護フィルム付き封止部材1を長手方向に搬送する際、搬送手段の一部を構成するロールなどに接着層12が付着しない。そのため、保護フィルム付き封止部材1をハンドリングし易く、例えば、保護フィルム付き封止部材1を搬送し易い。更に、保護フィルム付き封止部材1の搬送経路の設計自由度が向上する。   Since the protective film 20 is bonded to the adhesive layer 12, when the strip-shaped sealing film-attached sealing member 1 is transported in the longitudinal direction by a roll-to-roll method, it adheres to a roll or the like constituting a part of the transport means. Layer 12 does not adhere. Therefore, it is easy to handle the sealing member 1 with a protective film, for example, it is easy to convey the sealing member 1 with a protective film. Furthermore, the freedom degree of design of the conveyance path | route of the sealing member 1 with a protective film improves.

保護フィルム20は、複数の気泡排出部22を有する。よって、図4に示したように、有機ELデバイスの製造方法の脱水工程S23で、保護フィルム付き封止部材1を加熱脱水処理する際に、接着層12等からの水分放出に起因する気泡が発生しても、気泡排出部22を通して気泡を保護フィルム付き封止部材1の外部に排出できる。   The protective film 20 has a plurality of bubble discharge portions 22. Therefore, as shown in FIG. 4, when the sealing member 1 with the protective film is heated and dehydrated in the dehydration step S23 of the manufacturing method of the organic EL device, bubbles due to moisture release from the adhesive layer 12 or the like are generated. Even if it occurs, the bubbles can be discharged to the outside of the sealing member 1 with the protective film through the bubble discharge portion 22.

仮に、保護フィルム付き封止部材1内部に気泡がとどまると、封止基材11の変形、保護フィルム20の剥離などの保護フィルム付き封止部材の変形が生じる。これに対して、気泡排出部22を備えることで、気泡の排出ができれば、封止基材11の変形、保護フィルム20の接着層12からの剥離などの保護フィルム付き封止部材の変形を防止できる。封止基材11の変形が抑制されるので、封止部材10をデバイス基材40に貼合した際に、有機EL部43を確実に封止できる。保護フィルム20の接着層12からの剥離を防止できるので、保護フィルム付き封止部材1の搬送を止める必要もなく、前述したように、保護フィルム付き封止部材1のハンドリングの容易性を維持できる。そのため、保護フィルム付き封止部材1を利用して有機ELデバイスを製造する際に、有機ELデバイスの生産効率が向上する。   If bubbles remain inside the sealing member 1 with a protective film, deformation of the sealing member with a protective film such as deformation of the sealing substrate 11 and peeling of the protective film 20 occurs. On the other hand, if bubbles can be discharged by providing the bubble discharge portion 22, deformation of the sealing member with the protective film such as deformation of the sealing substrate 11 and peeling of the protective film 20 from the adhesive layer 12 is prevented. it can. Since deformation of the sealing substrate 11 is suppressed, the organic EL part 43 can be reliably sealed when the sealing member 10 is bonded to the device substrate 40. Since peeling of the protective film 20 from the adhesive layer 12 can be prevented, there is no need to stop the conveyance of the sealing member 1 with the protective film, and the ease of handling of the sealing member 1 with the protective film can be maintained as described above. . Therefore, when manufacturing an organic EL device using the sealing member 1 with a protective film, the production efficiency of the organic EL device is improved.

気泡排出部22は、フィルム基材21に加工工程S11を施すことによって形成されるので、気泡排出部22の形成が容易である。その結果、保護フィルム付き封止部材1を効率的に製造できる。   Since the bubble discharge part 22 is formed by performing processing process S11 to the film base material 21, formation of the bubble discharge part 22 is easy. As a result, the sealing member 1 with a protective film can be manufactured efficiently.

保護フィルム付き封止部材1が樹脂フィルム30を備えている形態では、保護フィルム付き封止部材1のハンドリング性が向上する。更に、樹脂フィルム30を備えることで、保護フィルム付き封止部材1を、デバイス基材40に貼合するまでにロールなどを介して搬送しても、保護フィルム付き封止部材1にシワなどが生じにくい。   In the form in which the sealing member 1 with the protective film is provided with the resin film 30, the handling property of the sealing member 1 with the protective film is improved. Furthermore, by providing the resin film 30, even if the sealing member 1 with the protective film is conveyed via a roll or the like before being bonded to the device base material 40, wrinkles and the like are formed on the sealing member 1 with the protective film. Hard to occur.

