JP2018101050A - 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置 - Google Patents

反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置 Download PDF

Info

Publication number
JP2018101050A
JP2018101050A JP2016246823A JP2016246823A JP2018101050A JP 2018101050 A JP2018101050 A JP 2018101050A JP 2016246823 A JP2016246823 A JP 2016246823A JP 2016246823 A JP2016246823 A JP 2016246823A JP 2018101050 A JP2018101050 A JP 2018101050A
Authority
JP
Japan
Prior art keywords
color filter
color
reflective display
layer
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016246823A
Other languages
English (en)
Inventor
康裕 小橋
Yasuhiro Kobashi
康裕 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016246823A priority Critical patent/JP2018101050A/ja
Publication of JP2018101050A publication Critical patent/JP2018101050A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

【課題】電子情報の表示においてスジムラが見える可能性を抑制し、高彩度で複数のカラー表示が可能な反射型表示装置用カラーフィルタ及びこれを備える反射型表示装置を提供する。【解決手段】反射型表示装置用カラーフィルタは、光透過性基材と第1方向に交互に配置される第1のカラーフィルタ及び第2のカラーフィルタを複数含むカラーフィルタ層とを有し、第1のカラーフィルタは、サブ画素電極によって決定される独立して反射率が変更可能な複数のサブ画素領域に対応して配置され、第1方向に隣り合う第1のカラーフィルタは異なる透過波長帯域を持ち、かつ、間隔βで配置され、第2のカラーフィルタは、隣り合う第1のカラーフィルタの間に、サブ画素領域の境界をまたいで配置され、第1方向に隣接する第1のカラーフィルタの2色を加法混色した色を有し、かつ、間隔βから第2のカラーフィルタの第1方向の幅を引いた長さが10μm未満である。【選択図】図1

