JP2018096784A - Tsunami observation system - Google Patents

Tsunami observation system Download PDF

Info

Publication number
JP2018096784A
JP2018096784A JP2016240466A JP2016240466A JP2018096784A JP 2018096784 A JP2018096784 A JP 2018096784A JP 2016240466 A JP2016240466 A JP 2016240466A JP 2016240466 A JP2016240466 A JP 2016240466A JP 2018096784 A JP2018096784 A JP 2018096784A
Authority
JP
Japan
Prior art keywords
water pressure
tsunami
offshore
observation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016240466A
Other languages
Japanese (ja)
Inventor
知成 白石
Tomonari Shiraishi
知成 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2016240466A priority Critical patent/JP2018096784A/en
Publication of JP2018096784A publication Critical patent/JP2018096784A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a simple tsunami observation system capable of comprehending the height of tsunami at offshore at early stage at a low cost.SOLUTION: A tsunami observation system 100 for observing the height of tsunami or sea level WL includes: water pressure acquisition means 10 which is installed offshore seabed for acquiring the water pressure at an installation point by introducing sea water; water level observation means 12 which is installed in the vicinity of shore for observing the sea level WL at the installation point on the basis of the water pressure acquired by the water pressure acquisition means 10; and duct means 14 which is laid under the sea to communicate the water level observation means 12 and the water pressure acquisition means 10.SELECTED DRAWING: Figure 1

Description

本発明は、津波の高さなどを観測するための津波観測システムに関するものである。   The present invention relates to a tsunami observation system for observing the height of a tsunami and the like.

従来、津波の高さを測定するシステムとして、海上ブイとGPS(Global Positioning System:衛星測位システム)を用いて海面の上下動を解析するシステム(例えば、特許文献1を参照)や、海底での水圧を計測する水圧センサーを用いた海底津波計システム(例えば、特許文献2を参照)などが提案されている。しかしながら、これらは比較的高価な測定システムであり、解析等を伴う場合もあるため、測定情報の公開スピードが遅くなる可能性がある。また、地震の影響による停電等によりシステムが運用できなくなることも予想される。このため、これらの従来の測定システムは、防災を目的として津波の高さを把握する手段として好適とは言い難いものであった。   Conventionally, as a system for measuring the height of a tsunami, an ocean buoy and a GPS (Global Positioning System: satellite positioning system) are used to analyze sea surface vertical movement (see, for example, Patent Document 1), A submarine tsunami meter system using a water pressure sensor for measuring water pressure (see, for example, Patent Document 2) has been proposed. However, these are comparatively expensive measurement systems, and may involve analysis, etc., so that the disclosure speed of measurement information may be slow. It is also expected that the system will become inoperable due to power outages due to the earthquake. For this reason, these conventional measurement systems are hardly suitable as means for grasping the height of the tsunami for the purpose of disaster prevention.

特開2006−170920号公報JP 2006-170920 A 特開2001−264056号公報JP 2001-264056 A

今後発生が懸念される東海地震、東南海地震、南海地震等による津波の予測が政府、地方自治体、各研究機関等によって行われている。地震発生直後の実際の津波の高さを、できるだけ沖合から観測することができれば、津波警報の迅速な発信が可能となって、地域住民の迅速な避難行動等に資することとなるので好ましい。また、地方自治体などのユーザーにとっては、維持管理が容易で安価なシステムであることが望ましい。   The government, local governments, research institutes, etc. are predicting tsunamis due to the Tokai, Tonankai and Nankai earthquakes that are likely to occur in the future. If the actual tsunami height immediately after the occurrence of the earthquake can be observed from offshore as much as possible, it is possible to promptly transmit a tsunami warning and contribute to prompt evacuation behavior of local residents. For users such as local governments, it is desirable that the system be easy to maintain and inexpensive.

このため、沖合の津波の高さを早期に把握することのできる簡易で安価な津波観測システムの開発が求められていた。   For this reason, the development of a simple and inexpensive tsunami observation system that can grasp the height of the offshore tsunami at an early stage has been demanded.

本発明は、上記に鑑みてなされたものであって、沖合の津波の高さを早期に把握することのできる簡易で安価な津波観測システムを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a simple and inexpensive tsunami observation system that can quickly grasp the height of an offshore tsunami.

上記した課題を解決し、目的を達成するために、本発明に係る津波観測システムは、津波または海水面の高さを観測するための津波観測システムであって、沖合の海中に設置され、海水を導入して設置箇所の水圧を取得する水圧取得手段と、海岸の近傍に設置され、水圧取得手段により取得された水圧に基づいて前記設置箇所の海水面の位置を観測する水位観測手段と、海中に敷設され、水位観測手段と水圧取得手段とを連通する管路手段とを備えることを特徴とする。   In order to solve the above problems and achieve the object, a tsunami observation system according to the present invention is a tsunami observation system for observing the height of a tsunami or seawater surface, A water pressure acquisition means for acquiring the water pressure of the installation location by introducing the water level, and a water level observation means for observing the position of the sea level at the installation location based on the water pressure installed near the coast and acquired by the water pressure acquisition means, It is laid in the sea, and is provided with a conduit means for communicating the water level observation means and the water pressure acquisition means.

また、本発明に係る他の津波観測システムは、上述した発明において、水圧取得手段は岸沖方向に間隔をあけて複数設置され、管路手段は隣り合う水圧取得手段どうしを連通可能に接続し、水圧取得手段は、管路手段と接続口を介して連通可能に接続された水圧室と、外部の海水を水圧室に導入するための連通口と、この連通口を開閉する第1逆止弁と、水圧室から見て沖側の管路手段が接続する接続口を開閉する第2逆止弁とを有することを特徴とする。   Further, in the tsunami observation system according to the present invention, in the above-described invention, a plurality of water pressure acquisition means are installed at intervals in the offshore direction, and the pipe means connects adjacent water pressure acquisition means so as to communicate with each other. The water pressure acquisition means includes a water pressure chamber connected to the pipe means through the connection port, a communication port for introducing external seawater into the water pressure chamber, and a first check that opens and closes the communication port. It has a valve and a second check valve that opens and closes a connection port to which pipe means on the offshore side as viewed from the water pressure chamber is connected.

また、本発明に係る他の津波観測システムは、上述した発明において、第1逆止弁は、水圧室の水圧が外部の水圧よりも低い場合に開いて水圧室への海水の流入を許容する一方、水圧室の水圧が外部の水圧よりも高い場合に閉じて海水の流入を阻止し、第2逆止弁は、沖側の管路手段の水圧が水圧室の水圧よりも高い場合に開く一方、沖側の管路手段の水圧が水圧室の水圧よりも低い場合に閉じることを特徴とする。   Further, in the tsunami observation system according to the present invention, in the above-described invention, the first check valve opens when the water pressure in the water pressure chamber is lower than the external water pressure, and allows inflow of seawater into the water pressure chamber. On the other hand, when the water pressure in the water pressure chamber is higher than the external water pressure, it closes to prevent the inflow of seawater, and the second check valve opens when the water pressure in the offshore pipe means is higher than the water pressure in the water pressure chamber. On the other hand, it is characterized in that it closes when the water pressure in the offshore pipe means is lower than the water pressure in the water pressure chamber.

また、本発明に係る他の津波観測システムは、上述した発明において、岸沖方向に間隔をあけて複数設置された水圧取得手段と、隣り合う水圧取得手段どうしを連通可能に接続する管路手段とによってそれぞれ構成される第1系統と第2系統とを備え、第1系統と第2系統は互いに平行に設置されるともに、各系統の水圧取得手段は互いに岸沖方向に所定の離間距離だけずらして配置され、水位観測手段により観測された各系統の水圧取得手段の設置箇所の海水面の位置と、前記離間距離と、観測時間とに基づいて、波の伝播速度を推定する推定手段をさらに備えることを特徴とする。   Another tsunami observation system according to the present invention is the above-described invention, in the above-described invention, a pipe means for connecting a plurality of water pressure acquisition means installed at intervals in the offshore direction and adjacent water pressure acquisition means so as to communicate with each other. The first system and the second system are respectively configured in parallel, and the first system and the second system are installed in parallel with each other, and the water pressure acquisition means of each system is mutually separated by a predetermined separation distance in the shore offshore direction. Estimating means for estimating the wave propagation speed based on the position of the sea level at the location where the water pressure acquisition means of each system is installed, the separation distance, and the observation time, which are shifted and observed by the water level observation means It is further provided with the feature.

