JP2018101925A - Light-receiving element multiplexer and scanning laser radar device - Google Patents

Light-receiving element multiplexer and scanning laser radar device Download PDF

Info

Publication number
JP2018101925A
JP2018101925A JP2016247444A JP2016247444A JP2018101925A JP 2018101925 A JP2018101925 A JP 2018101925A JP 2016247444 A JP2016247444 A JP 2016247444A JP 2016247444 A JP2016247444 A JP 2016247444A JP 2018101925 A JP2018101925 A JP 2018101925A
Authority
JP
Japan
Prior art keywords
light receiving
light
multiplexer
light source
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016247444A
Other languages
Japanese (ja)
Other versions
JP6633504B2 (en
Inventor
央 万波
Akira Mannami
央 万波
西口 直男
Tadao Nishiguchi
直男 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Mobility Corp
Original Assignee
Omron Automotive Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Automotive Electronics Co Ltd filed Critical Omron Automotive Electronics Co Ltd
Priority to JP2016247444A priority Critical patent/JP6633504B2/en
Publication of JP2018101925A publication Critical patent/JP2018101925A/en
Application granted granted Critical
Publication of JP6633504B2 publication Critical patent/JP6633504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)
  • Electronic Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-receiving element multiplexer for switching and outputting signals outputted from a plurality of light receiving elements, which can appropriately detect a failure mode.SOLUTION: A light receiving element multiplexer 100 includes: a plurality of light receiving elements PD, a first light source LED1 that irradiates light so that the light receiving intensities of the light receiving elements are different from each other; a control unit CTL for controlling lighting of the first light source; a multiplexer MUX connected to each of the plurality of light receiving elements, for switching input signals from the light receiving elements and outputting the input signals; and a failure detection unit FD for detecting a failure of the multiplexer on the basis of a first output value of the multiplexer when the control unit turns on the first light source while the multiplexer is in the first connection state and a second output value of the multiplexer when the control unit turns on the first light source while the multiplexer is in a second connection state.SELECTED DRAWING: Figure 1

Description

本発明は、受光素子用マルチプレクサおよびそれを備える走査式レーザレーダ装置に関し、特に自らの故障を検出する受光素子用マルチプレクサおよびそれを備える走査式レーザレーダ装置に関する。   The present invention relates to a light receiving element multiplexer and a scanning laser radar apparatus including the same, and more particularly to a light receiving element multiplexer that detects its own failure and a scanning laser radar apparatus including the same.

従来から、複数のアナログの入力信号を切り替えて出力するマルチプレクサの故障を検出する技術が知られている。例えば、特許文献1は、マルチプレクサの動作異常を正確に検出可能とするマルチプレクサ回路を開示する。このマルチプレクサ回路は、複数チャンネルから入力されるアナログ入力信号を順次取り込み、当該入力信号を多重化して出力するマルチプレクサと、当該マルチプレクサから出力されるアナログ入力信号を複数のチャンネルに各々対応した複数のデジタル出力信号へ変換するADコンバータと、複数のデジタル出力信号の出力値を監視し、当該出力値が全て予め定められた範囲内である状態が予め定められた判定時間の間継続している場合、マルチプレクサの動作が異常状態であると判定する処理装置と、アナログ入力信号の1つとして、判定時間より短い周期のパルス信号をマルチプレクサへ出力するパルス信号発生装置を備える。   2. Description of the Related Art Conventionally, a technique for detecting a failure of a multiplexer that switches and outputs a plurality of analog input signals is known. For example, Patent Document 1 discloses a multiplexer circuit that can accurately detect an abnormal operation of a multiplexer. The multiplexer circuit sequentially receives analog input signals input from a plurality of channels, multiplexes the input signals and outputs the multiplexer, and a plurality of digital inputs corresponding to the analog input signals output from the multiplexer. When the AD converter for converting to an output signal and the output values of a plurality of digital output signals are monitored, and the state where all the output values are within a predetermined range continues for a predetermined determination time, A processing device that determines that the operation of the multiplexer is in an abnormal state and a pulse signal generator that outputs a pulse signal having a cycle shorter than the determination time to the multiplexer as one of the analog input signals.

特開2010−263420号公報JP 2010-263420 A

本発明は、複数の受光素子が出力した信号を切り替えて出力する受光素子用マルチプレクサにおいて、故障モードを適切に検出する受光素子用マルチプレクサを提供する。   The present invention provides a light receiving element multiplexer that appropriately detects a failure mode in a light receiving element multiplexer that switches and outputs signals output from a plurality of light receiving elements.

上記課題を解決するために、複数の受光素子と、各受光素子における受光強度が異なるように光を照射する第1光源と、第1光源の点灯を制御する制御部と、複数の受光素子のそれぞれに接続され、各受光素子からの入力信号を切り替えて出力するマルチプレクサと、マルチプレクサが第1接続状態にある時に制御部が第1光源を点灯した場合のマルチプレクサの第1出力値と、マルチプレクサが第2接続状態にある時に制御部が第1光源を点灯した場合のマルチプレクサの第2出力値に基づいて、マルチプレクサの故障を検出する故障検出部と、を備える受光素子用マルチプレクサが提供される。
これによれば、複数の受光素子が出力した信号を切り替えて出力する受光素子用マルチプレクサにおいて、当該マルチプレクサの機能を用いて故障モードを適切に検出する受光素子用マルチプレクサを提供することができる。
In order to solve the above problems, a plurality of light receiving elements, a first light source that emits light so that the light receiving intensity of each light receiving element is different, a control unit that controls lighting of the first light source, and a plurality of light receiving elements A multiplexer connected to each of the light receiving elements to switch and output the input signal; a first output value of the multiplexer when the control unit turns on the first light source when the multiplexer is in the first connection state; A light receiving element multiplexer is provided that includes a failure detection unit that detects a failure of the multiplexer based on a second output value of the multiplexer when the control unit turns on the first light source in the second connection state.
According to this, in the light receiving element multiplexer that switches and outputs the signals output from the plurality of light receiving elements, it is possible to provide a light receiving element multiplexer that appropriately detects the failure mode using the function of the multiplexer.

さらに、各受光素子における受光強度が異なるように光を照射する第2光源をさらに備え、制御部は、第2光源の点灯を制御し、故障検出部は、第1出力値と、第2出力値と、マルチプレクサが第1接続状態にある時に制御部が第2光源を点灯した場合のマルチプレクサの第3出力値と、マルチプレクサが第2接続状態にある時に制御部が第2光源を点灯した場合のマルチプレクサの第4出力値に基づいて、マルチプレクサの故障を検出することを特徴としてもよい。
これによれば、2つの光源を有することで、より正確に故障モードを検出できる。
Furthermore, the light source is further provided with a second light source that emits light so that the received light intensity is different in each light receiving element, the control unit controls the lighting of the second light source, and the failure detection unit outputs the first output value and the second output. The value, the third output value of the multiplexer when the control unit lights the second light source when the multiplexer is in the first connection state, and the control unit lights the second light source when the multiplexer is in the second connection state A failure of the multiplexer may be detected based on the fourth output value of the multiplexer.
According to this, the failure mode can be detected more accurately by having two light sources.

