JP2018098399A - Semiconductor photodetector - Google Patents

Semiconductor photodetector Download PDF

Info

Publication number
JP2018098399A
JP2018098399A JP2016242691A JP2016242691A JP2018098399A JP 2018098399 A JP2018098399 A JP 2018098399A JP 2016242691 A JP2016242691 A JP 2016242691A JP 2016242691 A JP2016242691 A JP 2016242691A JP 2018098399 A JP2018098399 A JP 2018098399A
Authority
JP
Japan
Prior art keywords
light
chip
incident
receiving element
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016242691A
Other languages
Japanese (ja)
Inventor
好史 村本
Yoshifumi Muramoto
好史 村本
史人 中島
Fumito Nakajima
史人 中島
圭穂 前田
Yoshio Maeda
圭穂 前田
広明 三条
Hiroaki Sanjo
広明 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016242691A priority Critical patent/JP2018098399A/en
Publication of JP2018098399A publication Critical patent/JP2018098399A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize an optical receiver in which generation of stray light, noise light or deterioration of optical crosstalk is prevented, by restraining multiple reflection and reflection to the outside of light in a semiconductor photodetector.SOLUTION: In a face incident semiconductor photodetector where at least a light absorption layer and a first conductivity type semiconductor layer are formed on a semiconductor substrate, at least a part of the face of a chip of the face incident semiconductor photodetector, other than an incident light window region and an opening region for taking out an electric signal, is covered with a film of a medium absorbing light at the wavelength of signal light.SELECTED DRAWING: Figure 1

Description

本発明は、半導体受光素子に関し、特に面入射型の半導体受光素子に関する。   The present invention relates to a semiconductor light receiving element, and more particularly to a surface incident type semiconductor light receiving element.

従来、光通信の分野においては、使用する波長帯の光信号の光電変換による受光が可能で、チップ自体が小型である半導体受光素子を用いて光レシーバを構成することが一般的である。光レシーバの中には半導体受光素子以外に、光電変換した電気信号を増幅出力するための電気アンプや伝送線路、接続端子などの電気系と、外部からの光信号を受光素子に入力するための光学系とがある。これらの部品を使用して光レシーバを組み立てる際、出力側の電気系の部分では高周波電気信号を損失無く取り出すために、伝送線路や接続端子部分などでの反射や透過特性を良くする為の実装方法が工夫されている。   2. Description of the Related Art Conventionally, in the field of optical communication, it is common to configure an optical receiver using a semiconductor light receiving element that can receive light by photoelectric conversion of an optical signal in a wavelength band to be used and that has a small chip itself. In addition to semiconductor light receiving elements, some optical receivers are used to amplify and output photoelectrically converted electrical signals, electrical systems such as transmission lines and connection terminals, and external light signals to be input to the light receiving elements. There is an optical system. When assembling an optical receiver using these components, mounting is performed to improve the reflection and transmission characteristics of the transmission line and connection terminal part in order to extract high-frequency electrical signals without loss in the electrical part on the output side. The method is devised.

一方、入力側の光信号に対しても、受光素子からの反射光が再び光学系に入射されて戻り光となり、システム全体の雑音や不安定動作を引き起こすことが無いよう、様々な工夫がなされている。   On the other hand, various measures are also taken for the input side optical signal so that the reflected light from the light receiving element is again incident on the optical system and becomes return light, causing no noise or unstable operation of the entire system. ing.

このような工夫として、一般的には受光素子のチップの光入射面を入射光に対して垂直方向から傾けて設置することにより、チップ表面からの反射光が光学系に戻ることを抑制する手法が取られている。   As a contrivance, generally, the light incident surface of the chip of the light receiving element is installed so as to be inclined from the direction perpendicular to the incident light, thereby preventing the reflected light from the chip surface from returning to the optical system. Has been taken.

一方、近年の光通信システムでは大容量化のために信号を多チャンネル化する方式が盛んに研究開発されており、受光素子も一つの光レシーバの中に複数のチップが組み込まれるか、一つのチップの中に複数の受光素子が集積された構造を有するようになってきている(非特許文献1)。   On the other hand, in recent optical communication systems, a method of increasing the number of signals to increase the capacity has been actively researched and developed. It has come to have a structure in which a plurality of light receiving elements are integrated in a chip (Non-Patent Document 1).