また、本発明に係る他の津波観測システムは、上述した発明において、推定手段は、海岸側の所定の基準位置から水圧取得手段までの距離と、波の伝播速度とに基づいて、当該波が前記基準位置に到達するまでの到達時間を予測することを特徴とする。   Further, in the tsunami observation system according to the present invention, in the above-described invention, the estimation unit is configured such that the wave is based on the distance from the predetermined reference position on the coast side to the water pressure acquisition unit and the wave propagation speed. An arrival time until the reference position is reached is predicted.

また、本発明に係る他の津波観測システムは、上述した発明において、管路手段は、海底に敷設され、地震時の海底地盤の変動に追従可能なフレキシブルなパイプからなることを特徴とする。   Another tsunami observation system according to the present invention is characterized in that, in the above-described invention, the conduit means is a flexible pipe that is laid on the seabed and can follow the changes in the seabed ground during an earthquake.

本発明に係る津波観測システムによれば、津波または海水面の高さを観測するための津波観測システムであって、沖合の海中に設置され、海水を導入して設置箇所の水圧を取得する水圧取得手段と、海岸の近傍に設置され、水圧取得手段により取得された水圧に基づいて前記設置箇所の海水面の位置を観測する水位観測手段と、海中に敷設され、水位観測手段と水圧取得手段とを連通する管路手段とを備えるので、沖合で取得された水圧は管路手段を介して海岸側の水位観測手段で即座に観測される。この水圧は沖合の海水面の水位に対応するため、この水位から基準海水面の水位を差し引くことで沖合の波の高さを求めることができる。このため、海岸の近傍に設置された水位観測手段によって、沖合の津波などの波の高さを即座に観測可能である。また、この津波観測システムの構成は上記の水位観測手段と水圧取得手段と管路手段とからなるため簡易であり、特殊な電子機器や解析を要しないため安価である。したがって、沖合の津波の高さを早期に把握することのできる簡易で安価な津波観測システムを提供することができるという効果を奏する。   The tsunami observation system according to the present invention is a tsunami observation system for observing the height of a tsunami or sea level, and is installed in the sea offshore, and introduces seawater to obtain the water pressure at the installation location. An acquisition means, a water level observation means installed in the vicinity of the coast and observing the sea level of the installation location based on the water pressure acquired by the water pressure acquisition means, and a water level observation means and a water pressure acquisition means laid in the sea Therefore, the water pressure acquired offshore is immediately observed by the water level observation means on the shore side through the pipeline means. Since this water pressure corresponds to the offshore sea level, the offshore wave height can be obtained by subtracting the reference sea level from this water level. For this reason, the height of waves such as offshore tsunami can be observed immediately by means of water level observation means installed near the coast. Moreover, the structure of this tsunami observation system is simple because it is composed of the above-described water level observation means, water pressure acquisition means, and pipe means, and is inexpensive because it does not require special electronic equipment or analysis. Therefore, it is possible to provide a simple and inexpensive tsunami observation system that can grasp the height of the offshore tsunami at an early stage.

また、本発明に係る他の津波観測システムによれば、水圧取得手段は岸沖方向に間隔をあけて複数設置され、管路手段は隣り合う水圧取得手段どうしを連通可能に接続し、水圧取得手段は、管路手段と接続口を介して連通可能に接続された水圧室と、外部の海水を水圧室に導入するための連通口と、この連通口を開閉する第1逆止弁と、水圧室から見て沖側の管路手段が接続する接続口を開閉する第2逆止弁とを有するので、岸沖方向に沿う複数の箇所で、沖合の波の高さを即座に観測することができるという効果を奏する。   Further, according to another tsunami observation system according to the present invention, a plurality of water pressure acquisition means are installed at intervals in the offshore direction, and the pipe means connects adjacent water pressure acquisition means so that they can communicate with each other. The means includes a water pressure chamber connected to the pipe means via a connection port, a communication port for introducing external seawater into the water pressure chamber, a first check valve for opening and closing the communication port, Because it has a second check valve that opens and closes the connection port connected to the offshore pipe means when viewed from the hydraulic chamber, the height of offshore waves can be observed immediately at multiple locations along the coast. There is an effect that can be.

また、本発明に係る他の津波観測システムによれば、第1逆止弁は、水圧室の水圧が外部の水圧よりも低い場合に開いて水圧室への海水の流入を許容する一方、水圧室の水圧が外部の水圧よりも高い場合に閉じて海水の流入を阻止し、第2逆止弁は、沖側の管路手段の水圧が水圧室の水圧よりも高い場合に開く一方、沖側の管路手段の水圧が水圧室の水圧よりも低い場合に閉じるので、水圧室から見て海岸側の管路手段の内部の水圧は、水圧室の最大水圧に等しくなり、この最大水圧は水位観測手段において水圧取得箇所の波の最大高さとして観測される。このため、岸沖方向に沿う複数の箇所で、沖合の波の最大高さを即座に観測することができるという効果を奏する。   Further, according to another tsunami observation system according to the present invention, the first check valve opens when the water pressure in the water pressure chamber is lower than the external water pressure and allows the inflow of seawater into the water pressure chamber. When the water pressure in the chamber is higher than the external water pressure, it closes to block the inflow of seawater, and the second check valve opens when the water pressure in the offshore pipe means is higher than the water pressure in the water pressure chamber, When the water pressure in the side pipe means is lower than the water pressure in the water pressure chamber, the water pressure inside the pipe means on the coast side when viewed from the water pressure chamber is equal to the maximum water pressure in the water pressure chamber. It is observed as the maximum wave height at the water pressure acquisition point in the water level observation means. For this reason, the maximum offshore wave height can be observed immediately at a plurality of locations along the shore offshore direction.

また、本発明に係る他の津波観測システムによれば、岸沖方向に間隔をあけて複数設置された水圧取得手段と、隣り合う水圧取得手段どうしを連通可能に接続する管路手段とによってそれぞれ構成される第1系統と第2系統とを備え、第1系統と第2系統は互いに平行に設置されるともに、各系統の水圧取得手段は互いに岸沖方向に所定の離間距離だけずらして配置され、水位観測手段により観測された各系統の水圧取得手段の設置箇所の海水面の位置と、前記離間距離と、観測時間とに基づいて、波の伝播速度を推定する推定手段をさらに備えるので、沖合の津波の伝播速度を推定することができるという効果を奏する。   In addition, according to another tsunami observation system according to the present invention, a plurality of water pressure acquisition means installed at intervals in the shore offshore direction, and a pipeline means for connecting adjacent water pressure acquisition means so as to communicate with each other, respectively. The first system and the second system are configured, and the first system and the second system are installed in parallel with each other, and the water pressure acquisition means of each system are arranged with a predetermined separation distance from each other in the shore offshore direction. And an estimation means for estimating the wave propagation speed based on the position of the sea level at the location where the water pressure acquisition means of each system is installed, the separation distance, and the observation time observed by the water level observation means. It has the effect of being able to estimate the propagation speed of offshore tsunamis.

