JP2018098520A - 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 - Google Patents

高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 Download PDF

Info

Publication number
JP2018098520A
JP2018098520A JP2018022667A JP2018022667A JP2018098520A JP 2018098520 A JP2018098520 A JP 2018098520A JP 2018022667 A JP2018022667 A JP 2018022667A JP 2018022667 A JP2018022667 A JP 2018022667A JP 2018098520 A JP2018098520 A JP 2018098520A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
base
emitter
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018022667A
Other languages
English (en)
Other versions
JP6564081B2 (ja
Inventor
渡部 武紀
Takenori Watabe
武紀 渡部
隼 森山
Hayato Moriyama
隼 森山
洋 橋上
Hiroshi Hashigami
洋 橋上
大塚 寛之
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018022667A priority Critical patent/JP6564081B2/ja
Publication of JP2018098520A publication Critical patent/JP2018098520A/ja
Application granted granted Critical
Publication of JP6564081B2 publication Critical patent/JP6564081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

【課題】ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、エミッタ領域の接触による並列抵抗の低下を軽微にできる太陽電池を提供する。
【解決手段】第一導電型を有する半導体基板10の第一主表面に、第一導電型を有するベース層13、及び、隣接し第二導電型を有するエミッタ層12を有し、ベース電極25と、エミッタ電極24とを有する太陽電池であって、前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を有し、前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように配置された第一の絶縁膜43を有し、少なくとも前記第一の絶縁膜の上に位置するベース用バスバー電極34を有し、前記第一の絶縁膜の間隙の距離が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする。
【選択図】図1