“All-in-One 112-Gb/s DP-QPSK Optical Receiver Front-End Module Using Hybrid Integration of Silica-Based Planar Lightwave Circuit and Photodiode Arrays”、Ohyama他、IEEE PHOTONICS TECHNOLGY LETTERS、Vol.24、No.8、APRIL 15,2012、pp.646−648“All-in-One 112-Gb / s DP-QPSK Optical Receiver Front-End Module Using Hybrid Integration of Silica-Based Planar Lightwave Circuit and Photodiode Arrays”, Ohyama et al., IEEE PHOTOTONICS TECHNOLGY LETTERS, Vol. 24, no. 8, APRIL 15, 2012, pp. 646-648

従来の光レシーバで組み込まれる受光素子は基本的に一つで良かったため、光学系にさえ反射光が戻らないようなケアをするだけでよく、前述のようなチップの光入射面を傾けた実装方法で対処が可能であった。   Since only one light receiving element can be incorporated in a conventional optical receiver, it is only necessary to take care that the reflected light does not return even to the optical system. It was possible to cope with this.

しかし、光通信回線の大容量化、多チャンネル化に伴って受光素子が複数個に増えることにより、あるチャンネルの受光素子において光学系に戻らずに反射した光が、再び別のチャンネルの受光素子の光学系側に戻ってきたり、多重反射を起こすことでいわゆる迷光が発生してしまう。この迷光によって、あるチャンネルの受光素子の信号光が、隣の素子やまたその隣の素子といったように別のチャンネルに漏れることとなり、チャンネル間の光のクロストーク特性が劣化するといった問題が生じている。   However, as the capacity of optical communication lines is increased and the number of light receiving elements is increased as the number of channels increases, the light reflected without returning to the optical system in the light receiving element of one channel is again received by the light receiving element of another channel. The so-called stray light is generated by returning to the optical system side or causing multiple reflection. Due to this stray light, the signal light of the light receiving element of a certain channel leaks to another channel such as the adjacent element or the adjacent element, which causes a problem that the crosstalk characteristic of the light between channels deteriorates. Yes.

本発明は、上記従来技術における問題点を解消するものであって、面入射型の半導体受光素子において、少なくともチップ裏面と表面の光入力や電気出力に必要な領域以外を、例えばTi(チタン)のような、少なくとも受光する信号光の波長において光を吸収する媒体によって覆い、チップからの反射光やチップ内部での多重反射を抑制する。このようにすることで、受光素子を搭載する光レシーバモジュール内においても部材間の多重反射を抑制し、光レシーバ内の迷光対策により光のクロストーク特性を改善するものである。
本発明は、具体的には以下のような構造の面入射型半導体受光素子とした点を特徴とする。
The present invention solves the above-described problems in the prior art, and in a front-illuminated semiconductor light-receiving element, for example, at least a region other than a region necessary for light input and electric output on the back surface and front surface of the chip, such as Ti (titanium) Thus, it is covered with a medium that absorbs light at least at the wavelength of the received signal light to suppress the reflected light from the chip and the multiple reflection inside the chip. By doing so, multiple reflections between members are suppressed even in an optical receiver module in which a light receiving element is mounted, and crosstalk characteristics of light are improved by countermeasures against stray light in the optical receiver.
The present invention is specifically characterized in that it is a surface incident type semiconductor light receiving element having the following structure.

(発明の構成1)
半導体基板の上に少なくとも光吸収層と第1の導電型の半導体層とが形成された面入射型半導体受光素子であって、
前記面入射型半導体受光素子のチップの、光を入射する入射光窓領域および電気信号を取り出す開口部領域以外の面の少なくとも一部は、少なくとも受光する信号光の波長において光を吸収する媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
(Structure 1 of the invention)
A surface incident type semiconductor light receiving element in which at least a light absorption layer and a first conductive type semiconductor layer are formed on a semiconductor substrate,
At least a part of the surface of the chip of the surface incident type semiconductor light receiving element other than the incident light window region where the light is incident and the opening region where the electric signal is extracted is at least part of the medium that absorbs light at the wavelength of the received signal light. A surface incident type semiconductor light receiving element, characterized in that it is covered with a film.

(発明の構成2)
発明の構成1に記載の面入射型半導体受光素子において、
半導体基板は第2の導電型を有し、
前記半導体基板と反対側のチップ表面に前記入射光窓領域が設けられており、
該入射光窓領域と前記開口部領域以外の前記チップ表面は、信号光の波長において光を吸収する前記媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
(Configuration 2)
In the surface incidence type semiconductor light-receiving element according to Configuration 1 of the invention,
The semiconductor substrate has a second conductivity type;
The incident light window region is provided on the chip surface opposite to the semiconductor substrate,
The surface incident type semiconductor light-receiving element, wherein the chip surface other than the incident light window region and the opening region is covered with a film of the medium that absorbs light at the wavelength of signal light.