また、本発明に係る他の津波観測システムによれば、推定手段は、海岸側の所定の基準位置から水圧取得手段までの距離と、波の伝播速度とに基づいて、当該波が前記基準位置に到達するまでの到達時間を予測するので、津波の到達時間を予測することができるという効果を奏する。   Further, according to another tsunami observation system according to the present invention, the estimation unit is configured such that the wave is the reference position based on the distance from the predetermined reference position on the coast side to the water pressure acquisition unit and the wave propagation speed. Since the arrival time until reaching the tsunami is predicted, the arrival time of the tsunami can be predicted.

また、本発明に係る他の津波観測システムによれば、管路手段は、海底に敷設され、地震時の海底地盤の変動に追従可能なフレキシブルなパイプからなるので、地震時の海底地盤の隆起・沈降に対してパイプがフレキシブルに移動変形することで、パイプが断線するリスクを回避することができるという効果を奏する。   Further, according to another tsunami observation system according to the present invention, the pipe means is a flexible pipe that is laid on the seabed and can follow the changes in the seabed ground during an earthquake. -The pipe can be flexibly moved and deformed with respect to the settling, so that the risk of the pipe breaking can be avoided.

図1は、本発明の実施の形態1に係る津波観測システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a tsunami observation system according to Embodiment 1 of the present invention. 図2は、水圧測定装置(水圧取得手段)の断面図である。FIG. 2 is a cross-sectional view of the water pressure measurement device (water pressure acquisition means). 図3は、本発明による観測原理の概念図であり、(1)は津波観測システムの縦断面図、(2)は観測時間と観測水位の関係を示す図である。FIG. 3 is a conceptual diagram of the observation principle according to the present invention. (1) is a longitudinal sectional view of the tsunami observation system, and (2) is a diagram showing the relationship between the observation time and the observation water level. 図4は、海岸に設置される水位観測装置(水位観測手段)の部分拡大図であり、(a)は平常時、(b)は津波観測時の図である。FIG. 4 is a partially enlarged view of a water level observation device (water level observation means) installed on the coast, (a) is a normal time, and (b) is a diagram at the time of tsunami observation. 図5は、本発明の実施の形態2に係る津波観測システムによる津波の伝播速度、到達時間の推定原理の概念図であり(1)は津波観測システムの縦断面図、(2)は観測時間と観測水位の関係を示す図である。FIG. 5 is a conceptual diagram of the principle of estimation of tsunami propagation speed and arrival time by the tsunami observation system according to Embodiment 2 of the present invention. (1) is a longitudinal sectional view of the tsunami observation system, and (2) is an observation time. It is a figure which shows the relationship between an observation water level.

以下に、本発明に係る津波観測システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a tsunami observation system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
まず、本発明の実施の形態1について説明する。
図1に示すように、本発明の実施の形態1に係る津波観測システム100は、地震等に起因して沖合から押し寄せる津波または海水面WLの高さを簡易に測定するためのシステムであり、岸沖方向Dに一定の間隔をあけて海底Gに複数設置された水圧測定装置10(水圧取得手段)と、海岸部Cに設置された水位観測装置12(水位観測手段)と、隣り合う水圧測定装置10の間と水位観測装置12とをそれぞれ連通状態に接続し、海底Gに敷設されたパイプ14(管路手段)とを備える。なお、本実施の形態では、パイプ14と水圧測定装置10が大陸棚R1と海溝R2とに跨って配置される場合を例にとり説明するが、本発明はこれに限るものではない。
(Embodiment 1)
First, the first embodiment of the present invention will be described.
As shown in FIG. 1, the tsunami observation system 100 according to Embodiment 1 of the present invention is a system for simply measuring the height of a tsunami or sea level WL that pushes from offshore due to an earthquake or the like, A plurality of water pressure measuring devices 10 (water pressure acquisition means) installed on the seabed G with a certain interval in the offshore direction D, and a water level observation device 12 (water level observation means) installed on the coast C, and adjacent water pressures The measuring device 10 and the water level observation device 12 are connected in communication with each other, and a pipe 14 (duct means) laid on the seabed G is provided. In the present embodiment, the case where the pipe 14 and the water pressure measuring device 10 are arranged across the continental shelf R1 and the trench R2 will be described as an example, but the present invention is not limited to this.

水圧測定装置10は、設置箇所の海水を導入して設置箇所の水圧を取得するためのものであり、高い耐圧性を有する構造体からなる。水圧測定装置10の設置箇所は、パイプ14の長さを調整することにより、容易に設計することができる。設計にあたっては、事前の津波予測解析結果等により得られた津波の伝播速度等を考慮することが好ましい。   The water pressure measuring device 10 is for acquiring the water pressure at the installation location by introducing seawater at the installation location, and is composed of a structure having high pressure resistance. The installation location of the water pressure measuring device 10 can be easily designed by adjusting the length of the pipe 14. In designing, it is preferable to consider the propagation speed of the tsunami obtained from the tsunami prediction analysis result in advance.

図2は、この水圧測定装置10の断面図を示したものである。この図に示すように、水圧測定装置10は、沖側のパイプ14aおよび海岸側のパイプ14bと接続口16a、16bを介して連通可能にそれぞれ接続された水圧室18と、外部の海水を水圧室18に導入するための海水流入口20(連通口)と、この海水流入口20を開閉する逆止弁1(第1逆止弁)と、沖側のパイプ14aが接続する接続口16aを開閉する逆止弁2(第2逆止弁)とを有する。   FIG. 2 shows a cross-sectional view of the water pressure measuring device 10. As shown in this figure, the water pressure measuring device 10 is configured to connect a water pressure chamber 18 connected to an offshore pipe 14a and a coastal pipe 14b via connection ports 16a and 16b, respectively, and external seawater. A seawater inlet 20 (communication opening) for introduction into the chamber 18, a check valve 1 (first check valve) for opening and closing the seawater inlet 20, and a connection port 16a to which the offshore pipe 14a is connected. And a check valve 2 (second check valve) that opens and closes.

逆止弁1は、水圧室18の水圧が外部の水圧よりも低い場合に開いて海水流入口20から水圧室18への海水の流入を許容する一方、水圧室18の水圧が外部の水圧よりも高い場合に閉じて海水の流入を阻止するようになっている。逆止弁2は、沖側のパイプ14aの水圧が水圧室18の水圧よりも高い場合に開く一方、沖側のパイプ14aの水圧が水圧室18の水圧よりも低い場合に閉じるようになっている。このため、水圧室18から見て海岸側のパイプ14bの内部の水圧は、水圧室18で取得される水圧測定点の最大水圧に等しくなり、この最大水圧は図1に示すように海岸部Cの水位観測装置12において水圧取得箇所の波の最大高さとして観測される。この水位測定装置10は岸沖方向Dに沿う複数の箇所に設置されているため、岸沖方向Dに沿う複数の箇所における波の最大高さは、海岸部Cにおいて即座に観測されることとなる。   The check valve 1 opens when the water pressure in the water pressure chamber 18 is lower than the external water pressure, and allows the inflow of seawater from the seawater inlet 20 to the water pressure chamber 18, while the water pressure in the water pressure chamber 18 is greater than the external water pressure. When it is too high, it closes to prevent the inflow of seawater. The check valve 2 opens when the water pressure of the offshore pipe 14 a is higher than the water pressure of the water pressure chamber 18, while closing when the water pressure of the offshore pipe 14 a is lower than the water pressure of the water pressure chamber 18. Yes. For this reason, the water pressure inside the pipe 14b on the coast side as viewed from the water pressure chamber 18 is equal to the maximum water pressure at the water pressure measurement point acquired in the water pressure chamber 18, and this maximum water pressure is as shown in FIG. Is observed as the maximum wave height at the water pressure acquisition point. Since the water level measuring device 10 is installed at a plurality of locations along the coastal offshore direction D, the maximum wave heights at the plurality of locations along the coastal offshore direction D are immediately observed at the coastal area C. Become.

