JP2018097351A - Light-emitting element and manufacturing method of light-emitting element - Google Patents

Light-emitting element and manufacturing method of light-emitting element Download PDF

Info

Publication number
JP2018097351A
JP2018097351A JP2017151918A JP2017151918A JP2018097351A JP 2018097351 A JP2018097351 A JP 2018097351A JP 2017151918 A JP2017151918 A JP 2017151918A JP 2017151918 A JP2017151918 A JP 2017151918A JP 2018097351 A JP2018097351 A JP 2018097351A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
emission center
emitting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017151918A
Other languages
Japanese (ja)
Inventor
真之介 秋山
Shinnosuke Akiyama
真之介 秋山
慶 豊田
Kei Toyoda
慶 豊田
将人 森
Masahito Mori
将人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US15/825,058 priority Critical patent/US10290779B2/en
Priority to DE102017128552.0A priority patent/DE102017128552A1/en
Priority to CN201711312772.9A priority patent/CN108224366B/en
Publication of JP2018097351A publication Critical patent/JP2018097351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element having a light transmission member and a light emission member capable of preventing degradation of fluorescent output.SOLUTION: The light-emitting element includes: a light emission member which has a plate shape composed of at least 2 or more types of oxide materials; and a light transmission member which has a flat-convex shape for collimating light radiated from the light emitting member. The contact part between the light transmission member and the light emission member is continuous.SELECTED DRAWING: Figure 1

Description

本発明は、主として光学製品に用いられる発光素子及び発光素子の製造方法に関する。   The present invention relates to a light-emitting element mainly used for optical products and a method for manufacturing the light-emitting element.

従来、照明やプロジェクターといった光学製品には水銀蒸気中のアーク放電の発光を利用する超高圧水銀ランプ等の放電光源が一般的に使用されていた。放電光源は、紫外域から可視域までの連続的なスペクトル光を放つことができる利点を有する。その一方で、放電光源は、連続点灯時間が短いことや瞬間的に点灯させることができないことなどが問題として挙げられる。この問題を解決するために、現在、放電光源に代わる光源の利用が増加している。   Conventionally, a discharge light source such as an ultrahigh pressure mercury lamp that uses arc discharge light emission in mercury vapor has been generally used for optical products such as lighting and projectors. The discharge light source has an advantage that continuous spectrum light from the ultraviolet region to the visible region can be emitted. On the other hand, the discharge light source has problems such as short continuous lighting time and inability to light up instantaneously. In order to solve this problem, the use of a light source instead of a discharge light source is now increasing.

放電光源に代わる新たな光源として、白色発光ダイオード(白色LED)やレーザー(LD)が提案されている。これらは、ある特定波長の光を放つ励起光源と、その光を吸収して蛍光を放つ蛍光体と、を組み合わせたものである。一般的には、青色光源からの光と、黄色蛍光体からの光と、を合成することで白色光を得る構成が知られている。   White light-emitting diodes (white LEDs) and lasers (LDs) have been proposed as new light sources to replace the discharge light sources. These are a combination of an excitation light source that emits light of a specific wavelength and a phosphor that absorbs the light and emits fluorescence. In general, a configuration is known in which white light is obtained by combining light from a blue light source and light from a yellow phosphor.

上記構成から得られる白色発光は、蛍光体表面から出射方向に直進する光だけではなく、出射方向に拡散した光も含まれる。よって、照明やプロジェクターといった商品で出力される発光を制御するためには、光源にレンズを組み合わせることによって光学制御する必要がある。   The white light emission obtained from the above configuration includes not only light traveling straight from the phosphor surface in the emission direction but also light diffused in the emission direction. Therefore, in order to control light emission output by a product such as an illumination or a projector, it is necessary to perform optical control by combining a lens with a light source.

特許文献1には、LEDから放射される青色光を吸収して黄色光を放射する粉末蛍光体を含む発光層が基板上に形成された構成を有するデバイスが開示されている。図5に前記特許文献1に記載のデバイスの一例を示す。このデバイスは、基板121の上に結合剤119中に粉末蛍光体120が分散した発光層122と、平凸形状を有する光透過部材123とを有し、発光層122には空気層118が含まれている。   Patent Document 1 discloses a device having a configuration in which a light emitting layer including a powder phosphor that absorbs blue light emitted from an LED and emits yellow light is formed on a substrate. FIG. 5 shows an example of the device described in Patent Document 1. This device has a light emitting layer 122 in which a powder phosphor 120 is dispersed in a binder 119 on a substrate 121, and a light transmitting member 123 having a plano-convex shape, and the light emitting layer 122 includes an air layer 118. It is.

特開2012−185403号公報JP 2012-185403 A

ところが、上記特許文献1のデバイスの発光層122において、粉末蛍光体120と接着剤としての性質を示す結合剤119および空気層118とが平凸形状を有する光透過部材123と基板121との間を占有している。   However, in the light emitting layer 122 of the device of Patent Document 1, the powder phosphor 120, the binder 119 that exhibits properties as an adhesive, and the air layer 118 are between the light transmitting member 123 and the substrate 121 having a plano-convex shape. Is occupied.

基板121方向から平凸形状を有する光透過部材123方向にLEDやLDからの青色光が発光層122に照射されると、粉末蛍光体120がその光を吸収し、黄色光を放射する。このとき、黄色光は他の粉末蛍光体120や結合剤119を通過することになるが、それぞれの物質で屈折率が異なるため、平凸形状の光透過部材123方向のみならず、発光層122の横方向にも光の拡散が生じる。そのため、十分な光取出し効率を得ることができず、平凸形状を有する光透過部材123方向から検出できる光の蛍光出力は低下することになる。   When the light emitting layer 122 is irradiated with blue light from the LED or LD in the direction of the light transmitting member 123 having a plano-convex shape from the substrate 121 direction, the powder phosphor 120 absorbs the light and emits yellow light. At this time, yellow light passes through the other powder phosphors 120 and the binder 119, but the refractive index is different for each material, so that not only the direction of the plano-convex light transmitting member 123 but also the light emitting layer 122. The light also diffuses in the horizontal direction. Therefore, sufficient light extraction efficiency cannot be obtained, and the fluorescence output of light that can be detected from the direction of the light-transmitting member 123 having a plano-convex shape is reduced.

また、LDのような高い出力を有する励起光を上記デバイスに照射した場合、デバイス自体の温度が急速に高くなる。平凸形状を有する光透過部材123と基板121の発光層122に空気層118が存在すると、この急速な温度上昇により空気層118が膨張し、発光層122にクラックが生じる。そのため、空気層118の割合が増加し光の散乱がより発生するため、さらなる蛍光出力の低下につながる。   In addition, when the device is irradiated with excitation light having a high output such as LD, the temperature of the device itself rapidly increases. When the air layer 118 exists in the light transmitting member 123 having a plano-convex shape and the light emitting layer 122 of the substrate 121, the air layer 118 expands due to this rapid temperature rise, and a crack occurs in the light emitting layer 122. For this reason, the ratio of the air layer 118 increases and light scattering occurs more, leading to a further decrease in fluorescence output.