(発明の構成3)
発明の構成1に記載の面入射型半導体受光素子において、
前記半導体基板と前記光吸収層の間に第2の導電型のコンタクト層を有し、
前記半導体基板側のチップ裏面に前記入射光窓領域が設けられており、
該入射光窓領域以外のチップ裏面は、信号光の波長において光を吸収する前記媒体の膜で覆われており、
前記半導体基板と反対側のチップ表面に前記開口部領域が設けられており、
該開口部領域以外のチップ表面は、信号光の波長において光を吸収する前記媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
(Structure 3 of the invention)
In the surface incidence type semiconductor light-receiving element according to Configuration 1 of the invention,
A contact layer of a second conductivity type between the semiconductor substrate and the light absorption layer;
The incident light window region is provided on the back surface of the chip on the semiconductor substrate side,
The back surface of the chip other than the incident light window region is covered with a film of the medium that absorbs light at the wavelength of the signal light,
The opening region is provided on the surface of the chip opposite to the semiconductor substrate;
The surface incident type semiconductor light-receiving element, wherein the chip surface other than the opening region is covered with a film of the medium that absorbs light at the wavelength of the signal light.

(発明の構成4)
発明の構成1から3のいずれか1項に記載の面入射型半導体受光素子において、
少なくとも受光する信号光の波長において光を吸収する前記媒体がTiである
ことを特徴とする面入射型半導体受光素子。
(Configuration 4)
In the surface incident type semiconductor light-receiving element according to any one of the configurations 1 to 3 of the invention,
A surface incident type semiconductor light receiving element, wherein the medium that absorbs light at least at the wavelength of signal light to be received is Ti.

(発明の構成5)
発明の構成1から4のいずれか1項に記載の面入射型半導体受光素子において、
少なくとも前記入射光窓領域が反射防止膜で覆われている
ことを特徴とする面入射型半導体受光素子。
(Structure 5 of the invention)
In the surface incident type semiconductor light-receiving element according to any one of the configurations 1 to 4 of the invention,
A surface incident type semiconductor light receiving element, wherein at least the incident light window region is covered with an antireflection film.

以上記載したように、本発明によれば、受光素子チップからの反射やチップ内部での多重反射を抑制することで、受光素子を搭載する光レシーバモジュール内において迷光の発生を抑制し、光レシーバの光のクロストーク特性を改善することが可能となる。   As described above, according to the present invention, by suppressing reflection from the light receiving element chip and multiple reflection inside the chip, generation of stray light in the optical receiver module on which the light receiving element is mounted is suppressed, and the optical receiver It is possible to improve the crosstalk characteristics of the light.

本発明の第1の実施形態において例示した、Ti膜で覆われた上面入射構造の面型半導体受光素子を説明するための断面図である。It is sectional drawing for demonstrating the surface type semiconductor light receiving element of the top incidence structure covered with Ti film | membrane illustrated in the 1st Embodiment of this invention. 本発明の第2の実施形態において例示した、Ti膜で覆われた裏面入射構造の面型半導体受光素子を説明するための断面図である。It is sectional drawing for demonstrating the surface type semiconductor light receiving element of the back incidence structure covered with Ti film | membrane illustrated in the 2nd Embodiment of this invention. 従来技術の、上面入射構造の面入射型半導体受光素子を説明するための断面図である。It is sectional drawing for demonstrating the surface incidence type semiconductor light receiving element of a top incidence structure of a prior art.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図1は、本発明の半導体受光素子の第1の実施形態の説明をする断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a first embodiment of a semiconductor light receiving element of the present invention.

図1の第1実施形態の半導体受光素子は、基本的にn型のInP基板101の上に、i−InGaAs吸収層102、p−InGaAsコンタクト層103が積層されて形成されたフォトダイオードである。図1には更に、p電極104、n電極105、ポリイミド106、配線パッドメタル107、SiN膜108、Ti膜109が図示される。   The semiconductor light receiving device of the first embodiment of FIG. 1 is basically a photodiode formed by laminating an i-InGaAs absorption layer 102 and a p-InGaAs contact layer 103 on an n-type InP substrate 101. . 1 further shows a p-electrode 104, an n-electrode 105, a polyimide 106, a wiring pad metal 107, a SiN film 108, and a Ti film 109.