Description

本発明は高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法に関する。
単結晶や多結晶半導体基板を用いた比較的高い光電変換効率を有する太陽電池構造の一つとして、正負の電極をすべて非受光面(裏面)に設けた裏面電極型太陽電池がある。裏面電極型太陽電池1100の裏面の概観を図11に示す。基板1110の裏面には、エミッタ層1112およびベース層1113が交互に配列され、それぞれの層上に沿って電極(集電電極)(エミッタ電極1124、ベース電極1125)が設けられている。さらに、これらの電極から得られる電流をさらに集電するためのバスバー電極(エミッタ用バスバー電極1134、ベース用バスバー電極1135)が設けられている。機能上、バスバー電極は集電電極と直交していることが多い。エミッタ層1112の幅は数mm〜数百μm、ベース層1113の幅は数百μm〜数十μmである。また、集電電極(エミッタ電極1124、ベース電極1125)の幅は数百〜数十μm程度が一般的であり、該電極はフィンガー電極と呼ばれることが多い。
裏面電極型太陽電池1100の断面構造の模式図を図12に示す。基板の裏面の最表層近傍にエミッタ層1112およびベース層1113が形成されている。エミッタ層1112およびベース層1113の各層厚はせいぜい1μm程度である。各層上にはフィンガー電極1124、1125が設けられ、非電極領域(電極が形成されていない領域)の表面は窒化シリコン膜や酸化シリコン膜等の誘電体膜(裏面保護膜1141)で覆われる。太陽電池1100の受光面側には反射損失を低減する目的で、反射防止膜1151が設けられる。
裏面電極型太陽電池における集電電極の配線抵抗を低減するため、複数のバスバーを設ける方法が特許文献1(特に図9)で公知となっている。これは、相反する集電電極とバスバーを絶縁膜で隔離するものであり、「バスバー電極が基板と直接接する領域が多く、シャントしやすくなってしまう」(特許文献1の[0040]段落)とされている。さらにこれの解決手段として特許文献1では、バスバーに「腕」を設け、バスバー直下全域に絶縁膜を設けるものである(特に図1)。
特開2016−072467号公報
特許文献1の方法はバスバー電極と基板の直接接触は回避できるが、その分絶縁材料やバスバー電極材料を多く消費するという問題があった。その一方で、裏面電極型太陽電池における集電電極の配線抵抗を低減するため、複数のバスバーを設ける方法において、公知の方法がどの程度光電変換効率に影響を及ぼすのかは、これまで明らかになっていなかった。
本発明は、このような事情に鑑みなされたもので、絶縁材料の消費を抑えるとともに、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる太陽電池を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を有し、前記ベース層と電気的に接続されるベース電極と、前記エミッタ層と電気的に接続されるエミッタ電極とを有する太陽電池であって、前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を有し、前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように配置された第一の絶縁膜を有し、少なくとも前記第一の絶縁膜の上に位置するベース用バスバー電極を有し、前記第一の絶縁膜の間隙の距離が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする太陽電池を提供する。
このような太陽電池であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながらも、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい。
このとき、前記ベース電極と前記ベース用バスバー電極は電気的に接続していることが好ましい。
このように、ベース電極とベース用バスバー電極が電気的に接続していることにより、より効率的に集電することができ、太陽電池をより高効率とすることができる。
また、前記ベース層の前記半導体基板の第一主表面に表れる形状が細長であり、その幅が50μm以上200μm以下であることが好ましい。
このようなベース層を有することにより、効率的にベース層からの集電を行うことができる。
また、前記ベース電極を覆う第二の絶縁膜をさらに有し、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を有することが好ましい。
このような太陽電池であれば、エミッタ層からの集電も効率よく行うことができる。
また、本発明は、上記の太陽電池が内蔵されていることを特徴とする太陽電池モジュールを提供する。
このように、本発明の太陽電池は太陽電池モジュールに内蔵することができる。
また、本発明は、上記の太陽電池モジュールを有することを特徴とする太陽光発電システムを提供する。
このように、本発明の太陽電池を内蔵した太陽電池モジュールは、太陽光発電システムに用いることができる。
また、本発明は、第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を形成する工程と、前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を形成する工程と、前記ベース層と電気的に接続されるベース電極を形成する工程と、前記エミッタ層と電気的に接続されるエミッタ電極を形成する工程と、を有する太陽電池の製造方法であって、前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように第一の絶縁膜を形成する工程と、少なくとも前記第一の絶縁膜の上にベース用バスバー電極を形成する工程とを有し、前記第一の絶縁膜を形成する工程において、前記第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として前記絶縁膜を形成することを特徴とする太陽電池の製造方法を提供する。