Description

本発明は、反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置に関する。
電子情報ネットワークの普及に伴い、例えば、電子書籍に代表される電子出版が行なわれるようになっている。電子出版物の電子情報を表示させる表示装置としては、例えば、自発光型表示装置またはバックライト型表示装置が用いられることが多い。
しかしながら、これらの表示装置の表示画面は、例えば、紙などの印刷媒体による表示に比べると高輝度である。このため、これらの表示装置の表示画面を長時間にわたって見続けると使用者の疲労を招き易い。さらに、これらの表示装置は、消費電力も大きいため、例えば、電池駆動する場合には表示時間が制限されてしまう。
これに対して、例えば、電子ペーパーに代表される反射型表示装置は反射光によって電子情報を表示するため、使用者は紙に近い感覚で電子情報の表示を読みとることができる。このため、使用者の疲労が軽減される。さらに、反射型表示装置は、例えば、太陽光あるいは照明光が当たる場所であれば表示性能を発揮できるため、例えば、屋外看板などにも適している。反射型表示装置は画面に表示される情報の書き換え以外では電力を消費しないため、消費電力が少なくて済み、電池駆動であっても長期間の表示書き換えが可能である。そのため、反射型表示装置は、電子看板や電子値札といった用途にも盛んに使われている。
このような反射型表示装置において、例えば、文字情報だけであれば、白黒表示でも充分である。しかし、例えば、書籍の挿絵、広告、看板、アイキャッチ効果を高める表示、画像、カタログ、棚札、値札、指示書等における電子情報を表示するためには、カラー表示できることがより好ましい。これらの表示用途における表示コンテンツのカラー化に伴い、反射型表示装置においてカラー表示を行うニーズが高まっている。
カラー表示を行う反射型表示装置としては、例えば、以下のような反射型表示装置が提案されている。
特許文献1には、少なくとも一方が透明な一対の基板間に、電界の印加により移動または回転する粒子を含む表示体を配置した多色表示パネルにおいて、一対の基板の少なくとも一方の透明な基板上にカラーフィルタを形成した多色表示パネルが提案されている。特許文献1に記載のカラーフィルタは、三原色に着色された正方形状の3つのパターンおよび無着色領域が正方格子状に配列されている。
特許文献2には、所定のパターンに配置された複数色のカラーフィルタにおいて、各カラーフィルタ間にブラックマトリクスが設けられることなく、かつ、1μm以上20μm以下の間隙が設けられた反射型カラーディスプレイ用カラーフィルタが提案されている。
特開2003−161964号公報 特開2003−107234号公報
しかしながら、上記のような従来のカラーフィルタおよびこれを用いた反射型表示装置には以下のような問題がある。
特許文献1に記載の反射型表示装置では、透明基板上に三原色に対応する3つのカラーフィルタがカラー表示単位となる画素領域内に配置されたカラーフィルタ層と、各カラーフィルタに対応して、白黒表示を切り替えることができる反射表示層とが重ねられている。反射表示層の駆動電極は、一定の矩形状電極が矩形格子状に配置されている。各画素領域には、4つの駆動電極が2×2の格子状に配列されている。この4つの駆動電極によって、それぞれ反射表示層のサブ画素領域の白黒表示が独立に切り替えられる。各カラーフィルタは、平面視矩形状に形成され、3つの駆動電極上の各サブ画素領域にそれぞれ配列されている。各カラーフィルタの中心は、各サブ画素領域の中心に一致されている。画素領域において残りの1つの駆動電極上には、カラーフィルタが配置されていないサブ画素領域が形成されている。
各カラーフィルタの間隔が大きいと、反射型表示装置の反射表示層を白表示とした時に、着色領域と着色領域との隙間が白線として見える。着色領域の間隔が例えば10μmと15μmとである場合、近づくと白線の太さの差が目視で認識できる。また、1mほど離れると、白線が太い範囲は白線が細い範囲よりも色が薄く見える問題があった。間隔が10μmを超えると白線は見えやすい。この白線の太さの違いで見えるムラをスジムラと呼ぶ。これはブラックマトリクスが無いために着色部と着色部との隙間の白反射部のコントラストが高く、目立つ為に見えてしまう。この着色部の間隔を0μmに近づけると、ムラは改善し白線は見え難くなるが、反射層からの拡散反射した光の一部が隣接する画素を通るため、隣接画素に光が吸収され、反射光量が大きく下がる問題があった。また、カラーフィルタの間隔を0μmに近づけようとすると、着色領域の位置ばらつきにより着色領域が一部分で重なってしまい、重なった場所で混色によるムラが見える問題があった。着色領域の位置ばらつきは装置の精度によって異なるが、インクジェット印刷機を使って着色領域を形成した場合、±10μm程度のばらつきが発生する可能性があり、混色ムラが発生するリスクが高まる。また、カラーフィルタと白領域のコントラストを下げるために着色部の膜厚を薄くして透過率を上げると、カラー表示の彩度が下がり、淡い色しか表示できなくなる問題がある。
本発明は、上記のような問題に鑑みてなされたものであり、着色領域の形成位置のばらつきが±5μmから±10μm程度発生した場合でも、電子情報の表示においてスジムラが見える可能性を抑制し、高彩度で複数のカラー表示が可能な反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置を提供する事を目的とする。
上記の課題を解決するために、本発明に係る反射型表示装置用カラーフィルタは、少なくとも基材、複数のサブ画素電極からなる第1の電極層、接着層、反射表示層、および第2の電極層とともに反射型表示装置に設けられる反射型表示装置用カラーフィルタであって、少なくとも光透過性基材と、第1方向に交互に配置される第1のカラーフィルタ及び第2のカラーフィルタを複数含むカラーフィルタ層とを有し、第1のカラーフィルタは、光透過性基材上において、サブ画素電極によって決定される独立して反射率が変更可能な複数のサブ画素領域に対応して配置され、第1方向に隣り合う第1のカラーフィルタは異なる透過波長帯域を持ち、かつ、下記式(1)を満たす間隔βで配置され、第2のカラーフィルタは、光透過性基材上において、隣り合う第1のカラーフィルタの間に、サブ画素領域の境界をまたいで配置され、第1方向に隣接する第1のカラーフィルタの2色を加法混色した色を有し、かつ、間隔βから第2のカラーフィルタの第1方向の幅を引いた長さが10μm未満である。
5(μm)≦β≦α+10(μm)・・・(1)
ただしα=Dbtanθb+Dctanθc
ここで、
θb=Arcsin(1/Nb)
θc=Arcsin(1/Nc)
Db:前記光透過性基材の厚さ
Dc:前記第2の電極層の厚さ
θb:光が前記光透過性基材と空気との界面で全反射する角度(臨界角)
θc:光が前記第2の電極層と空気との界面で全反射する角度(臨界角)
Nb:前記光透過性基材の屈折率
Nc:前記第2の電極層の屈折率
また、第1のカラーフィルタは、それぞれ、赤色、緑色および青色のカラーフィルタであり、赤色の第1のカラーフィルタと緑色の第1のカラーフィルタとの間隔βには、黄色の第2のカラーフィルタを有し、緑色の第1のカラーフィルタと青色の第1のカラーフィルタとの間隔βには、シアンの第2のカラーフィルタを有し、青色の第1のカラーフィルタと赤色の第1のカラーフィルタとの間隔βには、マゼンタの第2のカラーフィルタを有してもよい。
また、第1のカラーフィルタは、それぞれ、赤色及び青色のカラーフィルタであり、赤色の第1のカラーフィルタと青色の第1のカラーフィルタとの間隔βには、マゼンタの第2のカラーフィルタを有してもよい。
また、本発明に係る反射型表示装置は、少なくとも基材と、第1の電極層と、接着層と、反射表示層と、第2の電極層と、上記反射型表示装置用カラーフィルタとを備える。
本発明によれば、電子情報の表示においてスジムラが見える可能性を抑制し、高彩度で複数のカラー表示が可能な反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置を実現できる。
第1の実施形態に係る反射型表示装置の主要部の構成を示す模式的な縦断面図である。 第1の実施形態に係る画素領域の平面図である。 第1の実施形態のカラーフィルタの配列を示す模式的な平面図である。 比較例1のカラーフィルタの配列を示す模式的な平面図である。 第2の実施形態のカラーフィルタの配列を示す模式的な平面図である。 比較例2のカラーフィルタの配列を示す模式的な平面図である。
(第1の実施形態)
以下では、本発明の第1の実施形態に係る反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置について図面を参照して説明する。
図1は、本実施形態に係る反射型表示装置の主要部の構成を示す模式的な縦断面図である。図1は、模式図のため、形状や寸法は誇張されている(以下の図面についても同じである)。
図1に主要部の構成を示すように、本実施形態の反射型表示装置1は、基材10と、第1の電極層11と、接着層12と、反射表示層13と、第2の電極層14と、反射型表示装置用カラーフィルタ2と、保護層18とが、この順に積層されて構成されている。反射型表示装置用カラーフィルタ2は、光透過性基材15と、インク受容層16と、カラーフィルタ層17とが、この順に積層されて構成されている。反射型表示装置用カラーフィルタ2において、インク受容層16は設けなくてもよい。反射型表示装置1において、保護層18は設けなくてもよい。
反射型表示装置1は、外部からの入射光をカラーフィルタ層17によって第1色、第2色、および第3色の三色に限定し、画像信号に基づいて駆動される反射表示層13により三色の反射光量を調整することによってカラー画像が表示可能な反射型表示装置である。ただし、反射型表示装置1によるカラー画像は、フルカラー表示であってもよいし、フルカラー表示以外の多色表示であってもよい。反射型表示装置1の有効表示画面の外形状は、特に限定されない。ここで、有効表示画面とは、表示の切り換えが可能な画面を意味する。以下では、一例として、反射型表示装置1の有効表示画面の外形状が矩形であるとして説明する。