さらに、複数の受光素子は、一列に配置され、第1光源は、複数の受光素子の内最も端に位置する一方の受光素子に最も近接させて設けられることを特徴としてもよい。
これによれば、受光素子における受光強度が異なるように光源を配置することで、簡便な構造で故障モードを検出することができる。
Further, the plurality of light receiving elements may be arranged in a line, and the first light source may be provided closest to one of the light receiving elements located at the end of the plurality of light receiving elements.
According to this, the failure mode can be detected with a simple structure by arranging the light sources so that the light receiving intensities of the light receiving elements are different.

さらに、複数の受光素子は、一列に配置され、第1光源は、複数の受光素子の内最も端に位置する一方の受光素子に最も近接させて設けられ、第2光源は、複数の受光素子の内最も端に位置する他方の受光素子に最も近接させて設けられることを特徴としてもよい。
これによれば、受光素子における受光強度が異なるように2つの光源を配置することで、簡便な構造でより正確に故障モードを検出することができる。
Furthermore, the plurality of light receiving elements are arranged in a line, the first light source is provided closest to one of the light receiving elements located at the end of the plurality of light receiving elements, and the second light source includes the plurality of light receiving elements. The light receiving element may be provided closest to the other light receiving element located at the end.
According to this, the failure mode can be detected more accurately with a simple structure by arranging the two light sources so that the received light intensity in the light receiving element is different.

本発明によれば、複数の受光素子が出力した信号を切り替えて出力する受光素子用マルチプレクサにおいて、当該マルチプレクサの機能を用いて故障モードを適切に検出する受光素子用マルチプレクサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the light receiving element multiplexer which switches and outputs the signal which the several light receiving element output, the light receiving element multiplexer which detects a failure mode appropriately using the function of the said multiplexer can be provided.

本発明に係る第一実施例の受光素子用マルチプレクサのブロック図。1 is a block diagram of a light receiving element multiplexer according to a first embodiment of the present invention. FIG. 本発明に係る第一実施例の受光素子用マルチプレクサにおける、(A)受光素子の回路図、(B)受光素子と光源を搭載した基板の平面図。FIG. 2A is a circuit diagram of a light receiving element in the light receiving element multiplexer according to the first embodiment of the present invention, and FIG. 本発明に係る第一実施例の受光素子用マルチプレクサにおける、(A)第1光源がオン/第2光源がオフの状態で正常動作時のマルチプレクサ、(B)第1光源がオフ/第2光源がオンの状態で正常動作時のマルチプレクサ、(C)正常動作時にマルチプレクサから出力される受光強度の分布を示すグラフ。In the light receiving element multiplexer according to the first embodiment of the present invention, (A) a multiplexer operating normally with the first light source on / second light source off, and (B) the first light source off / second light source. (C) A graph showing the distribution of received light intensity output from the multiplexer during normal operation. 本発明に係る第一実施例の受光素子用マルチプレクサにおける、(A)第1光源がオン/第2光源がオフの状態で異常動作時(張り付き故障時)のマルチプレクサ、(B)第1光源がオフ/第2光源がオンの状態で異常動作時(張り付き故障時)のマルチプレクサ、(C)異常動作時(張り付き故障時)にマルチプレクサから出力される受光強度の分布を示すグラフ。In the multiplexer for a light receiving element according to the first embodiment of the present invention, (A) a multiplexer during abnormal operation (at the time of sticking failure) with the first light source on and the second light source off, and (B) the first light source The graph which shows the distribution of the light reception intensity | strength output from a multiplexer at the time of abnormal operation (at the time of a sticking failure), and (C) abnormal operation (at the time of a sticking failure) in the state where the off / second light source is on. 本発明に係る第一実施例の受光素子用マルチプレクサにおける、(A)第1光源がオン/第2光源がオフの状態で異常動作時(受光素子PD1とマルチプレクサ間の断線時)のマルチプレクサ、(B)第1光源がオフ/第2光源がオンの状態で異常動作時(受光素子PD1とマルチプレクサ間の断線時)のマルチプレクサ、(C)異常動作時(受光素子PD1とマルチプレクサ間の断線時)にマルチプレクサから出力される受光強度の分布を示すグラフ。In the multiplexer for the light receiving element according to the first embodiment of the present invention, (A) a multiplexer during abnormal operation (when the first light source is on / second light is off) (at the time of disconnection between the light receiving element PD1 and the multiplexer), B) Multiplexer during abnormal operation (disconnection between light receiving element PD1 and multiplexer) with first light source off / second light source on, (C) Abnormal operation (disconnected between light receiving element PD1 and multiplexer) The graph which shows distribution of the received light intensity output from a multiplexer. 本発明に係る第一実施例の受光素子用マルチプレクサにおける、(A)第1光源がオン/第2光源がオフの状態で異常動作時(受光素子とマルチプレクサの間でショート故障)のマルチプレクサ、(B)第1光源がオフ/第2光源がオンの状態で異常動作時(受光素子とマルチプレクサの間でショート故障)のマルチプレクサ、(C)異常動作時(受光素子とマルチプレクサの間でショート故障)にマルチプレクサから出力される受光強度の分布を示すグラフ。In the multiplexer for the light receiving element according to the first embodiment of the present invention, (A) a multiplexer in an abnormal operation (short failure between the light receiving element and the multiplexer) when the first light source is on and the second light source is off, B) Multiplexer during abnormal operation (short failure between light receiving element and multiplexer) with first light source off / second light source on, (C) Abnormal operation (short failure between light receiving element and multiplexer) The graph which shows distribution of the received light intensity output from a multiplexer. 本発明に係る第一実施例の受光素子用マルチプレクサを適用した走査式レーザレーダ装置の、(A)上面図、(B)正面図、(C)斜視図、(D)カバー等を取り除いた場合の斜視図。(A) Top view, (B) Front view, (C) Perspective view, (D) Cover etc. of the scanning laser radar device to which the light receiving element multiplexer according to the first embodiment of the present invention is applied. FIG.

<第一実施例>
図1を参照し、本実施例における受光素子用マルチプレクサ100を説明する。受光素子用マルチプレクサ100は、複数の受光素子PD1〜PD4からそれぞれ出力されるアナログ信号を入力されるチャネルCNL1〜CNL4を有し、そのチャネルCNL1〜CNL4を切り替えて順次取り込み、アナログの入力信号を多重化して出力する装置である。なお、受光素子用マルチプレクサ100は、4つの受光素子PD1〜PD4およびこれらに対応するチャネルCNL1〜CNL4を有する例として説明する。もちろん、これに限定されることはない。受光素子用マルチプレクサ100は、出力信号を増幅する可変ゲインアンプVGAを経由してADコンバータADCと電気的に接続され、多重化した信号をADコンバータADCに出力する。
<First Example>
With reference to FIG. 1, a light receiving element multiplexer 100 in the present embodiment will be described. The light receiving element multiplexer 100 has channels CNL1 to CNL4 to which analog signals output from the plurality of light receiving elements PD1 to PD4, respectively, are input. The channels CNL1 to CNL4 are switched and sequentially received, and analog input signals are multiplexed. It is a device that outputs in the form. The light receiving element multiplexer 100 will be described as an example having four light receiving elements PD1 to PD4 and corresponding channels CNL1 to CNL4. Of course, it is not limited to this. The light receiving element multiplexer 100 is electrically connected to the AD converter ADC via a variable gain amplifier VGA that amplifies the output signal, and outputs the multiplexed signal to the AD converter ADC.