本発明は、上記課題を解決するためになされたものであって、光透過部材と発光部材とを備えた発光素子において、蛍光出力の低下を抑制することができる発光素子及び発光素子の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a light-emitting element including a light-transmitting member and a light-emitting member, a light-emitting element capable of suppressing a decrease in fluorescence output and a method for manufacturing the light-emitting element The purpose is to provide.

本発明に係る発光素子は、少なくとも2種類以上の酸化物材料からなる板状形状を有する発光部材と、
前記発光部材から放射される光をコリメートする平凸形状を有する光透過部材と、
を備え、
前記光透過部材と前記発光部材との接触部が連続的である。
A light emitting device according to the present invention includes a light emitting member having a plate shape made of at least two kinds of oxide materials,
A light transmissive member having a plano-convex shape for collimating light emitted from the light emitting member;
With
A contact portion between the light transmitting member and the light emitting member is continuous.

本発明に係る発光素子によれば、発光部材と光透過部材との接触部が連続的であるので、発光部材と光透過部材との間で蛍光の屈折が起こらないため蛍光出力の低下を抑制できるとともに、発光部材と光透過部材との接触部でクラックが生じない発光素子が実現できる。   According to the light emitting device of the present invention, since the contact portion between the light emitting member and the light transmissive member is continuous, the refraction of fluorescence does not occur between the light emitting member and the light transmissive member, thereby suppressing the decrease in the fluorescence output. In addition, it is possible to realize a light emitting element that does not cause cracks at the contact portion between the light emitting member and the light transmitting member.

実施の形態1に係る発光素子の断面構成を表す概略断面図である。2 is a schematic cross-sectional view illustrating a cross-sectional configuration of the light-emitting element according to Embodiment 1. FIG. 実施の形態1に係る発光素子を構成する光透過部材と発光部材との接触部の詳細な構造を示す断面図である。4 is a cross-sectional view illustrating a detailed structure of a contact portion between a light transmitting member and a light emitting member that constitute the light emitting element according to Embodiment 1. FIG. (a)〜(c)は、実施の形態1に係る発光素子を得るための引下げプロセスを表す概略図である。(A)-(c) is the schematic showing the pulling-down process for obtaining the light emitting element which concerns on Embodiment 1. FIG. 実施の形態1にて説明した発光素子の蛍光出力および蛍光出力維持率を評価するために使用した評価装置を表す概略図である。FIG. 3 is a schematic diagram illustrating an evaluation device used for evaluating the fluorescence output and the fluorescence output maintenance rate of the light emitting element described in the first embodiment. 従来のデバイスの一例を表す概略図である。It is the schematic showing an example of the conventional device.

第1の態様に係る発光素子は、少なくとも2種類以上の酸化物材料からなる板状形状を有する発光部材と、
前記発光部材から放射される光をコリメートする平凸形状を有する光透過部材と、
を備え、
前記光透過部材と前記発光部材との接触部が連続的である。
The light emitting device according to the first aspect includes a light emitting member having a plate shape made of at least two kinds of oxide materials,
A light transmissive member having a plano-convex shape for collimating light emitted from the light emitting member;
With
A contact portion between the light transmitting member and the light emitting member is continuous.

第2の態様に係る発光素子は、上記第1の態様において、前記発光部材は、少なくとも1つは発光中心を有さない材料であり、残りは発光中心を有する材料から構成され、
前記光透過部材は、前記発光部材の前記発光中心を有さない材料と実質的に同じ材料で構成されていることを特徴とする。
The light-emitting element according to a second aspect is the light-emitting element according to the first aspect, wherein at least one of the light-emitting members is made of a material having no light emission center, and the rest is made of a material having a light emission center.
The light transmissive member is formed of a material that is substantially the same as a material that does not have the light emission center of the light emitting member.

上記構成によって、光透過部材と発光部材との接触部において、共通する材料による連続性を得ることができる。   With the above configuration, continuity due to a common material can be obtained at the contact portion between the light transmitting member and the light emitting member.

第3の態様に係る発光素子は、上記第2の態様において、前記接触部において、前記発光中心を有さない材料と前記発光中心を有する材料とが互いに3次元的に絡み合って分布してなる。   The light emitting device according to the third aspect is the light emitting element according to the second aspect, wherein the material having no light emission center and the material having the light emission center are intertwined and distributed in a three-dimensional manner in the contact portion. .

上記構成によって、発光部材の発光中心を有する酸化物材料で発生した熱が発光中心を有さない酸化物材料に効率的に伝導し、放熱させることができる。   With the above structure, heat generated in the oxide material having the light emission center of the light emitting member can be efficiently conducted to the oxide material not having the light emission center to be radiated.

第4の態様に係る発光素子は、上記第2又は第3の態様において、前記発光中心を有さない材料がAlであり、前記発光中心を有する材料がCeを含有するYAGであってもよい。 In the light emitting device according to the fourth aspect, in the second or third aspect, the material having no emission center is Al 2 O 3 and the material having the emission center is YAG containing Ce. May be.

上記構成によって、AlとCeが含有したYAGとの共晶点付近で融液を凝固させると上記2つの材料が緻密に絡み合った構造となるため、機械的強度が向上する効果が得られる。 With the above configuration, when the melt is solidified in the vicinity of the eutectic point of Al 2 O 3 and Ce-containing YAG, the above two materials are closely entangled, resulting in an effect of improving the mechanical strength. It is done.

第5の態様に係る発光素子の製造方法は、発光部材の融液となる酸化アルミニウムと酸化イットリウムと酸化セリウムの各粉末をるつぼ内で加熱し、
前記るつぼの底の穴部に平凸形状を有する光透過部材の平面部を接触させ、
前記光透過部材の前記平面部に前記発光部材の融液が濡れた状態を確認後に、
前記るつぼと前記光透過部材との間隔を離間させて前記発光部材の融液を凝固させ、
前記光透過部材と前記発光部材との接触部が連続的である発光素子を製造する、
ことを特徴とする。
In the method for manufacturing a light-emitting element according to the fifth aspect, each powder of aluminum oxide, yttrium oxide, and cerium oxide serving as a melt of the light-emitting member is heated in a crucible,
Contacting the flat portion of the light transmitting member having a plano-convex shape with the hole at the bottom of the crucible;
After confirming the state in which the melt of the light emitting member is wetted on the flat portion of the light transmitting member,
The gap between the crucible and the light transmitting member is separated to solidify the melt of the light emitting member;
Producing a light emitting element in which a contact portion between the light transmitting member and the light emitting member is continuous;
It is characterized by that.

第6の態様に係る発光素子の製造方法は、上記第5の態様において、前記発光部材の融液は、
Alモル分率が75mol%以上85mol%以下、かつCeモル分率が0.02mol%以上0.4mol%以下、残部がYからなり、
製造された前記発光素子における前記発光部材の厚みを0.1mm以上0.35mm以下にすることを特徴とする。
なおここに示す発光部材の厚みは、発光素子全体の厚みから光透過部材の厚みを引いた値と定義する。
The manufacturing method of the light emitting element according to the sixth aspect is the above fifth aspect, wherein the melt of the light emitting member is:
Al mole fraction is 75 mol% or more and 85 mol% or less, Ce mole fraction is 0.02 mol% or more and 0.4 mol% or less, and the balance is Y,
The thickness of the light emitting member in the manufactured light emitting element is 0.1 mm or more and 0.35 mm or less.
Note that the thickness of the light emitting member shown here is defined as a value obtained by subtracting the thickness of the light transmitting member from the thickness of the entire light emitting element.