基材10は、板状の絶縁体で構成される。基材10の材質は、例えば、合成樹脂フィルム、ガラスなどが用いられてもよい。
第1の電極層11は、基材10の表面に積層されている。第1の電極層11は、後述する反射表示層13の反射率を変える駆動電圧を反射表示層13に印加する。第1の電極層11は、本実施形態では、反射型表示装置1のカラー表示の表示単位である画素領域内のサブ画素領域ごとに電圧を独立に印加できるように、サブ画素領域の形状、配置に対応して、複数のサブ画素電極にパターニングされている。後述するように、本実施形態では、画素領域およびサブ画素領域は、いずれも平面視矩形状であるため、第1の電極層11の各サブ画素電極も矩形状である。ただし、各サブ画素電極は、例えば、後述するスイッチング素子の配置位置などによっては、矩形の一部に、凹部または凸部が形成された擬似矩形状の形状であってもよい。
第1の電極層11における各サブ画素電極は、後述する反射表示層13の反射率を黒と白との間で変える点では互いに同様の構成を有する。ただし、印加される駆動信号の種類によって、各画素領域内のサブ画素電極は、第1色用サブ画素電極11r、第2色用サブ画素電極11g、第3色用サブ画素電極11bに区別される。第1色用サブ画素電極11r、第2色用サブ画素電極11g、第3色用サブ画素電極11bは、画素領域において、それぞれ第1色成分、第2色成分、第3色成分の階調を制御する駆動信号に基づく駆動電圧が印加される駆動電極である。尚、無彩色用サブ画素電極として、画素領域において、無彩色成分の階調を制御する駆動信号に基づく駆動電圧が印加される駆動電極を設けてもよい。第1の電極層11は、適宜の金属材料によって形成される。
第1の電極層11上には、接着層12を介して反射表示層13が積層されている。接着層12の材質は、第1の電極層11と反射表示層13の裏面13bとを互いに接着することができれば、特に限定されない。
反射表示層13は、層厚方向に電界が印加されることにより、少なくとも白と黒とを切り替えて表示することができる適宜の層構成が用いられる。本実施形態では、反射表示層13は、電界の大きさに応じて反射率が最小値(黒)から最大値(白)に漸次変化する構成が用いられている。このため、反射表示層13は、白黒の階調表現が可能になっている。反射表示層13の反射率は、裏面13bと反対側の表面13aにおいて変化すればよい。例えば、反射表示層13は、反射型液晶方式、コレステリック液晶方式、電気泳動方式(マイクロカプセル方式、マイクロカップ方式等)、エレクトロクロミック方式等から選ばれた方式の構成が用いられてもよい。
第2の電極層14は、反射表示層13の表面13aに積層されている透明電極である。本実施形態では、第2の電極層14は、第1の電極層11の全体を覆う範囲に配置されている。第1の電極層11における各駆動電極と、第2の電極層14とは、図示略のスイッチング素子を介して図示略の駆動電源に接続されている。このため、画像信号に応じてスイッチング素子が駆動されると、画像信号に応じた駆動電圧による電界が各駆動電極と第2の電極層14との間に発生するようになっている。第2の電極層14の材質としては、例えば、酸化インジウム錫(ITO)などの導電性を有する透明材料が用いられてもよい。
光透過性基材15は、第2の電極層14上に積層された可視光の光透過性を有する層状部である。光透過性基材15の材質としては、例えば、ガラス基材が用いられてもよい。光透過性基材15の材質としては、例えば、PET(ポリエチレンテレフタレート)フィルム、PEN(ポリエチレンナフタレート)フィルム等のフィルム基材が用いられてもよい。
光透過性基材15の表面15aには、後述するカラーフィルタ層17を形成するインクを保持するインク受容層16が形成されていてもよい。カラーフィルタ層17を光透過性基材15上に直接形成できる場合には、インク受容層16は省略されてもよい。しかし、カラーフィルタ層17をインクジェット法などの印刷によって形成する場合には、インク受容層16を設けることが好ましい。ただし、UV硬化インクを用い、インクの吐出直後にインクジェットヘッドに隣接したUVランプでUV光を照射させ、インクの流動を抑えた場合にはインク受容層16は必要ない。本実施形態では、反射型表示装置1がインク受容層16を備える場合の例で説明する。
インク受容層16は、カラーフィルタ層17を光透過性基材15上に保持するために形成された光透過性を有する層状部である。インク受容層16の厚さは、4μm以上10μm以下であることが好ましい。インク受容層16の厚さが4μm未満の場合、インク内の溶媒を吸収しきれずに、インクの濡れ広がりが大きくなりすぎるおそれがある。また、製造上、インク受容層16の厚さを4μm未満にしようとすると、製造ばらつきによってインク受容層16が形成されない部位が生じるおそれもある。インク受容層16が10μmを超える場合、反射表示層13とカラーフィルタ層17との間の距離が大きくなりすぎる。このため、反射表示層13で反射した光が拡散してカラーフィルタ層17を透過する光量が低下することによって、色再現性が低下してしまうおそれがある。インク受容層16は、光透過性基材15において第2の電極層14と接する面と反対側の表面15a上に積層されている。
インク受容層16の材質としては、カラーフィルタ層17を形成するためのインクを保持できる適宜の材質が用いられる。インク受容層16としては、例えば、ウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ビニルアルコール樹脂等が用いられてもよい。積層時の表面のブロッキング(貼り付き)防止性能を向上させるために、インク受容層16の材質にシリコーン樹脂が含まれていることがより好ましい。インク受容層16は、可視光の透過率が高く、使用環境において受容したインクの変色や褪色が生じにくい特性を有する材料が用いられることがより好ましい。インク受容層16は、カラーフィルタ層17を形成する際に、インクの濡れ広がりの均一性が損なわれないように膜上保持型の材料によって形成されることがより好ましい。インク受容層16の材質の例としては、例えば、特開2008−272972号公報に記載のインクジェットプリンタ用記録媒体が挙げられる。
インク受容層16の形成方法は特に限定されない。例えば、インク受容層16は、インク受容層16を形成するためのインク受容層形成用塗液が光透過性基材15上に塗工された後、乾燥または固化されることによって形成されてもよい。インク受容層形成用塗液を形成するための溶媒の例としては、例えば、水、IPA(イソプロピルアルコール)等の水系溶媒またはアルコール系溶媒と、有機溶媒とが挙げられる。例えば、インク受容層16がウレタン樹脂を主成分とする場合には、インク受容層形成用塗液において、ウレタン樹脂に対して溶解性の高いトルエン、酢酸エチル等の有機溶剤が用いられてもよい。インク受容層形成用塗液の塗布装置は、特に限定されない。例えば、塗布装置の例としては、ダイコーター、スピンコーター、バーコーター等が挙げられる。インク受容層形成用塗液の乾燥方法としては、例えば、加熱、真空減圧等が用いられてもよい。インク受容層形成用塗液の固化方法としては、例えば、塗液がUV硬化性樹脂である場合に、UV光照射が用いられてもよい。
カラーフィルタ層17は、インク受容層16の表面16a上に積層されている。カラーフィルタ層17は、第1色カラーフィルタ17r(第1のカラーフィルタ)、第2色カラーフィルタ17g(第1のカラーフィルタ)、第3色カラーフィルタ17b(第1のカラーフィルタ)、第4色カラーフィルタ17y(第2のカラーフィルタ)、第5色カラーフィルタ17c(第2のカラーフィルタ)、および第6色カラーフィルタ17m(第2のカラーフィルタ)をそれぞれ複数備える。第1のカラーフィルタおよび第2のカラーフィルタは反射型表示装置1における各層の積層方向と直交する方向であるX方向(第1方向)に交互に設けられる。尚、各層の積層方向およびX方向と直交する方向を、Y方向(第2方向)とする。以下の説明において、X方向およびY方向はそれぞれ同じである。第1色カラーフィルタ17rは、第1色の波長成分のみを透過する透過波長帯域を有する。第2色カラーフィルタ17gは、第2色の波長成分のみを透過する透過波長帯域を有する。第3色カラーフィルタ17bは、第3色の波長成分のみを透過する透過波長帯域を有する。第4色カラーフィルタ17yは、第1色の波長成分と第2色の波長成分を透過する透過波長帯域を有する。第5色カラーフィルタ17cは、第2色の波長成分と第3色の波長成分を透過する透過波長帯域を有する。第6色カラーフィルタ17mは、第1色の波長成分と第3色の波長成分を透過する透過波長帯域を有する。第4色カラーフィルタ17yは、第1色と第2色とを加法混色した色であり、第5色カラーフィルタ17cは、第2色と第3色とを加法混色した色であり、第6色カラーフィルタ17mは、第1色と第3色とを加法混色した色である。第1色、第2色、および第3色は、非白色であって、互いに波長帯域が異なり、かつこれらの組み合わせによってフルカラー表示または多色表示が可能であれば特に限定されない。第1色、第2色、および第3色の組み合わせは、フルカラー表示を行うためには、各色の透過光が混合したとき白色光になるように選ばれることが好ましい。例えば、第1色、第2色、および第3色は、それぞれ、赤、緑、および青としてもよい。第4色、第5色、第6色は、それぞれ、黄、シアン、マゼンタとしてもよい。
第1色カラーフィルタ17r、第2色カラーフィルタ17g、および第3色カラーフィルタ17bは、反射表示層13を間に挟んで、それぞれ、第1色用サブ画素電極11r、第2色用サブ画素電極11g、および第3色用サブ画素電極11bと対向するように配置されている。本実施形態では、各カラーフィルタと反射表示層13の表面13aとの間は、第2の電極層14、光透過性基材15、およびインク受容層16が積層された光透過性の層状部によって離隔されている。