このような太陽電池の製造方法であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にすることができる太陽電池を製造することができ、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい方法である。
このとき、前記ベース電極と、前記ベース用バスバー電極を、電気的に接続させることが好ましい。
このように、ベース電極とベース用バスバー電極を電気的に接続させることにより、より効率的に集電することができる太陽電池を製造することができる。
また、前記ベース層の前記半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とすることが好ましい。
このようなベース層を形成することにより、効率的にベース層からの集電を行うことができる。
また、前記ベース電極を覆う第二の絶縁膜を形成する工程と、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を形成することが好ましい。
このようなエミッタ用バスバー電極を形成すれば、エミッタ層からの集電も効率よく行うことができる。
本発明の太陽電池及び太陽電池の製造方法であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい。また、絶縁膜印刷用製版の軽微なパターン変更のみで、バスバー電極―ベース電極間の電気的接触は維持しながら、ベース用バスバー電極―エミッタ層間のコンタクト抵抗を向上させ、変換効率を向上できる。また、最隣接絶縁膜間距離を大きくすれば、絶縁膜形成時の位置精度を荒くすることができ、位置合わせに要する時間を短縮できるため生産性も向上する。また、本発明の太陽電池の製造方法であれば、そのような高光電変換効率太陽電池を製造することができる。
本発明に係る、裏面電極型太陽電池の一例の概観図である。 本発明に係る、裏面電極型太陽電池の一例におけるベース電極―ベース用バスバー電極近傍の断面模式図である。 本発明に係る、裏面電極型太陽電池のベース電極端近傍の一例を示す断面模式図である。 本発明に係る、裏面電極型太陽電池の製造方法の一例を示す断面模式図である。 本発明に係る、裏面電極型太陽電池の製造方法の一例を示す模式図である。 本発明に係る、太陽電池モジュールの概観図である。 本発明に係る、太陽電池モジュールの裏面内部模式図である。 本発明に係る、太陽電池モジュールの断面模式図である。 本発明に係る、太陽光発電システムの模式図である。 本発明に係る、裏面電極型太陽電池の最隣接絶縁膜間距離と変換効率の関係を示した図である。 一般的な裏面電極型太陽電池の概観図である。 一般的な裏面電極型太陽電池の断面模式図である。
以下の詳細な説明では、本発明の全体の理解、および特定の具体例でどのように実施するかを提供するために、多くの特定の細部が説明される。しかしながら、本発明は、それらの特定の細部無しに実施できることが理解されるであろう。以下では、公知の方法、手順、および技術は、本発明を不明瞭にしないために、詳細には示されない。本発明は、特定の具体例について特定の図面を参照しながら説明されるが、本発明はこれに限定されるものでは無い。ここに含まれ記載された図面は模式的であり、本発明の範囲を限定しない。また図面において、図示目的で幾つかの要素の大きさは誇張され、それゆえに縮尺通りではない。
本発明の太陽電池の構造を、図1及び図2を参照して説明する。図1は、本発明に係る、太陽電池(裏面電極型太陽電池)の裏面構造の一例を示す上面模式図である。図1中のA−A’部分の断面模式図を図2に示す。
図1に示したように、太陽電池100は、第一導電型を有する半導体基板10の第一主表面(裏面、非受光面)に、第一導電型を有するベース層13、及び、ベース層13に隣接し、第一導電型と反対の導電型である第二導電型を有するエミッタ層12を有する。また、太陽電池100は、ベース層13と電気的に接続されるベース電極25と、エミッタ層12と電気的に接続されるエミッタ電極24とを有する。本発明の太陽電池100は、さらに、半導体基板10の第一主表面上において、ベース層13及び前記エミッタ層12に接する誘電体膜42を有している(図2参照)。
太陽電池100は、さらに、エミッタ電極24を覆うとともに、誘電体膜42上に位置し、少なくともベース層13上において間隙を有するように配置された第一の絶縁膜43を有する。太陽電池100は、少なくとも第一の絶縁膜43の上に位置するベース用バスバー電極35を有する。本発明の太陽電池100では、第一の絶縁膜43の間隙の距離44が40μm以上であり、(W+110)μm以下(但し、Wは間隙方向のベース層13の幅)である。
太陽電池100は、ベース電極25を覆う第二の絶縁膜47をさらに有し、少なくとも第二の絶縁膜47の上に位置し、エミッタ電極24と電気的に接続するエミッタ用バスバー電極34を有することが好ましい。