上記構成によって、蛍光出力および蛍光出力維持率に優れた発光素子が得られる。   With the above configuration, a light emitting device having excellent fluorescence output and fluorescence output maintenance rate can be obtained.

以下、実施の形態に係る発光素子について添付図面を参照しながら詳述する。なお、図面において実質的に同一の部材には同一の符号を付している。   Hereinafter, light-emitting elements according to embodiments will be described in detail with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1は、実施の形態1に係る発光素子100の断面構成を示す概略断面図である。
本実施の形態1に係る発光素子100は、少なくとも2種類以上の酸化物材料からなる板状形状を有する発光部材102と、発光部材102から放射される光をコリメートする平凸形状を有する光透過部材101と、を備える。また、この発光素子100は、発光部材102と光透過部材101との接触部が連続的であることを特徴とする。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view illustrating a cross-sectional configuration of the light-emitting element 100 according to Embodiment 1.
The light-emitting element 100 according to Embodiment 1 includes a light-emitting member 102 having a plate shape made of at least two kinds of oxide materials, and a light-transmitting light having a plano-convex shape that collimates light emitted from the light-emitting member 102. Member 101. Further, the light emitting element 100 is characterized in that a contact portion between the light emitting member 102 and the light transmitting member 101 is continuous.

仮に発光部材102と光透過部材101が先行文献に記載された結合剤119を介して接合している場合、発光部材102側から放射された光は結合剤119との界面で屈折が生じる。この屈折により、平凸形状を有する光透過部材101の方向に放射された光の一部は発光部材102の側面方向に拡散するため、光透過部材101を通過して検出できる蛍光出力は低下する。したがって、この発光素子100では、従来とは異なり、光透過部材101と発光部材102との接触部において結合剤119を含まない構成にすることで蛍光出力の低下を抑制することができる。   If the light emitting member 102 and the light transmitting member 101 are joined via the binder 119 described in the prior art, the light emitted from the light emitting member 102 side is refracted at the interface with the binder 119. Due to this refraction, part of the light emitted in the direction of the light transmitting member 101 having a plano-convex shape is diffused in the direction of the side surface of the light emitting member 102, so that the fluorescence output that can be detected through the light transmitting member 101 is reduced. . Therefore, unlike the conventional case, in the light emitting element 100, a decrease in fluorescence output can be suppressed by adopting a configuration that does not include the binder 119 in the contact portion between the light transmitting member 101 and the light emitting member 102.

また、発光部材102と光透過部材101との接触部は連続的である。図2は、発光素子100を構成する前記光透過部材101と発光部材102との接触部の断面である。図2に示すように、接触部において、発光中心を有さない酸化物材料103と、発光中心を有する酸化物材料104と、は互いに3次元的に絡まるように分布しており、連続的となっている。   The contact portion between the light emitting member 102 and the light transmitting member 101 is continuous. FIG. 2 is a cross-sectional view of a contact portion between the light transmitting member 101 and the light emitting member 102 constituting the light emitting element 100. As shown in FIG. 2, in the contact portion, the oxide material 103 having no emission center and the oxide material 104 having the emission center are distributed so as to be entangled with each other three-dimensionally. It has become.

発光部材102に高出力の励起光が照射されると、発光物質(蛍光体、発光中心を有する酸化物材料104)の基底準位にあった電子が励起され、その電子は励起準位に遷移する。この遷移した電子が基底準位に戻る際に蛍光を放射するが、このプロセスで使用されなかったエネルギーは熱に変換される。すると、発光物質(蛍光体、発光中心を有する酸化物材料104)は発熱するため発光部材102の温度が上昇する。光透過部材101は熱の発生源にはならないが、発光部材102と連続的であるため、温度が上昇し、発光素子100の温度は総じて上昇する。   When the light-emitting member 102 is irradiated with high-power excitation light, electrons at the ground level of the light-emitting substance (phosphor, oxide material 104 having a light emission center) are excited, and the electrons transition to the excitation level. To do. When the transitioned electrons return to the ground level, they emit fluorescence, but the energy not used in this process is converted into heat. Then, since the light emitting substance (phosphor, oxide material 104 having a light emission center) generates heat, the temperature of the light emitting member 102 rises. Although the light transmission member 101 does not serve as a heat generation source, the light transmission member 101 is continuous with the light emitting member 102. Therefore, the temperature increases, and the temperature of the light emitting element 100 generally increases.

これにより発光部材102および光透過部材101は熱により膨張する。従来の発光素子のように発光部材102と光透過部材101との接触部が連続的な構造をしていない場合には、熱膨張によって発光部材102と光透過部材101との接触部にクラックが生じる場合がある。一方、実施の形態1に係る発光素子100では、発光部材102と平凸形状を有する光透過部材101との接触部を連続的な構成としている。これによって、発光部材102において熱膨張が生じても光透過部材101との接触部が連続的であるので、光透過部材101への熱伝導が良好であって応力が緩和されるため、接触部におけるクラックの発生を抑制することができる。   Thereby, the light emitting member 102 and the light transmitting member 101 are expanded by heat. When the contact portion between the light emitting member 102 and the light transmitting member 101 does not have a continuous structure as in the conventional light emitting element, the contact portion between the light emitting member 102 and the light transmitting member 101 is cracked due to thermal expansion. May occur. On the other hand, in the light emitting element 100 according to Embodiment 1, the contact portion between the light emitting member 102 and the light transmitting member 101 having a plano-convex shape has a continuous configuration. As a result, even if thermal expansion occurs in the light emitting member 102, the contact portion with the light transmitting member 101 is continuous. Therefore, heat conduction to the light transmitting member 101 is good and stress is relieved. The occurrence of cracks in can be suppressed.

光透過部材101は、発光中心を有さない酸化物材料103であることが望ましい。発光中心を有さない酸化物材料103は、発光部材102中にも含まれているので、光透過部材101と発光部材102との接触部において、共通する材料による連続性を得ることができる。仮に、光透過部材101においても発光中心を有する酸化物材料104を含む場合には、発光部材102の蛍光成分のうち一部が自己吸収されてしまうため、蛍光出力が低下する問題が生じる。
また、発光部材102を構成する材料のうち、少なくとも1つは発光中心を有さない酸化物材料103であり、残りは発光中心を有する酸化物材料104からなり、両者の接触部において、それらが3次元的に絡み合っていることが好ましい。
The light transmitting member 101 is desirably an oxide material 103 having no emission center. Since the oxide material 103 having no emission center is also included in the light emitting member 102, continuity due to the common material can be obtained at the contact portion between the light transmitting member 101 and the light emitting member 102. If the light transmitting member 101 also includes the oxide material 104 having a light emission center, a part of the fluorescent component of the light emitting member 102 is self-absorbed, resulting in a problem that the fluorescent output is reduced.
In addition, at least one of the materials constituting the light emitting member 102 is an oxide material 103 having no light emission center, and the rest is composed of an oxide material 104 having a light emission center. It is preferable that they are intertwined three-dimensionally.