受光素子用マルチプレクサ100は、複数の受光素子PD1〜PD4と、各受光素子PD1〜PD4における受光強度が異なるように光を照射する第1光源LED1および第2光源LED2と、第1光源LED1および第2光源LED2の点灯を制御する制御部CTLと、複数の受光素子PD1〜PD4のそれぞれに接続され、各受光素子PD1〜PD4からの入力信号を切り替えて出力するマルチプレクサMUXと、受光素子用マルチプレクサ100の故障を検出する故障検出部FDと、を備える。   The light receiving element multiplexer 100 includes a plurality of light receiving elements PD1 to PD4, a first light source LED1 and a second light source LED2 that irradiate light such that the light receiving intensities of the light receiving elements PD1 to PD4 are different, a first light source LED1 and a first light source LED1. A control unit CTL that controls the lighting of the two light sources LED2, a multiplexer MUX that is connected to each of the plurality of light receiving elements PD1 to PD4 and that switches and outputs an input signal from each of the light receiving elements PD1 to PD4, and a light receiving element multiplexer 100 And a failure detection unit FD that detects the failure.

受光素子PD1〜PD4のそれぞれは、図2(A)に示すように、光エネルギーを電気エネルギーに変換するフォトダイオードなどの素子PDおよびその素子PDからの電流出力を電圧信号に変換するトランスインピーダンスアンプTIAなどから構成される。受光素子PD1〜PD4は、図2(B)に示すように、基板PLT上に図視縦方向の一列に配置された受光素子アレイを構成する。もちろん、これに限定されず、たとえば、矩形状や環状など二次元方向に拡がりを以って配置されてもよいが、受光素子アレイは、受光素子を一次元に配置し簡便な構造なので好ましい。   Each of the light receiving elements PD1 to PD4 includes, as shown in FIG. 2A, an element PD such as a photodiode that converts light energy into electric energy, and a transimpedance amplifier that converts a current output from the element PD into a voltage signal. It consists of TIA. As shown in FIG. 2B, the light receiving elements PD1 to PD4 constitute a light receiving element array arranged in a line in the vertical direction in the figure on the substrate PLT. Of course, the present invention is not limited to this. For example, the light receiving element array may be arranged in a two-dimensional direction such as a rectangular shape or an annular shape. However, the light receiving element array is preferable because the light receiving elements are arranged one-dimensionally and have a simple structure.

各受光素子PD1〜PD4とマルチプレクサMUXの各入力端子は、チャネルCNL1〜CNL4で1対1に電気的に接続される。マルチプレクサMUXは、4つの入力端子と1つの出力端子の間で1時点で1つの入力端子と出力端子とを接続するように、出力するチャネルを各チャネルCNL1〜CNL4の間で切り替える。   The light receiving elements PD1 to PD4 and the input terminals of the multiplexer MUX are electrically connected one-to-one with the channels CNL1 to CNL4. The multiplexer MUX switches the channels to be output between the channels CNL1 to CNL4 so that one input terminal and the output terminal are connected at one time point between the four input terminals and one output terminal.

第1光源LED1および第2光源LED2は、発光ダイオードであり、受光素子PD1〜PD4の感度波長のピーク値に適合する波長の光を発光する発光ダイオードを選択することが好ましい。第1光源LED1は、各受光素子PD1〜PD4における受光強度が異なるように光を照射する。本実施例では、受光素子PD1〜PD4は一列に配置されているので、図2(B)を参照して説明する。   1st light source LED1 and 2nd light source LED2 are light emitting diodes, It is preferable to select the light emitting diode which light-emits the light of the wavelength suitable for the peak value of the sensitivity wavelength of light receiving element PD1-PD4. 1st light source LED1 irradiates light so that the light reception intensity | strength in each light receiving element PD1-PD4 may differ. In this embodiment, the light receiving elements PD1 to PD4 are arranged in a line, and will be described with reference to FIG.

第1光源LED1は、複数の受光素子PD1〜PD4の内最も端に位置する一方の受光素子PD1に最も近接させて設けられる。すなわち、第1光源LED1は、受光素子PD1まで距離L1を以って受光素子PD1に光を照射する。同様に、第1光源LED1は、受光素子PD2までの距離L2を以って受光素子PD2に光を照射し、受光素子PD3までの距離L3を以って受光素子PD3に光を照射し、受光素子PD4までの距離L4を以って受光素子PD4に光を照射する。したがって、第1光源LED1と受光素子PD1〜PD4は、L1<L2<L3<L4の関係が成立するように配置されている。光源からの距離が短ければ受光強度が大きく(受光量が多く)、遠くなれば受光強度が小さくなる(受光量が少なくなる)。したがって、第1光源LED1からのそれぞれの距離が異なるように受光素子PD1〜PD4を配置することにより、第1光源LED1は、各受光素子PD1〜PD4における受光強度が異なるように光を照射することになる。   The first light source LED1 is provided closest to one of the light receiving elements PD1 located at the end of the plurality of light receiving elements PD1 to PD4. That is, the first light source LED1 irradiates the light receiving element PD1 with a distance L1 to the light receiving element PD1. Similarly, the first light source LED1 irradiates light to the light receiving element PD2 with a distance L2 to the light receiving element PD2, and irradiates light to the light receiving element PD3 with a distance L3 to the light receiving element PD3. The light receiving element PD4 is irradiated with light with a distance L4 to the element PD4. Therefore, the first light source LED1 and the light receiving elements PD1 to PD4 are arranged so that the relationship of L1 <L2 <L3 <L4 is established. If the distance from the light source is short, the received light intensity is large (the amount of received light is large), and if it is far away, the received light intensity is small (the received light amount is small). Therefore, by arranging the light receiving elements PD1 to PD4 so that the respective distances from the first light source LED1 are different, the first light source LED1 emits light so that the light receiving intensities in the respective light receiving elements PD1 to PD4 are different. become.