水位観測装置12は、海岸部Cの検潮所等、任意の海岸付近に設けられ、水圧測定装置10により取得された水圧に基づいて設置箇所の海水面WLの位置を観測するためのものである。この水位観測装置12としては、例えばパイプ14に接続したピエゾ管や大気と通じた細管などを用いて構成することができる。この水位観測装置12と沖合の水圧測定装置10とはパイプ14を介して連通しているので、水圧測定装置10により取得された水圧は、水位観測装置10において水位として即座に観測される。観測された水位Hからその時点の基準海水面の水位H0を差し引いた値(H−H0)が、水圧測定装置10の設置箇所における海水面WLの位置、つまり波の高さに相当することになる。   The water level observation device 12 is provided in the vicinity of an arbitrary coast such as a tide gauge station in the coastal part C, and is used for observing the position of the sea level WL at the installation location based on the water pressure acquired by the water pressure measurement device 10. is there. The water level observation device 12 can be configured using, for example, a piezo tube connected to the pipe 14 or a thin tube communicating with the atmosphere. Since the water level observation device 12 and the offshore water pressure measurement device 10 communicate with each other via the pipe 14, the water pressure acquired by the water pressure measurement device 10 is immediately observed as a water level in the water level observation device 10. The value obtained by subtracting the water level H0 of the reference seawater level at that time from the observed water level H (H-H0) corresponds to the position of the seawater level WL at the installation location of the water pressure measuring device 10, that is, the wave height. Become.

パイプ14は、フレキシブルな構造の管であり、一定の間隔で水圧測定装置10と連結し、海底Gに軟着定式に敷設される。パイプ14を海底Gに固定しないことにより、地震時の海底地盤の隆起・沈降などの変動に追従してパイプ14はフレキシブルに移動変形可能となる。これにより、パイプ14の断線リスクを回避可能である。パイプ14の海岸側の端部は海岸部に設置された水位観測装置12と連結しており、津波発生時にはパイプ14内の水圧変化(上昇値)が水位観測装置12により観測、記録される。パイプ14の構成材料としては、海水中での耐腐食性、耐水圧性を有する材料であればいかなる材料であってもよい。また、パイプ径についても任意であり、安価な材料を適用することができる。   The pipe 14 is a pipe having a flexible structure, and is connected to the water pressure measuring device 10 at regular intervals, and is laid on the seabed G in a soft and fixed manner. By not fixing the pipe 14 to the seabed G, the pipe 14 can be flexibly moved and deformed following changes such as uplift and subsidence of the seabed ground during an earthquake. Thereby, the disconnection risk of the pipe 14 can be avoided. The end of the pipe 14 on the coast side is connected to a water level observation device 12 installed on the coast, and when the tsunami occurs, the water level change (increase value) in the pipe 14 is observed and recorded by the water level observation device 12. As a constituent material of the pipe 14, any material may be used as long as the material has corrosion resistance and water pressure resistance in seawater. Further, the pipe diameter is also arbitrary, and an inexpensive material can be applied.

上記構成の動作および作用について説明する。
図3(1)に示すように、海溝R2などの深海域で発生した津波Wが海岸部Cに向かって進行すると、大陸棚R1などの浅海域で浅水変形し、海岸部Cに近づくにつれて波高は次第に増大する。ここで、水圧測定装置10の真上を津波Wの峰が通過する際には、図2に示すように、逆止弁1が開いて海水流入口20から水圧室18に海水が流入するとともに、逆止弁2が閉じて水圧室18と沖側のパイプ14aとの連通を遮断する。これにより水圧室18と海岸側のパイプ14b内の水圧は、津波Wの峰が真上に位置したときの水深に対応した最大水圧となる。
The operation and action of the above configuration will be described.
As shown in FIG. 3 (1), when a tsunami W generated in the deep sea area such as the trench R2 progresses toward the coast C, shallow water deformation occurs in the shallow sea area such as the continental shelf R1, and the wave height increases as the coast C approaches. Gradually increases. Here, when the peak of the tsunami W passes right above the water pressure measuring device 10, as shown in FIG. 2, the check valve 1 opens and seawater flows into the water pressure chamber 18 from the seawater inlet 20. The check valve 2 is closed, and the communication between the water pressure chamber 18 and the offshore pipe 14a is cut off. As a result, the water pressure in the water pressure chamber 18 and the shore side pipe 14b becomes the maximum water pressure corresponding to the water depth when the peak of the tsunami W is located directly above.

図3に示すように、観測時間T1で取得された津波Wの第1波の最大水圧は、海岸側のパイプ14(14b)と隣の水圧測定装置10を通じて海岸部Cの水位観測装置12で水位H1として即座に観測されることとなる。その後、観測時間T2にこの津波Wの峰が隣の水圧測定装置10の真上まで進行すると、この隣の水圧測定装置10も同様に動作する。この結果、この隣の水圧測定装置10の水圧室18と海岸側のパイプ14b内の水圧は、津波Wの峰が真上に位置したときの水深に対応した最大水圧となり、水位観測装置12で水位H2として即座に観測される。以後、図3に示すように、津波の進行に応じて各箇所の水圧測定装置10によって最大水圧が取得され、それに対応する水位H3、H4・・・が水位観測装置12で随時観測されることとなる。   As shown in FIG. 3, the maximum water pressure of the first wave of the tsunami W acquired at the observation time T <b> 1 is obtained by the water level observation device 12 on the coast C through the pipe 14 (14 b) on the coast side and the adjacent water pressure measurement device 10. It will be observed immediately as the water level H1. Thereafter, when the peak of the tsunami W advances to the position immediately above the adjacent water pressure measuring device 10 at the observation time T2, the adjacent water pressure measuring device 10 operates in the same manner. As a result, the water pressure in the water pressure chamber 18 and the shore side pipe 14b of the adjacent water pressure measuring device 10 becomes the maximum water pressure corresponding to the water depth when the peak of the tsunami W is located directly above, and the water level observation device 12 Observed immediately as water level H2. Thereafter, as shown in FIG. 3, the maximum water pressure is acquired by the water pressure measuring device 10 at each location in accordance with the progress of the tsunami, and the corresponding water levels H3, H4. It becomes.

このように、水圧測定装置10が逆止弁1、2を有することにより、津波Wが通過しても波の最大高さに対応する水圧が海岸側のパイプ14b内に残存する構造となっているため、観測点における最大波高(津波の高さ)を観測、記録することができる。また、海岸付近まで津波Wが到達した後、パイプ14内の水圧値から測定点での津波の最大高さを測定、記録することができる。   As described above, the water pressure measuring device 10 includes the check valves 1 and 2, so that even when the tsunami W passes, the water pressure corresponding to the maximum wave height remains in the coastal pipe 14 b. Therefore, the maximum wave height (tsunami height) at the observation point can be observed and recorded. Further, after the tsunami W reaches the vicinity of the coast, the maximum height of the tsunami at the measurement point can be measured and recorded from the water pressure value in the pipe 14.

本実施の形態によれば、沖合で取得された海底Gにおける水圧はパイプ14を介して海岸部Cの水位観測装置12で水位Hとして即座に観測される。この水位Hは沖合の海水面の水位に相当するから、水位Hから基準海水面の水位H0を差し引くことで沖合の津波または波の高さ(H−H0)を求めることができる。このため、海岸部Cに設置された水位観測装置12によって、沖合の津波の高さを即座に観測可能である。また、この津波観測システム100の構成は上記の水位観測装置12と水圧測定装置10とパイプ14とからなるため簡易であり、特殊な電子機器や解析を要しないため安価である。したがって、本実施の形態によれば、沖合の津波の高さを早期に把握することのできる簡易で安価な津波観測システムを提供することができる。   According to the present embodiment, the water pressure at the seabed G acquired offshore is immediately observed as the water level H by the water level observation device 12 in the coastal area C via the pipe 14. Since the water level H corresponds to the water level of the offshore sea level, the offshore tsunami or wave height (H−H0) can be obtained by subtracting the water level H0 of the reference sea level from the water level H. For this reason, the height of the offshore tsunami can be observed immediately by the water level observation device 12 installed in the coastal area C. Further, the structure of the tsunami observation system 100 is simple because it includes the water level observation device 12, the water pressure measurement device 10, and the pipe 14, and is inexpensive because it does not require special electronic equipment or analysis. Therefore, according to the present embodiment, it is possible to provide a simple and inexpensive tsunami observation system that can grasp the height of an offshore tsunami at an early stage.