図1、2に示しているように、ベース電極25はベース用バスバー電極35と接続されていることが好ましい。また、ベース層13の半導体基板10の第一主表面に表れる形状が細長であり、その幅(すなわち、ベース領域幅W)が50μm以上200μm以下であることが好ましい。該ベース用バスバー電極35は、その機能上、半導体基板10との電気的接触は必要ないこと、および、誘電体膜であり絶縁体であることが多い裏面保護膜42の存在により、ベース用バスバー電極35と、エミッタ層12との電気的接触の影響の大きさに関してはこれまで調べられてこなかった。本発明者らの鋭意研究の結果、第一の絶縁膜43の間隙の距離44、すなわち、ベース電極−バスバー接続部における最隣接絶縁膜間距離は、40μm以上(W+110)μm以下であれば太陽電池特性に大きな影響を及ぼさず、さらに、40μm以上Wμm以下であれば太陽電池特性に影響を及ぼさないことが判明した。間隙がWμm以下、すなわち、第一の絶縁膜43の間隙の距離44がベース層13の幅と同じかそれよりも狭ければ、ベース用バスバー電極35とエミッタ層12の領域の接触抵抗が完全に無視できる。しかしながら、この間隙の距離44が40μm未満だと、ベース電極25とベース用バスバー電極35が接触できなくなる可能性が生じる。一方、最隣接絶縁膜間距離がWμmを超えるとベース用バスバー電極35とエミッタ層12の領域の関係において必ず重複する部分が生じてしまう。しかしながら、間隙の距離44がWμmを超えても(W+110)μm以下の範囲であれば太陽電池特性に大きな影響を及ぼさないことが判明した。(W+110)μmを超えると、バスバーとエミッタ領域の接触抵抗が無視できなくなり、太陽電池特性が低下する。以上のように、ベース電極接続部の最隣接絶縁膜間距離44を40μm以上(W+110)μm以下、より好ましくは40μm以上Wμm以下とすることで、高い光電変換効率の太陽電池を得ることができる。
以下に、具体的な本発明の太陽電池製造方法を、N型基板の場合を例に、図4を用いて説明する。
まず、図4(a)に示したように、第一導電型(この例ではN型)を有する半導体基板110を準備する。この半導体基板110は、例えば、以下のようにして準備することができる。まず、高純度シリコンにリン、ヒ素、又はアンチモンのような5価元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}N型シリコン基板(半導体基板)110を準備する。次に、半導体基板110の表面のスライスダメージを、濃度5〜60%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、ふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法いずれの方法によって作製されてもよい。基板は必ずしも単結晶シリコンである必要はなく、多結晶シリコンでもかまわない。引き続き、半導体基板110の表面にテクスチャと呼ばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度1〜10%、温度60〜100℃)中に10分から30分程度浸漬することで作製される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させてもよい。
次に、上記のようにして準備した半導体基板110の第一主表面に、第一導電型(この例ではN型)を有するベース層、及び、ベース層に隣接し、第一導電型と反対の導電型である第二導電型(この例ではP型)を有するエミッタ層を形成する(図4(b)〜(f)参照)。この工程は、具体的には、以下のようにして行うことができる。
まず、上記のようにテクスチャを形成した半導体基板110を、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。過酸化水素を混合し清浄度を向上させてもよい。
この半導体基板110の第一主表面に、図4(b)に示すように、エミッタ層112を形成する。エミッタ層112は半導体基板110と逆の導電型(この場合P型)で厚みが0.05〜1μm程度である。エミッタ層112はBBr等を用いた気相拡散によって形成できる。半導体基板110を2枚一組として重ね合わせた状態で熱処理炉に戴置し、BBrと酸素の混合ガスを導入して950〜1050℃で熱処理する。キャリアガスとしては窒素やアルゴンが好適である。また、ホウ素源を含有させた塗布剤を第一主表面全面に塗布し、950〜1050℃で熱処理する方法で形成が可能である。塗布剤としては例えば、ホウ素源としてホウ酸1〜4%、増粘剤としてポリビニルアルコール0.1〜4%、を含有させた水溶液が使用できる。
エミッタ層112を形成したら、図4(c)に示すように、次工程であるベース層形成のためのマスク(バリア膜)151を両主表面上に形成する。マスク151としては酸化シリコン膜もしくは窒化シリコン膜等を用いることができる。CVD法を用いれば、導入するガス種を適宜選択することにより、いずれの膜も形成可能である。酸化シリコン膜の場合は、半導体基板110を熱酸化しても形成できる。半導体基板110を酸素雰囲気中950〜1100℃、30分〜4時間熱処理することで100nm程度のシリコン熱酸化膜が形成される。この熱処理は上記エミッタ層112の形成のための熱処理に引き続いて同一バッチ内で実施してもかまわない。次いで、図4(d)に示すように、ベース領域となる部分のマスクを開口する(マスク開口部152)。具体的には、開口幅が50〜200μm、0.6〜2.0mm程度の間隔で平行線状に開口する。開口にはフォトリソ法やエッチングペーストのような化学的な方法でもよいし、レーザーやダイサーのような物理的な方法いずれを用いてもかまわない。
マスクを開口した後、次に、図4(e)に示すように、50〜90℃に加熱したKOH、NaOH等のアルカリ水溶液中に半導体基板110を浸漬し、開口部152に位置する不要なエミッタ層112を除去(エッチング)する(不要なエミッタ層が除去されたマスク開口部153)。
次に、図4(f)に示すように、ベース層113を形成する。ベース層113の形成にはオキシ塩化リンを用いた気相拡散法が使用できる。830〜950℃、オキシ塩化リンと窒素および酸素混合ガス雰囲気下で半導体基板110を熱処理することで、ベース層113となるリン拡散層(N層)が形成される。気相拡散法の他、リンを含有する材料をスピン塗布したり、印刷したりしてから熱処理する方法でも形成可能である。
ベース層113の形成では、ベース層113の半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とすることが好ましい。具体的には、マスク開口部152を形成する際にその形状及び大きさを調整することによって容易にベース層の形状及び大きさの調整を行うことができる。