また図1には、チップへの入射光110A、チップ内の反射光110Bも矢印で示されている。   In FIG. 1, the incident light 110A to the chip and the reflected light 110B in the chip are also indicated by arrows.

本実施形態1で説明する半導体受光素子は、半導体層102、103で構成されるメサ型構造を、ポリイミド106で埋め込んで形成されている。受光する信号光である入射光110Aは、反射防止膜となるSiN膜108で覆われた入射光窓領域を通して、素子の上面(表面)から素子に入射されるが、吸収層102で吸収しきれなかった光は、素子の裏面に形成されたn電極105で反射されてチップ内への反射光110Bとなり、素子上面に戻ってくる。   The semiconductor light receiving element described in the first embodiment is formed by embedding a mesa structure composed of semiconductor layers 102 and 103 with polyimide 106. Incident light 110A, which is received signal light, is incident on the element from the upper surface (surface) of the element through the incident light window region covered with the SiN film 108 serving as an antireflection film, but is completely absorbed by the absorption layer 102. The missing light is reflected by the n-electrode 105 formed on the back surface of the element, becomes reflected light 110B into the chip, and returns to the upper surface of the element.

本実施形態1の構造ではチップの上面において、p電極104とコンタクトする配線パッドメタル107の開口面(電気信号を取り出す開口部領域となる)と、光を入射する入射光窓領域とを除いて、少なくとも受光する信号光の波長において光を吸収する媒体であるTi(チタン)膜 109で覆われている。よって、反射して素子上面に戻ってきたチップ内の反射光110BはTi膜 109で吸収されることになり、素子のチップ内で多重反射を繰り返して最終的にチップ上面から再び出射されることは大幅に抑制される。   In the structure of the first embodiment, on the upper surface of the chip, except for the opening surface of the wiring pad metal 107 in contact with the p electrode 104 (which becomes an opening region for taking out an electric signal) and the incident light window region where light enters. The Ti (titanium) film 109, which is a medium that absorbs light at least at the wavelength of the received signal light, is covered. Therefore, the reflected light 110B in the chip that has been reflected and returned to the upper surface of the element is absorbed by the Ti film 109, and is repeatedly emitted from the upper surface of the chip by repeating multiple reflections in the chip of the element. Is greatly suppressed.

図3に示すような従来構造では、素子の表面は反射防止膜であるSiN膜308で覆われているだけであり、素子裏面で反射されて戻ってきた光310Bはそのままチップの上面から出射されるか、チップ表面の配線メタル等の構造物で反射されて再びチップ内部に戻ってきてしまい、多重反射を繰り返して、最終的にはチップ上面から出射されることになる。   In the conventional structure as shown in FIG. 3, the surface of the element is only covered with the SiN film 308 which is an antireflection film, and the light 310B reflected and returned from the back surface of the element is emitted as it is from the upper surface of the chip. Alternatively, it is reflected by a structure such as a wiring metal on the chip surface and returns to the inside of the chip again, and multiple reflection is repeated, and finally it is emitted from the upper surface of the chip.

前述のように、一般的な光レシーバでは半導体受光素子チップを入射光学系に対して傾けて配置することにより、戻ってきた光がそのまま光学系に戻ることがないように工夫されている。しかし、多チャンネル化されて複数個のチップが近接配置されたり、複数の素子がモノリシック集積されたチップでは、光学系に入らずに再びチップ側に反射して戻ってきた光が多重反射を繰り返すことにより迷光となって、隣や他のチャンネルのチップおよび素子に再び入射されることになり、雑音光が増えたり光のクロストーク特性を劣化させる原因となる。   As described above, a general optical receiver is devised so that the returned light does not return to the optical system as it is by arranging the semiconductor light receiving element chip so as to be inclined with respect to the incident optical system. However, in a multi-channel chip in which a plurality of chips are arranged close to each other or a plurality of elements are monolithically integrated, the light that is reflected back to the chip side without entering the optical system repeats multiple reflections. As a result, it becomes stray light and is incident again on the chips and elements of adjacent channels and other channels, which causes an increase in noise light and deterioration of the light crosstalk characteristics.

また、光レシーバには、信号光を受光するためのチップ以外にもパワーモニター用のチップが搭載されていることが多い。光レシーバ内で多重反射された光が、最終的にこのモニター用チップに入ると、モニタ信号の品質を低下させることで、光レシーバの特性を劣化させることにもなりかねない。   In addition to the chip for receiving signal light, the optical receiver is often mounted with a chip for power monitoring. When the light reflected in the optical receiver finally enters the monitoring chip, the quality of the optical receiver may be deteriorated by lowering the quality of the monitor signal.