保護層18は、カラーフィルタ層17を覆うように積層された光透過性を有する層状部である。保護層18は、カラーフィルタ層17を覆うことにより、カラーフィルタ層17を保護する。保護層18によって、カラーフィルタ層17が、機械的な接触によって損傷したり、汚れが付着したり、吸湿したりすることを防止することができる。
保護層18の材質としては、光透過性を有する有機樹脂または光透過性を有する無機化合物が用いられる。有機樹脂の例としては、例えば、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、アクリル系樹脂、シリコーン系樹脂などが挙げられる。無機化合物の例としては、例えば、Si、SiO、SiO、Al、Taなどが挙げられる。保護層18は、カラーフィルタ層17を形成した後、上述の材料を塗布した後に固化することあるいは蒸着することによって形成される。塗布方法としては、例えば、スピンコート、ロールコート、適宜の印刷法が挙げられる。
以下では、説明の便宜上、第1色カラーフィルタ17r、第2色カラーフィルタ17g、および第3色カラーフィルタ17bを総称する場合、各カラーフィルタと表記する場合がある。
次に、画素領域の構成と、カラーフィルタ層17の平面視の配置パターンとについて説明する。まず、画素領域の構成について説明する。図2は、第1の実施形態に係る画素領域の平面図である。図2に示すように、各画素領域Pは、反射表示層13における反射率の変更単位である矩形状のサブ画素領域がX方向に3領域、Y方向に1領域の合計3領域が隣接して形成されている。各画素領域Pにおける各サブ画素領域は、いずれも、第1サブ画素領域13R、第2サブ画素領域13G、第3サブ画素領域13B、の3つのサブ画素領域に分かれている。第1サブ画素領域13Rは、第1色用サブ画素電極11rによって反射率が変更されるサブ画素領域であり、第1色用サブ画素電極11rを覆う矩形状の領域である。第2サブ画素領域13Gは、第2色用サブ画素電極11gによって反射率が変更されるサブ画素領域であり、第2色用サブ画素電極11gを覆う矩形状の領域である。第3サブ画素領域13Bは、第3色用サブ画素電極11bによって反射率が変更されるサブ画素領域であり、第3色用サブ画素電極11bを覆う矩形状の領域である。
各画素領域PのX方向の幅はWX、Y方向の幅はWYである。このため、各画素領域PのX方向およびY方向の配列ピッチも、それぞれWX、WYである。各サブ画素領域のX方向の幅はwX(=WX/3)、Y方向の幅はwY(=WY)である。例えば、wXは、80μm以上、300μm以下であってもよい。wYは、240μm以上、900μm以下であってもよい。以下では、具体的な数値例を挙げて各部位の寸法例を説明する場合に、一例として、wX=180(μm)、wY=540(μm)であるとして説明することがある。
各画素領域Pは、X方向およびY方向において互いに隣り合っており、繰り返して配列されている。
次に、カラーフィルタ層17の各カラーフィルタの配列について説明する。本実施形態では、各カラーフィルタの平面視の外形は、正方形を含む略矩形状(矩形の場合を含む)である。ここで、略矩形状には、例えば、各辺に微小な凹凸が生じたり、各角に丸みが付いたりした形状が含まれる。後述する種々の隙間寸法を測る場合には、各カラーフィルタの平面視の外形において最も長い直線状部分(以下、辺)から測る。例えば、外形の隅に丸みが付いている場合に、丸みの部分からの隙間寸法は無視する。カラーフィルタの各辺に微小な凹凸が形成されている場合には、凹凸を平均した直線を辺と見なす。
図3は、第1の実施形態に係るカラーフィルタの配列を示す模式的な平面図である。尚、カラーフィルタ層17における各カラーフィルタの配置パターンは、図示しない有効表示画面の全体にわたって、X方向およびY方向に反復されている。図3に示す第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17bは、それぞれ第1サブ画素領域13R、第2サブ画素領域13G、第3サブ画素領域13Bに対応する位置に配置される。
図3に示すように、第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17bは、それぞれ、下記式(1)を満たす間隔βでX方向に配置される。
5(μm)≦β≦α+10(μm)・・・(1)
ただしα=Db×tanθb+Dc×tanθc
ここで、
θb=Arcsin(1/Nb)
θc=Arcsin(1/Nc)
Db:光透過性基材の厚さ
Dc:第2の電極層の厚さ
θb:光が光透過性基材と空気との界面で全反射する角度(臨界角)
θc:光が第2の電極層と空気との界面で全反射する角度(臨界角)
Nb:光透過性基材の屈折率
Nc:第2の電極層の屈折率
である。
ここで、上記αについて説明する。光透過性基材15の厚さをDbとし、光透過性基材15の屈折率をNbとした場合、光が光透過性基材15と空気との界面で全反射する角度(臨界角)θbは、スネルの法則より、sinθb=1/Nbからθb=Arcsin(1/Nb)と求められる。また、第2の電極層14の厚さをDcとし、屈折率をNcとした場合、光が第2の電極14と空気との界面で全反射する角度(臨界角)θcは、スネルの法則より、sinθc=1/Ncからθc=Arcsin(1/Nc)と求められる。第1色カラーフィルタ17rの端から入った光が反射表示層表面13aで拡散反射し、光透過性基材15とインク受像層16との界面および第2の電極14と光透過性基材15との界面で全反射する事で第2色カラーフィルタ17gまたは第3色カラーフィルタ17bを通らない為の間隔αは、α=Db×tanθb+Dc×tanθcで表される。間隔βの最小値を5μmとし、最大値をα+10μmとした理由は、第1のカラーフィルタの形成精度を±5μmから±10μmとしたためである。
第4色カラーフィルタ17yは、第1色カラーフィルタ17rと第2色カラーフィルタ17gとの間に配置される。第5色カラーフィルタ17cは、第2色カラーフィルタ17gと第3色カラーフィルタ17bとの間に配置される。第6色カラーフィルタ17mは、第1色カラーフィルタ17rと第3色カラーフィルタ17bとの間に配置される。第4色カラーフィルタ17y、第5色カラーフィルタ17cおよび第6色カラーフィルタ17mは、各サブ画素領域のX方向の境界をまたいで配置される。全てのカラーフィルタをY方向に繋げる事で直線形状にしてもよい。
このような各カラーフィルタは、インク受容層16上に各カラーフィルタの色のインクを印刷によって塗布し、固化させることによって形成される。この場合、インクを第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17b、第4色カラーフィルタ17y、第5色カラーフィルタ17c、および第6色カラーフィルタ17mの各形成領域に塗布する塗り分けが行われることによって、ブラックマトリックスを形成することなくカラーフィルタ層17が形成される。第4色カラーフィルタ17y、第5色カラーフィルタ17c、および第6色カラーフィルタ17mは隣接する第1色カラーフィルタ17r、第2色カラーフィルタ17g、および第3色カラーフィルタ17bに重なってもよい。このカラーフィルタ層17は、ブラックマトリックスによる光量損失がなくなるため、ブラックマトリクスを有する場合に比べて、カラーフィルタ層17の透過光量がより向上する。
カラーフィルタ層17をインク塗布によって形成する場合、インク塗布方法は、インクの塗り分けが可能な適宜のインク塗布方法が用いられる。カラーフィルタ層17の形成に好適なインク塗布方法の例としては、例えば、スクリーン印刷法、オフセット印刷法、インクジェット印刷法などが挙げられる。特に、インクジェット印刷法は、第1の電極層11に対するカラーフィルタ層17の配置位置の位置合わせが容易となり、生産性も高くなる点でより好ましい。インク受容層16上に塗工された後のインクの固化方法の例としては、加熱、送風、減圧などによって乾燥させる方法が挙げられる。例えば、インクがUVインク等のエネルギー線硬化型インクの場合には、UV光、電子線等のエネルギー線を照射する方法が挙げられる。これらの固化方法は、2種以上の組み合わせが用いられてもよい。特に、UVインクが使用される場合、インク受容層16を設けず、光透過性基材15の表面にUVインクを直接塗布しても、カラーフィルタ層17を形成することが可能である。
次に、カラーフィルタ層17をインクジェット印刷法によって形成する場合のインクについて説明する。
各カラーフィルタを形成するインク(以下、単にインクと表記する)の材料は、着色剤、バインダー樹脂、分散剤、溶媒を含んでいてもよい。インクに含有する着色剤としては、有機顔料、無機顔料、染料などを問わず色素全般が使用できる。着色剤としては、有機顔料がより好ましく、耐光性に優れるものを用いることがさらに好ましい。
着色剤として使用する顔料の具体例としては、例えば、C.I.Pigment Red 9、19、38、43、97、122、123、144、149、166、168、177、179、180、192、215、216、208、216、217、220、223、224、226、227、228、240、254、C.I.Pigment Blue 15、15:3、15:6、16、22、29、60、64、C.I.Pigment Green 7、36、58、C.I.Pigment Red 20、24、86、81、83、93、108、109、110、117、125、137、138、139、147、148、153、154、166、168、185、C.I.Pigment Orange 36、C.I.Pigment Violet 23、C.I.Pigment Yellow 150などが挙げられる。さらに、必要な色相を得るために、これらの着色剤を含む適宜の着色剤群のうちから選ばれた2種類以上の顔料が混合された着色剤が用いられてもよい。