なお、第1光源LED1からのそれぞれの距離が異なるように受光素子PD1〜PD4を配置することは例であり、これに限定さない。たとえば、光源を受光素子アレイの中央に配置した場合であっても、光源の照射口に各受光素子に対する光の照射量が異なるようなフィルタを付けることで、各受光素子における受光強度が異なるように光を照射してもよい。また、本実施例では、第1光源LED1の光の照射口は、受光素子PD1〜PD4の受光面に向けられて配置されているが、これに限定されず、照射口を受光面と同じ方向に向けて、反射板からの反射光を受光素子が受光してもよい。これによれば、光源と受光素子の距離が倍になるので、配置される物理的な距離に対して受光強度の差が大きくなり、差をつけやすい。   The arrangement of the light receiving elements PD1 to PD4 so that the respective distances from the first light source LED1 are different is an example, and the present invention is not limited to this. For example, even when the light source is arranged in the center of the light receiving element array, the light receiving intensity of each light receiving element may be different by attaching a filter that varies the amount of light irradiated to each light receiving element at the light source irradiation port. May be irradiated with light. In the present embodiment, the light irradiation port of the first light source LED1 is arranged to face the light receiving surfaces of the light receiving elements PD1 to PD4. However, the present invention is not limited to this, and the irradiation port is in the same direction as the light receiving surface. The light receiving element may receive the reflected light from the reflecting plate. According to this, since the distance between the light source and the light receiving element is doubled, the difference in received light intensity is large with respect to the physical distance to be arranged, and it is easy to make a difference.

第2光源LED2は、第1光源LED1と同様、各受光素子PD1〜PD4における受光強度が異なるように光を照射する。すなわち、第2光源LED2は、複数の受光素子PD1〜PD4の内最も端に位置する他方の受光素子PD4に最も近接させて設けられる。なお、第2光源LED2がこのように配置されることは例であることは、第1光源LED1において上述したとおりである。   Similar to the first light source LED1, the second light source LED2 emits light so that the light receiving intensities of the light receiving elements PD1 to PD4 are different. That is, the second light source LED2 is provided closest to the other light receiving element PD4 located at the end of the plurality of light receiving elements PD1 to PD4. In addition, as above-mentioned in 1st light source LED1, it is an example that 2nd light source LED2 is arrange | positioned in this way.

制御部CTLは、受光素子用マルチプレクサ100の故障モードを検出する際に、後述するように、第1光源LED1および第2光源LED2の点灯を制御する。なお、制御部CTLは、受光素子PD1〜PD4が本来の機能として使用されている最中は、第1光源LED1および第2光源LED2ともオフに制御する。   When detecting the failure mode of the light receiving element multiplexer 100, the control unit CTL controls the lighting of the first light source LED1 and the second light source LED2, as will be described later. Note that the control unit CTL controls the first light source LED1 and the second light source LED2 to be off while the light receiving elements PD1 to PD4 are being used as original functions.

故障検出部FDは、制御部CTLから得られる第1光源LED1および第2光源LED2の点灯状態と、マルチプレクサMUXのチャネルCNL1〜CNL4の切り替え状態と、マルチプレクサMUXの出力値に基づいて、受光素子用マルチプレクサ100の故障モードを検出する。図3〜図6を参照し、故障検出部FDの故障モードの検出方法について説明する。   The failure detection unit FD is for the light receiving element based on the lighting state of the first light source LED1 and the second light source LED2 obtained from the control unit CTL, the switching state of the channels CNL1 to CNL4 of the multiplexer MUX, and the output value of the multiplexer MUX. A failure mode of the multiplexer 100 is detected. A failure mode detection method of the failure detection unit FD will be described with reference to FIGS.

図3は、受光素子用マルチプレクサ100が正常動作時の受光素子PD1〜PD4の受光強度の出力値などを示す。本図(A)は、制御部CTLが、第1光源LED1をオンに、第2光源LED2をオフに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である各受光素子PD1〜PD4における受光強度は、本図(C)の黒丸印で表される。黒丸印は、受光素子PD1で最も受光強度が大きく、受光素子PD4で最も受光強度が小さい。すなわち、第1光源LED1と受光素子PD1〜PD4は、L1<L2<L3<L4の関係が成立するように配置されているので、第1光源LED1は、受光素子PD1に最も近接しているため最も受光素子PD1における受光強度が大きく、次いで受光素子PD2の受光強度が大きく、次いで受光素子PD3の受光強度が大きく、受光素子PD4の受光強度は最も小さい。出力値に現れる受光素子PD1〜PD4における受光強度は、第1光源LED1から受光素子PD1〜PD4までの距離(L1、L2、L3、L4)に比例して変化する。   FIG. 3 shows output values of received light intensity of the light receiving elements PD1 to PD4 when the light receiving element multiplexer 100 operates normally. This figure (A) shows the state which control part CTL is controlling 1st light source LED1 to ON and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the received light intensity at each of the light receiving elements PD1 to PD4, which is the output value of the multiplexer MUX, is represented by a black circle mark in FIG. The black circle mark has the highest light reception intensity in the light receiving element PD1, and the light reception intensity is lowest in the light receiving element PD4. That is, since the first light source LED1 and the light receiving elements PD1 to PD4 are arranged so that the relationship L1 <L2 <L3 <L4 is established, the first light source LED1 is closest to the light receiving element PD1. The light receiving intensity at the light receiving element PD1 is the highest, the light receiving intensity at the light receiving element PD2 is next highest, the light receiving intensity at the light receiving element PD3 is next highest, and the light receiving intensity at the light receiving element PD4 is the lowest. The received light intensity in the light receiving elements PD1 to PD4 appearing in the output value changes in proportion to the distance (L1, L2, L3, L4) from the first light source LED1 to the light receiving elements PD1 to PD4.

本図(B)は、制御部CTLが、第1光源LED1をオフに、第2光源LED2をオンに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である各受光素子PD1〜PD4における受光強度は、本図(C)の白丸印で表される。白丸印は、受光素子PD1で最も受光強度が小さく、受光素子PD4で最も受光強度が大きい。出力値に現れる受光素子PD1〜PD4における受光強度は、第2光源LED2から受光素子PD1〜PD4までの距離に比例して変化するので、第1光源LED1とは全く逆の傾向となる。   This figure (B) shows the state which control part CTL is controlling 1st light source LED1 to OFF and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the light receiving intensity in each of the light receiving elements PD1 to PD4, which is the output value of the multiplexer MUX, is represented by a white circle mark in FIG. The white circle mark has the smallest light receiving intensity in the light receiving element PD1 and the largest light receiving intensity in the light receiving element PD4. Since the light receiving intensity in the light receiving elements PD1 to PD4 appearing in the output value changes in proportion to the distance from the second light source LED2 to the light receiving elements PD1 to PD4, the tendency is completely opposite to that of the first light source LED1.

このように、受光素子用マルチプレクサ100が正常動作時の受光素子PD1〜PD4の受光強度は、第1光源LED1および第2光源LED2と受光素子PD1〜PD4との距離に比例する。したがって、故障検出部FDは、第1光源LED1をオンした時の受光強度が第1光源LED1と各受光素子PD1〜PD4の間の距離に比例し、第2光源LED2をオンした時の受光強度が第2光源LED2と各受光素子PD1〜PD4の間の距離に比例している場合、受光素子用マルチプレクサ100は正常に動作していると判断できる。   Thus, the light receiving intensity of the light receiving elements PD1 to PD4 when the light receiving element multiplexer 100 is in normal operation is proportional to the distance between the first light source LED1 and the second light source LED2 and the light receiving elements PD1 to PD4. Therefore, in the failure detection unit FD, the received light intensity when the first light source LED1 is turned on is proportional to the distance between the first light source LED1 and each of the light receiving elements PD1 to PD4, and the received light intensity when the second light source LED2 is turned on. Is proportional to the distance between the second light source LED2 and each of the light receiving elements PD1 to PD4, it can be determined that the light receiving element multiplexer 100 is operating normally.