本実施形態1では、チップそのものに入射された光が再びチップ外に出射されることが大幅に抑制されるため、従来技術における反射光や迷光の問題を解決することが可能となる。   In the first embodiment, since the light incident on the chip itself is greatly suppressed from being emitted to the outside of the chip again, the problems of reflected light and stray light in the prior art can be solved.

(第2の実施形態)
図2は、本発明の半導体受光素子の第2の実施形態の説明をする断面図である。
(Second Embodiment)
FIG. 2 is a cross-sectional view for explaining a second embodiment of the semiconductor light-receiving element of the present invention.

図2の実施形態2の半導体受光素子は、半絶縁性のInP基板201の上に、n+−InPコンタクト層202、i−InGaAs光吸収層203、p+−InGaAsコンタクト層204が積層されて形成される。図2には更に、p電極205、n電極206、ポリイミド207、配線パッドメタル208、SiN膜209、211、Ti膜210、212が図示される。 In the semiconductor light receiving device of the second embodiment shown in FIG. 2, an n + -InP contact layer 202, an i-InGaAs light absorption layer 203, and a p + -InGaAs contact layer 204 are stacked on a semi-insulating InP substrate 201. It is formed. FIG. 2 further shows a p-electrode 205, an n-electrode 206, a polyimide 207, a wiring pad metal 208, SiN films 209 and 211, and Ti films 210 and 212.

図2には、矢印でチップへの入射光213A、チップ内の反射光213Bも示されている。   In FIG. 2, incident light 213A to the chip and reflected light 213B in the chip are also shown by arrows.

本実施形態2で説明する半導体受光素子は、202〜204で形成されたメサ構造をポリイミド207で埋め込んで構成されている。p電極205に接続された配線パッドメタル208の開口部とn電極206は、チップ表面から電気信号を取り出す開口部領域を構成しており、チップ裏面の入射光窓領域から受光する信号光である光213Aを入射させるいわゆる裏面入射型構造を有している。   The semiconductor light receiving element described in the second embodiment is configured by embedding a mesa structure formed of 202 to 204 with polyimide 207. The opening of the wiring pad metal 208 connected to the p-electrode 205 and the n-electrode 206 constitute an opening region for extracting an electric signal from the chip surface, and are signal light received from the incident light window region on the back surface of the chip. It has a so-called back-illuminated structure in which the light 213A is incident.

チップ裏面から、反射防止膜となるSiN膜211で覆われた入射光窓領域を通して入射した光213Aは、光吸収層203を通過した後、素子頂上に形成されたp電極205で反射されて再び光吸収層203を通過する。吸収しきれなかった反射光213Bは、チップ裏面の入射光窓領域以外に形成されたTi膜212で吸収されるので、チップ裏面側からチップ外部に出たり再びチップ内部で多重反射を起こすことは大幅に抑制される。   The light 213A incident from the back surface of the chip through the incident light window region covered with the SiN film 211 serving as an antireflection film passes through the light absorption layer 203 and then is reflected by the p-electrode 205 formed on the top of the device and again. It passes through the light absorption layer 203. Since the reflected light 213B that could not be absorbed is absorbed by the Ti film 212 formed outside the incident light window region on the back surface of the chip, it does not go out of the chip from the back surface side of the chip or cause multiple reflection inside the chip again. It is greatly suppressed.

また、チップ表面においても、チップ全体をカバーしている絶縁体のSiN膜209の上面にTi膜210を形成しているため、素子上の構造物でチップ表面の方向に反射した光も吸収されることになり、最終的に本実施形態2の構造においてもチップに入射した光が再びチップの外部に出射されることが大幅に抑制される。この結果、やはり光レシーバ内における光の多重反射を抑制することになり、雑音光の発生や光クロストークの劣化を防ぐことが可能である。   Also, since the Ti film 210 is formed on the top surface of the insulating SiN film 209 covering the entire chip, the light reflected in the direction of the chip surface by the structure on the device is also absorbed. As a result, also in the structure of the second embodiment, the light incident on the chip is finally greatly suppressed from being emitted to the outside of the chip. As a result, the multiple reflection of light within the optical receiver is also suppressed, and it is possible to prevent generation of noise light and deterioration of optical crosstalk.

実施形態1,2のいずれにおいてもTi膜は、半導体受光素子のチップの、光を入射する入射光窓領域および電気信号を取り出す開口部領域以外の面の少なくとも一部を覆うように形成されていれば、反射光抑制の効果はある。   In any of the first and second embodiments, the Ti film is formed so as to cover at least a part of the surface of the chip of the semiconductor light receiving element other than the incident light window region through which light enters and the opening region through which an electric signal is extracted. If so, there is an effect of suppressing reflected light.

なお、以上の記載において半導体の導電型、極性を具体的にp型、n型と表記したが、駆動電圧などの正負や信号の極性を逆とすれば、これらの導電型は入れ替えが可能であるから、一方を第1の導電型、他方を第2の導電型ということができる。   In the above description, the conductivity type and polarity of the semiconductor are specifically described as p-type and n-type. However, if the polarity of the drive voltage and the polarity of the signal are reversed, these conductivity types can be interchanged. Therefore, one can be referred to as a first conductivity type and the other as a second conductivity type.

また、反射防止膜はSiN膜としたが、TiO2/SiO2、Ta25/SiO2といった多層膜構造とすることもできる。 Further, although the antireflection film is a SiN film, it may be a multilayer film structure such as TiO 2 / SiO 2 or Ta 2 O 5 / SiO 2 .

(本発明の作用効果)
以上の実施形態1,2に述べたように、本発明は、光レシーバに搭載される面入射型構造の半導体受光素子に関するものである。チップの表面と裏面の少なくとも一部を光を吸収する媒体であるTi膜で覆うことにより、チップの入射面と反対の面で反射後に受光領域以外に広がった光はTi膜で吸収される。また配線メタルや素子形状といった構造物で反射された光も表面か裏面のどちらかのTi膜で吸収されるため、再びチップ表面や裏面から出射されることも抑制され、更にチップ内での多重反射光も抑制することが出来る。
(Operational effect of the present invention)
As described in the first and second embodiments, the present invention relates to a semiconductor light receiving element having a surface incident type structure mounted on an optical receiver. By covering at least part of the front and back surfaces of the chip with a Ti film that is a medium that absorbs light, the light that has spread outside the light receiving area after being reflected by the surface opposite to the incident surface of the chip is absorbed by the Ti film. In addition, since light reflected by structures such as wiring metal and element shape is absorbed by the Ti film on either the front or back surface, it is prevented from being emitted again from the front or back surface of the chip, and further multiplexed within the chip. Reflected light can also be suppressed.

この結果として、本発明によれば、複数のチップや一つのチップに複数の素子がモノリシック集積されたチップで構成される形態の多チャンネルレシーバであっても、迷光を抑え、光のクロストーク特性を改善することが可能になる。   As a result, according to the present invention, even in a multi-channel receiver configured with a plurality of chips or a chip in which a plurality of elements are monolithically integrated on one chip, the stray light is suppressed and the optical crosstalk characteristic is reduced. It becomes possible to improve.

なお、実施形態においては,InGaAsを光吸収層、InPを基板材料としたエピウェハ構造における半導体受光素子の例を述べたが、本技術は、半導体材料の種類を制限するものではなく、他の半導体材料の組み合わせによる半導体受光素子においても、本特許の思想は同じ様に適用することができることは言うまでもない。また半導体受光素子の構造として、一般的なpinフォトダイオードを例示したが、アバランシェフォトダイオードや他の半導体受光素子でも同様の効果が実現できる。   In the embodiment, the example of the semiconductor light receiving element in the epi-wafer structure using InGaAs as the light absorption layer and InP as the substrate material has been described. However, the present technology does not limit the type of the semiconductor material, and other semiconductors. It goes without saying that the concept of this patent can be applied in the same way to semiconductor light-receiving elements using combinations of materials. Although a general pin photodiode is exemplified as the structure of the semiconductor light receiving element, the same effect can be realized by using an avalanche photodiode or another semiconductor light receiving element.

また、実施形態としてメサ構造の例を述べたが、不純物拡散やイオン注入によるプレーナ型構造においても同様の効果が実現可能であり、素子作製もフォトリソグラフィやウェットエッチング、ドライエッチングの一般的な技術で作製可能であり、その製造方法に限定されることは無い。   In addition, an example of a mesa structure has been described as an embodiment, but the same effect can be realized even in a planar structure by impurity diffusion or ion implantation, and element fabrication is also a general technique of photolithography, wet etching, and dry etching. The manufacturing method is not limited to the manufacturing method.

以上述べたように、本発明の面入射型構造の半導体受光素子によれば、半導体受光素子内における光の多重反射および外部への反射を抑制することができ、迷光、雑音光の発生や光クロストークの劣化を防いだ光レシーバを実現することが可能になる。   As described above, according to the semiconductor light receiving element of the surface incident type structure of the present invention, it is possible to suppress the multiple reflection of light in the semiconductor light receiving element and the reflection to the outside, the generation of stray light, noise light, and light. It becomes possible to realize an optical receiver that prevents the deterioration of crosstalk.

101、301…n型InP基板
102、203、302…i−InGaAs光吸収層
103、204、303…p+−InGaAsコンタクト層
104、205、304…p電極
105、206、305…n電極
106、207、306…ポリイミド
107、208、307…配線パッドメタル
108,211、308…SiN膜(反射防止膜)
109、210、212…Ti膜
110A、213A、310A…チップへの入射光
110B、213B、310B…チップ内での反射光
201…半絶縁性のInP基板
202…n+−InGaAsコンタクト層
209…SiN膜(チップ保護膜)
101, 301 ... n-type InP substrates 102, 203, 302 ... i-InGaAs light absorption layers 103, 204, 303 ... p + -InGaAs contact layers 104, 205, 304 ... p-electrodes 105, 206, 305 ... n-electrode 106, 207, 306 ... polyimide 107, 208, 307 ... wiring pad metal 108, 211, 308 ... SiN film (antireflection film)
109, 210, 212 ... Ti films 110A, 213A, 310A ... Incident light 110B, 213B, 310B ... Reflected light in the chip 201 ... Semi-insulating InP substrate 202 ... n + -InGaAs contact layer 209 ... SiN Film (chip protective film)

Claims (5)

半導体基板の上に少なくとも光吸収層と第1の導電型の半導体層とが形成された面入射型半導体受光素子であって、
前記面入射型半導体受光素子のチップの、光を入射する入射光窓領域および電気信号を取り出す開口部領域以外の面の少なくとも一部は、少なくとも受光する信号光の波長において光を吸収する媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
A surface incident type semiconductor light receiving element in which at least a light absorption layer and a first conductive type semiconductor layer are formed on a semiconductor substrate,
At least a part of the surface of the chip of the surface incident type semiconductor light receiving element other than the incident light window region where the light is incident and the opening region where the electric signal is extracted is at least part of the medium that absorbs light at the wavelength of the received signal light. A surface incident type semiconductor light receiving element, characterized in that it is covered with a film.
請求項1に記載の面入射型半導体受光素子において、
半導体基板は第2の導電型を有し、
前記半導体基板と反対側のチップ表面に前記入射光窓領域が設けられており、
該入射光窓領域と前記開口部領域以外の前記チップ表面は、信号光の波長において光を吸収する前記媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
The surface incident type semiconductor light receiving device according to claim 1,
The semiconductor substrate has a second conductivity type;
The incident light window region is provided on the chip surface opposite to the semiconductor substrate,
The surface incident type semiconductor light-receiving element, wherein the chip surface other than the incident light window region and the opening region is covered with a film of the medium that absorbs light at the wavelength of signal light.
請求項1に記載の面入射型半導体受光素子において、
前記半導体基板と前記光吸収層の間に第2の導電型のコンタクト層を有し、
前記半導体基板側のチップ裏面に前記入射光窓領域が設けられており、
該入射光窓領域以外のチップ裏面は、信号光の波長において光を吸収する前記媒体の膜で覆われており、
前記半導体基板と反対側のチップ表面に前記開口部領域が設けられており、
該開口部領域以外のチップ表面は、信号光の波長において光を吸収する前記媒体の膜で覆われている
ことを特徴とする面入射型半導体受光素子。
The surface incident type semiconductor light receiving device according to claim 1,
A contact layer of a second conductivity type between the semiconductor substrate and the light absorption layer;
The incident light window region is provided on the back surface of the chip on the semiconductor substrate side,
The back surface of the chip other than the incident light window region is covered with a film of the medium that absorbs light at the wavelength of the signal light,
The opening region is provided on the surface of the chip opposite to the semiconductor substrate;
The surface incident type semiconductor light-receiving element, wherein the chip surface other than the opening region is covered with a film of the medium that absorbs light at the wavelength of the signal light.
請求項1から3のいずれか1項に記載の面入射型半導体受光素子において、
少なくとも受光する信号光の波長において光を吸収する前記媒体がTiである
ことを特徴とする面入射型半導体受光素子。
In the surface incident type semiconductor light receiving element according to any one of claims 1 to 3,
A surface incident type semiconductor light receiving element, wherein the medium that absorbs light at least at the wavelength of signal light to be received is Ti.
請求項1から4のいずれか1項に記載の面入射型半導体受光素子において、
少なくとも前記入射光窓領域が反射防止膜で覆われている
ことを特徴とする面入射型半導体受光素子。
In the surface incident type semiconductor light receiving device according to any one of claims 1 to 4,
A surface incident type semiconductor light receiving element, wherein at least the incident light window region is covered with an antireflection film.
JP2016242691A 2016-12-14 2016-12-14 Semiconductor photodetector Pending JP2018098399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242691A JP2018098399A (en) 2016-12-14 2016-12-14 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242691A JP2018098399A (en) 2016-12-14 2016-12-14 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JP2018098399A true JP2018098399A (en) 2018-06-21

Family

ID=62633876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242691A Pending JP2018098399A (en) 2016-12-14 2016-12-14 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JP2018098399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074780A1 (en) * 2020-10-08 2022-04-14 日本電信電話株式会社 Semiconductor light-receiving element
WO2022195780A1 (en) * 2021-03-17 2022-09-22 日本電信電話株式会社 Light-receiving element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241588A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Photo detector, its manufacturing method and optical module using the photo detector
JP2004241746A (en) * 2002-12-13 2004-08-26 Yokogawa Electric Corp High-speed light receiving element and manufacturing method of the same
JP2005108955A (en) * 2003-09-29 2005-04-21 Matsushita Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, and optical communication module
JP2005340504A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2009277942A (en) * 2008-05-15 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> Light receiving element array
JP2012156391A (en) * 2011-01-27 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2015184588A (en) * 2014-03-25 2015-10-22 日本電気株式会社 Photoelectric integrated circuit and optical interposer
US20160093648A1 (en) * 2013-04-17 2016-03-31 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Silicon photoelectric multiplier with very low optical cross-talk and fast readout

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241746A (en) * 2002-12-13 2004-08-26 Yokogawa Electric Corp High-speed light receiving element and manufacturing method of the same
JP2004241588A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Photo detector, its manufacturing method and optical module using the photo detector
JP2005108955A (en) * 2003-09-29 2005-04-21 Matsushita Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, and optical communication module
JP2005340504A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2009277942A (en) * 2008-05-15 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> Light receiving element array
JP2012156391A (en) * 2011-01-27 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
US20160093648A1 (en) * 2013-04-17 2016-03-31 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Silicon photoelectric multiplier with very low optical cross-talk and fast readout
JP2015184588A (en) * 2014-03-25 2015-10-22 日本電気株式会社 Photoelectric integrated circuit and optical interposer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074780A1 (en) * 2020-10-08 2022-04-14 日本電信電話株式会社 Semiconductor light-receiving element
WO2022195780A1 (en) * 2021-03-17 2022-09-22 日本電信電話株式会社 Light-receiving element

Similar Documents

Publication Publication Date Title
JP4609430B2 (en) Avalanche photodiode
US7332751B2 (en) Rear-illuminated-type photodiode array
WO2006123410A1 (en) Avalanche photo diode
JP2006237186A (en) Semiconductor photo detector and its manufacturing method
JP2006253548A (en) Semiconductor photodetector
JP5983076B2 (en) Photodiode array
WO2008029767A1 (en) Light receiving device, and light receiving device manufacturing method
KR101777225B1 (en) Avalanche photo diode and manufacturing method of the same
US9024402B2 (en) Waveguide avalanche photodetectors
US20060249789A1 (en) Inter-digitated silicon photodiode based optical receiver on SOI
JP2018098399A (en) Semiconductor photodetector
JP6560642B2 (en) Avalanche photodiode and manufacturing method thereof
JP5228922B2 (en) Semiconductor photo detector
US20110140168A1 (en) Avalanche phototector with integrated micro lens
JP4985298B2 (en) Avalanche photodiode
US10861897B2 (en) Imaging device and imaging system
JP2010045417A (en) Semiconductor photodetector
JP2012119490A (en) Semiconductor light-receiving element and light-receiving device having the same
WO2019146725A1 (en) Photodetector device
JP2008198937A (en) Semiconductor photodetector and optical signal processing apparatus
JP4770864B2 (en) Semiconductor device
KR102514796B1 (en) Image sensor having hetero-junction structure according to monolithic integration and manufacturing method thereof
KR102368900B1 (en) Multi-color photo detector and method for fabricating the same by integrating with read-out circuit
US11887999B2 (en) Photodetector
JP4786440B2 (en) Surface incidence type light receiving element and light receiving module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707