インクの材料に用いるバインダー樹脂の例としては、例えば、カゼイン、ゼラチン、ポリビニールアルコール、カルボキシメチルアセタール、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、メラニン樹脂などが挙げられる。これらは、着色剤として用いる色素との関係にて適宜選択される。例えば、耐熱性や耐光性が要求される場合には、インクの材料に用いるバインダー樹脂として、メラミン樹脂、アクリル樹脂、エポキシ樹脂などが用いられてもよい。バインダー樹脂は、1種類の樹脂が単独でも用いられてもよいし、2種類以上が混合して用いられてもよい。
インクの材料に用いる分散剤は、上述したバインダー樹脂への着色剤の分散を向上させるために用いられる。分散剤の例としては、例えば、非イオン性界面活性剤、イオン性界面活性剤などが挙げられる。非イオン性界面活性剤の例としては、例えば、ポリオキシエチレンアルキルエーテルなどが挙げられる。イオン性界面活性剤の例としては、例えば、アルキルベンゼンスルホン酸ナトリウム、ポリ脂肪酸塩、脂肪酸塩アルキルリン酸塩、テトラアルキルアンモニウム塩などや、有機顔料誘導体、ポリエステルなどが挙げられる。インクに含有される分散剤は、一種類が単独で使用されてもよいし、二種類以上が混合して使用されてもよい。
インクに使用する溶媒の特性としては、インクジェット印刷における適性を考慮すると、表面張力が35mN/m以下であって、かつ沸点が130℃以上であることが好ましい。溶媒において表面張力が35mN/mを超えると、インクジェット印刷における吐出時のドット形状の安定性が悪くなるおそれがある。溶媒において沸点が130℃未満であると、インクジェットノズルの近傍で乾燥しやすくなるため、ノズル詰まり等の不良が発生しやすくなるおそれがある。溶媒の粘度は、5cps以上、20cps以下であるとより好ましい。
インクの材料に用いる溶媒の種類の例としては、例えば、カルビトール類が挙げられる。カルビトール類の具体例としては、例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルなどのカルビトール系溶媒、あるいはこれらのセロソルブ類、カルビトール類のアセテート化合物などが挙げられる。インクの材料に用いる溶媒の種類の他例としては、例えば、ガンマブチロラクトン、ジエチレングリコールモノエチルエーテルアセテート、ブチルジグリコールアセテートなどが挙げられる。上述した溶媒は、必要に応じて2種類以上の溶媒が混合して用いられてもよい。
次に、カラーフィルタ層17を形成するインクジェット印刷法に用いるインクジェット装置(図示略)について説明する。インクジェット装置としては、インク吐出方法の相違によりピエゾ方式と熱方式とがあるが、ピエゾ方式のインクジェット装置を用いることがより好ましい。インクジェット装置は、載置台と、インクジェットヘッドと、載置台およびインクジェットヘッドを少なくとも載置面に平行な2軸方向に相対移動させる相対移動機構とを備える。載置台の載置面には、インク受容層16が形成された光透過性基材15を含む積層体が載置可能である。この積層体は、第2の電極層14、反射表示層13、および第1の電極層11の少なくとも一部が積層されていてもよいし、これらが積層されていなくてもよい。
すべてのカラーフィルタ形成領域にインクが塗布されて、インク層が形成されると、インクの種類に応じた固化方法によって、インク層が固化される。インク層は、例えば、加熱、送風、減圧などによって乾燥させられる。例えば、インクとしてUVインクが用いられる場合には、インク層は、UV光の照射によって固化される。以上により、カラーフィルタ層17が形成される。
次に、本実施形態の反射型表示装置1の作用について、カラーフィルタ層17の作用を中心として説明する。
本実施形態に係る反射型表示装置1では、各画素領域Pにおいて、第1の電極層11と第2の電極層14との間に画像信号に応じた電圧が印加されると、反射表示層13が駆動される。すなわち、第1色用サブ画素電極11r、第2色用サブ画素電極11g、および第3色用サブ画素電極11bに印加される電圧に応じて、それらに対向する部位の反射表示層13の反射率が切り替えられる。これにより、反射表示層13の表示状態が、各サブ画素領域において白、グレー、黒等に切り替えられる。
反射型表示装置1に保護層18側から入射する光は、着色部領域では、カラーフィルタを透過し、カラーフィルタに対応するサブ画素領域における反射表示層13で反射された後、入射したカラーフィルタを透過して外部に出射される。このため、第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17bが配置された各着色部領域からは、それぞれ第1色、第2色、第3色の光が、画像信号に応じた反射光量だけ出射される。このようにして、各画素領域Pからは、第1色、第2色および第3色が画像信号に応じた割合で出射される。これらの光は加色混合されて観察される。このため、反射型表示装置1では、各画素領域Pを表示単位として、カラー表示が可能である。
図3に示すように、本実施形態では、第1色カラーフィルタ17r、第2色カラーフィルタ17gおよび第3色カラーフィルタ17bは、平面視にて、各サブ矩形領域の範囲内に配置されており、隣り合うカラーフィルタが間隔βだけ離間している。すなわち、第1色カラーフィルタ17r、第2色カラーフィルタ17gおよび第3カラーフィルタ17bのX方向の幅Lxは、wX(=WX/3)よりも間隔βだけ小さい。第4色カラーフィルタ17y、第5色カラーフィルタ17cおよび第6色カラーフィルタ17mは、平面視にて、それぞれ、第1色カラーフィルタ17rと第2色カラーフィルタ17gとの間、第2色カラーフィルタ17gと第3色カラーフィルタ17bとの間、第3色カラーフィルタ17bと第1色カラーフィルタ17rとの間に配置されている。ここで、上述したように、第1色カラーフィルタ17rの端から入った光の反射光が第2色カラーフィルタ17gまたは第3色カラーフィルタ17bを通らない為のカラーフィルタの間隔はαであり、間隔βはα+10μm以下である。第4色カラーフィルタ17y、第5色カラーフィルタ17cおよび第6色カラーフィルタ17mの幅Lbは、α以下であるβ−10μmより大きく、βμm以下であり、間隔βからカラーフィルタの幅Lbを引いた長さが10μm未満となる。
この点について、比較例1のカラーフィルタと対比して説明する。図4は、比較例1のカラーフィルタの配列を示す模式的な平面図である。本実施形態の反射型表示装置1におけるカラーフィルタ層17と異なり、図4に示すカラーフィルタ層においては、第4色カラーフィルタ、第5色カラーフィルタおよび第6色カラーフィルタを配置していない。尚、図4における画素領域Pも、本実施形態における画素領域Pと同様に配置されている。このため、各画素領域Pに配置された第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17bの配列パターンは、互いに同一である。以下では、第1色カラーフィルタ17r、第2色カラーフィルタ17g、第3色カラーフィルタ17bを総称する場合に、比較例1の各カラーフィルタと表記する場合がある。
比較例1の各カラーフィルタの平面視形状において、X方向の幅LxはwX(=WX/3)よりも間隔βだけ小さい。Y方向の幅LyはwY(=WY)である。この結果、比較例1の各カラーフィルタは、本実施形態の各カラーフィルタよりも面積が小さくなっており、着色面積率も低くなっている。そして、カラーフィルタの間に隙間βがある。例えば、wX=180(μm)であり、wY=540(μm)であって、β=30μmとすると、各カラーフィルタの着色面積率Ciは、Ci=(150/180)×100=83(%)である。本実施形態では間隔βに第2のカラーフィルタを形成するため、本実施形態の各カラーフィルタの着色面積率と比較すると、比較例1の着色面積率は低くなる。
比較例1との対比によって分かるように、本実施形態において着色面積率が向上できるのは、カラーフィルタ間の非着色部領域の幅を最小0μmまで低減できるためである。本実施形態の第4色、第5色および第6色カラーフィルタは隣接した第1のカラーフィルタの2色を加法混色した色の為、光の混色による反射光量の低下を抑える事が出来る。
(第2の実施形態)
次に、第2の実施形態に係る反射型表示装置の作用について、カラーフィルタ層17の作用を中心として説明する。第2の実施形態は、カラーフィルタ層17において第1のカラーフィルタが2色であり第2のカラーフィルタが1色である点が、第1の実施形態と異なる。第2の実施形態に係る反射表示装置は、第1色、第2色、第1色と第2色を加法混色した色、および黒色が表示可能である。
図5は、第2の実施形態のカラーフィルタの配列を示す模式的な平面図である。図5に示すように、第2の実施形態のカラーフィルタ層は、第1色カラーフィルタ17r(第1のカラーフィルタ)と、第2色カラーフィルタ17b(第1のカラーフィルタ)と、第1色と第2色とを加法混色した第3色からなる第3色カラーフィルタ17m(第2のカラーフィルタ)とを有する。第1色および第2色は、非白色であって、互いに波長帯域が異なり、赤と青であることが好ましい。インクの顔料濃度は5%から10%が好ましく、電子ペーパー上に印刷する着色領域の単位面積当たりのインク液量としては、20±5(fl/μm)が好ましい。ここで青はシアンの波長領域に近くても構わない。第3色はマゼンタが好ましい。第2色がシアンの場合、マゼンタのインク顔料濃度は低い方が好ましく、インク中の顔料割合としては2%±1%程度が最適である。第1色カラーフィルタ17rと第2色カラーフィルタ17bとの間隔βは、第1の実施形態の間隔βと同じである。また、第1の実施形態と同様に、第3色カラーフィルタ17cの幅はβ−10μmより大きく、βμm以下であり、間隔βカラーフィルタの幅Lbを引いた長さが10μm未満となる。