次に、保護フィルム付き封止部材が有する保護フィルムに気泡排出部を設けることの作用効果について実施例及び比較例を参照して具体的に説明する。   Next, the effect of providing a bubble discharge part in the protective film which a sealing member with a protective film has is demonstrated concretely with reference to an Example and a comparative example.

[実施例]
実施例では、10cm角に切り出した保護フィルム付き封止部材を準備した。保護フィルム付き封止部材は、封止基材と、接着層と、保護フィルムとを備えていた。具体的には、封止基材上に接着層が積層され、その接着層上に更に保護フィルムが積層されていた。
[Example]
In the example, a sealing member with a protective film cut out to a 10 cm square was prepared. The sealing member with a protective film was equipped with the sealing base material, the contact bonding layer, and the protective film. Specifically, an adhesive layer was laminated on the sealing substrate, and a protective film was further laminated on the adhesive layer.

封止基材は、35μm厚の銅箔(福田金属箔粉工業株式会社製 CF−T8G−STD−35)であった。接着層は30μm厚であった。保護フィルムは、25μm厚のフィルム基材(パナック株式会社製 PET25TP01)に気泡排出部として0.5mm間隔で0.5mm長のスリット加工を施したものであった。上記スリット加工で形成されたスリットは、延在方向に直交する幅が実質的に0である「切り込み」であった。   The sealing substrate was a 35 μm thick copper foil (CF-T8G-STD-35 manufactured by Fukuda Metal Foil Powder Co., Ltd.). The adhesive layer was 30 μm thick. The protective film was obtained by subjecting a 25 μm-thick film substrate (Panac Co., Ltd., PET25TP01) to 0.5 mm long slit processing at 0.5 mm intervals as a bubble discharge part. The slits formed by the slit processing were “notches” whose width perpendicular to the extending direction was substantially zero.

実施例の保護フィルム付き封止部材は、フィルム基材に気泡排出部としてのスリット(より具体的には切り込み)を複数形成し、保護フィルムを得た後(加工工程)、接着層を介して加工工程で得られた保護フィルムを、接着層が形成された封止基材に接着層を介して貼合すること(フィルム基材貼合工程)で製造された。   The sealing member with a protective film of Example formed a plurality of slits (more specifically, notches) as bubble discharge parts on the film base material, and after obtaining a protective film (processing step), the adhesive layer was interposed therebetween. The protective film obtained in the processing step was produced by pasting the protective film on which the adhesive layer was formed via the adhesive layer (film base material pasting step).

実施例では、上記封止部材を、真空下(1×10−5Pa)で100℃に加熱することによって、上記封止部材の加熱脱水処理を行った。その結果、保護フィルム付き封止部材において、保護フィルムと接着層の間に気泡は存在しなかった。 In the examples, the sealing member was heated and dehydrated by heating to 100 ° C. under vacuum (1 × 10 −5 Pa). As a result, in the sealing member with the protective film, there were no bubbles between the protective film and the adhesive layer.

[比較例]
比較例では、10cm角に切り出した保護フィルム付き封止部材を準備した。保護フィルム付き封止部材の構成は、実施例で準備した保護フィルム付き封止部材が有するフィルム基材に気泡排出部が形成されていない点以外は、同じ構成である。すなわち、比較例の保護フィルムはフィルム基材自体であった。比較例の保護フィルム付き封止部材は、フィルム基材自体である保護フィルムを、接着層が形成された封止基材に接着層を介して貼合することで製造された。
[Comparative example]
In the comparative example, the sealing member with a protective film cut out to 10 cm square was prepared. The configuration of the sealing member with the protective film is the same configuration except that the bubble discharge portion is not formed on the film base material of the sealing member with the protective film prepared in the examples. That is, the protective film of the comparative example was the film substrate itself. The sealing member with a protective film of the comparative example was manufactured by bonding the protective film, which is the film base material itself, to the sealing base material on which the adhesive layer was formed via the adhesive layer.

比較例では、実施例と同じように、上記保護フィルム付き封止部材を、真空下(1×10−5Pa)で100℃に加熱することによって、上記保護フィルム付き封止部材の加熱脱水処理を行った。加熱脱水処理における加熱時間は実施例と同じであった。その結果、比較例では、保護フィルム付き封止部材において、保護フィルム基材と接着層の間に気泡が存在した。 In the comparative example, as in the example, the sealing member with a protective film was heated to 100 ° C. under vacuum (1 × 10 −5 Pa), thereby dehydrating the sealing member with the protective film. Went. The heating time in the heat dehydration treatment was the same as in the example. As a result, in the comparative example, in the sealing member with the protective film, bubbles existed between the protective film substrate and the adhesive layer.

上記実施例及び比較例の結果より、フィルム基材に気泡排出部が形成されてなる保護フィルムを採用することによって、保護フィルム付き封止部材を加熱脱水処理しても保護フィルムと接着層との間の気泡を排除できることがわかった。よって、気泡に起因した保護フィルム付き封止部材の変形を抑制できる。   From the results of the above Examples and Comparative Examples, by adopting a protective film in which a bubble discharge part is formed on the film substrate, even if the sealing member with the protective film is heated and dehydrated, the protective film and the adhesive layer It was found that air bubbles between them could be eliminated. Therefore, deformation of the sealing member with the protective film due to bubbles can be suppressed.

以上、本発明の種々の実施形態及び実施例について説明した。しかしながら、本発明は上述した種々の実施形態及び実施例に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。   The various embodiments and examples of the present invention have been described above. However, the present invention is not limited to the various embodiments and examples described above, and various modifications can be made without departing from the spirit of the present invention.

封止部材が有する接着層及び保護フィルムが有するフィルム基材の少なくとも一方は、図3に示したフィルム基材貼合工程の前に事前に加熱脱水処理されていてもよい。加熱脱水処理の方法は、例えば、図4に示した脱水工程S23で説明した方法と同様とし得る。この場合、有機ELデバイスに貼合された封止部材が有する接着層から水分がより一層除去できているので、有機ELデバイスが有する有機層への水分浸入が更に生じにくい。   At least one of the adhesive layer that the sealing member has and the film substrate that the protective film has may be heat-dehydrated in advance before the film substrate bonding step shown in FIG. The method of the heat dehydration process can be the same as the method described in the dehydration step S23 shown in FIG. In this case, since moisture can be further removed from the adhesive layer of the sealing member bonded to the organic EL device, moisture intrusion into the organic layer of the organic EL device is less likely to occur.

封止部材が有する接着層は吸湿剤を含んでもよい。吸湿剤は、水分の他に、酸素等を捕獲してもよい。吸湿剤の吸湿速度は、温度24℃、湿度55%RHの環境下において、1wt%/hr以上であることが好ましい。   The adhesive layer that the sealing member has may include a hygroscopic agent. The hygroscopic agent may capture oxygen or the like in addition to moisture. The moisture absorption rate of the hygroscopic agent is preferably 1 wt% / hr or more in an environment of a temperature of 24 ° C. and a humidity of 55% RH.

図4に示した脱水工程S23を、保護フィルム付き封止部材の製造方法が備えてもよい。すなわち、図3に示した加工工程S11及びフィルム基材貼合工程S12の後に、封止基材上に接着層及び保護フィルムが順に積層された積層体(保護フィルム付き封止部材)を加熱脱水処理し、加熱脱水処理された保護フィルム付き封止部材を製造してもよい。   The manufacturing method of the sealing member with a protective film may be provided with the dehydration step S23 illustrated in FIG. That is, after the processing step S11 and the film base material bonding step S12 shown in FIG. 3, the laminate (sealing member with a protective film) in which the adhesive layer and the protective film are sequentially laminated on the sealing base material is heated and dehydrated. You may manufacture the sealing member with a protective film which processed and heat-dehydrated.

保護フィルム付き封止部材が帯状である場合を例にして説明したが、保護フィルム付き封止部材は、枚葉状であってもよい。同様に、デバイス基材(又はデバイス基材が有する基板)も枚葉状であってもよい。   Although the case where the sealing member with the protective film has a strip shape has been described as an example, the sealing member with the protective film may have a sheet shape. Similarly, the device base material (or the substrate included in the device base material) may be a single wafer.

保護フィルムがフィルム基材のみで構成されている場合を例にして説明したが、フィルム基材の一方の面に、シリコーン樹脂系離型剤、フッ素系離型剤、アルキド系離型剤、アクリル系離型剤等をコーティングしてコーティング層を形成してもよい。すなわち、保護フィルムは、フィルム基材と少なくとも一層のコーティング層との多層構造であってもよい。多層構造の保護フィルムにおいても、フィルム基材に気泡排出部を設けることによって、気泡による保護フィルム付き封止部材の変形を抑制できる。   Although the case where the protective film is composed only of a film base material has been described as an example, a silicone resin release agent, a fluorine release agent, an alkyd release agent, an acrylic resin is formed on one surface of the film base material. A coating layer may be formed by coating a release agent or the like. That is, the protective film may have a multilayer structure of a film substrate and at least one coating layer. Even in a protective film having a multilayer structure, it is possible to suppress deformation of the sealing member with the protective film due to air bubbles by providing a bubble discharging portion on the film substrate.

有機ELデバイスの製造方法で製造される有機ELデバイスは、基板側(図1では陽極42側)から光を発する形態に限定されず、基板と反対側(陰極44側)から光を発生する有機ELデバイスにも適用可能である。本発明は、有機ELデバイス以外の有機デバイス、例えば、有機太陽電池、有機フォトディテクタ、有機トランジスタなどにも適用可能である。   The organic EL device manufactured by the manufacturing method of the organic EL device is not limited to a form that emits light from the substrate side (the anode 42 side in FIG. 1), and an organic that generates light from the side opposite to the substrate (cathode 44 side). It can also be applied to EL devices. The present invention is also applicable to organic devices other than organic EL devices, such as organic solar cells, organic photodetectors, and organic transistors.

1…保護フィルム付き封止部材、10…封止部材、11…封止基材、12…接着層、20…保護フィルム、21…フィルム基材、22…気泡排出部、40…デバイス基材、41…基板、42…陽極(第1の電極)、43…有機EL部(有機層を含むデバイス機能部)、44…陰極(第2の電極)。   DESCRIPTION OF SYMBOLS 1 ... Sealing member with a protective film, 10 ... Sealing member, 11 ... Sealing base material, 12 ... Adhesive layer, 20 ... Protective film, 21 ... Film base material, 22 ... Bubble discharge part, 40 ... Device base material, DESCRIPTION OF SYMBOLS 41 ... Board | substrate, 42 ... Anode (1st electrode), 43 ... Organic EL part (device function part containing an organic layer), 44 ... Cathode (2nd electrode).

Claims (10)

封止基材及び前記封止基材に積層された接着層を有する封止部材と、
前記封止部材に接着層を介して積層された保護フィルムと、
を備え、
前記保護フィルムは、
前記接着層に貼合されるフィルム基材と、
前記フィルム基材に形成された複数の気泡排出部と、
を有する、
保護フィルム付き封止部材。
A sealing member having a sealing substrate and an adhesive layer laminated on the sealing substrate;
A protective film laminated on the sealing member via an adhesive layer;
With
The protective film is
A film substrate to be bonded to the adhesive layer;
A plurality of bubble discharge portions formed on the film substrate;
Having
Sealing member with protective film.
前記気泡排出部は、スリット又は円孔である、
請求項1に記載の保護フィルム付き封止部材。
The bubble discharge part is a slit or a circular hole,
The sealing member with a protective film according to claim 1.
前記接着層は吸湿剤を含む、
請求項1又は2に記載の保護フィルム付き封止部材。
The adhesive layer includes a hygroscopic agent;
The sealing member with a protective film according to claim 1 or 2.
封止基材に接着層が積層された封止部材を有しており、有機電子デバイスの製造に用いられる保護フィルム付き封止部材の製造方法であって、
フィルム基材に気泡排出部を形成するための加工を施して保護フィルムを形成する加工工程と、
前記封止基材に前記接着層を介してフィルム基材を貼合するフィルム基材貼合工程と、
を備え、
前記加工工程を、前記フィルム基材貼合工程の前又は後に実施する、
保護フィルム付き封止部材の製造方法。
It has a sealing member in which an adhesive layer is laminated on a sealing substrate, and is a method for manufacturing a sealing member with a protective film used for manufacturing an organic electronic device,
A processing step of forming a protective film by performing processing for forming a bubble discharge part on the film base,
A film substrate bonding step of bonding a film substrate to the sealing substrate via the adhesive layer;
With
The processing step is performed before or after the film base material bonding step.
The manufacturing method of the sealing member with a protective film.
前記気泡排出部は、スリット又は円孔である、
請求項4に記載の保護フィルム付き封止部材の製造方法。
The bubble discharge part is a slit or a circular hole,
The manufacturing method of the sealing member with a protective film of Claim 4.
前記接着層が吸湿剤を含む、
請求項4又は5に記載の保護フィルム付き封止部材の製造方法。
The adhesive layer includes a hygroscopic agent;
The manufacturing method of the sealing member with a protective film of Claim 4 or 5.
前記接着層及び前記フィルム基材のうち少なくとも一方を、前記フィルム基材貼合工程の前に加熱脱水処理する工程を有する、
請求項4〜6の何れか一項に記載の保護フィルム付き封止部材の製造方法。
At least one of the adhesive layer and the film base material has a step of heat dehydrating before the film base material bonding step,
The manufacturing method of the sealing member with a protective film as described in any one of Claims 4-6.
基板上に第1の電極と、有機層を含むデバイス機能部と、第2の電極とが順に設けられたデバイス基材を形成するデバイス基材形成工程と、
封止基材に接着層が積層された封止部材に、フィルム基材に複数の気泡排出部が形成された保護フィルムが前記接着層を介して貼合された保護フィルム付き封止部材を製造する保護フィルム付き封止部材の製造工程と、
前記保護フィルム付き封止部材を加熱脱水処理する脱水工程と、
前記脱水工程を経た前記保護フィルム付き封止部材から前記保護フィルムを剥離して、前記封止部材を、前記接着層を介して前記デバイス基材に貼合する封止部材貼合工程と、
を備え、
保護フィルム付き封止部材の製造工程では、請求項4〜7の何れか一項に記載の保護フィルム付き封止部材の製造方法で前記保護フィルム付き封止部材を製造する、
有機電子デバイスの製造方法。
A device base material forming step of forming a device base material in which a first electrode, a device function part including an organic layer, and a second electrode are provided in order on the substrate;
Manufactures a sealing member with a protective film in which a protective film in which a plurality of bubble discharge portions are formed on a film base material is bonded to the sealing member with the adhesive layer laminated on the sealing base material via the adhesive layer Manufacturing process of sealing member with protective film
A dehydration step of heat-dehydrating the sealing member with the protective film;
A sealing member bonding step of peeling the protective film from the sealing member with the protective film that has undergone the dehydration step, and bonding the sealing member to the device substrate via the adhesive layer;
With
In the manufacturing process of the sealing member with a protective film, the said sealing member with a protective film is manufactured with the manufacturing method of the sealing member with a protective film as described in any one of Claims 4-7.
A method for manufacturing an organic electronic device.
前記脱水工程では、前記加熱脱水処理を真空下で実施する、
請求項8に記載の有機電子デバイスの製造方法。
In the dehydration step, the heat dehydration process is performed under vacuum.
The manufacturing method of the organic electronic device of Claim 8.
前記保護フィルム付き封止部材に赤外線を照射することによって、前記加熱脱水処理する、
請求項8又は9に記載の有機電子デバイスの製造方法。
The heat dehydration treatment is performed by irradiating the sealing member with the protective film with infrared rays.
The manufacturing method of the organic electronic device of Claim 8 or 9.
JP2016253614A 2016-12-27 2016-12-27 Encapsulating member with protective film, method for producing encapsulating member with protective film, and method for producing organic electronic device Active JP6723149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253614A JP6723149B2 (en) 2016-12-27 2016-12-27 Encapsulating member with protective film, method for producing encapsulating member with protective film, and method for producing organic electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253614A JP6723149B2 (en) 2016-12-27 2016-12-27 Encapsulating member with protective film, method for producing encapsulating member with protective film, and method for producing organic electronic device

Publications (2)

Publication Number Publication Date
JP2018103513A true JP2018103513A (en) 2018-07-05
JP6723149B2 JP6723149B2 (en) 2020-07-15

Family

ID=62786151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253614A Active JP6723149B2 (en) 2016-12-27 2016-12-27 Encapsulating member with protective film, method for producing encapsulating member with protective film, and method for producing organic electronic device

Country Status (1)

Country Link
JP (1) JP6723149B2 (en)

Also Published As

Publication number Publication date
JP6723149B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6461271B1 (en) Method for manufacturing organic electronic device
WO2018198705A1 (en) Method for manufacturing organic device
US20200067028A1 (en) Manufacturing method for organic device
JP6744130B2 (en) Organic device manufacturing method
JP6488062B1 (en) Method for manufacturing organic electronic device
JP2018103513A (en) Sealing member with protective film, method for manufacturing sealing member with protective film, and method for manufacturing organic electronic device
JP6501856B1 (en) Method of manufacturing organic electronic device
JP6559758B2 (en) Manufacturing method of electronic device
WO2018198978A1 (en) Manufacturing method for organic electronic device
WO2017154575A1 (en) Organic device manufacturing method
US10403858B2 (en) Method for manufacturing organic electronic device and method for manufacturing sealing member
JP2022050218A (en) Organic electronic device manufacturing method
JP2022137781A (en) Method of manufacturing organic electronic device, organic electronic device, and intermediary body
WO2018043710A1 (en) Method for producing organic device
WO2019027014A1 (en) Method for manufacturing organic device, and organic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R150 Certificate of patent or registration of utility model

Ref document number: 6723149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350