図4は、受光素子用マルチプレクサ100において、マルチプレクサMUXの切り替えスイッチが受光素子PD1のチャネルCNL1に固着した場合の出力値などを示す。本図(A)は、制御部CTLが、第1光源LED1をオンに、第2光源LED2をオフに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替えようとする。しかし、マルチプレクサMUXの切り替えスイッチがチャネルCNL1に固着しているので、チャネルCNL2〜CNL4に切り替えられない。そうすると、マルチプレクサMUXの出力値である受光強度は、本図(C)の黒丸印で表されるように、受光素子PD1の受光強度のみが出力されるので、最も受光強度が大きい値で一定である。すなわち、出力値に現れる受光強度は、第1光源LED1から受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   FIG. 4 shows output values and the like when the selector switch of the multiplexer MUX is fixed to the channel CNL1 of the light receiving element PD1 in the light receiving element multiplexer 100. This figure (A) shows the state which control part CTL is controlling 1st light source LED1 to ON and 2nd light source LED2. In this state, the multiplexer MUX tries to switch the channels CNL1 to CNL4. However, since the selector switch of the multiplexer MUX is fixed to the channel CNL1, it cannot be switched to the channels CNL2 to CNL4. Then, since the light reception intensity that is the output value of the multiplexer MUX is output only as the light reception intensity of the light receiving element PD1, as represented by the black circle in FIG. is there. That is, since the received light intensity appearing in the output value does not change in proportion to the distance from the first light source LED1 to the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

本図(B)は、制御部CTLが、第1光源LED1をオフに、第2光源LED2をオンに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替えようとする。しかし、マルチプレクサMUXの切り替えスイッチがチャネルCNL1に固着しているので、チャネルCNL2〜CNL4に切り替えられない。そうすると、マルチプレクサMUXの出力値である受光強度は、本図(C)の白丸印で表されるように、受光素子PD1の受光強度のみが出力されるので、最も受光強度が小さい値で一定である。すなわち、出力値に現れる受光強度は、第2光源LED2から受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   This figure (B) shows the state which control part CTL is controlling 1st light source LED1 to OFF and 2nd light source LED2. In this state, the multiplexer MUX tries to switch the channels CNL1 to CNL4. However, since the selector switch of the multiplexer MUX is fixed to the channel CNL1, it cannot be switched to the channels CNL2 to CNL4. Then, since the light reception intensity that is the output value of the multiplexer MUX is output only as the light reception intensity of the light receiving element PD1, as indicated by the white circles in FIG. is there. That is, since the received light intensity appearing in the output value does not change in proportion to the distance from the second light source LED2 to the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

このように、受光素子用マルチプレクサ100では、出力値に現れる受光強度が第1光源LED1および第2光源LED2と受光素子PD1〜PD4との距離に比例して変化しないので、異常が発生していると判断できる。さらに、チャネルCNL1〜CNL4を切り替えても一定の出力値しか出力しないので、マルチプレクサMUXの切り替えスイッチに固着が生じていると判断できる。そして、第1光源LED1をオンした時に受光強度が最も大きい値を、第2光源LED2をオンした時に受光強度が最も小さい値を出力したことから、受光素子PD1の受光強度を伝達するチャネルCNL1に切り替えスイッチが固着したと判断できる。   As described above, in the light receiving element multiplexer 100, the received light intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the second light source LED2 and the light receiving elements PD1 to PD4, and thus an abnormality has occurred. It can be judged. Furthermore, since only a constant output value is output even when the channels CNL1 to CNL4 are switched, it can be determined that the changeover switch of the multiplexer MUX is stuck. Since the value with the highest light reception intensity when the first light source LED1 is turned on and the value with the smallest light reception intensity when the second light source LED2 is turned on are output, the channel CNL1 that transmits the light reception intensity of the light receiving element PD1 is output. It can be determined that the changeover switch is fixed.

図5は、受光素子用マルチプレクサ100において、受光素子PD1とマルチプレクサMUXの入力端子を接続するチャネルCNL1が断線した場合の出力値などを示す。本図(A)は、制御部CTLが、第1光源LED1をオンに、第2光源LED2をオフに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である各受光素子PD1〜PD4における受光強度は、本図(C)の黒丸印で表されるように、受光素子PD2〜PD4における受光強度は、正常動作時と同様に変化すると共にその受光強度も同じ程度であるが、受光素子PD1における受光強度は、ゼロを示す。すなわち、出力値に現れる受光強度は、第1光源LED1と受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   FIG. 5 shows output values when the channel CNL1 connecting the light receiving element PD1 and the input terminal of the multiplexer MUX in the light receiving element multiplexer 100 is disconnected. This figure (A) shows the state which control part CTL is controlling 1st light source LED1 to ON and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the light reception intensity at each of the light receiving elements PD1 to PD4, which is the output value of the multiplexer MUX, is the same as that during normal operation as indicated by the black circles in FIG. However, the received light intensity at the light receiving element PD1 is zero. That is, since the received light intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

本図(B)は、制御部CTLが、第1光源LED1をオフに、第2光源LED2をオンに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である受光強度は、本図(C)の白丸印で表されるように、受光素子PD2〜PD4における受光強度は、正常動作時と同様に変化すると共にその受光強度も同じ程度であるが、受光素子PD1における受光強度は、ゼロを示す。すなわち、出力値に現れる受光強度は、第2光源LED2と受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   This figure (B) shows the state which control part CTL is controlling 1st light source LED1 to OFF and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the received light intensity, which is the output value of the multiplexer MUX, is changed in the same manner as during normal operation, as shown by the white circles in FIG. However, the received light intensity in the light receiving element PD1 is zero. That is, since the received light intensity appearing in the output value does not change in proportion to the distance between the second light source LED2 and the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

このように、受光素子用マルチプレクサ100では、出力値に現れる受光強度が第1光源LED1および第2光源LED2と受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。さらに、第1光源LED1と第2光源LED2のいずれをオンした場合も、受光素子PD1の出力値のみがゼロであるから、受光素子PD1とマルチプレクサMUXの入力端子を接続するチャネルCNL1が断線したと判断することができる。   In this way, in the light receiving element multiplexer 100, the light reception intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the second light source LED2 and the light receiving elements PD1 to PD4, and thus an abnormality has occurred. It can be judged. Further, when either the first light source LED1 or the second light source LED2 is turned on, only the output value of the light receiving element PD1 is zero, and therefore the channel CNL1 connecting the light receiving element PD1 and the input terminal of the multiplexer MUX is disconnected. Judgment can be made.