拡散層形成の後、マスク151および基板の表面に形成されるガラスをふっ酸などで除去する(図4(f)参照)。
次に、図4(g)に示すように、半導体基板110の第一主表面上において、ベース層113及びエミッタ層112に接する誘電体膜を形成する。このとき、同時に、又は前後いずれかの工程として、第二主表面に反射防止膜を形成してもよい。
第二主表面の反射防止膜141としては、窒化シリコン膜や酸化シリコン膜等が利用できる。窒化シリコン膜の場合はプラズマCVD装置を用い約100nm製膜する。反応ガスとして、モノシラン(SiH)およびアンモニア(NH)を混合して用いることが多いが、NHの代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、さらには、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。酸化シリコン膜の場合は、CVD法でも形成できるが、熱酸化法により得られる膜の方が高い特性が得られる。表面の保護効果を高めるため、あらかじめ基板表面に酸化アルミニウム膜を形成してから窒化シリコン膜や酸化シリコン膜等を形成してもよい。
第一主表面にも、表面保護膜として窒化シリコン膜や酸化シリコン膜等の誘電体膜142が利用できる。誘電体膜142の膜厚は50〜250nmとするのが好適である。第二主表面(受光面)側と同様、窒化シリコン膜の場合はCVD法で、酸化シリコン膜の場合は熱酸化法やCVD法で形成が可能である。また、表面の保護効果を高めるため、あらかじめ基板表面に酸化アルミニウム膜を形成してから、窒化シリコン膜、酸化シリコン膜等を形成してもよい。
次いで、図4(h)に示すように、ベース層113と電気的に接続されるベース電極125を、例えばスクリーン印刷法で形成する。例えば、開口幅30〜100μm、0.6〜2.0mm間隔の平行線パターンを有する製版を用意しておき、Ag粉末とガラスフリットを有機物バインダと混合したAgペーストをベース層113に沿って印刷する。同様にして、エミッタ層112と電気的に接続されるエミッタ電極124としてAgペーストを印刷する。ベース電極用Agペーストとエミッタ電極用Agペーストは同じでもよいし違うものを使用してもよい。以上の電極印刷の後、熱処理により窒化シリコン膜等にAg粉末を貫通させ(ファイアースルー)、電極とシリコンを導通させる。なお、ベース層用電極およびエミッタ層用電極の焼成は別々に行うことも可能である。焼成は、通常700〜850℃の温度で1〜5分間処理することで行われる。
次に絶縁膜及びバスバー電極を形成する工程について、図5を参照して説明する。図5(a)は上記図4(h)の工程後の半導体基板110の上面図である。エミッタ領域(エミッタ層112)上にエミッタ電極124が、ベース領域(ベース層113)上にベース電極125が、それぞれ形成されている。この半導体基板110に絶縁材料(硬化させると第一の絶縁膜143となる)をパターン状に塗布する。このとき、第一の絶縁膜143は、エミッタ電極124を覆うとともに、誘電体膜142上に位置するように形成する。また、第一の絶縁膜143は、少なくともベース層113上において間隙を有するように形成する。このとき、Nバスバー(この場合ベース電極と接続するベース用バスバー電極)がエミッタ電極と導通しないように、さらに、Pバスバー(この場合エミッタ電極と接続するエミッタ用バスバー電極)がベース電極と導通しないように、例えば図5(b)のようなパターンで塗布すればよい。塗布にはスクリーン印刷法等を用いることができる。この第一の絶縁膜を形成する工程において、ベース領域幅をWとしたとき、ベース電極−Nバスバー接続部の第一の絶縁膜の間隙の距離(最隣接絶縁膜間距離)144は、40μm以上(W+110)μm以下とする。この最隣接絶縁膜間距離はより好ましくは40〜Wμmである。これにより、高い光電変換効率の太陽電池を得ることができる。絶縁材料としては、シリコーン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂及びポバール樹脂から一つ以上選択された樹脂を含有する材料からなるものが使用できる。以上のような絶縁材料を例えばスクリーン印刷法等を用いて塗布した後、100〜400℃で1〜60分程度硬化させる。
このとき、同時に、又は前後して、ベース電極を覆う第二の絶縁膜147を形成することができる。
最後に、少なくとも第一の絶縁膜の上にベース用バスバー電極を形成する。このとき、ベース電極と、ベース用バスバー電極を、電気的に接続させることが好ましい。また、少なくとも第二の絶縁膜147の上に位置し、エミッタ電極124と電気的に接続するエミッタ用バスバー電極134を形成することが好ましい。図5(c)のように、Nバスバー(ベース用バスバー電極)135がベース電極125と、Pバスバー(エミッタ電極と接続するエミッタ用バスバー電極)134がエミッタ電極124と接続され、Nバスバー135とエミッタ電極124ならびにPバスバー134とベース電極125は絶縁層を介した構成となる。バスバー材料としては、低温硬化型の導電性ペーストが使用できる。具体的には、Ag、Cu、Au、Al、Zn、In、Sn、Bi、Pbから選択される1種類以上の導電性物質と、さらにエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、フェノール樹脂、シリコーン樹脂から選択される1種類以上の樹脂を含有する材料からなるものが使用できる。以上のような材料を例えばスクリーン印刷法やディスペンサー等を用いてパターン状に塗布した後、100〜400℃で1〜60分程度硬化させる。
本発明では、上記の第一の絶縁膜を形成する工程において、第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として絶縁膜を形成する。具体的には、絶縁材料の塗布の際に、第一の絶縁膜の間隙の距離がそのようになるように調整すればよい。
