JP2018096643A - Regenerative burner and heating furnace - Google Patents

Regenerative burner and heating furnace Download PDF

Info

Publication number
JP2018096643A
JP2018096643A JP2016243237A JP2016243237A JP2018096643A JP 2018096643 A JP2018096643 A JP 2018096643A JP 2016243237 A JP2016243237 A JP 2016243237A JP 2016243237 A JP2016243237 A JP 2016243237A JP 2018096643 A JP2018096643 A JP 2018096643A
Authority
JP
Japan
Prior art keywords
heat storage
burner
fluid flow
combustion
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243237A
Other languages
Japanese (ja)
Other versions
JP6952461B2 (en
Inventor
昌玄 飯田
Shogen Iida
昌玄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016243237A priority Critical patent/JP6952461B2/en
Publication of JP2018096643A publication Critical patent/JP2018096643A/en
Application granted granted Critical
Publication of JP6952461B2 publication Critical patent/JP6952461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a regenerative burner capable of simplifying loading work for several heat reservoirs constituting a heat storage part.SOLUTION: There are provided a fluid flow passing part A where a cylindrical heat storage part U is arranged at a cylindrical space between an outer cylinder part 1 and an inner cylinder part 2 concentrically arranged; a fuel gas discharging part G installed inside the inner cylinder part 2; and a combustion state changing-over part changing over between a combustion state in which combustion air F is supplied to a burner extremity end side through the fluid flow passing part A and a heat storage state for flowing combustion discharged gas E from the burner extremity end side to the burner base end side through the fluid flow passing part A. The heat storage part U is constituted in a form where several cylindrical heat storage reservoirs 3 of honeycomb structure are arranged while their setting clearances are being spaced apart in a fluid flowing direction at the fluid flow passing part A and the heat storage reservoirs 3 are integrally molded with spacer portions 3a for use in spacing apart a setting clearance L between the adjoining heat storage reservoirs 3.SELECTED DRAWING: Figure 1

Description

本発明は、同心状に配置された外筒部と内筒部との間の筒状空間に筒状の蓄熱部が配置された流体通流部と、前記内筒部の内部に配置された燃料ガス吐出部と、前記流体通流部を通して燃焼用空気をバーナ先端側に供給する燃焼状態と前記流体通流部を通して燃焼排ガスをバーナ先端側からバーナ基端側に通流させる蓄熱状態とに切換える燃焼状態切換部とが設けられ、
前記蓄熱部が、ハニカム構造の複数の筒状の蓄熱体を、前記流体通流部の流体通流方向に設定間隔を隔てる形態で配置する形態に構成されている蓄熱式バーナに関する。
The present invention is arranged in a fluid flow part in which a cylindrical heat storage part is arranged in a cylindrical space between an outer cylinder part and an inner cylinder part arranged concentrically, and inside the inner cylinder part. A fuel gas discharge section, a combustion state in which combustion air is supplied to the burner tip side through the fluid flow portion, and a heat storage state in which combustion exhaust gas is passed from the burner tip side to the burner base end side through the fluid flow portion. A combustion state switching unit for switching,
The present invention relates to a heat storage burner in which the heat storage section is configured in such a manner that a plurality of tubular heat storage bodies having a honeycomb structure are arranged at a set interval in the fluid flow direction of the fluid flow section.

かかる蓄熱式バーナは、例えば、鋼材を焼き入れのために加熱処理する加熱炉に装備される等、種々の被加熱処理物を加熱処理する加熱炉に装備されることになり、一般には、複数の蓄熱式バーナが交番燃焼する交番燃焼形態で設けられることになる。
つまり、複数の蓄熱式バーナが、それらのうちの一部の蓄熱式バーナを蓄熱状態にするときには残部の蓄熱式バーナを燃焼状態にする交番燃焼形態で設けられることになる。
Such a regenerative burner is installed in a heating furnace that heats various objects to be heated, such as, for example, installed in a heating furnace that heat-treats steel materials for quenching. The regenerative burner is provided in an alternating combustion mode in which alternating combustion is performed.
That is, a plurality of heat storage type burners are provided in an alternating combustion mode in which the remaining heat storage type burners are in a combustion state when some of the heat storage type burners are in a heat storage state.

また、かかる蓄熱式バーナは、蓄熱部を構成するハニカム構造の複数の筒状の蓄熱体を、流体通流部の流体通流方向に設定間隔を隔てる形態で配置することにより、燃焼用空気や燃焼排ガスが、その流れ方向の上手側の蓄熱体に対して、その蓄熱体の一部の範囲を他の部分よりも多く通流する、いわゆる偏流状態で通流することがあっても、流れ方向に隣接する蓄熱体に到達するまでに、偏流状態を解消して、燃焼用空気や燃焼排ガスを、流れ方向に隣接する蓄熱体の全体に対して極力均一に流動させることができる(例えば、特許文献1参照。)。   Further, such a heat storage type burner is arranged such that a plurality of cylindrical heat storage bodies having a honeycomb structure constituting the heat storage section are arranged in a form in which a set interval is separated in the fluid flow direction of the fluid flow section, so that combustion air and Even if the flue gas flows in a so-called drift state where a part of the range of the heat storage body flows more than the other part of the heat storage body on the upper side in the flow direction, By reaching the heat storage body adjacent in the direction, the drift state can be eliminated, and the combustion air and the combustion exhaust gas can flow as uniformly as possible with respect to the entire heat storage body adjacent in the flow direction (for example, (See Patent Document 1).

特許第3754507号公報Japanese Patent No. 3754507

蓄熱部を構成する複数の蓄熱体を、流体通流部の流体通流方向に設定間隔を隔てる形態で配置するには、例えば、蓄熱体の流体通流方向に沿う端面を受止め支持する位置決め用支持体を、内筒部の外周面に溶接により装着する等、位置決め用支持体を内筒部の外周面や外筒部の内周面に装着することが考えられる。   In order to arrange a plurality of heat storage bodies constituting the heat storage section in a form in which the set interval is separated in the fluid flow direction of the fluid flow section, for example, positioning for receiving and supporting the end surface along the fluid flow direction of the heat storage body It can be considered that the positioning support is attached to the outer peripheral surface of the inner cylinder part or the inner peripheral surface of the outer cylinder part, such as attaching the support for welding to the outer peripheral surface of the inner cylinder part.

つまり、一つの蓄熱体を装填すると、その装填した蓄熱体における隣接する蓄熱体に対向する端面に対する位置決め用支持体を装着し、次に、その装填済みの蓄熱体に隣接する蓄熱体における装填済みの蓄熱体に対向する端面に対する装着位置決め用支持体を、隣接する蓄熱体を装填済みの蓄熱体に対して設定間隔を隔てて位置させる状態で受止めるための位置に装着する手順で、蓄熱体を装填するごとに位置決め用支持体を装着することが考えられる。   In other words, when one heat storage body is loaded, a positioning support body is mounted on the end surface facing the adjacent heat storage body in the loaded heat storage body, and then loaded in the heat storage body adjacent to the loaded heat storage body In the procedure for mounting the mounting positioning support for the end face facing the heat storage body at a position for receiving the adjacent heat storage body at a set interval with respect to the loaded heat storage body, the heat storage body It is conceivable that a positioning support is mounted every time the is loaded.

しかしながら、蓄熱体を装填するごとに位置決め用支持体を装着する作業は、面倒で手間の掛かる作業となるものであり、改善が望まれるものであった。   However, the work of mounting the positioning support every time the heat storage body is loaded is a cumbersome and time-consuming work, and improvement is desired.

本発明は、上記実情に鑑みて為されたものであって、蓄熱部を構成する複数の蓄熱体の装填作業の簡素化を図ることができる蓄熱式バーナを提供する点にある。   This invention is made in view of the said situation, Comprising: It exists in the point which provides the thermal storage type burner which can aim at simplification of the loading operation | work of the several thermal storage body which comprises a thermal storage part.

本発明の蓄熱式バーナは、同心状に配置された外筒部と内筒部との間の筒状空間に筒状の蓄熱部が配置された流体通流部と、前記内筒部の内部に配置された燃料ガス吐出部と、前記流体通流部を通して燃焼用空気をバーナ先端側に供給する燃焼状態と前記流体通流部を通して燃焼排ガスをバーナ先端側からバーナ基端側に通流させる蓄熱状態とに切換える燃焼状態切換部とが設けられ、
前記蓄熱部が、ハニカム構造の複数の筒状の蓄熱体を、前記流体通流部の流体通流方向に設定間隔を隔てる形態で配置する形態に構成されているものであって、
その特徴構成は、前記蓄熱体に、隣接する前記蓄熱体との間に前記設定間隔を隔てるためのスペーサ部が一体成形されている点にある。
The regenerative burner of the present invention includes a fluid flow passage portion in which a tubular heat storage portion is disposed in a tubular space between an outer tube portion and an inner tube portion that are concentrically disposed, and an interior of the inner tube portion. A combustion state in which combustion air is supplied to the burner tip side through the fluid flow part and the combustion exhaust gas is caused to flow from the burner tip side to the burner base side through the fluid flow part. A combustion state switching part for switching to a heat storage state is provided,
The heat storage part is configured in a form in which a plurality of cylindrical heat storage bodies having a honeycomb structure are arranged in a form spaced apart from each other in a fluid flow direction of the fluid flow part,
The characteristic configuration is that a spacer portion for separating the set interval between the heat storage body and the adjacent heat storage body is integrally formed.

すなわち、設定間隔を隔てて隣接する蓄熱体を位置させるためのスペーサ部が蓄熱体に一体成形されているから、複数の蓄熱体を、外筒部と内筒部との間の筒状空間に装填すれば、スペーサ部の存在によって、複数の蓄熱体が、隣接する蓄熱体との間に設定間隔を隔てる形態で装填されることなる。   That is, since the spacer part for positioning the adjacent heat storage body at a set interval is integrally formed with the heat storage body, the plurality of heat storage bodies are placed in the cylindrical space between the outer cylinder part and the inner cylinder part. If loaded, due to the presence of the spacer portion, the plurality of heat storage bodies are loaded in a form with a set interval between adjacent heat storage bodies.

したがって、隣接する蓄熱体を、設定間隔を隔てる形態で装填するために、特別な作業を行う必要が無くなるのであり、複数の蓄熱体の装填作業の簡素化を図ることができる。   Therefore, it is not necessary to perform a special operation in order to load adjacent heat storage bodies in a form with a set interval therebetween, and the work of loading a plurality of heat storage bodies can be simplified.

要するに、本発明の蓄熱式バーナの特徴構成によれば、蓄熱部を構成する複数の蓄熱体の装填作業の簡素化を図ることができる。   In short, according to the characteristic configuration of the heat storage burner of the present invention, it is possible to simplify the work of loading a plurality of heat storage bodies constituting the heat storage section.

本発明の蓄熱式バーナの更なる特徴構成は、前記スペーサ部が、前記蓄熱体における内径側の端部に形成されている点にある。   The further characteristic structure of the heat storage type burner of this invention exists in the point in which the said spacer part is formed in the edge part by the side of the internal diameter in the said heat storage body.

すなわち、蓄熱体における内径側の端部にスペーサ部を形成するものであるから、隣接する蓄熱体における対向する端面が大きく開放されるため、偏流を適切に回避し易いものとなる。   That is, since the spacer portion is formed at the inner diameter side end portion of the heat storage body, the opposing end surfaces of the adjacent heat storage bodies are largely opened, so that it is easy to avoid the drift appropriately.

つまり、スペーサ部を、蓄熱体の外径側(大径側)の端部に形成するよりも、スペーサ部を、蓄熱体の内径側(小径側)の端部に形成する方が、隣接する蓄熱体における対向する端面が大きく開放されるため、偏流を適切に回避し易いものとなるのである。   In other words, it is adjacent to the end portion on the inner diameter side (smaller diameter side) of the heat storage body than to form the spacer portion on the outer diameter side (large diameter side) end portion of the heat storage body. Since the opposing end surfaces of the heat storage body are largely opened, it is easy to avoid the drift appropriately.

要するに、本発明の蓄熱式バーナの更なる特徴構成によれば、偏流を適切に回避し易いものとなる。   In short, according to the further characteristic configuration of the regenerative burner of the present invention, it is easy to avoid the drift appropriately.

本発明の蓄熱式バーナの更なる特徴構成は、前記複数の蓄熱体が、同じ形態に形成されている点にある。   The further characteristic structure of the heat storage type burner of this invention exists in the point by which the said several heat storage body is formed in the same form.

すなわち、複数の蓄熱体が同じ形態に形成されているから、複数の蓄熱体を異なる形態に形成する場合に較べて、蓄熱体の成型する型を一種類にすることができる等、蓄熱体の製作の簡素化を図ることができる。   That is, since the plurality of heat storage bodies are formed in the same form, compared to the case where the plurality of heat storage bodies are formed in different forms, the heat storage body can be molded in one type, etc. Simplification of production can be achieved.

要するに、本発明の蓄熱式バーナの更なる特徴構成によれば、蓄熱体の製作の簡素化を図ることができる。   In short, according to the further characteristic configuration of the heat storage burner of the present invention, it is possible to simplify the manufacture of the heat storage body.

本発明の加熱炉の特徴構成は、上述の蓄熱式バーナの複数が、一部の蓄熱式バーナを前記蓄熱状態にするときには残部の蓄熱式バーナを前記燃焼状態にする交番燃焼形態で設けられている点にある。   A characteristic configuration of the heating furnace according to the present invention is that a plurality of the above-described regenerative burners are provided in an alternating combustion mode in which a part of the regenerative burners is set to the heat storage state, and the remaining heat storage burners are set to the combustion state. There is in point.

すなわち、蓄熱状態と燃焼状態とに切替えられる複数の蓄熱式バーナが、交番燃焼を行うものであるから、炉外に排出する燃焼排ガスが保有する熱を利用して燃焼用空気を予熱しながら、蓄熱式バーナを燃焼させることができるため、省エネ性の向上を図りながら被加熱処理物を加熱することができる。   That is, since the plurality of regenerative burners that are switched between the heat storage state and the combustion state perform alternating combustion, while preheating the combustion air using the heat held by the combustion exhaust gas discharged outside the furnace, Since the regenerative burner can be burned, the object to be heated can be heated while improving energy saving.

しかも、複数の蓄熱式バーナの夫々が、蓄熱部を構成する複数の蓄熱体の夫々において、燃焼排ガスの熱を良好に蓄熱しながら、蓄熱した熱にて燃焼用空気を適切に加熱することができるものであるから、燃焼用空気の予熱を適切に行ないながら、省エネ性を適切に向上させることができる。   In addition, each of the plurality of heat storage burners can appropriately heat the combustion air with the stored heat while favorably storing the heat of the combustion exhaust gas in each of the plurality of heat storage bodies constituting the heat storage unit. Therefore, the energy saving performance can be appropriately improved while appropriately preheating the combustion air.

要するに、本発明の加熱炉の特徴構成によれば、省エネ性を適切に向上させることができる。   In short, according to the characteristic configuration of the heating furnace of the present invention, the energy saving performance can be appropriately improved.

蓄熱式バーナの縦断側面図Vertical side view of a regenerative burner 蓄熱体の斜視図Perspective view of heat storage 加熱炉の概略横断平面図Outline cross-sectional plan view of the heating furnace 交番燃焼形態を示す説明図Explanatory drawing showing alternating combustion mode

〔実施形態〕
以下、本発明の実施形態を図面に基づいて説明する。
(加熱炉の全体構成)
図3に示すように、例示する加熱炉は、炉体Hの炉内空間Nを通して搬送される被加熱処理物Dを加熱する火炎Mを炉内空間Nに形成する複数の蓄熱式バーナBが、被加熱処理物Dの搬送経路Rの長手方向に沿って設けられて、搬送経路Rに沿って炉内空間Nに装入される被加熱処理物Dを、複数の蓄熱式バーナBにて加熱するように構成されている。
ちなみに、炉体Hの炉内空間Nの温度は、例えば、800℃〜1000℃程度である。
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Overall structure of heating furnace)
As shown in FIG. 3, the illustrated heating furnace includes a plurality of regenerative burners B that form in the furnace space N a flame M that heats the object to be heated D conveyed through the furnace space N of the furnace body H. The heated object D, which is provided along the longitudinal direction of the conveying path R of the heated object D and is inserted into the furnace space N along the conveying path R, is converted into a plurality of regenerative burners B. It is configured to heat.
Incidentally, the temperature of the furnace space N of the furnace body H is, for example, about 800 ° C. to 1000 ° C.

本実施形態においては、4台の蓄熱式バーナBが、炉体Hの両横側壁部の夫々に、搬送経路Rの長手方向に沿って2台ずつ並べる状態で設けられ、それら4台の蓄熱式バーナBが、後述の如く、交番燃焼するように構成されている。   In the present embodiment, four heat storage burners B are provided on each of the lateral side wall portions of the furnace body H in a state of being arranged two by two along the longitudinal direction of the transport path R, and the four heat storage burners B are arranged. The expression burner B is configured to alternately burn as described later.

(蓄熱式バーナの構成)
蓄熱式バーナBには、図1に示すように、同心状に配置された外筒部1と内筒部2との間の筒状空間に筒状の蓄熱部Uが配置された流体通流部Aと、内筒部2の内部に配置された燃料ガス吐出部Gと、流体通流部Aを通して燃焼用空気Fをバーナ先端側に供給する燃焼状態と流体通流部Aを通して燃焼排ガスEをバーナ先端側からバーナ基端側に通流させる蓄熱状態とに切換える燃焼状態切換部K(図3参照)とが設けられている。
(Configuration of heat storage burner)
As shown in FIG. 1, the heat storage burner B has a fluid flow in which a cylindrical heat storage unit U is disposed in a cylindrical space between the outer tube portion 1 and the inner tube portion 2 that are concentrically disposed. Part A, fuel gas discharge part G arranged inside the inner cylinder part 2, combustion state in which combustion air F is supplied to the burner tip side through the fluid flow part A, and combustion exhaust gas E through the fluid flow part A Is provided with a combustion state switching section K (see FIG. 3) for switching to a heat storage state in which the gas flows from the burner tip side to the burner base end side.

本実施形態においては、流体通流部Aの後端側部分には、蓄熱部3と連通する給排気室4が形成され、この給排気室4の給気用継手4Aに、給気路5が接続され、給排気室4の排気用継手4Bに、排気路6が接続されている。
給気路5には、大気中の空気を燃焼用空気として供給する給気ファンP(図3参照)が接続され、排気路6には、燃焼排ガスを炉外に吸引排出する排気ファンQ(図3参照)が接続されている。
In the present embodiment, a supply / exhaust chamber 4 communicating with the heat storage unit 3 is formed at the rear end portion of the fluid flow section A, and the supply passage 5 is connected to the supply joint 4A of the supply / exhaust chamber 4. Is connected, and the exhaust passage 6 is connected to the exhaust joint 4 </ b> B of the supply / exhaust chamber 4.
An air supply fan P (see FIG. 3) for supplying air in the atmosphere as combustion air is connected to the air supply path 5, and an exhaust fan Q (for sucking and discharging combustion exhaust gas outside the furnace is connected to the exhaust path 6. Are connected).

燃料吐出部Gは、同心状の大径筒と小径筒とを備える二重管状の筒部7を備え、その筒部7の大径筒と小径筒との間に、バーナ軸心方向に沿う燃料通路が形成され、燃料通路の先端に、環状の燃料噴出部7Aが形成されている。
上述した給排気室4の後端側箇所に、燃料ガスが供給される燃料供給用継手9が設けられ、燃料供給用継手9から供給される燃料ガスが、筒部7の燃料通路を通して、燃料噴出部7Aに導入されるように構成されている。
The fuel discharge portion G includes a double tubular tube portion 7 including a concentric large diameter tube and a small diameter tube, and the burner axial center direction is between the large diameter tube and the small diameter tube of the tube portion 7. A fuel passage is formed, and an annular fuel ejection portion 7A is formed at the tip of the fuel passage.
A fuel supply joint 9 to which fuel gas is supplied is provided at a location on the rear end side of the above-described supply / exhaust chamber 4, and the fuel gas supplied from the fuel supply joint 9 passes through the fuel passage of the cylinder portion 7 to form a fuel. It is configured to be introduced into the ejection portion 7A.

図示は省略するが、環状の燃料噴出部7Aの内部に、パイロット燃焼用ノズルが設けられ、図1に示すように、燃料供給用継手9の後端部に、パイロット燃焼用の燃料ガスを供給するパイロット用燃料供給継手10及びパイロット燃焼用の燃焼用空気を供給するパイロット用空気供給継手11が、筒部7の小径筒と連通状態で設けられて、パイロット用燃料供給継手10から供給される燃料ガス及びパイロット用空気供給継手11から供給される燃焼用空気が、二重管状の筒部7における小径筒の内部空間を通してパイロット燃焼用ノズルUに供給されるように構成されている。
尚、図示は省略するが、二重管状の筒部7における小径筒の内部空間には、パイロット燃焼用ノズルから噴出される混合ガスを点火する点火用のスパークロッドが配置されている。
Although not shown, a pilot combustion nozzle is provided inside the annular fuel injection portion 7A, and as shown in FIG. 1, fuel gas for pilot combustion is supplied to the rear end portion of the fuel supply joint 9. A pilot fuel supply joint 10 and a pilot air supply joint 11 for supplying combustion air for pilot combustion are provided in communication with the small diameter cylinder of the cylinder portion 7 and supplied from the pilot fuel supply joint 10. The fuel gas and the combustion air supplied from the pilot air supply joint 11 are configured to be supplied to the pilot combustion nozzle U through the internal space of the small-diameter cylinder in the double tubular cylinder 7.
Although not shown, an ignition spark rod for igniting the mixed gas ejected from the pilot combustion nozzle is disposed in the internal space of the small-diameter cylinder in the double tubular cylinder 7.

本実施形態においては、外筒部1における流体通流部Aよりもバーナ先端側に位置する先端部1Aが、先端側ほど小径となる形態に形成されて、蓄熱式バーナBを燃焼状態に切換えた状態において、流体通流部Aを通して供給される燃焼用空気Fをバーナ先端側に高速で通流させることにより、燃料吐出部Gの燃料噴出部7Aから噴出される燃料ガスと燃焼用空気Fとの混合を緩慢にして、低NOx化を図るように構成されている。   In the present embodiment, the tip portion 1A located on the burner tip side with respect to the fluid flow portion A in the outer cylinder portion 1 is formed in a form having a smaller diameter toward the tip side, and the regenerative burner B is switched to the combustion state. In this state, the combustion air F supplied through the fluid flow part A is made to flow at high speed to the burner tip side, whereby the fuel gas and the combustion air F injected from the fuel injection part 7A of the fuel discharge part G It is configured so as to reduce NOx by slowing the mixing with NO.

(蓄熱部の詳細)
図1に示すように、蓄熱部Uが、ハニカム構造の複数の筒状の蓄熱体3を、流体通流部Aの流体通流方向に設定間隔Lを隔てる形態で配置する形態に構成され、且つ、蓄熱体3に、隣接する蓄熱体との間に設定間隔Lを隔てるためのスペーサ部3aが一体成形されている。
ちなみに、蓄熱体3のハニカム構造とは、流体通流部Aの流体通流方向に沿う多数の流路を備える構造を意味するものである。
(Details of heat storage unit)
As shown in FIG. 1, the heat storage unit U is configured in a form in which a plurality of tubular heat storage bodies 3 having a honeycomb structure are arranged in a form in which a set interval L is separated in the fluid flow direction of the fluid flow part A. In addition, a spacer portion 3a for separating a set interval L between the heat storage body 3 and the adjacent heat storage body is integrally formed.
Incidentally, the honeycomb structure of the heat accumulator 3 means a structure having a large number of flow paths along the fluid flow direction of the fluid flow section A.

本実施形態においては、蓄熱体3は、外径が155mm、内径が62mmで、流体通流部Aの流体通流方向に沿う長さが70mmに形成されている。
本実施形態においては、スペーサ部3aが、蓄熱体3における小径側の端部に形成されている。具体的には、スペーサ部3aは、外径が82mm、内径が62mmで、流体通流部Aの流体通流方向に沿う長さが10mmに形成されている。
In the present embodiment, the heat accumulator 3 has an outer diameter of 155 mm, an inner diameter of 62 mm, and a length along the fluid flow direction of the fluid flow section A of 70 mm.
In the present embodiment, the spacer portion 3 a is formed at the end portion on the small diameter side of the heat storage body 3. Specifically, the spacer portion 3a has an outer diameter of 82 mm, an inner diameter of 62 mm, and a length along the fluid flow direction of the fluid flow portion A that is 10 mm.

本実施形態においては、蓄熱体3が、流体通流部Aの流体通流方向に沿って3個並設され、それら3個の蓄熱体3が同じ形態に形成されている。
つまり、3個の蓄熱体3が、外径、内径や長さが同じで、流体通流方向に沿う多数の流路が同様に形成された、いわゆる同仕様に形成されている。
ちなみに、3個の蓄熱体3のうちのバーナ後端側の蓄熱体3のスペーサ部3aが、給排気室4の内部に設けた筒状支持部12とフランジ接続される内筒部2のフランジ部2aに対して当て付けられ、かつ、3個の蓄熱体3のうちのバーナ先端側の蓄熱体3の外周が、外筒部1における先端部1Aの基端部に対して当て付けられることにより、流体通流部Aの流体通流方向における位置が位置決めされている。
In the present embodiment, three heat storage bodies 3 are arranged in parallel along the fluid flow direction of the fluid flow section A, and the three heat storage bodies 3 are formed in the same form.
That is, the three heat accumulators 3 have the same outer diameter, inner diameter, and length, and have the same specifications in which a number of flow paths along the fluid flow direction are similarly formed.
Incidentally, the flange part of the inner cylinder part 2 in which the spacer part 3a of the heat storage element 3 on the burner rear end side among the three heat storage elements 3 is flange-connected to the cylindrical support part 12 provided inside the supply / exhaust chamber 4. The outer periphery of the heat accumulator 3 on the burner distal end side of the three heat accumulators 3 is applied to the base end portion of the distal end portion 1A in the outer cylinder portion 1. Thus, the position of the fluid flow part A in the fluid flow direction is positioned.

(交番燃焼の詳細)
図3に示すように、給気路5が、給気ファンPと複数の蓄熱式バーナBとを並列状態で接続するように構成され、給気路5における4つの蓄熱式バーナBの夫々に対応する部分には、燃焼用空気の供給を断続する給気弁15が設けられている。
排気路6が、排気ファンQと複数の蓄熱式バーナBとを並列状態で接続するように構成され、排気路6における4つの蓄熱式バーナBの夫々に対応する部分には、排気路6を開閉する排気弁16が設けられている。
(Details of alternating combustion)
As shown in FIG. 3, the air supply path 5 is configured to connect the air supply fan P and the plurality of heat storage burners B in parallel, and each of the four heat storage burners B in the air supply path 5 is connected. A corresponding portion is provided with an air supply valve 15 for intermittently supplying the combustion air.
The exhaust passage 6 is configured to connect the exhaust fan Q and the plurality of heat storage burners B in parallel, and the exhaust passage 6 is provided in a portion corresponding to each of the four heat storage burners B in the exhaust passage 6. An exhaust valve 16 that opens and closes is provided.

図1に示すように、蓄熱式バーナBの燃料供給用継手9には、メタンを主成分とする都市ガス等の燃料ガスを供給する燃料ガス供給路17が接続され、図3に示すように、燃料ガス供給路17には、各蓄熱式バーナBへの燃料ガスの供給を各別に断続する燃料弁18が設けられている。
ちなみに、給気弁15、排気弁16及び燃料弁18を主要部として、各蓄熱式バーナBを燃焼状態と蓄熱状態とに切換える燃焼状態切換部Kが構成されることなる。
As shown in FIG. 1, the fuel supply joint 9 of the regenerative burner B is connected to a fuel gas supply passage 17 for supplying a fuel gas such as city gas mainly composed of methane, as shown in FIG. The fuel gas supply path 17 is provided with a fuel valve 18 for intermittently supplying the fuel gas to each regenerative burner B.
Incidentally, the combustion state switching unit K is configured to switch each heat storage burner B between a combustion state and a heat storage state with the air supply valve 15, the exhaust valve 16 and the fuel valve 18 as main parts.

すなわち、給気弁15及び燃料弁18を閉じかつ排気弁16を開くことにより、蓄熱式バーナBが蓄熱状態となり、給気弁15及び燃料弁18を開きかつ排気弁16を閉じることにより、蓄熱式バーナBが燃焼状態となるように構成されている。   That is, by closing the supply valve 15 and the fuel valve 18 and opening the exhaust valve 16, the heat storage burner B enters a heat storage state, and by opening the supply valve 15 and the fuel valve 18 and closing the exhaust valve 16, The expression burner B is configured to be in a combustion state.

つまり、給気ファンPが、燃焼状態の蓄熱式バーナBに燃焼用空気Fを供給し、炉内空間Nの燃焼排ガスEを吸引して炉外に排出する排気ファンQが、蓄熱状態の蓄熱式バーナBに対して吸引作用することになり、そして、燃料ガスが、燃焼状態の蓄熱式バーナBに供給されることにより、複数の蓄熱式バーナBが、蓄熱状態と燃焼状態とに切替えられるように構成されている(図4参照)。   That is, the supply fan P supplies the combustion air F to the regenerative burner B in the combustion state, sucks the combustion exhaust gas E in the furnace space N, and discharges it to the outside of the furnace. When the fuel gas is supplied to the heat storage burner B in the combustion state, the plurality of heat storage burners B are switched between the heat storage state and the combustion state. (See FIG. 4).

また、蓄熱式バーナBの燃焼を制御する燃焼制御部(図示せず)が、給気弁15、燃料弁18及び排気弁16を開閉制御して、複数の蓄熱式バーナBのうちの一部の蓄熱式バーナBが蓄熱状態となるときには残りの蓄熱式バーナBが燃焼状態となるように切替える交番燃焼形態で、複数の蓄熱式バーナBを燃焼させるように構成されている。   In addition, a combustion control unit (not shown) that controls the combustion of the regenerative burner B controls opening / closing of the air supply valve 15, the fuel valve 18, and the exhaust valve 16, and a part of the plurality of regenerative burners B When the heat storage type burner B is in a heat storage state, the plurality of heat storage type burners B are combusted in an alternating combustion mode in which the remaining heat storage type burner B is switched to a combustion state.

本実施形態においては、図3及び図4に示すように、炉体Hの両横側壁部の夫々に搬送経路Rの長手方向に沿って並べた2台の蓄熱式バーナBを交番燃焼させるように構成されている。
詳しくは、平面視にて4角形の角部に位置する状態で並ぶ4台の蓄熱式バーナBのうちで、対角線に位置する一対の蓄熱式バーナBを組として、2組の蓄熱式バーナBを交番燃焼させるように構成されている。
In the present embodiment, as shown in FIGS. 3 and 4, two regenerative burners B arranged along the longitudinal direction of the transport path R are alternately burned on both lateral side walls of the furnace body H. It is configured.
Specifically, among the four regenerative burners B arranged in a state of being positioned at the corners of the quadrangle in plan view, a pair of regenerative burners B positioned in a diagonal line is used as a pair, and two regenerative burners B Is configured to alternately burn.

ちなみに、図3においては、給気弁15、排気弁16及び燃料弁18のうちで、閉じ状態となるものを黒塗り状態で示し、給気弁15、排気弁16及び燃料弁18のうちで、開き状態となるものを白抜き状態で示している。   Incidentally, in FIG. 3, among the air supply valve 15, the exhaust valve 16, and the fuel valve 18, those that are in the closed state are shown in black, and among the air supply valve 15, the exhaust valve 16, and the fuel valve 18, The open state is shown in white.

尚、図示は省略するが、給気路5には、燃焼用空気の供給量を変更設定する給気ダンパが装備され、排気路6には、燃焼排ガスの排出量を変更設定する排気ダンパが装備され、また、燃料ガス供給路17には、燃料ガスの供給量を変更設定する燃料調整弁が装備されて、複数の蓄熱式バーナBの燃焼量が、給気ダンパ、排気ダンパ、及び、燃料調整弁の操作によって調整されることになる。   Although not shown, the air supply passage 5 is equipped with an air supply damper that changes and sets the supply amount of combustion air, and the exhaust passage 6 has an exhaust damper that changes and sets the exhaust amount of combustion exhaust gas. The fuel gas supply path 17 is equipped with a fuel adjustment valve that changes and sets the supply amount of the fuel gas, and the combustion amount of the plurality of regenerative burners B is supplied to the supply damper, the exhaust damper, and It is adjusted by operating the fuel adjustment valve.

〔別実施形態〕
次に、別実施形態を列記する。
(1)上記実施形態においては、加熱処理物Dが搬送経路Rに沿って搬送される炉内空間Nに対して、4台の蓄熱式バーナBを装備する場合を例示したが、蓄熱式バーナBの設置数や設置形態は、加熱炉の具体的な形態において各種変更できる。
[Another embodiment]
Next, another embodiment is listed.
(1) In the said embodiment, although the case where the four heat storage type burners B were equipped with respect to the in-furnace space N with which the heat processing material D was conveyed along the conveyance path | route R was illustrated, the heat storage type burner is shown. The number of B and the installation form can be variously changed in a specific form of the heating furnace.

(2)上記実施形態においては、蓄熱式バーナBが、加熱炉の炉内空間Nにて火炎Mを形成する形態を例示したが、本発明の蓄熱式バーナBは、ラジアントチューブの内部空間に火炎Mを形成する、いわゆるラジアントチューブ式に形成してもよい。 (2) In the above embodiment, the regenerative burner B has exemplified the form in which the flame M is formed in the in-furnace space N of the heating furnace, but the regenerative burner B of the present invention is in the internal space of the radiant tube. The flame M may be formed in a so-called radiant tube type.

(3)上記実施形態においては、蓄熱部Uが、3個の蓄熱体3を外筒部1と内筒部2との間の筒状空間に配設する場合を例示したが、配置する蓄熱体3の設置個数は各種変更できる。 (3) In the said embodiment, although the heat storage part U illustrated the case where the three heat storage bodies 3 are arrange | positioned in the cylindrical space between the outer cylinder part 1 and the inner cylinder part 2, the heat storage to arrange | position The number of installed bodies 3 can be variously changed.

(4)上記実施形態においては、複数個の蓄熱体3を同じ仕様に形成する場合を例示したが、各蓄熱体3の流体通流部Aの流体通流方向の長さを異ならせる等、複数個の蓄熱体3の仕様を異ならせるようにしてもよい。 (4) In the above embodiment, the case where a plurality of heat storage bodies 3 are formed to the same specification is exemplified, but the length of the fluid flow section A of each heat storage body 3 in the fluid flow direction is different. The specifications of the plurality of heat storage bodies 3 may be different.

(5)上記実施形態においては、3個の蓄熱体3を配置する場合において、隣接する蓄熱体3の間の設定間隔Lを全て同じ間隔にする場合を例示したが、3個以上の蓄熱体3を配置する場合において、隣接する蓄熱体3の間の設定間隔Lを全て異ならせる、又は、一部だけ異ならせる等、隣接する蓄熱体3の間の設定間隔Lは種々設定できるものである。 (5) In the above embodiment, when three heat storage bodies 3 are arranged, the setting interval L between the adjacent heat storage bodies 3 is exemplified as the same interval, but three or more heat storage bodies are illustrated. In the case of arranging 3, the set interval L between the adjacent heat storage bodies 3 can be variously set such that all the set intervals L between the adjacent heat storage bodies 3 are different or only a part thereof is different. .

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

1 外筒部
2 内筒部
3 蓄熱体
3a スペーサ部
K 燃焼状態切換部
DESCRIPTION OF SYMBOLS 1 Outer cylinder part 2 Inner cylinder part 3 Thermal storage body 3a Spacer part K Combustion state switching part

Claims (4)

同心状に配置された外筒部と内筒部との間の筒状空間に筒状の蓄熱部が配置された流体通流部と、前記内筒部の内部に配置された燃料ガス吐出部と、前記流体通流部を通して燃焼用空気をバーナ先端側に供給する燃焼状態と前記流体通流部を通して燃焼排ガスをバーナ先端側からバーナ基端側に通流させる蓄熱状態とに切換える燃焼状態切換部とが設けられ、
前記蓄熱部が、ハニカム構造の複数の筒状の蓄熱体を、前記流体通流部の流体通流方向に設定間隔を隔てる形態で配置する形態に構成されている蓄熱式バーナであって、
前記蓄熱体に、隣接する前記蓄熱体との間に前記設定間隔を隔てるためのスペーサ部が一体成形されている蓄熱式バーナ。
A fluid flow part in which a cylindrical heat storage part is arranged in a cylindrical space between the outer cylinder part and the inner cylinder part arranged concentrically, and a fuel gas discharge part arranged in the inner cylinder part Switching between a combustion state in which combustion air is supplied to the burner tip side through the fluid flow part and a heat storage state in which combustion exhaust gas is passed from the burner tip side to the burner base side through the fluid flow part Are provided,
The heat storage section is a heat storage burner configured in a form in which a plurality of cylindrical heat storage bodies having a honeycomb structure are arranged in a form in which a set interval is separated in a fluid flow direction of the fluid flow section,
A heat storage burner in which a spacer portion for separating the set interval between the heat storage body and the adjacent heat storage body is integrally formed.
前記スペーサ部が、前記蓄熱体における内径側の端部に形成されている請求項1記載の蓄熱式バーナ。   The regenerative burner according to claim 1, wherein the spacer portion is formed at an inner diameter side end portion of the heat storage body. 前記複数の蓄熱体が、同じ形態に形成されている請求項1又は2記載の蓄熱式バーナ。   The heat storage burner according to claim 1 or 2, wherein the plurality of heat storage bodies are formed in the same form. 請求項1〜3のいずれか1項に記載の蓄熱式バーナの複数が、一部の蓄熱式バーナを前記蓄熱状態にするときには残部の蓄熱式バーナを前記燃焼状態にする交番燃焼形態で設けられている加熱炉。   A plurality of the regenerative burners according to any one of claims 1 to 3 are provided in an alternating combustion mode in which a part of the regenerative burners is set to the heat storage state, and the remaining heat storage burners are set to the combustion state. Heating furnace.
JP2016243237A 2016-12-15 2016-12-15 Heat storage burner and heating furnace Active JP6952461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243237A JP6952461B2 (en) 2016-12-15 2016-12-15 Heat storage burner and heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243237A JP6952461B2 (en) 2016-12-15 2016-12-15 Heat storage burner and heating furnace

Publications (2)

Publication Number Publication Date
JP2018096643A true JP2018096643A (en) 2018-06-21
JP6952461B2 JP6952461B2 (en) 2021-10-20

Family

ID=62633382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243237A Active JP6952461B2 (en) 2016-12-15 2016-12-15 Heat storage burner and heating furnace

Country Status (1)

Country Link
JP (1) JP6952461B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604051A (en) * 1984-08-16 1986-08-05 Gas Research Institute Regenerative burner
JPH06272852A (en) * 1993-03-17 1994-09-27 Nippon Furnace Kogyo Kaisha Ltd Heat storage structure and mounting structure therefor
JPH08247671A (en) * 1995-03-09 1996-09-27 Nkk Corp Heat accumulation body for regenerative burner
JPH1151358A (en) * 1997-07-31 1999-02-26 Trinity Ind Corp Heat storage type waste gas processing apparatus
JP2000180081A (en) * 1998-12-11 2000-06-30 Chugai Ro Co Ltd Heat storage body and heat storage radiant tube burner employing it
JP2001349683A (en) * 2000-06-06 2001-12-21 Osaka Gas Engineering Co Ltd Rotary heat exchanger
DE20313250U1 (en) * 2003-08-27 2003-11-13 Ltg Mailaender Gmbh Honeycomb arrangement used for catalysts for cleaning solvent-containing waste gases produced in lacquering plants comprises honeycomb bodies arranged over each other having channels for passage of gas
JP3754507B2 (en) * 1996-10-09 2006-03-15 Jfeスチール株式会社 Radiant tube burner
JP2015175589A (en) * 2014-03-18 2015-10-05 大阪瓦斯株式会社 Regenerative burner and metal heating furnace

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604051A (en) * 1984-08-16 1986-08-05 Gas Research Institute Regenerative burner
JPH06272852A (en) * 1993-03-17 1994-09-27 Nippon Furnace Kogyo Kaisha Ltd Heat storage structure and mounting structure therefor
JPH08247671A (en) * 1995-03-09 1996-09-27 Nkk Corp Heat accumulation body for regenerative burner
JP3754507B2 (en) * 1996-10-09 2006-03-15 Jfeスチール株式会社 Radiant tube burner
JPH1151358A (en) * 1997-07-31 1999-02-26 Trinity Ind Corp Heat storage type waste gas processing apparatus
JP2000180081A (en) * 1998-12-11 2000-06-30 Chugai Ro Co Ltd Heat storage body and heat storage radiant tube burner employing it
JP2001349683A (en) * 2000-06-06 2001-12-21 Osaka Gas Engineering Co Ltd Rotary heat exchanger
DE20313250U1 (en) * 2003-08-27 2003-11-13 Ltg Mailaender Gmbh Honeycomb arrangement used for catalysts for cleaning solvent-containing waste gases produced in lacquering plants comprises honeycomb bodies arranged over each other having channels for passage of gas
JP2015175589A (en) * 2014-03-18 2015-10-05 大阪瓦斯株式会社 Regenerative burner and metal heating furnace

Also Published As

Publication number Publication date
JP6952461B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
RU2010139010A (en) METHOD FOR FIRING CERAMIC PRODUCTS AND FURNACE FOR CARRYING OUT THE METHOD
KR101135304B1 (en) Ladle preheating apparatus
JP6429471B2 (en) Regenerative burner and metal heating furnace
JP5795105B1 (en) Regenerative burner furnace
WO2012153751A1 (en) Tubular flame burner and radiant tube heater
JP2018096643A (en) Regenerative burner and heating furnace
JP2006250429A (en) Regeneration burner system
WO2009096554A1 (en) Combustion heater
JP4007835B2 (en) Thermal storage radiant tube combustion device
KR101107466B1 (en) Single end type regenerative radiant tube burner
JP6173178B2 (en) Single-ended radiant tube burner
JPH06229522A (en) Radiant tube burner
JP2007278693A (en) Regenerative radiant tube combustion device
WO2017056318A1 (en) Regenerative burner and metal furnace
KR102367728B1 (en) Regenerative burner
KR102397604B1 (en) Heat treatment furnace
KR101078845B1 (en) Full-Time Regenerative Compact Burner
KR102367727B1 (en) Regenerative burner
KR101074761B1 (en) Self regenerative burner and method for controlling the flow of the burning air and exhaust gas of the burner
JP2017077997A (en) Glass melting single furnace
JP2008249279A (en) Heating furnace equipped with exhaust heat self-recovery burner
JPH10169971A (en) Heat storage regenerative combustor
JP2014040962A (en) Radiant tube burner
JP2014037909A (en) Radiant tube burner
JP6257422B2 (en) Combustion equipment for heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6952461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150