上述したように高出力の励起光を発光部材102に照射すると発熱する。発光部材102のすべてが、発光中心を有する酸化物材料104からなる場合、発光部材102の全体から熱が発生することになる。ここで、発光中心を有する酸化物材料104等の蛍光体の1つの特性として温度が上昇すると蛍光出力が低下する温度消光と呼ばれる現象がある。よって、蛍光出力の低下を抑制するためには、効率よく放熱できる構造にする必要がある。   As described above, when the light emitting member 102 is irradiated with high output excitation light, heat is generated. When all of the light emitting member 102 is made of the oxide material 104 having the light emission center, heat is generated from the entire light emitting member 102. Here, as one characteristic of the phosphor such as the oxide material 104 having a light emission center, there is a phenomenon called temperature quenching in which the fluorescence output decreases as the temperature increases. Therefore, in order to suppress a decrease in fluorescence output, it is necessary to have a structure that can efficiently dissipate heat.

そこで、発光部材102においては、発光中心を有さない酸化物材料103と、発光中心を有する酸化物材料104とが3次元的に絡みあった構造にすることにより、それぞれの接触面積を増加させることができる。これによって、発光部材102の発光中心を有する酸化物材料104で発生した熱が発光中心を有さない酸化物材料103に効率的に伝導し、放熱させることが可能となる。   Therefore, in the light-emitting member 102, the contact area is increased by providing a structure in which the oxide material 103 having no emission center and the oxide material 104 having the emission center are three-dimensionally entangled. be able to. Accordingly, heat generated in the oxide material 104 having the light emission center of the light emitting member 102 can be efficiently conducted to the oxide material 103 having no light emission center to be radiated.

なお、発光中心を有さない酸化物材料103は、例えばAlが好ましい。一方、発光中心を有する酸化物材料104は、例えば、Ceを含有するYAGであることがさらに好ましい。 Note that the oxide material 103 having no emission center is preferably, for example, Al 2 O 3 . On the other hand, the oxide material 104 having an emission center is more preferably YAG containing Ce, for example.

発光中心を有さない酸化物材料103としては、例えば、AlやZrO、MgO、Y等が挙げられるが、その中でも熱伝導率の高いAlを用いることが望ましい。
また、発光中心を有する酸化物材料104としては、例えば、ガーネット構造を有するErAl12や、YAl12や、YbAl12等にCeが含有したものが挙げられるが、光学特性に優れたYAG(YAl12)にCeが含有したものが望ましい。特に、発光中心を有さない酸化物材料103としてのAlと、発光中心を有する酸化物材料104としてのCeが含有したYAGとの組み合わせが好ましい。このAlとCeが含有したYAGとの組み合わせは、その共晶点付近で融液を凝固させると上記2つの材料が緻密に絡み合った構造となるため、機械的強度が向上する効果が得られる。
Examples of the oxide material 103 having no emission center include Al 2 O 3 , ZrO 2 , MgO, and Y 2 O 3. Among them, Al 2 O 3 having high thermal conductivity is used. desirable.
Examples of the oxide material 104 having a luminescent center include those containing Ce in Er 3 Al 5 O 12 having a garnet structure, Y 3 Al 5 O 12 , Yb 3 Al 5 O 12, and the like. However, it is preferable that Ce is contained in YAG (Y 3 Al 5 O 12 ) having excellent optical characteristics. In particular, a combination of Al 2 O 3 as the oxide material 103 having no emission center and Ce containing YAG as the oxide material 104 having the emission center is preferable. This combination of Al 2 O 3 and YAG containing Ce has a structure in which the two materials are intertwined closely when the melt is solidified in the vicinity of the eutectic point, thereby improving the mechanical strength. can get.

以下、実施例に基づき、さらに具体的な説明をする。   Hereinafter, based on an Example, it demonstrates further more concretely.

(発光素子の製造方法)
本実施の形態1に係る発光素子100を作製するために結晶引下げ装置10を使用した。図3(a)〜(c)は、実施の形態1における引下げプロセスを表す概略図である。この結晶引下げ装置10は、高周波コイル1と、耐火材2と、融液4を内部に有するるつぼ3とを備える。この結晶引下げ装置10では、加熱源として高周波コイル1を有しており、高周波誘導加熱の原理により、結晶引下げ装置10内に設置されているるつぼ3が加熱される(図3(a))。るつぼ3を保温するために周囲は耐火材2で覆われている。したがって、るつぼ3内の融液4は高周波コイル1との物理的な接触なしに加熱される。るつぼ3の底面には小さな穴が開いている。このるつぼ3の底面に光透過部材101の平面を接触させる(図3(b))。融液4が光透過部材101の面に濡れ広がったことを確認したのちに引き下げることで融液4を凝固させる(図3(c))。なお、光透過部材101を引き下げる場合に限られず、るつぼ3を引き上げてもよい。あるいは、るつぼ3と光透過部材101との間隔を離間させるように、少なくとも一方を移動させてもよい。これによって、光透過部材101と連続的につながった発光部材102を有する発光素子100が得られる。
(Manufacturing method of light emitting element)
In order to manufacture the light emitting element 100 according to the first embodiment, the crystal pulling apparatus 10 was used. FIGS. 3A to 3C are schematic diagrams showing a pulling process in the first embodiment. The crystal pulling device 10 includes a high-frequency coil 1, a refractory material 2, and a crucible 3 having a melt 4 therein. The crystal pulling apparatus 10 has the high frequency coil 1 as a heating source, and the crucible 3 installed in the crystal pulling apparatus 10 is heated by the principle of high frequency induction heating (FIG. 3A). The surroundings are covered with a refractory material 2 to keep the crucible 3 warm. Therefore, the melt 4 in the crucible 3 is heated without physical contact with the high frequency coil 1. There is a small hole in the bottom of the crucible 3. The flat surface of the light transmission member 101 is brought into contact with the bottom surface of the crucible 3 (FIG. 3B). After confirming that the melt 4 has spread on the surface of the light transmission member 101, the melt 4 is solidified by pulling down (FIG. 3C). The crucible 3 may be pulled up without being limited to the case where the light transmitting member 101 is pulled down. Or you may move at least one so that the space | interval of the crucible 3 and the light transmissive member 101 may be spaced apart. Thus, the light emitting element 100 having the light emitting member 102 continuously connected to the light transmitting member 101 is obtained.