なお、上記の実施の形態において、水圧測定装置10の水圧室18または海岸側のパイプ14bの内部に水圧センサを設置してもよい。そして、この水圧センサで測定された水圧に基づいて、水位観測装置12が測定箇所の海水面の水位Hまたは波の高さを観測するようにしてもよい。   In the above embodiment, a water pressure sensor may be installed inside the water pressure chamber 18 of the water pressure measuring device 10 or the pipe 14b on the coast. And based on the water pressure measured with this water pressure sensor, you may make it the water level observation apparatus 12 observe the water level H of the sea level of a measurement location, or the height of a wave.

(実施の形態1の変形例)
次に、本発明の実施の形態1の変形例について説明する。
この変形例は、上記の実施の形態1の水位観測装置12を、図4に示す構成としたものである。すなわち、図4に示すように、この水位観測装置12は、パイプ14内の水圧を計測するための水圧計22と、水圧計22で計測された水圧に基づいて津波情報を表示可能な表示装置24と、計測データを記録する記録装置26と、各装置に電源を供給する小型バッテリー28と、停電時などに各装置に電源を供給可能な小型の太陽光発電装置30とにより構成される。このうち水圧計22、記録装置26、小型バッテリー28は水密性容器32の内部に収容することが好ましい。このようにすることで、長期的な耐久性を確保することができる。
(Modification of Embodiment 1)
Next, a modification of the first embodiment of the present invention will be described.
In this modification, the water level observation device 12 of the first embodiment is configured as shown in FIG. That is, as shown in FIG. 4, the water level observation device 12 includes a water pressure gauge 22 for measuring the water pressure in the pipe 14 and a display device capable of displaying tsunami information based on the water pressure measured by the water pressure gauge 22. 24, a recording device 26 that records measurement data, a small battery 28 that supplies power to each device, and a small photovoltaic power generator 30 that can supply power to each device in the event of a power failure. Of these, the water pressure gauge 22, the recording device 26, and the small battery 28 are preferably accommodated in the watertight container 32. By doing in this way, long-term durability can be ensured.

この津波観測システム100は、小型バッテリー28および太陽光発電装置30から供給される電源を利用する構成となっている。このようにすれば、外部からの電源供給の必要はないため、津波観測システム100は停電時でも稼働することができる。   This tsunami observation system 100 is configured to use power supplied from the small battery 28 and the solar power generation device 30. In this way, since there is no need to supply power from the outside, the tsunami observation system 100 can operate even during a power failure.

また、記録装置26に記録するデータとしては、適当なトリガーを設定して、所定の大きな津波のみを記録するようにしてもよい。また、この津波観測システム100によれば、津波の高さだけでなく、平常時の沖合の波の高さを観測することが可能である。このため、表示装置24において、漁業関係者などに向けて簡易な情報表示機能と合わせて、通常時の波高情報の発信を行うようにしてもよい。   Further, as data to be recorded in the recording device 26, an appropriate trigger may be set to record only a predetermined large tsunami. Further, according to this tsunami observation system 100, it is possible to observe not only the height of the tsunami but also the height of the offshore waves in normal times. For this reason, the display device 24 may transmit wave height information at normal times together with a simple information display function for fishermen and the like.

パイプ14内の水圧は一度上昇すると低下することはないため、記録装置26のデータとして低下現象が記録された場合、システムの不良が想定される。このような場合に備えて、例えば岸壁C1などにパイプ内減圧用弁装置34を設け、この装置34を通じてパイプ14内を定期的に減圧させてもよい。このようにすれば、パイプ14内から最新の正常なデータを記録することが可能である。   Since the water pressure in the pipe 14 does not decrease once it rises, if a drop phenomenon is recorded as data of the recording device 26, a system failure is assumed. In preparation for such a case, for example, an in-pipe depressurizing valve device 34 may be provided on the quay C1 or the like, and the inside of the pipe 14 may be periodically depressurized through the device 34. In this way, it is possible to record the latest normal data from within the pipe 14.

表示装置24は、例えば計測箇所の津波の高さや水位などを表示可能なピエゾ管や到達時刻などを表示可能な表示器などで構成することができる。表示装置24が水圧計22、記録装置26と連動して津波情報を表示することにより、ユーザは津波の高さや到達時刻などの津波情報を視覚的に把握することができる。表示装置24としてピエゾ管を用いる場合には、ピエゾ管の高さは、あらかじめ把握してある津波の予測解析結果等を踏まえて余裕のある高さとする。また、パイプ14と連通したピエゾ管を用いることにより、パイプ14内の空気を排気することができる。なお、津波が収束した後、パイプ14内の水圧を基準海水面の水位H0に対応する水圧まで下げることによりパイプ14内の水圧は減圧されることとなる。   The display device 24 can be configured by, for example, a piezo tube that can display the height of a tsunami or a water level at a measurement location, a display that can display an arrival time, and the like. When the display device 24 displays the tsunami information in conjunction with the water pressure gauge 22 and the recording device 26, the user can visually grasp the tsunami information such as the height of the tsunami and the arrival time. When a piezo tube is used as the display device 24, the height of the piezo tube is set to a sufficient height based on a tsunami prediction analysis result that has been grasped in advance. Further, by using a piezo pipe communicating with the pipe 14, the air in the pipe 14 can be exhausted. After the tsunami converges, the water pressure in the pipe 14 is reduced by lowering the water pressure in the pipe 14 to a water pressure corresponding to the water level H0 of the reference seawater surface.

(実施の形態2)
次に、本発明の実施の形態2について説明する。
図5(1)に示すように、本発明の実施の形態2の津波観測システム200は、上記の実施の形態1の複数の水圧測定装置10とパイプ14とからなる系統を、系統A(第1系統)と系統B(第2系統)の2系統にしたものである。したがって、系統Aは複数の水圧測定装置10Aとパイプ14Aとからなり、系統Bは複数の水圧測定装置10Bとパイプ14Bとからなる。また、系統Aと系統Bは互いに平行に設置されるともに、各系統の水圧測定装置10A、10Bは互いに岸沖方向Dに所定の離間距離Lだけずらして配置される。この系統Aと系統Bは、海岸部Cにおいて同じ水位観測装置12に接続している。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
As shown in FIG. 5 (1), the tsunami observation system 200 according to the second embodiment of the present invention is a system composed of the plurality of water pressure measuring devices 10 and the pipes 14 according to the first embodiment. 1 system) and system B (second system). Therefore, the system A includes a plurality of water pressure measuring devices 10A and pipes 14A, and the system B includes a plurality of water pressure measuring devices 10B and pipes 14B. In addition, the system A and the system B are installed in parallel to each other, and the water pressure measuring devices 10A and 10B of each system are arranged so as to be shifted from each other by a predetermined separation distance L in the offshore direction D. The system A and the system B are connected to the same water level observation device 12 in the coastal part C.