以上の方法で作製した太陽電池100のベース層端近傍の断面模式図を図3に示す。以上の方法で作製した場合は、ベース層端114はエミッタ層112とベース層113の境界に相当する。注目すべきはベース層端114およびベース電極125に対する絶縁膜143の位置関係である。図3(b)のように、エミッタ層112が絶縁膜143で完全に覆われていれば高い太陽電池特性を示すことができる。さらに本発明によれば、図3(a)のようにエミッタ層112がある程度露出(すなわち、エミッタ層112が、絶縁膜143を介さない領域があり、ベース用バスバー電極135と誘電体膜142のみを介して隣接する状態)していても、誘電体膜142の存在により、エミッタ層112とベース用バスバー電極135の導通はある程度回避され、太陽電池特性の低下は軽微なものとできる。
以上、N型基板の場合を例に述べたが、P型基板の場合はエミッタ層形成にリン、ヒ素、アンチモン等を拡散させ、ベース層形成にはホウ素、Al等を拡散させればよく、本発明の方法は利用可能である。
上記方法により製造された太陽電池は、太陽電池モジュールの製造に用いることができる。上記方法により製造された太陽電池が内蔵された太陽電池モジュールの一例の概観を図6に示す。上記の方法により作製された太陽電池400は、太陽電池モジュール460内ではタイル状に敷き詰められた構造をなす。
太陽電池モジュール460内では、隣接する太陽電池400どうしが数枚〜数10枚電気的に直列に接続され、ストリングと呼ばれる直列回路を構成している。ストリングの概観を図7に示す。図7は、通常人目に触れることのないモジュール内部裏面側の模式図に相当する。また、フィンガー電極やバスバー電極は図示されていない。直列接続にするため、図7に示したように、隣接する太陽電池400のPバスバー(基板のP型層に接合したフィンガー電極に接続されているバスバー電極)とNバスバー(基板のN型層に接合したフィンガー電極に接続されているバスバー電極)同士がリード線461などで接続されている。
太陽電池モジュール460の断面模式図を図8に示す。上述のようにストリングは、複数の太陽電池400を、バスバー電極422にリード線461を接続することで構成される。該ストリングは、通常EVA(エチレンビニルアセテート)などの透光性の充填剤472で封止され、非受光面側はPET(ポリエチレンテレフタラート)などの耐候性樹脂フィルム473、受光面はソーダライムガラスなどの透光性で機械的強度が強い受光面保護材料471で覆われている。充填剤472としては、上記EVAの他、ポリオレフィン、シリコーンなどが使用できる。
さらにこの太陽電池モジュールを用いて太陽光発電システムを製造、構成することもできる。図9は本発明のモジュールを連結した太陽光発電システムの基本構成を示したものである。複数の太陽電池モジュール16が配線15で直列に連結され、インバータ17を経由して外部負荷回路18に発電電力を供給する。図9には示していないが、当該システムは発電した電力を蓄電する2次電池をさらに備えていて良い。
以下に、本発明の実施例及び比較例をあげてさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例)
本発明の方法を用いて、太陽電池の作製を行った。
まず、厚さ200μm、比抵抗1Ω・cmの、リンドープ{100}N型アズカットシリコン基板10枚を準備した(図4(a)参照)。このシリコン基板に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、72℃の水酸化カリウム/2−プロパノール水溶液中に浸漬しテクスチャ形成を行い、引き続き75℃に加熱した塩酸/過酸化水素混合溶液中で洗浄を行った。
次いで、基板を2枚一組として重ね合わせた状態で熱処理炉に戴置し、BBrと酸素とアルゴンの混合ガスを導入して1000℃で10分熱処理を行った。これにより、エミッタ層を形成した(図4(b)参照)。四探針法で測定した結果、シート抵抗は50Ωとなった。
これを1000℃3時間酸素雰囲気中で熱酸化してマスク形成した(図4(c)参照)。
裏面のマスクをレーザーで開口した(図4(d)参照)。レーザー源はNd:YVOの第二次高調波を用いた。開口パターンは、間隔1.2mm平行線状とした。
これを80℃KOHに浸漬して開口部のエミッタ層を除去した(図4(e)参照)。
次に、オキシ塩化リン雰囲気下、870℃で受光面同士を重ね合わせた状態で40分間熱処理し、開口部にリン拡散層(ベース層)を形成した(図4(f)参照)。この後、濃度12%のふっ酸に浸漬することで表面ガラスを除去した。
以上の処理の後、プラズマCVD装置を用いて窒化シリコン膜を両面に形成した(図4(g)参照)。膜厚は表裏とも100nmとした。この段階でベース層幅を顕微鏡で測定したところ、概ね190μmであった。
次に、スクリーン印刷機を用いて、Agペーストをベース層上およびエミッタ層上にそれぞれ印刷して乾燥した(図4(h)参照)。これを780℃の空気雰囲気下で焼成した。
この基板に、スクリーン印刷機を用い、絶縁材料をパターン状に印刷した。絶縁材料としては、信越化学工業株式会社製のシリコーンを用いた。この際、ベース電極を挟む絶縁膜の開口幅をそれぞれ30、40、100、150、200、300、400μmとした印刷製版を用意しておき、それぞれの製版で印刷した。ベース層幅は190μmであるため、開口幅30、40、100、150、200μmはNバスバー直下のエミッタ領域が絶縁膜で完全に塞がっているのが顕微鏡にて観察された。また、30、40μmはベース電極が絶縁膜に完全に覆われてしまっている箇所も散見された。一方、300、400μmはNバスバー直下にエミッタ領域が露出した。これらを200℃のベルト炉にて5分間硬化させた。
最後に低温硬化型のAgペーストを直線状に6本スクリーン印刷機で印刷し、300℃のベルト炉にて30分間硬化させ、バスバーとした。