図6は、受光素子用マルチプレクサ100において、受光素子PD1とマルチプレクサMUXの入力端子を接続するチャネルCNL1と受光素子PD2とマルチプレクサMUXの入力端子を接続するチャネルCNL2がショートした場合の出力値などを示す。本図(A)は、制御部CTLが、第1光源LED1をオンに、第2光源LED2をオフに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である各受光素子PD1〜PD4における受光強度は、本図(C)の黒丸印で表されるように、受光素子PD3〜PD4における受光強度は、正常動作時と同様に変化すると共にその受光強度も同じ程度であるが、受光素子PD1と受光素子PD2における受光強度は同じとなる。また、その受光強度は、正常動作時の受光素子PD1と受光素子PD2の受光強度の和の概ね半分である。すなわち、出力値に現れる受光強度は、第1光源LED1と受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   FIG. 6 shows output values when the channel CNL1 connecting the light receiving element PD1 and the input terminal of the multiplexer MUX, and the channel CNL2 connecting the light receiving element PD2 and the input terminal of the multiplexer MUX are short-circuited in the light receiving element multiplexer 100. . This figure (A) shows the state which control part CTL is controlling 1st light source LED1 to ON and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the light reception intensity at each of the light receiving elements PD1 to PD4, which is the output value of the multiplexer MUX, is the same as that during normal operation, as indicated by the black circles in FIG. However, the light receiving intensity of the light receiving element PD1 is the same as that of the light receiving element PD2. The received light intensity is approximately half of the sum of the received light intensity of the light receiving elements PD1 and PD2 during normal operation. That is, since the received light intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

本図(B)は、制御部CTLが、第1光源LED1をオフに、第2光源LED2をオンに制御している状態を示す。この状態において、マルチプレクサMUXは、チャネルCNL1〜CNL4を切り替える。そうすると、マルチプレクサMUXの出力値である受光強度は、本図(C)の白丸印で表されるように、受光素子PD3〜PD4における受光強度は、正常動作時の同様に変化すると共にその受光強度も同じ程度であるが、受光素子PD1と受光素子PD2における受光強度は同じとなる。また、その受光強度は、正常動作時の受光素子PD1と受光素子PD2の受光強度の和の概ね半分である。すなわち、出力値に現れる受光強度は、第1光源LED1と受光素子PD1〜PD4までの距離に比例して変化しないので、異常が発生していると判断できる。   This figure (B) shows the state which control part CTL is controlling 1st light source LED1 to OFF and 2nd light source LED2. In this state, the multiplexer MUX switches the channels CNL1 to CNL4. Then, the received light intensity, which is the output value of the multiplexer MUX, is changed in the same manner as during normal operation, as indicated by the white circles in FIG. However, the light receiving intensities of the light receiving element PD1 and the light receiving element PD2 are the same. The received light intensity is approximately half of the sum of the received light intensity of the light receiving elements PD1 and PD2 during normal operation. That is, since the received light intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the light receiving elements PD1 to PD4, it can be determined that an abnormality has occurred.

このように、受光素子用マルチプレクサ100では、出力値に現れる受光強度が第1光源LED1および第2光源LED2と受光素子PD1〜PD4との距離に比例して変化しないので、異常が発生していると判断できる。さらに、第1光源LED1と第2光源LED2のいずれをオンした場合も、受光素子PD1と受光素子PD2における受光強度は出力値として同じになると共に、その受光強度は、正常動作時の受光素子PD1と受光素子PD2の受光強度の和の概ね半分であることから、チャネルCNL1とチャネルCNL2がショートしていると判断することができる。   As described above, in the light receiving element multiplexer 100, the received light intensity appearing in the output value does not change in proportion to the distance between the first light source LED1 and the second light source LED2 and the light receiving elements PD1 to PD4, and thus an abnormality has occurred. It can be judged. Further, when either the first light source LED1 or the second light source LED2 is turned on, the received light intensity in the light receiving element PD1 and the light receiving element PD2 is the same as the output value, and the received light intensity is the light receiving element PD1 during normal operation. Therefore, it can be determined that the channel CNL1 and the channel CNL2 are short-circuited.

このように、複数の受光素子を有するマルチプレクサにおいて、それぞれの受光素子に対して受光強度が異なるように照射する光源を備え、その光源が点灯時にマルチプレクサのチャネルを切り替えて出力値を評価することで、故障モードを適切に検出することができる。すなわち、故障検出部FDは、マルチプレクサMUXが第1接続状態にある時に制御部CTLが第1光源LED1を点灯した場合のマルチプレクサMUXの第1出力値と、切り替えスイッチを切り替えて、マルチプレクサMUXが第1接続状態とは異なる第2接続状態にある時に制御部CTLが第1光源LED1を点灯した場合のマルチプレクサMUXの第2出力値とに基づいて、マルチプレクサMUXの故障を検出する。これによれば、複数の受光素子が出力した信号を切り替えて出力する受光素子用マルチプレクサ100において、故障検出用の光源からの光を受光しながらチャネルを切り替えるというマルチプレクサの機能を用いることで、故障モードを適切に検出する受光素子用マルチプレクサ100を提供することができる。   In this way, a multiplexer having a plurality of light receiving elements includes a light source that irradiates each light receiving element with different received light intensity, and when the light source is turned on, the multiplexer channel is switched to evaluate the output value. The failure mode can be detected appropriately. That is, the failure detection unit FD switches the first output value of the multiplexer MUX and the changeover switch when the control unit CTL lights the first light source LED1 when the multiplexer MUX is in the first connection state, and the multiplexer MUX A failure of the multiplexer MUX is detected based on the second output value of the multiplexer MUX when the control unit CTL lights up the first light source LED1 when in the second connection state different from the one connection state. According to this, in the light receiving element multiplexer 100 that switches and outputs the signals output from the plurality of light receiving elements, the function of the multiplexer that switches the channel while receiving the light from the light source for failure detection is used. It is possible to provide the light receiving element multiplexer 100 that appropriately detects the mode.

なお、本実施例では光源は2つであるが、上述したように光源が1つであっても、当該光源からの光を受光しながらチャネルを切り替えるというマルチプレクサの機能を用いることで、故障モードを適切に検出することができる。ただし、2つの光源を用いると、より正確に故障モードを検出できるので、好ましい。   In this embodiment, there are two light sources. However, even if there is only one light source as described above, a failure mode can be realized by using a multiplexer function of switching channels while receiving light from the light source. Can be detected appropriately. However, it is preferable to use two light sources because the failure mode can be detected more accurately.