この津波観測システム200では、水位観測装置12により観測された各系統A、Bの水圧測定装置10A、10Bの設置箇所の海水面WLの位置と、離間距離Lと、観測時間Tとに基づいて、津波Wの伝播速度Vを推定する推定手段(不図示)を備えている。なお、推定手段は水位観測装置12の一機能であってもよい。この推定手段は、海岸部C(基準位置)から水圧測定装置10A、10Bまでの距離LLと、津波Wの伝播速度Vとに基づいて、津波Wが海岸部Cに到達するまでの到達時間TTを予測するようにしてもよい。例えば、図5(1)、(2)に示すように、系統Aの水圧測定装置10Aの観測時間をT5とし、その測定箇所から離間距離Lだけ海岸側にずれた位置にある系統Bの水圧測定装置10Bの観測時間をT5’とした場合には、その区間における津波Wの伝播速度Vと、その時点から予測される到達時間TTは下記の式で求めることができる。   In this tsunami observation system 200, based on the position of the sea level WL at the location where the water pressure measurement devices 10A and 10B of the systems A and B are observed by the water level observation device 12, the separation distance L, and the observation time T. , An estimation means (not shown) for estimating the propagation velocity V of the tsunami W is provided. The estimation means may be a function of the water level observation device 12. This estimation means determines the arrival time TT until the tsunami W reaches the coast C based on the distance LL from the coast C (reference position) to the water pressure measuring devices 10A and 10B and the propagation velocity V of the tsunami W. May be predicted. For example, as shown in FIGS. 5 (1) and 5 (2), the observation time of the water pressure measurement apparatus 10A of the system A is T5, and the water pressure of the system B at a position shifted to the coast side by a separation distance L from the measurement location. When the observation time of the measuring apparatus 10B is T5 ′, the propagation speed V of the tsunami W in that section and the arrival time TT predicted from that time can be obtained by the following equation.

津波の伝播速度:V=L/(T5’−T5) ・・・式(1)
津波の到達時間:TT=LL/V ・・・式(2)
Tsunami propagation velocity: V = L / (T5′−T5) (1)
Tsunami arrival time: TT = LL / V Equation (2)

なお、測定箇所の水深をh(m)とすると、測定箇所における津波の伝播速度Vは、以下の式(3)より求めることもできる。   In addition, if the water depth of a measurement location is set to h (m), the propagation speed V of the tsunami in a measurement location can also be calculated | required from the following formula | equation (3).

Figure 2018096784
Figure 2018096784

ここに、gは重力加速度(9.8m/s)である。 Here, g is a gravitational acceleration (9.8 m / s 2 ).

式(3)を用いた津波の伝播速度の計算例を以下に示す。
水深2000mの場合、V=504km/h
水深200mの場合、V=159km/h
水深10mの場合、V=36km/h
An example of calculating the tsunami propagation speed using equation (3) is shown below.
When the water depth is 2000m, V = 504km / h
When the water depth is 200m, V = 159km / h
When the water depth is 10m, V = 36km / h

つまり、大陸棚(水深200m)を考慮すると、沖合160km付近で津波を確認できれば、約1時間の避難時間を確保できることになる。   In other words, considering the continental shelf (water depth 200 m), if a tsunami can be confirmed near 160 km offshore, an evacuation time of about 1 hour can be secured.

以上説明した本実施の形態の津波観測システム100、200によれば、次のような効果が得られる。
1)本実施の形態の津波観測システム100、200は、パッシブな観測システムであり、システムの費用は上記の従来型の測定システムよりも安価である。
According to the tsunami observation systems 100 and 200 of the present embodiment described above, the following effects can be obtained.
1) The tsunami observation systems 100 and 200 of the present embodiment are passive observation systems, and the cost of the system is lower than that of the conventional measurement system.

2)沖合遠方までパイプ14を敷設することが可能であることから、津波発生を早期に把握することができる。 2) Since the pipe 14 can be laid far offshore, the occurrence of a tsunami can be grasped at an early stage.

3)海底地形を考慮することにより、津波の高さが急激に異なる地点(海溝R2から大陸棚R1に変化する地点など)付近の水圧の測定値から、津波の第1波の位置を把握することができる。 3) By considering the seafloor topography, the position of the first wave of the tsunami is determined from the measured water pressure near the point where the height of the tsunami changes abruptly (such as a point where the ridge shelf R1 changes from the trench R2) be able to.

4)観測データを防災無線等と連動すれば、地域の津波防災のための情報をいち早く発信することができる。海岸部Cにおいてピエゾ管や津波高さ表示器などの表示装置24を併設することにより、海岸部C付近の住民に視覚的に津波情報を発信することができる。 4) If observation data is linked with disaster prevention radio, etc., information for tsunami disaster prevention in the area can be transmitted quickly. By providing a display device 24 such as a piezo tube or a tsunami height indicator in the coastal area C, it is possible to visually transmit tsunami information to residents near the coastal area C.

5)津波の最大高さのみでなく、移動速度を評価することにより、津波の到達時間を予測、発信することができる。 5) By evaluating not only the maximum height of the tsunami but also the moving speed, the arrival time of the tsunami can be predicted and transmitted.

6)海底Gに敷設するパイプ14、逆止弁1、2を有する水圧測定装置10等はメンテナンスフリーであり、維持管理対象は海岸部Cに設置する水位観測装置12や、これに備わるデータロガーなどの記録装置26のみである。 6) The pipe 14 laid on the seabed G, the water pressure measuring device 10 having the check valves 1 and 2 and the like are maintenance-free, and the object of maintenance is the water level observation device 12 installed on the coastal area C, and the data logger provided for this. The recording device 26 only.

7)表示装置24としてのピエゾ管に関しては、津波影響により破損する可能性があるが、取替は容易である。水圧計22や記録装置26は小型化可能でありき、水密性容器32内に設置することにより、津波による破損等の可能性は小さい。 7) The piezo tube as the display device 24 may be damaged by the tsunami effect, but can be easily replaced. The water pressure gauge 22 and the recording device 26 can be reduced in size, and if installed in the watertight container 32, the possibility of damage due to a tsunami is small.

8)パイプ14内部は海水であり、水圧を計測するのは海岸線付近(EL0m)であるため、津波の高さ評価に対する海水の密度影響は十分小さい。例えば水深20mに対して、塩分濃度2.5%の海水と淡水の水圧影響は50cm分であり、淡水水圧として換算すると、大きめの値となるため防災上は安全側のデータになる。 8) Since the inside of the pipe 14 is seawater and the water pressure is measured near the coastline (EL0m), the influence of seawater density on the tsunami height evaluation is sufficiently small. For example, the water pressure influence of seawater and fresh water with a salt concentration of 2.5% with respect to a water depth of 20 m is 50 cm, and when converted to fresh water pressure, it becomes a large value, so it is safe data for disaster prevention.

9)漁港等に観測データを送信、表示することにより、津波以外の平常時の沖合における最大の波の高さを発信することができるため、日常的な利用価値がある。 9) Sending and displaying observation data to a fishing port, etc. can transmit the maximum wave height offshore during normal times other than tsunamis, so it has daily utility value.

10)停電時でも津波観測システムの電源は独立しているため、観測機能を保持することができる。なお、表示装置24についても、独立電源とすることにより、停電時に対応することができる。 10) Since the power supply of the tsunami observation system is independent even during a power failure, the observation function can be maintained. The display device 24 can also cope with a power failure by using an independent power source.