以上のようにして得られた太陽電池のサンプルについて、山下電装社製ソーラーシミュレータを用いてAM1.5スペクトル、照射強度100mW/cm、25℃の条件下で、電流電圧特性を測定し光電変換効率を求めた。また、得られた太陽電池のベース電極を挟む最隣接絶縁膜間距離を、顕微鏡を用い実測した。
得られた結果を、最隣接絶縁膜間距離と変換効率の関係として図10に示す。40〜200μmであれば変換効率の低下は認められない。Nバスバーがエミッタ領域と絶縁膜によって完全に隔離されたためである。なお、本実施例の場合、ベース層幅Wは上記のように約190μmであるので、最隣接絶縁膜間距離200μmは(W+10)μmに相当する。最隣接絶縁膜間距離を300μm(すなわち、(W+110)μm)とすると低下がみられるが低下量はわずかである。Nバスバー―エミッタ領域の接触抵抗が変換効率に及ぼす影響が小さいためである。400μmでは大幅に低下がみられる。Nバスバー―エミッタ領域の接触抵抗の影響が無視できなくなるためである。また、30μmでの大幅な低下は、ベース電極が絶縁膜に完全に覆われてしまい直列抵抗が上昇してしまったためである。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1. 第一導電型を有する半導体基板の第一主表面に、前記第一主表面に形成された凹部を含むとともに前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を有し、
    前記ベース層と電気的に接続されるベース電極と、
    前記エミッタ層と電気的に接続されるエミッタ電極と
    を有する太陽電池であって、
    前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を有し、
    前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように配置された第一の絶縁膜を有し、
    少なくとも前記第一の絶縁膜の上に位置するベース用バスバー電極を有し、
    前記ベース層の前記半導体基板の第一主表面に表れる形状が細長であり、その幅が50μm以上200μm以下であり、
    前記第一の絶縁膜の間隙の距離が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする太陽電池。
  2. 前記ベース電極と前記ベース用バスバー電極は電気的に接続していることを特徴とする請求項1に記載の太陽電池。
  3. 前記ベース電極を覆う第二の絶縁膜をさらに有し、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を有することを特徴とする請求項1又は請求項2に記載の太陽電池。
  4. 請求項1から請求項3のいずれか1項に記載の太陽電池が内蔵されていることを特徴とする太陽電池モジュール。
  5. 請求項4に記載の太陽電池モジュールを有することを特徴とする太陽光発電システム。
  6. 第一導電型を有する半導体基板の第一主表面に、前記第一主表面に形成された凹部を含むとともに前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を形成する工程と、
    前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を形成する工程と、
    前記ベース層と電気的に接続されるベース電極を形成する工程と、
    前記エミッタ層と電気的に接続されるエミッタ電極を形成する工程と、
    を有する太陽電池の製造方法であって、
    前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように第一の絶縁膜を形成する工程と、
    少なくとも前記第一の絶縁膜の上にベース用バスバー電極を形成する工程と
    を有し、
    前記ベース層の前記半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とし、
    前記第一の絶縁膜を形成する工程において、前記第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として前記絶縁膜を形成することを特徴とする太陽電池の製造方法。
  7. 前記ベース電極と、前記ベース用バスバー電極を、電気的に接続させることを特徴とする請求項6に記載の太陽電池の製造方法。
  8. 前記ベース電極を覆う第二の絶縁膜を形成する工程を有し、
    少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を形成することを特徴とする請求項6又は請求項7に記載の太陽電池の製造方法。
JP2018022667A 2018-02-13 2018-02-13 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 Active JP6564081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022667A JP6564081B2 (ja) 2018-02-13 2018-02-13 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022667A JP6564081B2 (ja) 2018-02-13 2018-02-13 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017519718A Division JPWO2018078669A1 (ja) 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Publications (2)