図6は、比較例2のカラーフィルタの配列を示す模式的な平面図である。本実施形態の反射型表示装置におけるカラーフィルタ層17と異なり、図6に示すカラーフィルタ層においては、第2のカラーフィルタに係る第3色カラーフィルタ17mを配置していない。
第2の実施形態においても、第1の実施形態と同様に、間隔βに第2のカラーフィルタを形成するため、各カラーフィルタの着色面積率を向上することができる。本実施形態の第2のカラーフィルタの色は隣接した第1のカラーフィルタの2色を加法混色した色の為、光の混色による反射光量の低下を抑える事が出来る。
[実施例1]
実施例1は、上記第1の実施形態の反射型表示装置用カラーフィルタ2を備えた反射型表示装置1であって、各サブ画素サイズが、180μm×540μm、第1色カラーフィルタ、第2色カラーフィルタおよび第3色カラーフィルタの幅が150μm×540μm、第4色カラーフィルタ、第5色カラーフィルタおよび第6色カラーフィルタの幅が30μm×540μm、間隔βは30μmの例である。実施例1に係る反射型表示装置1を、以下のようにして製造した。
まず、PETからなる光透過性基材15上に、酸化インジウム錫(ITO)からなる第2の電極層14と、電気泳動表示媒体からなる反射表示層13とをこの順に積層することで、第1の積層体を形成した。光透過性基材15の厚さは25μm、屈折率は1.65であった。第2の電極層14の厚さは0.1μm、屈折率は1.70であった。
次に、ガラスからなる基材10上に、半導体としてアモルファスシリコン、配線としてアルミチタン合金からなる第1の電極層11を形成した。第1の電極層11上に、アクリル系接着剤で形成された接着層12を介して、反射表示層13を貼り合わせた。反射表示層13の反射率は、分光測色計CM−700d(商品名;コニカミノルタオプティクス(株)製)によって、2度視野、D65光源の条件で測定したところ、白色を表示した際の白反射率が44.5%、黒色を表示した際の黒反射率が2.1%であった。この状態の光透過性基材15上に、インク受容層16を形成するための塗液をダイコーターで塗工した後、この塗膜を乾燥して、平均膜厚8μmのインク受容層16を形成した。インク受容層16を形成する塗液の材料としては、ウレタン系樹脂、トルエン、水、およびIPAの混合液を用いた。乾燥には、減圧乾燥機を用いた。インク受容層16の厚さは7μm、屈折率は1.70であった。
第1の電極層11は、各サブ画素領域の大きさが、画素領域Pにおいて、X方向幅wXが180μm、Y方向幅wYが540μmとなるように形成した。
カラーフィルタ層17を形成するインクは、本実施例では、第1色には赤(以下、R)、第2色には緑(以下、G)、第3色には青(以下、B)、第4色には黄色(以下、Y)、第5色にはシアン(以下、C)、第6色にはマゼンタ(以下、M)を用いた。すなわち、着色材としてR(G、B、Y、C、M)の顔料を、バインダー樹脂、分散剤、および溶媒の混合液に混合することでインクジェット印刷用のRインク(Gインク、Bインク、Yインク、Cインク、Mインク)を製造した。第1色、第2色および第3色に係るインクは、インク重量に対して顔料6%、バインダー樹脂25%、分散材3%、溶媒の混合液が66%の重量で製造した。第4色、第5色および第6色に係るインクは、インク重量に対して顔料2%、バインダー樹脂26%、分散材3%、溶媒の混合液が69%の重量で製造した。インクジェット印刷装置としては、セイコーインスツルメンツ(株)製の12pl、180dpi(2.54cm当たり180ドット)のインクジェットヘッドが搭載されたインクジェット印刷装置を用いた。インク受容層16に塗工されたインクは、加熱乾燥機にて80度5分の条件で乾燥した。これにより、カラーフィルタ層17を形成した。
この後、カラーフィルタ層17の上に、PETフィルムからなる保護層18を積層した。このようにして、実施例1の反射型表示装置用カラーフィルタ2を備える反射型表示装置1を製造した。
[実施例2]
実施例2は、上記第2の実施形態の反射型表示装置用カラーフィルタ2を備えた反射型表示装置1であって、各サブ画素サイズが、180μm×540μm、第1色カラーフィルタおよび第2色カラーフィルタの幅が150μm×540μm、第3色カラーフィルタの幅が30μm×540μm、の例である。カラーフィルタ層17を形成するインクは、第1色には赤(以下、R)、第2色には青(以下、B)、第3色にはマゼンタ(以下、M)を用いた。第1色および第2色に係るインクは、インク重量に対して顔料6%、バインダー樹脂25%、分散材3%、溶媒の混合液が66%の重量で製造した。第3色に係るインクは、インク重量に対して顔料2%、バインダー樹脂26%、分散材3%、溶媒の混合液が69%の重量で製造した。それ以外は、上記実施例1と同様にして実施例2に係る反射型表示装置用カラーフィルタ2を備える反射型表示装置1を製造した。
[比較例1]
比較例1に係る反射型表示装置は、実施例1にあった第2のカラーフィルタに係る第4色カラーフィルタ、第5色カラーフィルタおよび第6色カラーフィルタを形成しないこと以外は、上記実施例1と同様にして製造した。
[比較例2]
比較例2に係る反射型表示装置は、実施例2にあった第2のカラーフィルタに係る第3色カラーフィルタを形成しないこと以外は、上記実施例2と同様にして製造した。
[評価]
実施例1、2、比較例1、2の反射型表示装置の評価としては、白色反射率と、色再現性との評価が行われた。色再現性は、色度L*a*b*を測定し、NTSC比を算出した。これらの評価は、分光測色計CM−700d(商品名;コニカミノルタオプティクス(株)製)によって、2度視野、D65光源、測定スポット径5mmの条件にて行われた。
(白色反射率)
白色反射率は、第1の電極層の各サブ画素電極を白色に駆動した状態で、反射率を測定した。尚、実施例2、比較例2に関しては白色表示ができないため、表示色の色度のみ測定した。
(色再現性)
実施例1および比較例1の色再現性の評価では、第1色、第2色、第3色を表示するサブ画素電極をそれぞれ個別に駆動して「赤」、「緑」、「青」の表示が行われた場合の各表示色の分光測定に基づいてL*、a*、b*、Yの測定値を求め、当該測定値に基づいてNTSC比を求めた。ここで、L*、a*、b*は、L*a*b*色空間におけるL*座標、a*座標、b*座標の値、YはXYZ色空間におけるY座標の値である。Cは彩度の値でa*の2乗とb*の2乗を足した値を平方根とした値である。
実施例2および比較例3の色再現性の評価では、第1色、第2色、第1色と第2色の混合色を表示するサブ画素電極をそれぞれ個別に駆動して「赤」、「青」、「紫」の表示が行われた場合の表示色の分光測定に基づいて各表示色のL*、a*、b*、Yの測定値を求めた。ここで、L*、a*、b*は、L*a*b*色空間におけるL*座標、a*座標、b*座標の値、YはXYZ色空間におけるY座標の値である。Cは彩度の値でa*の2乗とb*の2乗を足した値を平方根とした値である。
(外観ムラ)
外観ムラについても評価を行った。ムラについて説明する。ムラとはディスプレイの面内に目視で見える色の濃淡である。ムラの原因は着色領域の位置と画素サイズとの違いによって着色領域を透過する光による周期的な色度差によるものや、着色領域表面の凹凸によって見える反射のものがあるが、評価を行ったムラは前者の透過によって見えるムラである。
ムラの評価方法について述べる。ムラの官能評価は、30名の検査員が、ムラを視認できるかどうかで行った。白色蛍光灯下で目視確認を行い、90%以上の検査員がスジ状のムラが見えないと判定した場合に○(good)と記載し、10%を超える検査員がスジ状のムラが見えると判定した場合に×(no good)と記載した。
下記表1に、実施例1、2、比較例1、2の評価結果を示す。
Figure 2018101050
表1に記載されたように、実施例1、比較例1の白色反射率の測定値は、それぞれ、9.8%、12.9%であった。すなわち、実施例1に係る反射型表示装置は着色面積率が高いため、白色反射率が低くなることがわかった。
また、表1に記載されたように、実施例1、比較例1の色再現性を示すNTCS比の測定値は、それぞれ、15.7%、11.8%であった。このことから、実施例1に係る反射型表示装置は比較例1に係る反射型表示装置と比べ、非常に鮮やかなカラーを表示する事が出来ることがわかった。また、表1に記載されたように、実施例2、比較例2の彩度Cの測定値は、それぞれ、赤表示で35.4、29.5であり、青表示で28.1、28.6であり、紫表示で33.2、30.6であった。このことから、実施例1に係る反射型表示装置は比較例1と比べ、青表示は同等であり、赤表示と紫表示で非常に鮮やかなカラーを表示する事が出来ることがわかった。
また、表1に記載されたように、外観ムラについて、実施例1、2に係る反射型表示装置では〇判定となり、比較例1、2に係る反射型表示装置では×判定となった。
以上、本発明の好ましい実施形態、変形例を実施例とともに説明したが、本発明はこれら実施形態および実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
本発明に係る反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置は、例えば、カラー表示を行う反射型表示装置などに好適に利用できる。
1 反射型表示装置
2 反射型表示装置用カラーフィルタ
10 基材
11 第1の電極層
11r 第1色用サブ画素電極
11g 第2色用サブ画素電極
11b 第3色用サブ画素電極
12 接着層
13 反射表示層
13a、13b、15a 表面
13R 第1サブ画素領域
13G 第2サブ画素領域
13B 第3サブ画素領域
14 第2の電極層
15 光透過性基材(基板)
16 インク受容層
17 カラーフィルタ層
17r 第1色カラーフィルタ
17g 第2色カラーフィルタ
17b 第3色カラーフィルタ
17y 第4色カラーフィルタ
17c 第5色カラーフィルタ
17m 第6色カラーフィルタ
18 保護層
P 画素領域
WX 画素領域のX方向幅
wX サブ画素領域のX方向幅
WY 画素領域のY方向幅
wY サブ画素領域のY方向幅

Claims (4)

  1. 少なくとも基材、複数のサブ画素電極からなる第1の電極層、接着層、反射表示層および第2の電極層とともに反射型表示装置に設けられる反射型表示装置用カラーフィルタであって、
    少なくとも光透過性基材と、第1方向に交互に配置される第1のカラーフィルタおよび第2のカラーフィルタを複数含むカラーフィルタ層とを有し、
    前記第1のカラーフィルタは、前記光透過性基材上において、前記サブ画素電極によって決定される独立して反射率が変更可能な複数のサブ画素領域に対応して配置され、前記第1方向に隣り合う前記第1のカラーフィルタは異なる透過波長帯域を持ち、かつ、下記式(1)を満たす間隔βで配置され、
    前記第2のカラーフィルタは、前記光透過性基材上において、前記隣り合う前記第1のカラーフィルタの間に、前記サブ画素領域の境界をまたいで配置され、前記第1方向に隣接する前記第1のカラーフィルタの2色を加法混色した色を有し、かつ、前記間隔βから前記第2のカラーフィルタの前記第1方向の幅を引いた長さが10μm未満である、反射型表示装置用カラーフィルタ。
    5(μm)≦β≦α+10(μm)・・・(1)
    ただしα=Dbtanθb+Dctanθc
    ここで、
    θb=Arcsin(1/Nb)
    θc=Arcsin(1/Nc)
    Db:前記光透過性基材の厚さ
    Dc:前記第2の電極層の厚さ
    θb:光が前記光透過性基材と空気との界面で全反射する角度(臨界角)
    θc:光が前記第2の電極層と空気との界面で全反射する角度(臨界角)
    Nb:前記光透過性基材の屈折率
    Nc:前記第2の電極層の屈折率
    である。
  2. 前記第1のカラーフィルタは、それぞれ、赤色、緑色および青色のカラーフィルタであり、
    赤色の前記第1のカラーフィルタと緑色の前記第1のカラーフィルタとの前記間隔βには、黄色の前記第2のカラーフィルタを有し、
    緑色の前記第1のカラーフィルタと青色の前記第1のカラーフィルタとの前記間隔βには、シアンの前記第2のカラーフィルタを有し、
    青色の前記第1のカラーフィルタと赤色の前記第1のカラーフィルタとの前記間隔βには、マゼンタの前記第2のカラーフィルタを有する、請求項1に記載の反射型表示装置用カラーフィルタ。
  3. 前記第1のカラーフィルタは、それぞれ、赤色及び青色のカラーフィルタであり、
    赤色の前記第1のカラーフィルタと青色の前記第1のカラーフィルタとの前記間隔βには、マゼンタの前記第2のカラーフィルタを有する、請求項1に記載の反射型表示装置用カラーフィルタ。
  4. 少なくとも基材と、第1の電極層と、接着層と、反射表示層と、第2の電極層と、請求項1〜3のいずれか1項に記載の反射型表示装置用カラーフィルタとを備える、反射型表示装置。
JP2016246823A 2016-12-20 2016-12-20 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置 Pending JP2018101050A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246823A JP2018101050A (ja) 2016-12-20 2016-12-20 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246823A JP2018101050A (ja) 2016-12-20 2016-12-20 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置

Publications (1)

Publication Number Publication Date
JP2018101050A true JP2018101050A (ja) 2018-06-28

Family

ID=62714288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246823A Pending JP2018101050A (ja) 2016-12-20 2016-12-20 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置

Country Status (1)

Country Link
JP (1) JP2018101050A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389526B1 (ja) * 2023-07-12 2023-11-30 日本インフラ計測株式会社 水位計の配置の最適化方法、マンホールの水位の予測方法およびマンホールの水位の予測システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389526B1 (ja) * 2023-07-12 2023-11-30 日本インフラ計測株式会社 水位計の配置の最適化方法、マンホールの水位の予測方法およびマンホールの水位の予測システム
JP7453719B1 (ja) 2023-07-12 2024-03-21 日本インフラ計測株式会社 水位計の配置の最適化方法、マンホールの水位の予測方法およびマンホールの水位の予測システム

Similar Documents

Publication Publication Date Title
JP6759801B2 (ja) カラーフィルタ、反射型表示装置、およびカラーフィルタの製造方法
US11467465B2 (en) Reflective display apparatus
KR101557602B1 (ko) 컬러 필터 및 그것을 구비하는 표시 장치
KR101986870B1 (ko) 컬러 반사형 표시 장치 및 그 제조 방법
CN102934018A (zh) 彩色显示元件的制造方法以及彩色显示元件
KR20150066523A (ko) 반사형 컬러 디스플레이
JP2018101050A (ja) 反射型表示装置用カラーフィルタおよびこれを備える反射型表示装置
JP2018189771A (ja) 表示装置およびその製造方法
WO2018025956A1 (ja) カラーフィルタおよび反射型表示装置
JP6102244B2 (ja) 反射型カラーディスプレイ
JP6094244B2 (ja) 反射型表示装置及びその製造方法
JP6447503B2 (ja) カラーフィルタを備える反射型表示装置
JP2018205413A (ja) カラーフィルタ及びそれを備えた反射型表示装置
US20240141139A1 (en) Display device
CN104570539B (zh) 电泳显示装置
JP2018077425A (ja) 反射型表示装置
JP2017095601A (ja) 着色インク及びカラーフィルタ及び反射型表示装置
JP6036003B2 (ja) 表示パネル
JP2013088750A (ja) 反射型カラー表示装置及びその製造方法