以上説明したように、本発明に係る津波観測システムによれば、津波または海水面の高さを観測するための津波観測システムであって、沖合の海中に設置され、海水を導入して設置箇所の水圧を取得する水圧取得手段と、海岸の近傍に設置され、水圧取得手段により取得された水圧に基づいて前記設置箇所の海水面の位置を観測する水位観測手段と、海中に敷設され、水位観測手段と水圧取得手段とを連通する管路手段とを備えるので、沖合で取得された水圧は管路手段を介して海岸側の水位観測手段で即座に観測される。この水圧は沖合の海水面の水位に対応するため、この水位から基準海水面の水位を差し引くことで沖合の波の高さを求めることができる。このため、海岸の近傍に設置された水位観測手段によって、沖合の津波などの波の高さを即座に観測可能である。また、この津波観測システムの構成は上記の水位観測手段と水圧取得手段と管路手段とからなるため簡易であり、特殊な電子機器や解析を要しないため安価である。したがって、沖合の津波の高さを早期に把握することのできる簡易で安価な津波観測システムを提供することができる。   As described above, the tsunami observation system according to the present invention is a tsunami observation system for observing the height of a tsunami or sea level, and is installed in the offshore sea, where seawater is introduced and installed. Water pressure acquisition means for acquiring the water pressure of the water, and a water level observation means installed near the coast and observing the position of the sea level of the installation location based on the water pressure acquired by the water pressure acquisition means, Since the pipe means for communicating the observation means and the water pressure acquisition means is provided, the water pressure acquired offshore is immediately observed by the water level observation means on the coast via the pipe means. Since this water pressure corresponds to the offshore sea level, the offshore wave height can be obtained by subtracting the reference sea level from this water level. For this reason, the height of waves such as offshore tsunami can be observed immediately by means of water level observation means installed near the coast. Moreover, the structure of this tsunami observation system is simple because it is composed of the above-described water level observation means, water pressure acquisition means, and pipe means, and is inexpensive because it does not require special electronic equipment or analysis. Therefore, it is possible to provide a simple and inexpensive tsunami observation system that can grasp the height of the offshore tsunami at an early stage.

また、本発明に係る他の津波観測システムによれば、水圧取得手段は岸沖方向に間隔をあけて複数設置され、管路手段は隣り合う水圧取得手段どうしを連通可能に接続し、水圧取得手段は、管路手段と接続口を介して連通可能に接続された水圧室と、外部の海水を水圧室に導入するための連通口と、この連通口を開閉する第1逆止弁と、水圧室から見て沖側の管路手段が接続する接続口を開閉する第2逆止弁とを有するので、岸沖方向に沿う複数の箇所で、沖合の波の高さを即座に観測することができる。   Further, according to another tsunami observation system according to the present invention, a plurality of water pressure acquisition means are installed at intervals in the offshore direction, and the pipe means connects adjacent water pressure acquisition means so that they can communicate with each other. The means includes a water pressure chamber connected to the pipe means via a connection port, a communication port for introducing external seawater into the water pressure chamber, a first check valve for opening and closing the communication port, Because it has a second check valve that opens and closes the connection port connected to the offshore pipe means when viewed from the hydraulic chamber, the height of offshore waves can be observed immediately at multiple locations along the coast. be able to.

また、本発明に係る他の津波観測システムによれば、第1逆止弁は、水圧室の水圧が外部の水圧よりも低い場合に開いて水圧室への海水の流入を許容する一方、水圧室の水圧が外部の水圧よりも高い場合に閉じて海水の流入を阻止し、第2逆止弁は、沖側の管路手段の水圧が水圧室の水圧よりも高い場合に開く一方、沖側の管路手段の水圧が水圧室の水圧よりも低い場合に閉じるので、水圧室から見て海岸側の管路手段の内部の水圧は、水圧室の最大水圧に等しくなり、この最大水圧は水位観測手段において水圧取得箇所の波の最大高さとして観測される。このため、岸沖方向に沿う複数の箇所で、沖合の波の最大高さを即座に観測することができる。   Further, according to another tsunami observation system according to the present invention, the first check valve opens when the water pressure in the water pressure chamber is lower than the external water pressure and allows the inflow of seawater into the water pressure chamber. When the water pressure in the chamber is higher than the external water pressure, it closes to block the inflow of seawater, and the second check valve opens when the water pressure in the offshore pipe means is higher than the water pressure in the water pressure chamber, When the water pressure in the side pipe means is lower than the water pressure in the water pressure chamber, the water pressure inside the pipe means on the coast side when viewed from the water pressure chamber is equal to the maximum water pressure in the water pressure chamber. It is observed as the maximum wave height at the water pressure acquisition point in the water level observation means. Therefore, the maximum offshore wave height can be observed immediately at multiple locations along the coast.

また、本発明に係る他の津波観測システムによれば、岸沖方向に間隔をあけて複数設置された水圧取得手段と、隣り合う水圧取得手段どうしを連通可能に接続する管路手段とによってそれぞれ構成される第1系統と第2系統とを備え、第1系統と第2系統は互いに平行に設置されるともに、各系統の水圧取得手段は互いに岸沖方向に所定の離間距離だけずらして配置され、水位観測手段により観測された各系統の水圧取得手段の設置箇所の海水面の位置と、前記離間距離と、観測時間とに基づいて、波の伝播速度を推定する推定手段をさらに備えるので、沖合の津波の伝播速度を推定することができる。   In addition, according to another tsunami observation system according to the present invention, a plurality of water pressure acquisition means installed at intervals in the shore offshore direction, and a pipeline means for connecting adjacent water pressure acquisition means so as to communicate with each other, respectively. The first system and the second system are configured, and the first system and the second system are installed in parallel with each other, and the water pressure acquisition means of each system are arranged with a predetermined separation distance from each other in the shore offshore direction. And an estimation means for estimating the wave propagation speed based on the position of the sea level at the location where the water pressure acquisition means of each system is installed, the separation distance, and the observation time observed by the water level observation means. The propagation speed of offshore tsunami can be estimated.

また、本発明に係る他の津波観測システムによれば、推定手段は、海岸側の所定の基準位置から水圧取得手段までの距離と、波の伝播速度とに基づいて、当該波が前記基準位置に到達するまでの到達時間を予測するので、津波の到達時間を予測することができるという効果を奏する。   Further, according to another tsunami observation system according to the present invention, the estimation unit is configured such that the wave is the reference position based on the distance from the predetermined reference position on the coast side to the water pressure acquisition unit and the wave propagation speed. Since the arrival time until reaching the tsunami is predicted, the arrival time of the tsunami can be predicted.

また、本発明に係る他の津波観測システムによれば、管路手段は、海底に敷設され、地震時の海底地盤の変動に追従可能なフレキシブルなパイプからなるので、地震時の海底地盤の隆起・沈降に対してパイプがフレキシブルに移動変形することで、パイプが断線するリスクを回避することができる。   Further, according to another tsunami observation system according to the present invention, the pipe means is a flexible pipe that is laid on the seabed and can follow the changes in the seabed ground during an earthquake. -The risk of pipe disconnection can be avoided by flexible deformation of the pipe against sedimentation.

以上のように、本発明に係る津波観測システムは、沖合の津波を陸地側で早期に把握するのに有用であり、特に、陸地側の地域住民に津波の高さや到達時間などの津波情報を迅速に提供するのに適している。   As described above, the tsunami observation system according to the present invention is useful for quickly grasping offshore tsunamis on the land side, and in particular, tsunami information such as tsunami height and time of arrival to local residents on the land side. Suitable for providing quickly.

1 逆止弁(第1逆止弁)
2 逆止弁(第2逆止弁)
10,10A,10B 水圧測定装置(水圧取得手段)
12 水位観測装置(水位観測手段)
14,14A,14B パイプ(管路手段)
14a 沖側のパイプ
14b 海岸側のパイプ
16a,16b 接続口
18 水圧室
20 海水流入口(連通口)
22 水圧計
24 表示装置
26 記録装置
28 バッテリー
30 太陽光発電装置
32 水密性容器
34 パイプ内減圧用弁装置
100,200 津波観測システム
A 系統(第1系統)
B 系統(第2系統)
C 海岸部
C1 岸壁
D 岸沖方向
G 海底
H 水位
H0 基準海水面の水位
R1 大陸棚
R2 海溝
W 津波
WL 海水面
1 Check valve (first check valve)
2 Check valve (second check valve)
10, 10A, 10B Water pressure measuring device (water pressure acquisition means)
12 Water level observation device (water level observation means)
14, 14A, 14B Pipe (pipeway means)
14a Offshore pipe 14b Coastal pipe 16a, 16b Connection port 18 Hydraulic chamber 20 Seawater inlet (communication port)
22 Water pressure meter 24 Display device 26 Recording device 28 Battery 30 Solar power generation device 32 Watertight container 34 Valve device for pressure reduction in pipe 100,200 Tsunami observation system A system (first system)
System B (second system)
C Coastal part C1 Quay D D Offshore G Sea bottom H Water level H0 Water level of the reference sea level R1 Continental shelf R2 Trench W Tsunami WL Sea level

Claims (6)

津波または海水面の高さを観測するための津波観測システムであって、
沖合の海中に設置され、海水を導入して設置箇所の水圧を取得する水圧取得手段と、
海岸の近傍に設置され、水圧取得手段により取得された水圧に基づいて前記設置箇所の海水面の位置を観測する水位観測手段と、
海中に敷設され、水位観測手段と水圧取得手段とを連通する管路手段とを備えることを特徴とする津波観測システム。
A tsunami observation system for observing tsunami or sea level
A water pressure acquisition means installed in the sea offshore and introducing seawater to acquire the water pressure at the installation location;
A water level observation means that is installed in the vicinity of the coast and observes the position of the sea level of the installation location based on the water pressure acquired by the water pressure acquisition means;
A tsunami observation system, characterized in that the tsunami observation system includes a conduit means that is laid in the sea and communicates a water level observation means and a water pressure acquisition means.
水圧取得手段は岸沖方向に間隔をあけて複数設置され、管路手段は隣り合う水圧取得手段どうしを連通可能に接続し、
水圧取得手段は、管路手段と接続口を介して連通可能に接続された水圧室と、外部の海水を水圧室に導入するための連通口と、この連通口を開閉する第1逆止弁と、水圧室から見て沖側の管路手段が接続する接続口を開閉する第2逆止弁とを有することを特徴とする請求項1に記載の津波観測システム。
A plurality of water pressure acquisition means are installed at intervals in the offshore direction, and the pipe means connects adjacent water pressure acquisition means so that they can communicate with each other,
The water pressure acquisition means includes a water pressure chamber connected to the pipe means through a connection port, a communication port for introducing external seawater into the water pressure chamber, and a first check valve for opening and closing the communication port. The tsunami observation system according to claim 1, further comprising: a second check valve that opens and closes a connection port to which pipe means on the offshore side as viewed from the hydraulic chamber is connected.
第1逆止弁は、水圧室の水圧が外部の水圧よりも低い場合に開いて水圧室への海水の流入を許容する一方、水圧室の水圧が外部の水圧よりも高い場合に閉じて海水の流入を阻止し、
第2逆止弁は、沖側の管路手段の水圧が水圧室の水圧よりも高い場合に開く一方、沖側の管路手段の水圧が水圧室の水圧よりも低い場合に閉じることを特徴とする請求項2に記載の津波観測システム。
The first check valve opens when the water pressure in the water pressure chamber is lower than the external water pressure and allows seawater to flow into the water pressure chamber, and closes when the water pressure in the water pressure chamber is higher than the external water pressure. The inflow of
The second check valve opens when the water pressure of the offshore pipe means is higher than the water pressure of the water pressure chamber, and closes when the water pressure of the offshore pipe means is lower than the water pressure of the water pressure chamber. The tsunami observation system according to claim 2.
岸沖方向に間隔をあけて複数設置された水圧取得手段と、隣り合う水圧取得手段どうしを連通可能に接続する管路手段とによってそれぞれ構成される第1系統と第2系統とを備え、
第1系統と第2系統は互いに平行に設置されるともに、各系統の水圧取得手段は互いに岸沖方向に所定の離間距離だけずらして配置され、
水位観測手段により観測された各系統の水圧取得手段の設置箇所の海水面の位置と、前記離間距離と、観測時間とに基づいて、波の伝播速度を推定する推定手段をさらに備えることを特徴とする請求項2または3に記載の津波観測システム。
A first system and a second system, each of which is constituted by a plurality of water pressure acquisition means installed at intervals in the shore offshore direction, and pipe means for connecting adjacent water pressure acquisition means so as to communicate with each other;
The first system and the second system are installed in parallel with each other, and the water pressure acquisition means of each system is arranged with a predetermined separation distance in the shore offshore direction,
Characterized by further comprising estimation means for estimating the wave propagation speed based on the position of the sea level at the location of the water pressure acquisition means of each system observed by the water level observation means, the separation distance, and the observation time. The tsunami observation system according to claim 2 or 3.
推定手段は、海岸側の所定の基準位置から水圧取得手段までの距離と、波の伝播速度とに基づいて、当該波が前記基準位置に到達するまでの到達時間を予測することを特徴とする請求項4に記載の津波観測システム。   The estimation means predicts the arrival time until the wave reaches the reference position based on the distance from the predetermined reference position on the coast side to the water pressure acquisition means and the wave propagation speed. The tsunami observation system according to claim 4. 管路手段は、海底に敷設され、地震時の海底地盤の変動に追従可能なフレキシブルなパイプからなることを特徴とする請求項1〜5のいずれか一つに記載の津波観測システム。   The tsunami observation system according to any one of claims 1 to 5, wherein the conduit means is a flexible pipe that is laid on the seabed and that can follow changes in the seabed ground during an earthquake.
JP2016240466A 2016-12-12 2016-12-12 Tsunami observation system Pending JP2018096784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016240466A JP2018096784A (en) 2016-12-12 2016-12-12 Tsunami observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240466A JP2018096784A (en) 2016-12-12 2016-12-12 Tsunami observation system

Publications (1)

Publication Number Publication Date
JP2018096784A true JP2018096784A (en) 2018-06-21

Family

ID=62632864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240466A Pending JP2018096784A (en) 2016-12-12 2016-12-12 Tsunami observation system

Country Status (1)

Country Link
JP (1) JP2018096784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421187A (en) * 2022-09-01 2022-12-02 中国科学院声学研究所 Cable type submarine earthquake tsunami monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421187A (en) * 2022-09-01 2022-12-02 中国科学院声学研究所 Cable type submarine earthquake tsunami monitoring system

Similar Documents

Publication Publication Date Title
Kawai et al. Characteristics of the 2011 Tohoku tsunami waveform acquired around Japan by NOWPHAS equipment
PT2635875T (en) An integrity monitoring system and a method of monitoring integrity of a stationary structure
KR101841594B1 (en) The buoyancy device equipped with a waterproof formula ocean observation
Clare et al. Lessons learned from the monitoring of turbidity currents and guidance for future platform designs
CN207089590U (en) A kind of new anchor system multi-parameter monitoring system
CN102759395A (en) Floating ball type vibration wave sensor, as well as using method and use thereof
WO2012027476A1 (en) Leak detection and early warning system for capped or abandoned subsea wellheads
JP4375676B2 (en) Riverbed scour monitoring method
JP2008107225A (en) Tsunami detection device
JP2008191111A (en) Undersea carbon dioxide diffusion sensing device, and undersea fluid sensing device
KR20180043890A (en) System for monitoring seafloor transform by setting seafloor reference point
JP2018096784A (en) Tsunami observation system
Stark et al. Deployment of a dynamic penetrometer from manned submersibles for fine‐scale geomorphology studies
JP4534200B2 (en) Tsunami detector
JP2009229432A (en) Seismic sea wave observation system using gps receiver
KR100832679B1 (en) Water quality measuring buoy system of automatic adaptability on water depth
Yokoyama et al. Monitoring system for seafloor deformation during methane hydrate production test
KR20230065455A (en) Cctv .
Wong et al. Low‐frequency variability in Delaware's inland bays
KR100917354B1 (en) Underwater communication kit using ubiquitous sensor network and underwater communication system including the same
CN113654529A (en) Intelligent monitoring device for tidal water level monitoring and working method thereof
CN105444743A (en) Pelagic mechanical tide water level monitoring apparatus
du Vall et al. Cabled ocean observatories in the Sea of Oman and Arabian Sea
Kuijpers et al. Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean
Xu et al. Field observations of seabed scours around a submarine pipeline on cohesive bed