Publication Number Publication Date
JP2018098520A true JP2018098520A (ja) 2018-06-21
JP6564081B2 JP6564081B2 (ja) 2019-08-21

Family

ID=62634709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022667A Active JP6564081B2 (ja) 2018-02-13 2018-02-13 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Country Status (1)

Country Link
JP (1) JP6564081B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017517A1 (ja) * 2010-08-03 2012-02-09 シャープ株式会社 太陽電池セル
JP2013183004A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 太陽電池の製造方法
WO2014137283A1 (en) * 2013-03-05 2014-09-12 Trina Solar Energy Development Pte Ltd Method of fabricating a solar cell
JP2015118979A (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 太陽電池および太陽電池の製造方法
WO2015190024A1 (ja) * 2014-06-11 2015-12-17 信越化学工業株式会社 太陽電池及び太陽電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017517A1 (ja) * 2010-08-03 2012-02-09 シャープ株式会社 太陽電池セル
JP2013183004A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 太陽電池の製造方法
WO2014137283A1 (en) * 2013-03-05 2014-09-12 Trina Solar Energy Development Pte Ltd Method of fabricating a solar cell
JP2015118979A (ja) * 2013-12-17 2015-06-25 信越化学工業株式会社 太陽電池および太陽電池の製造方法
WO2015190024A1 (ja) * 2014-06-11 2015-12-17 信越化学工業株式会社 太陽電池及び太陽電池の製造方法

Also Published As

Publication number Publication date
JP6564081B2 (ja) 2019-08-21

Similar Documents

Publication Publication Date Title
US20230420581A1 (en) Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
WO2018078669A1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP6220483B1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP6564081B2 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
US10700223B2 (en) High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
JP6792465B2 (ja) 高光電変換効率太陽電池の製造方法
CN110121787B (zh) 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
CN116666475A (zh) 太阳能电池互联结构、太阳能电池组件及互联方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190725

R150 Certificate of patent or registration of utility model

Ref document number: 6564081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150