2つの光源を有する場合、故障検出部FDは、マルチプレクサMUXが第1接続状態にある時に制御部CTLが第1光源LED1を点灯した場合のマルチプレクサMUXの第1出力値と、切り替えスイッチを切り替えて、マルチプレクサMUXが第1接続状態とは異なる第2接続状態にある時に制御部CTLが第1光源LED1を点灯した場合のマルチプレクサMUXの第2出力値と、マルチプレクサMUXが第1接続状態にある時に制御部CTLが第2光源LED2を点灯した場合のマルチプレクサMUXの第3出力値と、切り替えスイッチを切り替えて、マルチプレクサMUXが第1接続状態とは異なる第2接続状態にある時に制御部CTLが第2光源LED2を点灯した場合のマルチプレクサMUXの第4出力値とに基づいて、マルチプレクサMUXの故障を検出する。   When there are two light sources, the failure detection unit FD switches the first output value of the multiplexer MUX and the changeover switch when the control unit CTL lights the first light source LED1 when the multiplexer MUX is in the first connection state. When the control unit CTL turns on the first light source LED1 when the multiplexer MUX is in a second connection state different from the first connection state, and when the multiplexer MUX is in the first connection state When the control unit CTL turns on the second light source LED2, the third output value of the multiplexer MUX and the changeover switch are switched, and when the multiplexer MUX is in the second connection state different from the first connection state, the control unit CTL Based on the fourth output value of the multiplexer MUX when the two light source LEDs 2 are lit, To detect the failure of lexers MUX.

<適用例>
上述した受光素子用マルチプレクサ100は、たとえば、図7に示す、走査式レーザレーダ装置RDRに適用される。走査式レーザレーダ装置RDRは、車両などの移動体に設置され、対象物までの距離を検出する。走査式レーザレーダ装置RDRは、レーザ光を発光してから反射光を受光するまでの時間差と、発光したレーザ光の投光方向に基づいて、測定対象物までの距離や方向を測定する。走査式レーザレーダ装置RDRは、発光するレーザダイオードと受光するフォトダイオードが一次元に配列されたレーザダイオードアレイとフォトダイオードアレイを配列方向に対して垂直な方向に投光する方向および受光する方向を一次元方向に変化させることで、1回の走査(スキャン)で面(二次元)の走査を行う。
<Application example>
The light receiving element multiplexer 100 described above is applied to, for example, a scanning laser radar device RDR shown in FIG. The scanning laser radar device RDR is installed in a moving body such as a vehicle and detects the distance to the object. The scanning laser radar device RDR measures the distance and direction to the measurement object based on the time difference from when the laser light is emitted until the reflected light is received, and the projection direction of the emitted laser light. The scanning laser radar device RDR has a laser diode array in which a laser diode that emits light and a photodiode that receives light are arranged one-dimensionally, and a direction in which light is projected and received in a direction perpendicular to the arrangement direction. By changing in the one-dimensional direction, the surface (two-dimensional) is scanned by one scan (scan).

本図(A)〜(C)に示すように、走査式レーザレーダ装置RDRは、正面視でアーチ状のレーザレーダカバー90と、レーザダイオードやフォトダイオードなどの構成要素を内に有するほぼ直方体のレーザレーダ筐体91と備える。レーザレーダカバー90は、レーザ光およびその反射光(電磁波)を透過する材質からなり、レーザダイオードから発せられるレーザ光を対象物に投光すると共に、その対象物からの反射光を受光することを可能とする。   As shown in FIGS. 4A to 4C, the scanning laser radar device RDR is a substantially rectangular parallelepiped having an arcuate laser radar cover 90 and components such as a laser diode and a photodiode in a front view. A laser radar housing 91 is provided. The laser radar cover 90 is made of a material that transmits laser light and its reflected light (electromagnetic wave), and projects the laser light emitted from the laser diode onto the object and receives the reflected light from the object. Make it possible.

本図(D)は、レーザレーダカバー90とレーザレーダ筐体91を取り除いて、内部に含まれる主な構成要素のみを表した図である。走査式レーザレーダ装置RDRは、レーザ光を発光するレーザダイオード20と、反射光を受光するフォトダイオードアレイ30と、レーザダイオード20が発光したレーザ光をモータ11により回転されながら投光すると共に反射光をフォトダイオードアレイ30に導光する回転ミラー10とを備える。   This figure (D) is the figure which removed only the laser radar cover 90 and the laser radar housing | casing 91, and represented only the main components contained inside. The scanning laser radar device RDR projects laser light emitted from a laser diode 20 that emits laser light, a photodiode array 30 that receives reflected light, and the laser light emitted from the laser diode 20 while being rotated by a motor 11 and reflected light. And a rotating mirror 10 that guides the light to the photodiode array 30.

レーザダイオード20が発光したレーザ光が対象物に反射して戻ってきた反射光は、フォトダイオードアレイ30に結像させる受光レンズ31と導光する受光ミラー32を経由して、フォトダイオードアレイ30に到達する。フォトダイオードアレイ30には、上述した受光素子PD1〜PD4から構成される。フォトダイオードアレイ30は、基板PLT上に搭載される共に、基板PLTには、上述した第1光源LED1および第2光源LED2がフォトダイオードアレイ30の両端の近傍に配置されている。   The reflected light that is reflected by the laser light emitted from the laser diode 20 and returned to the object passes through the light receiving lens 31 that forms an image on the photodiode array 30 and the light receiving mirror 32 that guides the light to the photodiode array 30. To reach. The photodiode array 30 includes the light receiving elements PD1 to PD4 described above. The photodiode array 30 is mounted on the substrate PLT, and the first light source LED1 and the second light source LED2 described above are arranged in the vicinity of both ends of the photodiode array 30 on the substrate PLT.

走査式レーザレーダ装置RDRの動作時には、受光素子PD1〜PD4が受光したレーザ光の反射光は、電気信号に変換されて、マルチプレクサMUX(図示せず)により多重化されてADコンバータADC(図示せず)に対して出力される。走査式レーザレーダ装置RDRの故障検出時には、第1光源LED1または第2光源LED2が点灯され、その照射光が電気信号に変換されて、マルチプレクサMUXの出力値となる。その出力値は、上述した方法により故障モードの検出に利用される。   During the operation of the scanning laser radar apparatus RDR, the reflected light of the laser light received by the light receiving elements PD1 to PD4 is converted into an electric signal, multiplexed by a multiplexer MUX (not shown), and an AD converter ADC (not shown). Output). When a failure of the scanning laser radar device RDR is detected, the first light source LED1 or the second light source LED2 is turned on, and the irradiation light is converted into an electric signal to be an output value of the multiplexer MUX. The output value is used for failure mode detection by the method described above.

なお、本発明は、例示した実施例に限定するものではなく、特許請求の範囲の各項に記載された内容から逸脱しない範囲の構成による実施が可能である。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。   In addition, this invention is not limited to the illustrated Example, The implementation by the structure of the range which does not deviate from the content described in each item of a claim is possible. That is, although the present invention has been particularly illustrated and described with respect to particular embodiments, it should be understood that the present invention has been described in terms of quantity, quantity, and amount without departing from the scope and spirit of the present invention. In other detailed configurations, various modifications can be made by those skilled in the art.