(実施例)
前記融液4の原料となる純度99.9%の酸化アルミニウム粉末と酸化イットリウム粉末、酸化セリウム粉末を所定の比率で混合し、るつぼ3にいれる。そして、窒素ガス雰囲気にて高周波コイル1の出力を上昇させ、混合した粉末を溶解させる。このとき溶解温度は原料粉末が完全に溶融するように1900℃以上とした。その後、光透過部材101をるつぼ3の底部と接触させる。すると、るつぼ3の底から融液4が光透過部材101の平面部に濡れ始める。平面部全体に融液4が濡れ広がったことを確認した後、徐々に引下げて融液4を凝固させる。これによって、光透過部材101と連続的につながった発光部材102を有する発光素子100を作製した。
(Example)
An aluminum oxide powder having a purity of 99.9%, which is a raw material of the melt 4, an yttrium oxide powder, and a cerium oxide powder are mixed in a predetermined ratio and placed in a crucible 3. And the output of the high frequency coil 1 is raised in nitrogen gas atmosphere, and the mixed powder is dissolved. At this time, the melting temperature was set to 1900 ° C. or higher so that the raw material powder was completely melted. Thereafter, the light transmitting member 101 is brought into contact with the bottom of the crucible 3. Then, the melt 4 starts to wet the flat portion of the light transmitting member 101 from the bottom of the crucible 3. After confirming that the melt 4 has spread over the entire flat portion, the melt 4 is gradually lowered to solidify the melt 4. Thus, the light emitting element 100 having the light emitting member 102 continuously connected to the light transmitting member 101 was manufactured.

本実施の形態の発光素子の効果を明らかにするために、原料粉末の種類や量を変更することによって、発光部材102の材料の種類や組成の異なる発光素子を作製した。   In order to clarify the effect of the light-emitting element of this embodiment mode, light-emitting elements having different types and compositions of the light-emitting member 102 were manufactured by changing the type and amount of the raw material powder.

必要厚み以上に発光部材102の引下げが完了したら、高周波コイル1の出力を停止する。ここですると、るつぼ3内の融液4が冷却されるため、るつぼ3の底部から融液4の流出が止まる。その後、装置内を自然冷却し、光透過部材101と発光部材102とからなる発光素子100を取り出す。最後に、取り出した発光素子100の発光部材102側を研磨することにより、所望の厚みを有する発光素子100を作製した。   When the lowering of the light emitting member 102 is completed beyond the required thickness, the output of the high frequency coil 1 is stopped. Here, since the melt 4 in the crucible 3 is cooled, the outflow of the melt 4 from the bottom of the crucible 3 stops. Thereafter, the inside of the apparatus is naturally cooled, and the light emitting element 100 including the light transmitting member 101 and the light emitting member 102 is taken out. Finally, the light emitting element 100 having a desired thickness was manufactured by polishing the light emitting member 102 side of the light emitting element 100 taken out.

そこで得られた発光素子100の蛍光出力および蛍光出力維持率を評価した。
まず、発光素子100に含有されているイットリウムとアルミニウム、セリウムの濃度は、得られた発光素子100に対して発光部材102側の一部を取出し、ICP発光分光分析法により測定した。各元素のモル分率は、ICP発光分光分析で得られた濃度に基づいて、酸素Oを除くアルミニウムAl、セリウムCe、イットリウムYの各元素の濃度の合計を100モル%として算出した。
Thus, the fluorescence output and the fluorescence output maintenance rate of the light-emitting element 100 obtained were evaluated.
First, the concentrations of yttrium, aluminum, and cerium contained in the light-emitting element 100 were measured by ICP emission spectroscopic analysis after extracting a part of the light-emitting member 102 side from the obtained light-emitting element 100. The mole fraction of each element was calculated based on the concentration obtained by ICP emission spectroscopic analysis, assuming that the total concentration of each element of aluminum Al, cerium Ce, and yttrium Y excluding oxygen O was 100 mol%.

<測定装置>
図4は、作製した発光素子の測定試料112の蛍光出力および蛍光出力維持率を測定するために使用した装置を表す概略図である。この測定装置は、青色レーザー105、偏光板106、シャッター107、プリズム108、f200レンズ109、ハーフミラー110、ミラー111、測定試料112、反射板113、加熱装置114、f75レンズ115、青色光カットフィルター116、光検出器117を備える。また、部分図Aは、f200レンズ109からf75レンズ115の間に配置されたハーフミラー110、ミラー111、測定試料112、反射板113、加熱装置114の構成を示す部分図である。
<Measurement device>
FIG. 4 is a schematic view showing an apparatus used for measuring the fluorescence output and the fluorescence output maintenance rate of the measurement sample 112 of the manufactured light emitting device. This measuring apparatus includes a blue laser 105, a polarizing plate 106, a shutter 107, a prism 108, an f200 lens 109, a half mirror 110, a mirror 111, a measurement sample 112, a reflector 113, a heating device 114, an f75 lens 115, and a blue light cut filter. 116 and a photodetector 117. In addition, the partial view A is a partial view showing a configuration of the half mirror 110, the mirror 111, the measurement sample 112, the reflection plate 113, and the heating device 114 disposed between the f200 lens 109 and the f75 lens 115.

この装置を用いて、作製したそれぞれの発光素子100の室温における蛍光出力を測定した。励起光には445nmの青色レーザー105を用いた。青色レーザー105の光強度は、偏光板106、プリズム108およびハーフミラー110を用いて調整し、測定試料112に照射する光強度が300mWになるよう調整した。青色レーザー105の光の入切はシャッター107にて制御している。また、測定試料112にΦ0.7mm径のレーザー光を照射するため、f200レンズ109を用いて制御している。部分図Aに示すように、下部へ放射する蛍光を反射させ取り出すために、測定試料112の下部には反射板113を設置した。その下には加熱装置114があり、測定試料112の温度を変化させることができる。変換された蛍光はミラー111にて反射し、f75レンズ115にてコリメート光となり、光検出器117にて蛍光出力を検出される。このとき、青色レーザー105からの青色光も含まれているため、青色光カットフィルター116にて青色光を除去し、測定試料112からの蛍光成分の蛍光出力を検出できるようにした。   Using this apparatus, the fluorescence output at room temperature of each of the manufactured light-emitting elements 100 was measured. A 445 nm blue laser 105 was used as excitation light. The light intensity of the blue laser 105 was adjusted using the polarizing plate 106, the prism 108, and the half mirror 110, and the light intensity applied to the measurement sample 112 was adjusted to 300 mW. The light of the blue laser 105 is turned on and off by a shutter 107. Further, in order to irradiate the measurement sample 112 with a laser beam having a diameter of 0.7 mm, the f200 lens 109 is used for control. As shown in the partial diagram A, a reflecting plate 113 is installed below the measurement sample 112 in order to reflect and extract the fluorescence emitted to the lower part. Below that, there is a heating device 114 that can change the temperature of the measurement sample 112. The converted fluorescence is reflected by the mirror 111, becomes collimated light by the f75 lens 115, and the fluorescence output is detected by the photodetector 117. At this time, since the blue light from the blue laser 105 is also included, the blue light is removed by the blue light cut filter 116 so that the fluorescence output of the fluorescent component from the measurement sample 112 can be detected.

なお、蛍光出力は光学製品に適用したときに必要となる30.0mW以上を〇(良)、30.0mW未満を×(不可)とした。   In addition, as for the fluorescence output, 30.0 mW or more required when applied to an optical product was marked as ◯ (good) and less than 30.0 mW as x (impossible).

また、測定試料112が200℃における蛍光出力を評価し、(200℃における蛍光出力の値)/(室温における蛍光出力の値)×100を蛍光出力維持率として算出した。なお、蛍光出力維持率は光学製品内部が温度上昇しても製品としての特性を保証できる90.0%以上を〇(良)、90.0%以下を×(不可)とした。   Further, the fluorescence output of the measurement sample 112 at 200 ° C. was evaluated, and (fluorescence output value at 200 ° C.) / (Fluorescence output value at room temperature) × 100 was calculated as the fluorescence output maintenance rate. In addition, the fluorescence output maintenance rate was set to ○ (good) when 90.0% or more, which can guarantee the characteristics as a product even if the temperature inside the optical product rises, and x (impossible) when 90.0% or less.

表1に本試験に係る、発光部材中のAlモル分率、発光部材中のCeモル分率、発光部材の厚み、発光素子の製造方法等をそれぞれ変化させたときに得られた発光素子の蛍光出力および蛍光出力維持率を評価した結果をそれぞれ示す。   Table 1 shows the light emitting device obtained when the Al mole fraction in the light emitting member, the Ce mole fraction in the light emitting member, the thickness of the light emitting member, the manufacturing method of the light emitting device, etc. are changed according to this test. The results of evaluating the fluorescence output and the fluorescence output maintenance rate are shown respectively.

蛍光出力、200℃における蛍光出力維持率について、〇(良)が2つある場合は総合評価を〇(良)とした。また、×(不可)が1つでもある場合は、他の項目がどのような結果であっても総合評価は×(不可)とした。   Regarding the fluorescence output and the fluorescence output maintenance rate at 200 ° C., when there were two ◯ (good), the overall evaluation was made ◯ (good). When there is even one x (impossible), the overall evaluation is x (impossible) regardless of the result of other items.

Figure 2018097351
Figure 2018097351

実施例1から実施例3と比較例1および比較例2とを比較すると、Alモル分率が75mol%以上、85mol%以下の場合、蛍光出力および蛍光出力維持率は良好であることがわかる。Alモル分率が70mol%である比較例1においては、発光中心を有するAlと発光中心を有さないYAGの共晶点よりもYAGが過剰にある範囲に存在するため、YAGの粗大化が発生する。すると、AlとYAGの接触面積が相対的に小さくなり、発光の際に発生する熱の伝導が抑制され、放熱されにくくなる。したがって、蛍光出力維持率が低下する。Alモル分率が90mol%である比較例2においては、発光中心を有さないAlと発光中心を有するYAGの共晶点よりもAlが過剰にある範囲に存在するため、Alの粗大化が発生する。すると、発光中心を有するYAGの割合が相対的に少なくなるとともに、AlとYAGの接触面積が相対的に小さくなる。したがって、蛍光出力および蛍光出力維持率がともに低下する。 Comparing Example 1 to Example 3 with Comparative Example 1 and Comparative Example 2, it can be seen that when the Al mole fraction is 75 mol% or more and 85 mol% or less, the fluorescence output and the fluorescence output maintenance rate are good. In Comparative Example 1 in which the Al mole fraction is 70 mol%, YAG exists in a range where YAG is in excess of the eutectic point of Al 2 O 3 having an emission center and YAG not having an emission center. Coarseness occurs. Then, the contact area between Al 2 O 3 and YAG becomes relatively small, conduction of heat generated during light emission is suppressed, and heat radiation becomes difficult. Therefore, the fluorescence output maintenance rate decreases. Since the Al mole fraction in Comparative Example 2 is 90 mol%, Al 2 O 3 than the YAG eutectic point having an emission center, Al 2 O 3, based on no emission center is present in a range in excess , Al 2 O 3 coarsening occurs. Then, the ratio of YAG having the emission center is relatively reduced, and the contact area between Al 2 O 3 and YAG is relatively reduced. Therefore, both the fluorescence output and the fluorescence output maintenance rate are reduced.

実施例4および実施例5と比較例3および比較例4とを比較すると、Ceモル分率が0.02mol%以上、0.4mol%以下の場合、蛍光出力および蛍光出力維持率は良好である。Ceモル分率が0.01mol%である比較例3においては、YAG内で発光中心の役割を果たすCeが少ないために蛍光出力が低下する。一方、Ceモル分率が0.45mol%である比較例4においては、YAG内で発光中心の役割を果たすCeが多くなるが、発光中心の濃度がYAG内で高くなると近接するCeが多くなる。基底状態から励起状態に電子が遷移した場合、電子雲が拡がるが、近接するCeが多くなると、これらの拡がった電子雲が重なりあうこととなる。これにより励起状態にある電子が近接する電子雲に移動する確率が高くなり、基底状態に戻る前に失活する場合がある。したがって、蛍光出力および蛍光出力維持率は低下する。   When Example 4 and Example 5 are compared with Comparative Example 3 and Comparative Example 4, when the Ce mole fraction is 0.02 mol% or more and 0.4 mol% or less, the fluorescence output and the fluorescence output maintenance rate are good. . In Comparative Example 3 in which the Ce mole fraction is 0.01 mol%, the fluorescence output decreases because there is little Ce that plays the role of the luminescent center in YAG. On the other hand, in Comparative Example 4 in which the Ce mole fraction is 0.45 mol%, Ce that plays the role of the luminescent center in YAG increases. . When electrons transition from the ground state to the excited state, the electron cloud expands. However, when the number of adjacent Ces increases, the expanded electron clouds overlap. This increases the probability that electrons in the excited state move to the nearby electron cloud and may be deactivated before returning to the ground state. Therefore, the fluorescence output and the fluorescence output maintenance rate are reduced.

実施例6および実施例7と比較例5および比較例6を比較すると、発光部材の厚みが0.1mm以上、0.35mm以下の場合、蛍光出力および蛍光出力維持率は良好である。発光部材厚みが0.05mmである比較例5においては、厚みが小さく、励起光が発光中心を有するCeを含有するYAGに照射される確率が小さいため蛍光出力が低下する。発光部材厚みが0.4mmである比較例6においては、厚みが大きく、蛍光が発光部材の横方向に伝番することにより、光透過部材の方向から検出できる蛍光出力が低下する。また、厚みが大きくなることで蓄熱の効果が大きくなり、蛍光出力維持率が低下する。   When Example 6 and Example 7 are compared with Comparative Example 5 and Comparative Example 6, when the thickness of the light emitting member is 0.1 mm or more and 0.35 mm or less, the fluorescence output and the fluorescence output maintenance rate are good. In Comparative Example 5 in which the thickness of the light emitting member is 0.05 mm, the fluorescence output decreases because the thickness is small and the probability that the excitation light is irradiated to YAG containing Ce having the emission center is small. In Comparative Example 6 in which the light emitting member thickness is 0.4 mm, the thickness is large, and the fluorescence transmitted to the lateral direction of the light emitting member decreases the fluorescence output that can be detected from the direction of the light transmitting member. Moreover, the effect of heat storage becomes large and the fluorescence output maintenance rate falls because thickness becomes large.

すなわち、発光部材のAlモル分率が75mol%以上85mol%以下、かつCeモル分率が0.02mol%以上0.4mol%以下、残部がYからなり、さらに発光部材の厚みが0.1mm以上0.35mm以下である場合、蛍光出力および蛍光出力維持率に優れた発光素子が得られる。 That is, the Al mole fraction of the light emitting member is 75 mol% or more and 85 mol% or less, the Ce mole fraction is 0.02 mol% or more and 0.4 mol% or less, the balance is Y, and the thickness of the light emitting member is 0.1 mm or more. When the thickness is 0.35 mm or less, a light emitting device excellent in fluorescence output and fluorescence output maintenance rate can be obtained.

本発明に係る発光素子は、蛍光出力、蛍光出力維持率に優れている。また、青色光を照射させたときに黄色蛍光を発し、白色光を得る性能に優れていることから、車載用照明として利用できる可能性が高い。   The light emitting device according to the present invention is excellent in fluorescence output and fluorescence output maintenance rate. Moreover, since it is excellent in the performance which emits yellow fluorescence when irradiated with blue light and obtains white light, there is a high possibility that it can be used as in-vehicle lighting.

1 高周波コイル
2 耐火材
3 るつぼ
4 融液
10 結晶引下げ装置
100 発光素子
101 光透過部材
102 発光部材
103 発光中心を有さない酸化物材料
104 発光中心を有する酸化物材料
105 青色レーザー
106 偏光板
107 シャッター
108 プリズム
109 f200レンズ
110 ハーフミラー
111 ミラー
112 測定試料
113 反射板
114 加熱装置
115 f75レンズ
116 青色光カットフィルター
117 光検出器
118 空気層
119 結合剤
120 粉末蛍光体
121 基板
122 発光層
123 光透過部材
130 発光素子
DESCRIPTION OF SYMBOLS 1 High frequency coil 2 Refractory material 3 Crucible 4 Melt 10 Crystal pulling apparatus 100 Light emitting element 101 Light transmission member 102 Light emitting member 103 Oxide material 104 which does not have a light emission center 104 Oxide material 105 which has a light emission center Blue laser 106 Polarizing plate 107 Shutter 108 prism 109 f200 lens 110 half mirror 111 mirror 112 measurement sample 113 reflector 114 heating device 115 f75 lens 116 blue light cut filter 117 photodetector 118 air layer 119 binder 120 powder phosphor 121 substrate 122 light emitting layer 123 light transmission Member 130 Light Emitting Element

Claims (6)

少なくとも2種類以上の酸化物材料からなる板状形状を有する発光部材と、
前記発光部材から放射される光をコリメートする平凸形状を有する光透過部材と、
を備え、
前記光透過部材と前記発光部材との接触部が連続的であることを特徴とする発光素子。
A light emitting member having a plate shape made of at least two kinds of oxide materials;
A light transmissive member having a plano-convex shape for collimating light emitted from the light emitting member;
With
A light emitting element, wherein a contact portion between the light transmitting member and the light emitting member is continuous.
前記発光部材は、少なくとも1つは発光中心を有さない材料であり、残りは発光中心を有する材料から構成され、
前記光透過部材は、前記発光部材の前記発光中心を有さない材料と実質的に同じ材料で構成されている、請求項1に記載の発光素子。
The light emitting member is made of a material having at least one light emission center and the rest is made of a material having a light emission center,
The light-emitting element according to claim 1, wherein the light transmission member is made of a material that is substantially the same as a material that does not have the light emission center of the light-emitting member.
前記接触部において、前記発光中心を有さない材料と前記発光中心を有する材料とが互いに3次元的に絡み合って分布してなる、請求項2に記載の発光素子。   The light emitting element according to claim 2, wherein in the contact portion, the material having no light emission center and the material having the light emission center are distributed in a three-dimensional entanglement with each other. 前記発光中心を有さない材料がAlであり、前記発光中心を有する材料がCeを含有するYAGである、請求項2又は3に記載の発光素子。 The light emitting device according to claim 2 or 3, wherein the material having no emission center is Al 2 O 3 and the material having the emission center is YAG containing Ce. 発光部材の融液となる酸化アルミニウムと酸化イットリウムと酸化セリウムの各粉末をるつぼ内で加熱し、
前記るつぼの底の穴部に平凸形状を有する光透過部材の平面部を接触させ、
前記光透過部材の前記平面部に前記発光部材の融液が濡れた状態を確認後に、
前記るつぼと前記光透過部材との間隔を離間させて前記発光部材の融液を凝固させ、
前記光透過部材と前記発光部材との接触部が連続的である発光素子を製造する、
発光素子の製造方法。
Heat each powder of aluminum oxide, yttrium oxide and cerium oxide, which will be the melt of the light emitting member, in a crucible,
Contacting the flat portion of the light transmitting member having a plano-convex shape with the hole at the bottom of the crucible;
After confirming the state in which the melt of the light emitting member is wetted on the flat portion of the light transmitting member,
The gap between the crucible and the light transmitting member is separated to solidify the melt of the light emitting member;
Producing a light emitting element in which a contact portion between the light transmitting member and the light emitting member is continuous;
Manufacturing method of light emitting element.
前記発光部材の融液は、
Alモル分率が75mol%以上85mol%以下、かつCeモル分率が0.02mol%以上0.4mol%以下、残部がYからなり、
製造された前記発光素子における前記発光部材の厚みを0.1mm以上0.35mm以下にすることを特徴とする請求項5に記載の発光素子の製造方法。
The melt of the light emitting member is
Al mole fraction is 75 mol% or more and 85 mol% or less, Ce mole fraction is 0.02 mol% or more and 0.4 mol% or less, and the balance is Y,
The method for manufacturing a light emitting element according to claim 5, wherein the thickness of the light emitting member in the manufactured light emitting element is 0.1 mm or more and 0.35 mm or less.
JP2017151918A 2016-12-15 2017-08-04 Light-emitting element and manufacturing method of light-emitting element Pending JP2018097351A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/825,058 US10290779B2 (en) 2016-12-15 2017-11-28 Light emitting element
DE102017128552.0A DE102017128552A1 (en) 2016-12-15 2017-12-01 Light-emitting element and method for producing a light-emitting element
CN201711312772.9A CN108224366B (en) 2016-12-15 2017-12-11 Light-emitting element and method for manufacturing light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016243649 2016-12-15
JP2016243649 2016-12-15

Publications (1)

Publication Number Publication Date
JP2018097351A true JP2018097351A (en) 2018-06-21

Family

ID=62632913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151918A Pending JP2018097351A (en) 2016-12-15 2017-08-04 Light-emitting element and manufacturing method of light-emitting element

Country Status (2)

Country Link
JP (1) JP2018097351A (en)
CN (1) CN108224366B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580334B (en) * 2019-02-19 2021-10-22 精工爱普生株式会社 Phosphor, wavelength conversion element, light source device, and projector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343059A (en) * 2003-04-24 2004-12-02 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element
US20080191236A1 (en) * 2005-04-27 2008-08-14 Koninklijke Philips Electronics N.V. Cooling Device for a Light-Emitting Semiconductor Device and a Method of Manufacturing Such a Cooling Device
JP2012062459A (en) * 2010-08-18 2012-03-29 Covalent Materials Corp Ceramic composite
WO2013008361A1 (en) * 2011-07-12 2013-01-17 パナソニック株式会社 Optical element and semiconductor light-emitting device employing same
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
US20150280078A1 (en) * 2014-03-31 2015-10-01 SemiLEDs Optoelectronics Co., Ltd. White flip chip light emitting diode (fc led) and fabrication method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967182B1 (en) * 1998-06-18 2001-04-04 Nippon Sheet Glass Co., Ltd. Light-transmitting color film, method for producing the same, and coating solution for forming the color film
JP4203554B2 (en) * 2002-08-30 2009-01-07 住友大阪セメント株式会社 Photoelectric conversion element and manufacturing method thereof
CN1549355A (en) * 2003-05-08 2004-11-24 连营科技股份有限公司 Luminous diode and producing method thereof
CN101238595B (en) * 2005-08-10 2012-07-04 宇部兴产株式会社 Substrate for light emitting diode and light emitting diode
EP2000829B1 (en) * 2006-03-30 2013-09-11 Ube Industries, Ltd. Light transmission scattering material and its use
JP5366079B2 (en) * 2009-03-03 2013-12-11 宇部興産株式会社 COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION, LIGHT EMITTING DIODE ELEMENT AND MANUFACTURING METHOD THEREOF
CN103062713A (en) * 2009-05-13 2013-04-24 李欣洋 Light-emitting light (LED) source using ARTON optical filter
EP2407980B1 (en) * 2009-07-21 2019-01-23 Nichia Corporation Method for producing conductive material, conductive material obtained by the same method, electronic device containing the conductive material, and light-emitting device
DE102010009456A1 (en) * 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Radiation-emitting component with a semiconductor chip and a conversion element and method for its production
CN102956781B (en) * 2011-08-31 2015-03-11 新世纪光电股份有限公司 Light-emitting element and manufacturing method thereof
JP5928476B2 (en) * 2011-10-18 2016-06-01 株式会社村田製作所 LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
KR101357045B1 (en) * 2011-11-01 2014-02-05 한국과학기술연구원 Tunable Light Emitting Diode using Graphene conjugated Metal oxide semiconductor-Graphene core-shell Quantum dots and its fabrication process thereof
WO2014007761A1 (en) * 2012-07-05 2014-01-09 National University Of Singapore Method of preparing an electrically conductive material, and an electrically conductive material
RU2632840C2 (en) * 2012-07-11 2017-10-10 Конинклейке Филипс Н.В. Silicone product, lighting device, containing silicone product, and method for silicone product manufacture
KR101997243B1 (en) * 2012-09-13 2019-07-08 엘지이노텍 주식회사 Light emtting device and lighting system
US9349921B2 (en) * 2012-10-19 2016-05-24 Osram Sylvania Inc. Index matched composite materials and light sources incorporating the same
WO2014119783A1 (en) * 2013-02-04 2014-08-07 ウシオ電機株式会社 Fluorescent-light-source device
US9728685B2 (en) * 2013-02-28 2017-08-08 Nichia Corporation Light emitting device and lighting device including same
JP2015070156A (en) * 2013-09-30 2015-04-13 サンケン電気株式会社 Light-emitting device
CN104659191A (en) * 2013-11-20 2015-05-27 展晶科技(深圳)有限公司 Light emitting diode packaging body manufacturing method
TWI533479B (en) * 2013-12-30 2016-05-11 國立交通大學 Package structure and method for manufacturing the same
US9647172B2 (en) * 2014-02-07 2017-05-09 Epistar Corporation Light emitting device
JP2015189233A (en) * 2014-03-31 2015-11-02 住友理工株式会社 Light-transmissive laminated film and production method thereof
EP3130011A4 (en) * 2014-04-07 2018-02-28 Crystal Is, Inc. Ultraviolet light-emitting devices and methods
TW201603316A (en) * 2014-07-04 2016-01-16 新世紀光電股份有限公司 Light emitting component
CN105423238B (en) * 2014-09-11 2017-05-10 松下知识产权经营株式会社 Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member
JP2016089157A (en) * 2014-10-29 2016-05-23 積水化学工業株式会社 Curable composition for optical semiconductor device, molding for optical semiconductor device, and optical semiconductor device
CN104409600A (en) * 2014-11-14 2015-03-11 浙江大学 Near-infrared light-emitting device and preparation method thereof
CN105845812A (en) * 2016-05-09 2016-08-10 深圳市聚飞光电股份有限公司 LED fluorescent glue and packaging method for improving luminescence uniformity, and LED

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343059A (en) * 2003-04-24 2004-12-02 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element
US20080191236A1 (en) * 2005-04-27 2008-08-14 Koninklijke Philips Electronics N.V. Cooling Device for a Light-Emitting Semiconductor Device and a Method of Manufacturing Such a Cooling Device
JP2008539576A (en) * 2005-04-27 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cooling device for light emitting semiconductor device and method of manufacturing such a cooling device
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
JP2012062459A (en) * 2010-08-18 2012-03-29 Covalent Materials Corp Ceramic composite
WO2013008361A1 (en) * 2011-07-12 2013-01-17 パナソニック株式会社 Optical element and semiconductor light-emitting device employing same
CN103503178A (en) * 2011-07-12 2014-01-08 松下电器产业株式会社 Optical element and semiconductor light-emitting device employing same
US20150280078A1 (en) * 2014-03-31 2015-10-01 SemiLEDs Optoelectronics Co., Ltd. White flip chip light emitting diode (fc led) and fabrication method

Also Published As

Publication number Publication date
CN108224366A (en) 2018-06-29
CN108224366B (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP5254418B2 (en) Lighting device and headlamp
JP2017198983A (en) Wavelength conversion member and projector
JP2016072513A (en) Optical component and manufacturing method of optical component and light emitting device and manufacturing method of light emitting device
JP2013102078A (en) Light source device and luminaire
JP5919968B2 (en) Wavelength conversion member and light emitting device
JP2012123940A (en) Lighting device and vehicular headlight
JP6597809B2 (en) Light source device
JP2012221634A (en) Lighting system and headlamp
JP7201936B2 (en) Method for manufacturing light emitting device
JP6162537B2 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND VEHICLE LIGHT
JP2017216362A (en) Light-emitting device
JP2013168602A (en) Light source device and luminaire
JP2015122447A (en) Light-emitting device and illumination device
JP6631553B2 (en) Light emitting device manufacturing method
JP2018037484A (en) Light emitting device
JP2018097351A (en) Light-emitting element and manufacturing method of light-emitting element
JP2018049130A (en) Fluorescent substance-containing member and light-emitting device having fluorescent substance-containing member
JP6631855B2 (en) Light emitting device
JP2012136686A (en) Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method
JP2012221633A (en) Lighting device and headlamp
US10290779B2 (en) Light emitting element
TW201706534A (en) High intensity light source with temperature independent color point
CN114236955A (en) Transmission type wavelength conversion device and light emitting device thereof
JPWO2020100728A1 (en) Light emitting device
JP2013214629A (en) Wavelength conversion member and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914