100 受光素子用マルチプレクサ
PD1〜PD4 受光素子
LED1 第1光源
LED2 第2光源
CTL 制御部
MUX マルチプレクサ
CNL1〜CNL4 チャネル
FD 故障検出部
ADC ADコンバータ
PLT 基板
RDR 走査式レーザレーダ装置
10 回転ミラー
11 モータ
20 レーザダイオード
30 フォトダイオードアレイ
31 受光レンズ
32 受光ミラー
90 レーザレーダカバー
91 レーザレーダ筐体
100 light receiving element multiplexer PD1 to PD4 light receiving element LED1 first light source LED2 second light source CTL control unit MUX multiplexer CNL1 to CNL4 channel FD failure detection unit ADC AD converter PLT substrate RDR scanning laser radar device 10 rotating mirror 11 motor 20 laser diode 30 Photodiode array 31 Light receiving lens 32 Light receiving mirror 90 Laser radar cover 91 Laser radar housing

Claims (5)

複数の受光素子と、
各前記受光素子における受光強度が異なるように光を照射する第1光源と、
前記第1光源の点灯を制御する制御部と、
前記複数の受光素子のそれぞれに接続され、各前記受光素子からの入力信号を切り替えて出力するマルチプレクサと、
前記マルチプレクサが第1接続状態にある時に前記制御部が前記第1光源を点灯した場合の前記マルチプレクサの第1出力値と、前記マルチプレクサが第2接続状態にある時に前記制御部が前記第1光源を点灯した場合の前記マルチプレクサの第2出力値に基づいて、前記マルチプレクサの故障を検出する故障検出部と、
を備える受光素子用マルチプレクサ。
A plurality of light receiving elements;
A first light source that irradiates light so that the received light intensity of each of the light receiving elements is different;
A control unit for controlling lighting of the first light source;
A multiplexer connected to each of the plurality of light receiving elements and switching and outputting an input signal from each of the light receiving elements;
The first output value of the multiplexer when the control unit turns on the first light source when the multiplexer is in the first connection state, and the control unit is configured to transmit the first light source when the multiplexer is in the second connection state. A failure detection unit for detecting a failure of the multiplexer based on the second output value of the multiplexer when
A light receiving element multiplexer.
各前記受光素子における受光強度が異なるように光を照射する第2光源をさらに備え、
前記制御部は、前記第2光源の点灯を制御し、
前記故障検出部は、前記第1出力値と、前記第2出力値と、前記マルチプレクサが第1接続状態にある時に前記制御部が前記第2光源を点灯した場合の前記マルチプレクサの第3出力値と、前記マルチプレクサが第2接続状態にある時に前記制御部が前記第2光源を点灯した場合の前記マルチプレクサの第4出力値に基づいて、前記マルチプレクサの故障を検出することを特徴とする請求項1に記載の受光素子用マルチプレクサ。
A second light source that emits light so that the received light intensity of each light receiving element is different;
The control unit controls lighting of the second light source,
The failure detection unit includes the first output value, the second output value, and a third output value of the multiplexer when the control unit turns on the second light source when the multiplexer is in the first connection state. And a failure of the multiplexer is detected based on a fourth output value of the multiplexer when the control unit turns on the second light source when the multiplexer is in the second connection state. 2. A multiplexer for a light receiving element according to 1.
前記複数の受光素子は、一列に配置され、
前記第1光源は、前記複数の受光素子の内最も端に位置する一方の前記受光素子に最も近接させて設けられることを特徴とする請求項1に記載の受光素子用マルチプレクサ。
The plurality of light receiving elements are arranged in a line,
2. The light receiving element multiplexer according to claim 1, wherein the first light source is provided closest to one of the light receiving elements located at the end of the plurality of light receiving elements.
前記複数の受光素子は、一列に配置され、
前記第1光源は、前記複数の受光素子の内最も端に位置する一方の前記受光素子に最も近接させて設けられ、前記第2光源は、前記複数の受光素子の内最も端に位置する他方の前記受光素子に最も近接させて設けられることを特徴とする請求項2に記載の受光素子用マルチプレクサ。
The plurality of light receiving elements are arranged in a line,
The first light source is provided closest to one of the light receiving elements located at the end of the plurality of light receiving elements, and the second light source is the other located at the end of the plurality of light receiving elements. The light receiving element multiplexer according to claim 2, wherein the light receiving element multiplexer is provided closest to the light receiving element.
請求項1乃至請求項4のいずれかに記載の受光素子用マルチプレクサを備える走査式レーザレーダ装置。   A scanning laser radar apparatus comprising the light-receiving element multiplexer according to claim 1.
JP2016247444A 2016-12-21 2016-12-21 Multiplexer for light receiving element and scanning laser radar device Expired - Fee Related JP6633504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016247444A JP6633504B2 (en) 2016-12-21 2016-12-21 Multiplexer for light receiving element and scanning laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247444A JP6633504B2 (en) 2016-12-21 2016-12-21 Multiplexer for light receiving element and scanning laser radar device

Publications (2)

Publication Number Publication Date
JP2018101925A true JP2018101925A (en) 2018-06-28
JP6633504B2 JP6633504B2 (en) 2020-01-22

Family

ID=62715682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247444A Expired - Fee Related JP6633504B2 (en) 2016-12-21 2016-12-21 Multiplexer for light receiving element and scanning laser radar device

Country Status (1)

Country Link
JP (1) JP6633504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782674A (en) * 2019-11-07 2021-05-11 上海禾赛科技股份有限公司 Laser radar and control method thereof
CN113678021A (en) * 2019-03-19 2021-11-19 株式会社电装 Distance measuring device and abnormality determination method in distance measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678021A (en) * 2019-03-19 2021-11-19 株式会社电装 Distance measuring device and abnormality determination method in distance measuring device
CN112782674A (en) * 2019-11-07 2021-05-11 上海禾赛科技股份有限公司 Laser radar and control method thereof

Also Published As

Publication number Publication date
JP6633504B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US9465111B2 (en) Time-of-flight camera with signal path monitoring
US11962900B2 (en) Multiple fields of view time of flight sensor
RU2672767C1 (en) Device for infrared laser lighting
CN111142088B (en) Light emitting unit, depth measuring device and method
US9638520B2 (en) Measuring apparatus and measuring device for measuring a target object in a multidimensional manner
CN108627848B (en) Photoelectric sensor and method for detecting object
US7329858B2 (en) Optical encoder and electronic equipment having same
CN106324586B (en) Photonic device
KR20220141850A (en) Multi-channel programmable detection sensor
JP2018101925A (en) Light-receiving element multiplexer and scanning laser radar device
JP2014142340A (en) Photoelectric sensor and method for detecting object in monitoring region
US20230119371A1 (en) Lidar and ranging method
CN111630407A (en) Emitting device for emitting light
CN211826515U (en) Depth measuring device
CN104044340A (en) Optical detecting element, mark sensor and mark judgment method of optical detecting element
TW200939628A (en) Photoelectric sensor
CN112525922A (en) Optical detection module and system for detecting laser processing quality
US6384403B1 (en) Bichromatic optical cell
US20230028749A1 (en) Lidar with multi-range channels
CN110132227B (en) Triangulation optical sensor
CN110954916A (en) Depth measuring device and depth measuring method
CN110954917A (en) Depth measuring device and depth measuring method
WO2011067117A1 (en) Led lighting device with light sensor and control method
CN220069664U (en) Endoscope light source and endoscope imaging system
CN110546542B (en) Data transmission in optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191212

R150 Certificate of patent or registration of utility model

Ref document number: 6633504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees