JP2018095504A - Manufacturing method of cylindrical ceramic sintered body and its cylindrical ceramic sintered body - Google Patents

Manufacturing method of cylindrical ceramic sintered body and its cylindrical ceramic sintered body Download PDF

Info

Publication number
JP2018095504A
JP2018095504A JP2016241234A JP2016241234A JP2018095504A JP 2018095504 A JP2018095504 A JP 2018095504A JP 2016241234 A JP2016241234 A JP 2016241234A JP 2016241234 A JP2016241234 A JP 2016241234A JP 2018095504 A JP2018095504 A JP 2018095504A
Authority
JP
Japan
Prior art keywords
cylindrical ceramic
sintered body
ceramic sintered
support member
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016241234A
Other languages
Japanese (ja)
Other versions
JP6842293B2 (en
Inventor
佐藤 啓一
Keiichi Sato
啓一 佐藤
勲雄 安東
Isao Ando
勲雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016241234A priority Critical patent/JP6842293B2/en
Publication of JP2018095504A publication Critical patent/JP2018095504A/en
Application granted granted Critical
Publication of JP6842293B2 publication Critical patent/JP6842293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a cylindrical ceramic sintered body with less deformation during manufacturing and having a stable shape even if repeatedly sintered, and the cylindrical ceramic sintered body.SOLUTION: A manufacturing method of a cylindrical ceramic sintered body which is sintered using a firing furnace has: a molding step S1 of filling a raw material powder into a cavity of a molding die, followed by compression molding so as to obtain the cylindrical ceramic molded body; an arranging step S2 of arranging the cylindrical ceramic molded body in the firing furnace; and a firing step S3 of obtaining the cylindrical ceramic sintered body by firing the arranged cylindrical ceramic molded body in the firing furnace. The arranging step S2 puts a plurality of supporting members side by side on the hearth in the firing furnace or on the bottom board placed on the hearth. The supporting members are stacked in three tiers or more per one place, and the cylindrical ceramic sintered body is mounted upright on the supporting members.SELECTED DRAWING: Figure 1

Description

本発明は、マグネトロン型回転カソードスパッタリング装置において、スパッタリングターゲットとして用いられる円筒形セラミックス焼結体の製造方法及び円筒形セラミックス焼結体に関する。   The present invention relates to a method for producing a cylindrical ceramic sintered body used as a sputtering target in a magnetron rotary cathode sputtering apparatus, and a cylindrical ceramic sintered body.

従来、スパッタリングターゲットとしては、平板状のものが一般的に利用されているが、この平板状ターゲットを使用して、マグネトロンスパッタリング法によりスパッタリングを行った場合には、その使用効率は10%〜30% にとどまる。これは、マグネトロンスパッタリング法では、磁場によってプラズマを平板状ターゲットの特定箇所に集中して衝突させるため、ターゲット表面の特定箇所にエロージョンが進行する現象が起こり、その最深部がターゲット中のバッキングプレートまで達したところで、ターゲットの寿命となってしまうためである。   Conventionally, a flat plate is generally used as a sputtering target, but when this flat plate target is used for sputtering by a magnetron sputtering method, the use efficiency is 10% to 30%. Stay at%. This is because in magnetron sputtering, plasma is concentrated and collides with a specific part of a flat target by a magnetic field, causing a phenomenon in which erosion proceeds to a specific part of the target surface, and the deepest part reaches the backing plate in the target. This is because the life of the target is reached.

この問題に対して、スパッタリングターゲットを円筒形とすることで、ターゲットの使用効率を上げることが提案されている。このスパッタリング法は、円筒形のバッキングチューブとその外周部に形成された円筒形のターゲット材とからなる円筒形スパッタリングターゲットを用い、バッキングチューブの内側に磁場発生設備と冷却設備を設置して、円筒形スパッタリングターゲットを回転させながら、スパッタリングを行うものである。このような円筒形スパッタリングターゲットの使用により、ターゲットの使用効率を60%〜70%にまで高めることができる。加えて、このスパッタリング法は冷却効率に優れるため、投入電力を大きくし、高い成膜速度で成膜することができる。   In response to this problem, it has been proposed to increase the usage efficiency of the target by making the sputtering target cylindrical. This sputtering method uses a cylindrical sputtering target consisting of a cylindrical backing tube and a cylindrical target material formed on the outer periphery thereof, and a magnetic field generating facility and a cooling facility are installed inside the backing tube, Sputtering is performed while rotating the sputtering target. By using such a cylindrical sputtering target, the usage efficiency of the target can be increased to 60% to 70%. In addition, since this sputtering method is excellent in cooling efficiency, it is possible to increase the input power and form a film at a high film formation rate.

このような円筒形スパッタリングターゲットの材料としては、円筒形状への加工が容易で機械的強度の高い金属材料が広く使用されているものの、セラミックス材料については、機械的強度が低く、脆いという性質から、いまだ普及するに至っていない。   As a material for such a cylindrical sputtering target, a metal material that can be easily processed into a cylindrical shape and has high mechanical strength is widely used. However, ceramic materials have low mechanical strength and are brittle. It has not yet spread.

セラミックス製の円筒形スパッタリングターゲットは、円筒形状のバッキングチューブの外周にセラミックス粉末を溶射して付着させる溶射法や、円筒形状のバッキングチューブの外周にセラミックス粉末を充填し、高温高圧の不活性雰囲気下でセラミックス粉末を焼成する、熱間静水圧プレス(HIP)法などにより製造することが一般的である。しかしながら、溶射法には高密度のターゲットが得られにくいという問題がある。また、HIP法には、イニシャルコストやランニングコストが高く、熱膨張差による剥離、さらにはターゲットやバッキングチューブのリサイクルができないといった問題がある。   Ceramic cylindrical sputtering targets are sprayed by spraying ceramic powder on the outer periphery of a cylindrical backing tube, or filled with ceramic powder on the outer periphery of a cylindrical backing tube. The ceramic powder is generally manufactured by hot isostatic pressing (HIP) method or the like. However, the thermal spraying method has a problem that it is difficult to obtain a high-density target. Further, the HIP method has a problem that initial cost and running cost are high, peeling due to a difference in thermal expansion, and further, recycling of the target and the backing tube cannot be performed.

これに対して、近年、冷間静水圧プレス(CIP)法により円筒形セラミックス成形体を成形し、これを焼成炉内の敷板上に載置し、焼成することで円筒形セラミックス焼結体とした後、研削加工することにより円筒形ターゲット材を得て、これを円筒形状のバッキングチューブと接合する、円筒形スパッタリングターゲットの製造方法が研究されている。この方法によれば、工業規模の製造において、比較的低コストで、高密度の円筒形スパッタリングターゲットを容易に得ることができる。また、スパッタリング後に、円筒形ターゲット材からバッキングチューブを容易に取り外して、リサイクルすることが可能であるため、円筒形スパッタリングターゲットの低コスト化を図ることができる。   On the other hand, in recent years, a cylindrical ceramic molded body is formed by a cold isostatic press (CIP) method, placed on a floor plate in a firing furnace, and fired to obtain a cylindrical ceramic sintered body. After that, a manufacturing method of a cylindrical sputtering target in which a cylindrical target material is obtained by grinding and joined to a cylindrical backing tube has been studied. According to this method, a high-density cylindrical sputtering target can be easily obtained at a relatively low cost in industrial scale production. In addition, since the backing tube can be easily removed from the cylindrical target material and recycled after sputtering, the cost of the cylindrical sputtering target can be reduced.

この方法では、焼成工程において、円筒形セラミックス成形体が収縮する際に、その下端面(焼成時に、敷板と接する面)と敷板との間に作用する摩擦力によって、得られる円筒形セラミックス焼結体が大きく変形するという問題がある。このように変形した円筒形セラミックス焼結体は、引き続き行われる研削加工工程において加工機器への取り付けが困難となるばかりでなく、研削量が増加し、生産性が著しく低下することとなる。また、加工中に微細な亀裂(マイクロクラック)や欠けが生じやすく、バッキングチューブとの接合(ボンディング)時やスパッタリング時における円筒形ターゲット材の割れや欠けなどの原因となる。   In this method, when the cylindrical ceramic compact shrinks in the firing step, the cylindrical ceramic sintered body obtained by the frictional force acting between the lower end surface (the surface in contact with the base plate during firing) and the base plate. There is a problem that the body is greatly deformed. The cylindrical ceramic sintered body thus deformed not only becomes difficult to attach to the processing equipment in the subsequent grinding process, but also increases the amount of grinding and significantly reduces the productivity. Further, fine cracks (microcracks) and chips are likely to occur during processing, which causes cracks and chips in the cylindrical target material during bonding (bonding) to the backing tube and sputtering.

この問題に対して、特許文献1では、被焼成物である円筒形セラミックス成形体を、この円筒形セラミックス成形体と同等の焼結収縮率を有する板状のセラミックス成形体からなる敷板の上に載置し、板状のセラミックス成形体と円筒形セラミックス成形体の間に、アルミナ粉末などの敷粉を敷く方法が記載されている。   With respect to this problem, in Patent Document 1, a cylindrical ceramic molded body, which is an object to be fired, is placed on a floor plate made of a plate-shaped ceramic molded body having a sintering shrinkage rate equivalent to that of the cylindrical ceramic molded body. It describes a method of placing and spreading a powder such as alumina powder between a plate-like ceramic molded body and a cylindrical ceramic molded body.

特許文献2では、平面を有する基体(敷板)と、独立して移動可能な複数の部材からなる成形体支持体と、基体と成形体支持体との間に丸棒または球状のセラッミクス焼結体から構成される摺動層とを備えた焼成治具を用いて、焼成を行う方法を提案している。   In Patent Document 2, a base body (laying plate) having a flat surface, a molded body support composed of a plurality of independently movable members, and a round bar or a spherical ceramics sintered body between the base body and the molded body support body And a method of firing using a firing jig provided with a sliding layer composed of:

しかしながら、これらの方法では、丸棒または球状のセラミックス材から構成される摺動層は安定性が低く、炉床のわずかな傾斜、炉内に供給する雰囲気ガスまたは有機成分が分解することによって生じる気流の影響により、摺動層とともに円筒形セラミックス成形体が炉内を移動し、炉壁や隣接する円筒形セラミックス成形体と接触するという問題がある。また、焼成炉内における円筒形セラミックス成形体の配置は、分解生成ガスや炉内に供給する雰囲気ガスの影響を考慮して、円筒形セラミックス成形体が均一に焼成されるように設定されるものであるが、このような移動により、円筒形セラミックス成形体が均一に焼成されなくなるという問題がある。   However, in these methods, the sliding layer composed of a round bar or a spherical ceramic material has low stability, and is generated by slight inclination of the hearth, decomposition of atmospheric gas or organic components supplied into the furnace. Due to the influence of the air flow, there is a problem that the cylindrical ceramic molded body moves in the furnace together with the sliding layer and comes into contact with the furnace wall and the adjacent cylindrical ceramic molded body. In addition, the arrangement of the cylindrical ceramic molded body in the firing furnace is set so that the cylindrical ceramic molded body is uniformly fired in consideration of the influence of the decomposition product gas and the atmospheric gas supplied to the furnace. However, there is a problem that the cylindrical ceramic molded body is not uniformly fired by such movement.

これに対して、特許文献3では、通気孔を有する敷板上に、複数の支持部材を、該通気孔を中心として長手方向が円の径方向に一致するように、かつ放射上に配置し、その上に円筒成形体を垂直に載置する方法が提案されている。この方法によれば円筒成形体の炉内水平方向の移動を抑制し、かつ酸化物同士の摩擦係数は小さいため敷板上を支持部材が滑ることによって変形が小さく、均質な焼結体が得られるとしている。   On the other hand, in Patent Document 3, a plurality of support members are arranged on the base plate having the air holes so that the longitudinal direction thereof coincides with the radial direction of the circle around the air holes, There has been proposed a method in which a cylindrical molded body is placed vertically thereon. According to this method, movement of the cylindrical molded body in the horizontal direction in the furnace is suppressed, and the coefficient of friction between the oxides is small, so that the support member slides on the floor plate, so that deformation is small and a homogeneous sintered body is obtained. It is said.

特開2005−281862号公報JP 2005-281862 A 特開2008−184337号公報JP 2008-184337 A 特開2016−88831号公報Japanese Patent Laid-Open No. 2006-88831

円筒形セラミックス焼結体の製造方法において、焼成炉を繰り返し使用すると、支持体や支持部材の変形又は固着等によって、摺動機能を十分に発揮することができず、支持体や支持部材との引っ掛かりによって円筒形セラミックス成形体に大きな変形が生じてしまうことがある。また、支持部材の形状によっては、成形体重量が重くなると支持部材の成形体へのくい込みが強くなり、その分を除去する加工代を設けなければならないことがある。   In the method of manufacturing a cylindrical ceramic sintered body, if the firing furnace is repeatedly used, the sliding function cannot be sufficiently exhibited due to deformation or fixing of the support or the support member, and the The cylindrical ceramic molded body may be greatly deformed by the catch. Further, depending on the shape of the support member, when the weight of the molded body increases, the support member bites into the molded body, and it may be necessary to provide a machining allowance for removing the amount.

本発明は、上記状況を鑑み、マグネトロン型回転カソードスパッタリング装置において、スパッタリングターゲットとして用いられる円筒形セラミックス焼結体において、焼結時における変形が少なく、繰り返し焼成を行っても安定した形状を有する円筒形セラミックス焼結体の製造方法及び円筒形セラミックス焼結体を提供することを目的とする。   In view of the above situation, the present invention is a cylindrical ceramic sintered body used as a sputtering target in a magnetron type rotary cathode sputtering apparatus, and has a stable shape even when repeatedly fired with little deformation during sintering. An object of the present invention is to provide a method for producing a shaped ceramic sintered body and a cylindrical ceramic sintered body.

本発明者らは、上述した問題に鑑みて、円筒形セラミックス焼結体の焼結収縮に伴う変形を抑制する方法について鋭意検討を重ね、高温耐久性を備えた支持部材を放射状に配置し、その表面の滑りを利用する焼成方法において、支持部材を平板状にし、複数枚重ねることによって、繰り返し試験においてもより安定的に表面の滑りを使用することができるとの知見を得た。   In view of the above-mentioned problems, the present inventors have repeatedly studied earnestly about a method for suppressing deformation associated with sintering shrinkage of a cylindrical ceramic sintered body, and radially arranged support members having high-temperature durability, In the firing method using the slip of the surface, it was found that the slip of the surface can be used more stably even in the repeated test by forming the support member into a flat plate shape and stacking a plurality of the support members.

すなわち、本発明の一態様は、焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程と、前記円筒形セラミックス成形体を前記焼成炉内に配置する配置工程と、前記配置した円筒形セラミックス成形体を前記焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程とを有し、前記配置工程では、焼成炉内の炉床あるいは炉床の上に設置した敷板に、複数の支持部材を並べ、該支持部材は1箇所につき3段以上重ねあわせて載置し、該支持部材上に前記円筒形セラミックス成形体を直立させた状態で載置する。   That is, one aspect of the present invention is a method of manufacturing a cylindrical ceramic sintered body in which a cylindrical ceramic molded body is fired using a firing furnace, in which a raw material powder is filled in a cavity of a cylindrical forming mold and subjected to processing. A forming step of obtaining a cylindrical ceramic formed body by pressure forming, an arranging step of placing the cylindrical ceramic formed body in the firing furnace, and a cylinder obtained by firing the placed cylindrical ceramic formed body in the firing furnace A firing step of obtaining a ceramic sintered body, and in the placement step, a plurality of support members are arranged on a hearth in a firing furnace or a floor plate installed on the hearth, and the support members are arranged at one place. Three or more stages are stacked and placed, and the cylindrical ceramic molded body is placed upright on the support member.

本発明の一態様によれば、複数枚(3段以上)の支持部材間の滑りを利用することで、摩擦力を低減しつつ、円筒形セラミックス成形体を安定して支持することができ、焼結収縮に伴う変形を安定的に抑制することができる。   According to one aspect of the present invention, the cylindrical ceramic molded body can be stably supported while reducing the frictional force by utilizing the slip between a plurality of (three or more stages) support members, Deformation associated with sintering shrinkage can be stably suppressed.

このとき、本発明の一態様では、支持部材として平板を用いることができる。   At this time, in one embodiment of the present invention, a flat plate can be used as the support member.

平板にすることにより、支持部材の円筒形セラミックス成形体へのくい込みによる窪み量を抑制することができる。   By using a flat plate, the amount of depression due to the support member biting into the cylindrical ceramic molded body can be suppressed.

また、このとき、本発明の一態様では、支持部材の厚さを0.5mm以上5mm以下とすることができる。   At this time, in one embodiment of the present invention, the thickness of the support member can be set to 0.5 mm to 5 mm.

支持部材は積み重ねることや低コストで取り替え可能であることを考慮に入れて0.5mm以上5mm以下の厚さにすることが好ましい。   It is preferable that the thickness of the support member is 0.5 mm or more and 5 mm or less in consideration of stacking and replacement at low cost.

本発明の一態様では、支持部材をセラミックス焼結体製としてもよい。   In one embodiment of the present invention, the support member may be made of a ceramic sintered body.

セラミックス焼結体製は、高温耐久性を備え、その表面状態が容易に変化しないため、支持部材として適している。   A ceramic sintered body is suitable as a support member because it has high-temperature durability and its surface state does not easily change.

また、本発明の一態様では、支持部材をアルミナ製又はジルコニア製としてもよい。   In one embodiment of the present invention, the support member may be made of alumina or zirconia.

高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形セラミックス成形体と反応しない点からアルミナ製又はジルコニア製が好適である。   Alumina or zirconia is preferred because it has high-temperature durability, its surface state does not easily change, and does not react with the cylindrical ceramic molded body during firing.

また、本発明の一態様では、支持部材の表面粗さを、算術平均粗さRaで5μm以下としてもよい。   In one embodiment of the present invention, the surface roughness of the support member may be 5 μm or less in terms of arithmetic average roughness Ra.

重ねた支持部材間の摩擦力を小さくするためには、支持部材の表面粗さを上記範囲内とすることが好ましい。   In order to reduce the frictional force between the stacked support members, the surface roughness of the support member is preferably within the above range.

本発明の他の態様は、接地面側の端面において、周方向4箇所以上の位置で測定した内径の最大値と最小値の差が1.5mm以下でかつ焼成時支持部材との接触面の窪みが0.3mm以下である円筒形セラミックス焼結体である。   In another aspect of the present invention, the difference between the maximum value and the minimum value of the inner diameter measured at four or more positions in the circumferential direction is 1.5 mm or less on the end surface on the ground surface side and the contact surface with the support member during firing It is a cylindrical ceramic sintered body having a dent of 0.3 mm or less.

本発明の他の態様によれば、寸法精度の優れた円筒形セラミックス焼結体となる。   According to another aspect of the present invention, a cylindrical ceramic sintered body with excellent dimensional accuracy is obtained.

本発明によれば、焼結時における変形を抑制可能な円筒形セラミックス焼結体の製造方法を提供することができる。このような製造方法により得られる円筒形セラミックス焼結体は、寸法精度が高く、研削量を低減することができるばかりでなく、バッキングチューブと接合して円筒形スパッタリングターゲットを作製する際に、割れや欠けなどが生じることを効果的に抑制することができる。したがって、本発明により円筒形スパッタリングターゲットを従来よりも収率よく低コストで提供することが可能となるため、その工業的意義は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the cylindrical ceramic sintered compact which can suppress the deformation | transformation at the time of sintering can be provided. The cylindrical ceramic sintered body obtained by such a manufacturing method not only has high dimensional accuracy and can reduce the amount of grinding, but also cracks when it is bonded to a backing tube to produce a cylindrical sputtering target. It is possible to effectively suppress the occurrence of defects and chipping. Therefore, according to the present invention, it is possible to provide a cylindrical sputtering target with a higher yield and lower cost than the conventional one, and its industrial significance is extremely high.

本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法におけるプロセスの概略を示す工程図である。It is process drawing which shows the outline of the process in the manufacturing method of the cylindrical ceramic sintered compact concerning one Embodiment of this invention. 焼成炉内における円筒形セラミックス成形体の配置を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating arrangement | positioning of the cylindrical ceramic molded object in a baking furnace. 焼成炉内における円筒形セラミックス成形体の配置を説明するための平面図である。It is a top view for demonstrating arrangement | positioning of the cylindrical ceramic molded object in a firing furnace. 焼成工程において、円筒形セラミックス成形体が収縮する際の支持部材の作用を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an effect | action of a support member at the time of a baking process when a cylindrical ceramic molded object shrink | contracts.

以下、本発明に係る円筒形セラミックス焼結体の製造方法及び円筒形セラミックス焼結体について図面を参照しながら以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
1.円筒形セラミックス焼結体の製造方法
1−1.成形工程
1−2.配置工程
1−3.焼成工程
2.円筒形セラミックス焼結体
Hereinafter, a method for manufacturing a cylindrical ceramic sintered body and a cylindrical ceramic sintered body according to the present invention will be described in the following order with reference to the drawings. In addition, this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
1. 1. Manufacturing method of cylindrical ceramic sintered body 1-1. Molding process 1-2. Arrangement process 1-3. Firing step Cylindrical ceramic sintered body

<1.円筒形セラミックス焼結体の製造方法>
図1は、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法におけるプロセスの概略を示す工程図である。本発明の一実施形態は、焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程S1と、円筒形セラミックス成形体を焼成炉内に配置する配置工程S2と、配置した円筒形セラミックス成形体を焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程S3とを有し、配置工程S2では、焼成炉内の炉床あるいは炉床の上に設置した敷板に、複数の支持部材を並べ、該支持部材は1箇所につき3段以上重ねあわせて載置し、該支持部材上に円筒形セラミックス成形体を直立させた状態で載置する。
<1. Manufacturing method of cylindrical ceramic sintered body>
FIG. 1 is a process diagram showing an outline of a process in a method for producing a cylindrical ceramic sintered body according to an embodiment of the present invention. One embodiment of the present invention is a method for producing a cylindrical ceramic sintered body in which a cylindrical ceramic molded body is fired using a firing furnace, in which a raw material powder is filled in a cavity of a cylindrical forming mold and pressurized. A forming step S1 for forming a cylindrical ceramic formed body by molding, an arranging step S2 for disposing the cylindrical ceramic formed body in a firing furnace, and firing the cylindrical ceramic formed body in the firing furnace. A calcining step S3 for obtaining a bonded body, and in the arranging step S2, a plurality of supporting members are arranged on a hearth in the calcining furnace or a floor plate installed on the hearth, and the supporting members are arranged in three stages at one place. The stacked ceramic ceramics are placed in an upright state on the support member and placed in an upright state.

このような複数枚の支持部材間の滑りを利用することで、摩擦力を低減しつつ、円筒形セラミックス成形体を安定して支持することができ、繰り返し試験においても支持部材の変形や固着および破損の影響を受けにくい。本発明は、これにより焼結収縮に伴う変形を安定的に抑制することができるとの知見に基づき完成したものである。   By utilizing such slip between the plurality of support members, it is possible to stably support the cylindrical ceramic molded body while reducing the frictional force, and even during repeated tests, the support member can be deformed and fixed. Less susceptible to damage. This invention is completed based on the knowledge that the deformation | transformation accompanying sintering shrinkage can be suppressed stably by this.

以下、各工程について詳細に説明する。なお、本発明の一実施形態に係る円筒形セラミックス焼結体の製造方法は、製造する円筒形セラミックス焼結体のサイズによって制限されることはないが、以下では、主として、外径が80mm〜200mm、内径が40mm〜190mm、全長が50mm〜500mmの円筒形セラミックス焼結体を製造する場合を例に挙げて説明する。   Hereinafter, each step will be described in detail. In addition, although the manufacturing method of the cylindrical ceramic sintered compact which concerns on one Embodiment of this invention is not restrict | limited by the size of the cylindrical ceramic sintered compact to manufacture, below, mainly an outer diameter is 80 mm- A case where a cylindrical ceramic sintered body having a diameter of 200 mm, an inner diameter of 40 mm to 190 mm, and a total length of 50 mm to 500 mm is manufactured will be described as an example.

(1−1.成形工程)
成形工程S1は、円筒形成形型のキャビティ内に原料粉末を充填し、例えば、CIP法により加圧成形し、円筒形セラミックス成形体を得る工程である。
(1-1. Molding process)
The forming step S1 is a step in which the raw material powder is filled in the cavity of the cylinder forming mold and is pressure-formed by, for example, the CIP method to obtain a cylindrical ceramic formed body.

[原料粉末]
本発明において、原料粉末は特に制限されることなく、目的とする円筒形スパッタリングターゲットの組成に応じて適宜選択することができる。例えば、ITO(Indium Tin Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化インジウム(In)粉末と酸化スズ(SnO)粉末を用いることができる。また、AZO(Aluminium Zinc Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化アルミニウム(Al)粉末と酸化亜鉛(ZnO)粉末を用いることができる。
[Raw material powder]
In the present invention, the raw material powder is not particularly limited, and can be appropriately selected according to the composition of the target cylindrical sputtering target. For example, when obtaining a cylindrical sputtering target made of ITO (Indium Tin Oxide), indium oxide (In 2 O 3 ) powder and tin oxide (SnO) powder can be used as the raw material powder. Further, in order to obtain a cylindrical sputtering target made of AZO (Aluminium Zinc Oxide) as the raw material powder, aluminum oxide (Al 2 O 3) can be used powder and zinc oxide (ZnO) powder.

なお、原料粉末を所定の割合で混合した後、そのままの状態で成形することも可能であるが、純水、バインダおよび分散剤などと混合した後、噴霧乾燥し、造粒粉末としてからキャビティ内に充填することが好ましい。造粒粉末は、原料粉末と比べて高い流動性を有しており、充填性に優れている。このため、原料粉末の代わりに、造粒粉末を用いることで、工業規模の製造においても、高密度の円筒形セラミックス成形体を容易に得ることができる。   It is possible to mix the raw material powder at a predetermined ratio and then mold it as it is. However, after mixing with pure water, a binder, a dispersing agent, etc., spray-dried to form a granulated powder and then into the cavity It is preferable to fill. The granulated powder has higher fluidity than the raw material powder and is excellent in filling property. For this reason, by using the granulated powder instead of the raw material powder, a high-density cylindrical ceramic molded body can be easily obtained even in industrial scale production.

[成形]
成形はCIP(Cold Isostatic Pressing:冷間静水圧プレス)成形が一般的であるが高密度の円筒形成形体が得られるものであればCIP成形に限らない。CIP成形の場合、キャビティ内に原料粉末または造粒粉末を充填した後、円筒形成形型をCIP装置に投入し、加圧成形する。なお、水などの圧媒が成形型内に侵入することを防ぐために、円筒形成形型を真空包装した上で、CIP装置に投入してもよい。CIP成形における保持圧力は、98MPa〜294MPaとすることが好ましい。保持圧力が98MPa未満では、得られる円筒形セラミックス成形体の密度を十分に高いものとすることができない場合がある。一方、保持圧力が294MPaを超えると、CIP装置に対する負荷が過度に大きくなるばかりか、生産コストの上昇を招くこととなる。
[Molding]
Molding is generally CIP (Cold Isostatic Pressing) molding, but is not limited to CIP molding as long as a high-density cylindrical formed body can be obtained. In the case of CIP molding, a raw material powder or granulated powder is filled in a cavity, and then a cylinder forming mold is put into a CIP apparatus and pressure-molded. In order to prevent a pressure medium such as water from entering the mold, the cylinder forming mold may be vacuum-packed and put into the CIP apparatus. The holding pressure in CIP molding is preferably 98 MPa to 294 MPa. When the holding pressure is less than 98 MPa, the density of the obtained cylindrical ceramic molded body may not be sufficiently high. On the other hand, when the holding pressure exceeds 294 MPa, the load on the CIP device is excessively increased and the production cost is increased.

なお、保持圧力で保持する時間(保持時間)は、1分〜30分とすることが好ましく、3分〜10分とすることがより好ましい。保持時間が1分未満では、得られる円筒形セラミックス成形体の密度を十分に高いものとすることができない場合がある。一方、保持時間が30分を超えると、生産性が悪化することとなる。   In addition, it is preferable to set it as 1 minute-30 minutes, and, as for the time (holding time) hold | maintained by holding pressure, it is more preferable to set it as 3 minutes-10 minutes. If the holding time is less than 1 minute, the density of the obtained cylindrical ceramic molded body may not be sufficiently high. On the other hand, if the holding time exceeds 30 minutes, productivity will deteriorate.

(1−2.配置工程)
配置工程S2は、成形工程S1で得られた円筒形セラミックス成形体を支持部材を用いて焼成炉内に配置する工程である。
(1-2. Arrangement process)
The placement step S2 is a step of placing the cylindrical ceramic formed body obtained in the forming step S1 in a firing furnace using a support member.

[配置]
図2は、焼成炉内における円筒形セラミックス成形体の配置を説明するための概略断面図であり、図3は、焼成炉内における円筒形セラミックス成形体の配置を説明するための平面図である。本発明では、焼成炉内の炉床11あるいは炉床の上に設置した敷板13に、複数の支持部材15を並べ、さらに該支持部材15は1箇所につき3段以上重ねあわせて載置し、該支持部材15上に円筒形セラミックス成形体16を直立させた状態で載置し、その後、焼成する。また、炉床11等に通気口12を設ける場合は、複数の支持部材15を炉床の通気口12を中心として放射上に並べ、さらに該支持部材15は1箇所につき3段以上重ねあわせて載置し、該支持部材15上に炉床11の通気口12の中心と円筒軸が一致するように円筒形セラミックス成形体16を直立させた状態で載置し、焼成してもよい。なお、通気口12の中心と円筒軸の一致については、これらが実質的に一致していれば足り、そのズレ(例えば、円筒形セラミックス成形体の内径に対して10%〜30%程度)は、本発明の効果が十分に得られる範囲で許容される。
[Arrangement]
FIG. 2 is a schematic cross-sectional view for explaining the arrangement of the cylindrical ceramic compact in the firing furnace, and FIG. 3 is a plan view for explaining the arrangement of the cylindrical ceramic compact in the firing furnace. . In the present invention, a plurality of support members 15 are arranged on the floor 11 installed on the hearth 11 or the hearth in the firing furnace, and the support members 15 are further stacked in three or more stages per place, The cylindrical ceramic molded body 16 is placed on the support member 15 in an upright state, and then fired. Further, when the vent hole 12 is provided in the hearth 11 or the like, a plurality of support members 15 are arranged on the radiation centering on the vent hole 12 of the hearth, and the support members 15 are stacked in three or more stages at one place. The cylindrical ceramic molded body 16 may be placed upright and fired on the support member 15 so that the center of the vent 12 of the hearth 11 coincides with the cylindrical axis. In addition, about the coincidence of the center of the vent hole 12 and the cylindrical axis, it is sufficient that they substantially coincide with each other. In the range where the effect of the present invention is sufficiently obtained, it is allowed.

より具体的には、はじめに、通気口12を有する炉床11を用意する。この際、通気口12は雰囲気ガス供給口を兼ねる。次に支持部材15を、通気口12を中心として放射状に配置する。この際、例えば図3に示すように、複数の支持部材15を周方向に等間隔で配置することが好ましい。そして、この支持部材15を3枚以上重ねることが好ましい(例えば、図2の支持部材15A、15B、15C)。その上に中心と円筒軸が一致するように円筒形セラミックス成形体16を直立させた状態で載置し焼成する。なお、焼成炉の大きさに応じて、円筒形セラミックス成形体16を1つ以上配置することが可能であり、この場合、炉床11に複数の通気口12(雰囲気ガス供給口)を設け、それぞれの通気口を中心に支持部材を配置する。この際、通気口は成形体同士が干渉しないだけの間隔があればよい。   More specifically, first, a hearth 11 having a vent 12 is prepared. At this time, the vent 12 also serves as an atmosphere gas supply port. Next, the support members 15 are arranged radially around the vent hole 12. At this time, for example, as shown in FIG. 3, it is preferable to arrange the plurality of support members 15 at equal intervals in the circumferential direction. Then, it is preferable to stack three or more support members 15 (for example, support members 15A, 15B, and 15C in FIG. 2). The cylindrical ceramic molded body 16 is placed in an upright state and fired so that the center and the cylindrical axis coincide with each other. Depending on the size of the firing furnace, one or more cylindrical ceramic molded bodies 16 can be arranged. In this case, a plurality of vent holes 12 (atmosphere gas supply ports) are provided in the hearth 11, A support member is disposed around each vent. At this time, it is only necessary that the vent holes have an interval that does not allow the molded bodies to interfere with each other.

なお、形状の違う複数の種類の成形体を焼成する場合は、炉床11の上に敷板13を設置してもよい。敷板13は、高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形セラミックス成形体16と反応しないことが必要である。このため、その材質は円筒形セラミックス成形体16の焼成温度などにより適宜選択されるが、その代表的な材料としては、アルミナ(Al)やジルコニア(ZrO)などのセラミックス焼結体を用いることができる。また、敷板13には、通気口14を設ける。この通気口14は、敷板13上面は成形体を配置する位置に形成し、敷板下面は、炉床11の通気口12の位置として、雰囲気ガスが敷板13の通気口14を通り供給できるように形成する。これにより、成形体の種類により、これに対応した敷板13を用いることで簡単に通気口14の中心位置と円筒形セラミックス成形体16との中心位置を合わせることができる。 In addition, when baking the several types of molded object from which a shape differs, you may install the base plate 13 on the hearth 11. The floor plate 13 is required to have high-temperature durability, its surface state does not easily change, and does not react with the cylindrical ceramic formed body 16 during firing. For this reason, the material is appropriately selected depending on the firing temperature of the cylindrical ceramic molded body 16 and the like, and typical materials thereof are ceramic sintered bodies such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Can be used. Further, the floor plate 13 is provided with a vent hole 14. The vent plate 14 is formed such that the upper surface of the floor plate 13 is located at a position where the molded body is disposed, and the lower surface of the floor plate is the position of the vent hole 12 of the hearth 11 so that atmospheric gas can be supplied through the vent hole 14 of the floor plate 13. Form. Thereby, the center position of the vent hole 14 and the center position of the cylindrical ceramic molded body 16 can be easily matched by using the floor plate 13 corresponding to the type of the molded body.

図4は、焼成工程において、円筒形セラミックス成形体が収縮する際の支持部材の作用を説明するための概略断面図である。このような方法では、円筒形セラミックス成形体16と支持部材15Aとの間や支持部材15Cと敷板13(又は炉床11)との間に作用する摩擦力に比べて、セラミックス焼結体同士である支持部材間(15Aと15B、及び、15Bと15Cの間)に作用する摩擦力が極めて小さいため、円筒形セラミックス成形体16の焼結収縮時に支持部材15が円筒形セラミックス成形体16を載置したまま、滑り移動することが可能となり、焼結収縮に伴う変形を大幅に抑制することができる。また、支持部材15を複数重ねることによって、摩擦力の小さい滑り面が複数存在(3枚重ねの場合は2箇所)するため、よりスムーズに滑り移動を行うことができる。さらに、繰り返しの使用や高温での使用において滑り面が、劣化による表面粗さ増大や融着などによってひっかかりを起こしても別の滑り面が滑るため大きな影響を起こさない。滑りが悪くなった支持部材は次回使用時に交換すればよく、全ての滑り面が一度に固着する可能性は極めてまれである。   FIG. 4 is a schematic cross-sectional view for explaining the operation of the support member when the cylindrical ceramic formed body contracts in the firing step. In such a method, compared with the frictional force acting between the cylindrical ceramic molded body 16 and the support member 15A or between the support member 15C and the floor plate 13 (or the hearth 11), the ceramic sintered bodies are connected to each other. Since the frictional force acting between certain support members (between 15A and 15B and between 15B and 15C) is extremely small, the support member 15 mounts the cylindrical ceramic compact 16 when the cylindrical ceramic compact 16 is sintered and contracted. It is possible to slide while being placed, and deformation due to sintering shrinkage can be greatly suppressed. In addition, since a plurality of sliding surfaces having a small frictional force are present by stacking a plurality of support members 15 (two locations in the case of three sheets), the sliding movement can be performed more smoothly. Furthermore, even if the sliding surface is caught due to surface roughness increase or fusion due to deterioration in repeated use or use at high temperature, another sliding surface slips and does not cause a great influence. The support member whose sliding has deteriorated may be replaced at the next use, and the possibility that all the sliding surfaces are fixed at once is extremely rare.

また、敷板13を使用する場合、特許文献3に記載があるように、支持部材15と同じ材質を使用することで上記と同様に摩擦力を小さくすることができる。ただし、敷板13は滑りを確保するため表面粗さを細かく保つ必要があるが、成形体という重量物を載せて熱をかけるため、繰り返し用いるとどうしてもキズやへこみ、割れ、欠けを生じる。そのような場合、敷板13を交換する必要があるが、敷板13は面積が大きく、通気口14を設ける加工も必要なため、交換頻度が高いとコストが増大する原因となる。本件の場合、上述したように、支持部材15を複数用いることで、支持部材15A、15B、15C間にて摩擦係数を小さくすることができるので、敷板13の表面状態の影響を受けることがない。よって、敷板13の表面状態を厳しく管理する必要がない。また、コストを考慮し、敷板13の材質を支持部材15と違う材質に変更しても良いし、表面粗さを粗くしてもよい。   In addition, when using the floor plate 13, as described in Patent Document 3, by using the same material as the support member 15, the frictional force can be reduced as described above. However, although it is necessary to keep the surface roughness fine in order to ensure slipping, the floor plate 13 is heated by placing a heavy article as a molded body, and therefore, if it is repeatedly used, scratches, dents, cracks, and chips are inevitably generated. In such a case, the floor board 13 needs to be replaced. However, the floor board 13 has a large area and needs to be provided with the vent hole 14, so that a high replacement frequency causes an increase in cost. In this case, as described above, by using a plurality of support members 15, the friction coefficient can be reduced between the support members 15A, 15B, and 15C, so that the surface state of the floor plate 13 is not affected. . Therefore, it is not necessary to strictly manage the surface state of the floor plate 13. Further, considering the cost, the material of the floor plate 13 may be changed to a material different from that of the support member 15, or the surface roughness may be roughened.

通気口12は、雰囲気ガスの供給量を十分に確保することができ、かつ、焼成中に滑り移動してきた支持部材が落下しない程度の大きさであることが必要とされる。このため、通気孔の開口面積を3cm〜30cmの範囲で調整することが好ましい。 The vent hole 12 is required to have a size that can secure a sufficient supply amount of the atmospheric gas and that does not drop the support member that has been slid during firing. Therefore, it is preferable to adjust the range of the open area rate of the vent holes of 3cm 2 ~30cm 2.

しかも、支持部材15の移動方向は、円筒形セラミックス成形体16の径方向外側から中心に向かう方向(図4の矢印方向)に制限されるため、炉床11のわずかな傾きや焼成時に生じた気流の影響により、円筒形セラミックス成形体16が移動し、炉壁や隣接する円筒形セラミックス成形体と接触してしまうことを防止できる。   Moreover, since the moving direction of the support member 15 is limited to the direction from the radially outer side of the cylindrical ceramic molded body 16 toward the center (the arrow direction in FIG. 4), it occurs during slight inclination of the hearth 11 or firing. It is possible to prevent the cylindrical ceramic molded body 16 from moving due to the influence of the air flow and coming into contact with the furnace wall or the adjacent cylindrical ceramic molded body.

[支持部材]
支持部材15は、高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形セラミックス成形体16と反応しないことが必要である。このため、その材質は円筒形セラミックス成形体16の焼成温度などにより適宜選択されるが、その代表的な材料としては、アルミナ(Al)やジルコニア(ZrO)などのセラミックス焼結体を用いることができる。
[Support member]
The support member 15 is required to have high temperature durability, its surface state does not easily change, and does not react with the cylindrical ceramic formed body 16 during firing. For this reason, the material is appropriately selected depending on the firing temperature of the cylindrical ceramic molded body 16 and the like, and typical materials thereof are ceramic sintered bodies such as alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Can be used.

支持部材15として、セラミックス焼結体製のものを用いる場合、これらの表面のうち、少なくとも互いの接触面の表面粗さを、算術平均粗さRaで5μm以下とすることが好ましく、3μm以下とすることがより好ましく、2μm以下とすることがさらに好ましい。支持部材15の表面粗さがこのような範囲にあれば、これらの接触面における静止摩擦係数μが、概ね、0.1〜1.5程度、好ましくは0.1〜1.0程度となり、焼成工程中に、支持部材15の円滑な滑り移動が可能となる。これに対して、これらの接触面の表面粗さが5μmを超えると、支持部材15A、15B、15C同士が円滑に滑り移動することができず、円筒形セラミックス成形体16の焼結収縮に伴う変形を抑制することが困難となる。なお、支持部材15の表面粗さRaは、表面粗さ測定装置により測定することができる。   In the case of using a ceramic sintered body as the support member 15, it is preferable that the surface roughness of at least the contact surfaces among these surfaces is 5 μm or less in terms of arithmetic average roughness Ra, and 3 μm or less. More preferably, it is more preferably 2 μm or less. If the surface roughness of the support member 15 is in such a range, the static friction coefficient μ at these contact surfaces is about 0.1 to 1.5, preferably about 0.1 to 1.0, A smooth sliding movement of the support member 15 becomes possible during the firing process. On the other hand, when the surface roughness of these contact surfaces exceeds 5 μm, the support members 15A, 15B, and 15C cannot slide smoothly and are accompanied by sintering shrinkage of the cylindrical ceramic molded body 16. It becomes difficult to suppress deformation. The surface roughness Ra of the support member 15 can be measured with a surface roughness measuring device.

支持部材15は、その上に、円筒形セラミックス成形体16を載置し、安定して支持することが必要とされる。このため、支持部材15は配置3箇所以上であることが必要となる。4箇所以上がさらに好ましく、6箇所以上とすることがより好ましい。ただし、支持部材15の設置場所があまりに多いと、滑り移動した際に互いに干渉するため10箇所以下程度に抑えるのが好ましい。   The support member 15 is required to place the cylindrical ceramic molded body 16 thereon and support it stably. For this reason, the supporting member 15 needs to be arranged at three or more locations. 4 or more are more preferable, and 6 or more are more preferable. However, if there are too many places where the support member 15 is installed, it interferes with each other when the support member 15 slides, so it is preferable to keep the number of places below 10 or less.

支持部材15の重ねる枚数は3枚以上重ねることが望ましい。機能上は重ねる枚数に上限はないが、あまりに高く重ねると揺れに対して不安定になるので高さ30mm以下に抑えるのが適当である。   It is desirable that the support members 15 be stacked three or more. Functionally, there is no upper limit to the number of sheets that can be stacked, but if they are stacked too high, they become unstable against shaking, so it is appropriate to keep the height below 30 mm.

支持部材15の形状は平板状が好ましい。平板の長さ幅方向の形状はあまり制限がないが、焼結収縮にともに円筒径方向に滑り移動したときにずれで落ちないような大きさがあればよい。また円筒周方向には移動しないので、重ねられるだけの幅があればよい。但し、特許文献3にあるように支持部材15の形状が丸棒状や角棒状である場合、成形体重量が重くなると支持部材が成形体へのくい込みが強くなり、窪み形状のまま焼結体になることがある。その場合、その後の研削工程では、その分を除去する加工代を設けなければならない。よって、丸棒状や角棒状ではなく、平板にすることにより、この支持部材が成形体へのくい込みによる窪み量を0.3mm以下に抑制することができる。平板状の支持部材の形状は、矩形状のものでよいが、焼結収縮時にずれ落ちないという要件を満たせば、円形状や多角形状であってもよい。また、重ねる支持部材は必ずしも同じ形状でなくてもよい。   The shape of the support member 15 is preferably a flat plate shape. The shape of the flat plate in the length-width direction is not so limited, but it is sufficient that the flat plate has a size that does not fall off due to slippage when it slides in the cylindrical diameter direction due to sintering shrinkage. Moreover, since it does not move in the circumferential direction of the cylinder, it only needs to have a width that can be overlapped. However, when the shape of the support member 15 is a round bar shape or a square bar shape as described in Patent Document 3, if the weight of the molded body is increased, the support member is strongly bitten into the molded body, and the sintered body remains in a depressed shape. May be. In that case, in the subsequent grinding process, it is necessary to provide a machining allowance for removing that amount. Therefore, by using a flat plate instead of a round bar shape or a square bar shape, the amount of depression due to the support member biting into the molded body can be suppressed to 0.3 mm or less. The shape of the flat support member may be a rectangular shape, but may be a circular shape or a polygonal shape as long as it satisfies the requirement of not slipping down during sintering shrinkage. Further, the supporting members to be stacked do not necessarily have the same shape.

例えば、平板の長方形の板であれば幅15mm〜30mm、長さ20mm〜60mm程度であることが好ましい。円板状の板であればφ20mm〜60mm程度が好ましい。くい込みによる窪み量は円筒の材質や高さ、焼結温度にもよるが例として述べたITOやAZOなどで500mm程度の高さのセラミックスであれば15mm以上の支持部材の幅があれば十分である。厚みは薄すぎると割れやすく3枚以上重ねたときに30mm以下にすることが望ましいので0.5mm〜10mmが好ましい。特に、支持部材15が低コストで容易に取り替え可能とするためには、平板状の支持部材15は0.5mm〜5mmの薄さでよい。   For example, in the case of a flat rectangular plate, it is preferable that the width is about 15 mm to 30 mm and the length is about 20 mm to 60 mm. If it is a disk-shaped board, about (phi) 20-60 mm is preferable. The amount of depression due to biting depends on the material and height of the cylinder, and the sintering temperature, but it is sufficient if the supporting member has a width of 15 mm or more for ceramics of about 500 mm in height, such as ITO or AZO as described above. is there. If the thickness is too thin, it is easy to break and it is desirable to make it 30 mm or less when three or more sheets are stacked, so 0.5 mm to 10 mm is preferable. In particular, in order for the support member 15 to be easily replaceable at a low cost, the flat support member 15 may be as thin as 0.5 mm to 5 mm.

(1−3.焼成工程)
焼成工程S3は、上述のようにして配置した円筒形セラミックス成形体を、焼成炉を用いて焼成し、円筒形セラミックス焼結体を得る工程である。
(1-3. Firing step)
The firing step S3 is a step of firing the cylindrical ceramic formed body arranged as described above using a firing furnace to obtain a cylindrical ceramic sintered body.

[焼成条件]
円筒形セラミックス成形体の焼成条件は、その組成や大きさ、焼成炉の特性などに応じて適宜選択すべきものであり、特に制限されることはないが、概ね、以下の条件で焼成することができる。
[Baking conditions]
The firing conditions of the cylindrical ceramic molded body should be appropriately selected according to the composition and size thereof, the characteristics of the firing furnace, etc., and are not particularly limited. In general, firing can be performed under the following conditions. it can.

a)脱バインダ段階
焼成工程では、はじめに、室温から特定の温度(脱バインダ温度)まで、一定の時間(脱バインダ時間)をかけて昇温することにより、円筒形セラミックス成形体に含まれる有機成分を除去することが必要となる。
a) Debinding step In the firing step, first, the organic components contained in the cylindrical ceramic molded body are heated from room temperature to a specific temperature (debinding temperature) over a certain period of time (debinding time). Need to be removed.

この際の脱バインダ温度は、300℃〜600℃とすることが好ましく、400℃〜500℃とすることがより好ましい。また、脱バインダ時間は、50時間〜300時間とすることが好ましく、100時間〜300時間とすることがより好ましい。このような脱バインダ温度および脱バインダ時間であれば、円筒形セラミックス成形体に含まれる有機成分を十分に除去することができる。   The binder removal temperature at this time is preferably 300 ° C. to 600 ° C., more preferably 400 ° C. to 500 ° C. The binder removal time is preferably 50 hours to 300 hours, more preferably 100 hours to 300 hours. With such a binder removal temperature and binder removal time, the organic components contained in the cylindrical ceramic molded body can be sufficiently removed.

なお、脱バインダ段階中は雰囲気ガスを炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分で供給することが必要となる。雰囲気は、大気または酸素またはそれらの任意の混合ガスであればよい。 During the binder removal step, it is necessary to supply the atmospheric gas at a rate of 100 L / min to 600 L / min, preferably 200 L / min to 400 L / min per 1 m 3 of the furnace volume. The atmosphere may be air, oxygen, or any mixed gas thereof.

b)焼結段階
脱バインダ段階後、炉内温度を焼成温度まで昇温し、この温度で一定時間保持することにより、円筒形セラミックス成形体を焼結させる。
b) Sintering Step After the binder removal step, the furnace temperature is raised to the firing temperature, and this temperature is held for a certain period of time to sinter the cylindrical ceramic molded body.

焼成温度は、円筒形セラミックス成形体の組成によって異なるが、例えば、酸化インジウムを主成分とする場合には1200℃〜1600℃とすることが好ましく、高密度の円筒形セラミックス焼結体を得る観点から、1300℃〜1600℃とすることがより好ましい。一方、酸化亜鉛を主成分とする場合には1000℃〜1400℃とすることが好ましく、同様の観点から、1250℃〜1350℃とすることがより好ましい。また、焼成温度での保持時間は、5時間〜40時間とすることが好ましく、10時間〜30時間とすることがより好ましい。   The firing temperature varies depending on the composition of the cylindrical ceramic molded body. For example, when indium oxide is the main component, the firing temperature is preferably set to 1200 ° C. to 1600 ° C., to obtain a high-density cylindrical ceramic sintered body. Therefore, it is more preferable to set it as 1300 to 1600 degreeC. On the other hand, when zinc oxide is the main component, it is preferably 1000 ° C. to 1400 ° C., and more preferably 1250 ° C. to 1350 ° C. from the same viewpoint. The holding time at the firing temperature is preferably 5 hours to 40 hours, more preferably 10 hours to 30 hours.

なお、焼結段階における雰囲気は、円筒形セラミックス成形体の組成によって異なるが、組成に応じて大気や酸素、またはこれらの混合ガスを、炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分供給する。 The atmosphere in the sintering stage varies depending on the composition of the cylindrical ceramic formed body, but depending on the composition, air, oxygen, or a mixed gas thereof is preferably 100 L / min to 600 L / min per 1 m 3 of furnace volume. Supplies 200 L / min to 400 L / min.

<2.円筒形セラミック焼結体>
本発明の一実施形態に係る円筒形セラミックス焼結体は、円筒形セラミックス成形体の変形を抑制しつつ、均一に焼成することによって得られるものである。例えば、上述した製造方法によって得ることができる。このような円筒形セラミックス焼結体は、寸法精度が優れていることを特徴とする。詳細には、支持部材を複数使用することで焼結時、焼結収縮を固定されることなく自由に収縮されるため、円筒形の変形量が1.5mm以内になる。かつ、円筒形セラミックスと接触する支持部材の形状を平板にすることで、焼成時の成形体重量による支持部材のくい込みを抑制することができ、くい込みによる窪み量は0.3mm以下に抑制できる。このように本発明の一実施形態に係る円筒形セラミックス焼結体は、寸法精度の優れた焼結体となる。
<2. Cylindrical Ceramic Sintered Body>
The cylindrical ceramic sintered body according to an embodiment of the present invention is obtained by firing uniformly while suppressing deformation of the cylindrical ceramic molded body. For example, it can be obtained by the manufacturing method described above. Such a cylindrical ceramic sintered body is characterized by excellent dimensional accuracy. More specifically, when a plurality of supporting members are used, the sintering shrinkage is freely contracted without being fixed at the time of sintering, so that the amount of deformation of the cylindrical shape is within 1.5 mm. Moreover, by making the shape of the support member in contact with the cylindrical ceramics into a flat plate, it is possible to suppress the biting of the support member due to the weight of the molded body at the time of firing, and the amount of depression due to the biting can be suppressed to 0.3 mm or less. Thus, the cylindrical ceramic sintered body according to one embodiment of the present invention is a sintered body with excellent dimensional accuracy.

なお、上記変形量は、以下の測定による。本発明の一実施形態に係る円筒形セラミックス焼結体は、接地側の端面の周方向4箇所以上の位置で測定した内径dの最大値dmaxと最小値dminの差によって定義される、変形量Δd(=dmax−dmin)が1.5mm以下である。ここで、周方向4箇所の位置は、円筒形セラミックス焼結体の中心を通る直線で最初の内径を決定し、当該直線を45°ずつその位相がずれた位置にある直線上の内径を順次測定すればよく、測定箇所を多くする場合には、その位相がずれる角度をその数に応じて決定すればよい。   The amount of deformation is based on the following measurement. The cylindrical ceramic sintered body according to an embodiment of the present invention has a deformation amount defined by the difference between the maximum value dmax and the minimum value dmin of the inner diameter d measured at four or more positions in the circumferential direction of the end surface on the ground side. Δd (= dmax−dmin) is 1.5 mm or less. Here, the four positions in the circumferential direction determine the first inner diameter by a straight line passing through the center of the cylindrical ceramic sintered body, and sequentially determine the inner diameter on the straight line at the position where the phase is shifted by 45 °. What is necessary is just to measure, and when there are many measurement locations, the angle from which the phase shifts may be determined according to the number.

窪み量は、支持部材が接触していない面を基準として、支持部材が接触した位置の最大の深さを窪み量とした。なお、支持部材が接触した位置が複数ある場合は、その平均値を食い込み量とする。また、測定方法はデプスゲージを用いて測定する。   The dent amount was defined as the maximum depth at the position where the support member was in contact with the surface where the support member was not in contact. In addition, when there are a plurality of positions where the support member is in contact, the average value is used as the amount of biting. Moreover, the measurement method is measured using a depth gauge.

以下、本発明について、実施例および比較例により、本発明をさらに詳細に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to a following example at all.

なお、以下の実施例および比較例では、得られた円筒形セラミックス焼結体の特性について、次の評価項目により評価した。評価方法としては1焼結バッチ8個/バッチ×5回繰り返しで作製し(合計40個)、1.5mm以上の変形量の個数を数えた。   In the following examples and comparative examples, the characteristics of the obtained cylindrical ceramic sintered body were evaluated by the following evaluation items. As an evaluation method, one sintered batch was produced by 8 batches / batch x 5 times (total of 40 pieces), and the number of deformations of 1.5 mm or more was counted.

(実施例1)
[造粒粉末]
実施例1では、はじめに、酸化亜鉛粉末と酸化アルミニウム粉末を、酸化アルミニウム粉末の割合が2質量%となるように秤量した。これらの原料粉末の濃度が60質量%となるように純水と、バインダとしてのポリビニルアルコール(PVA)と、分散剤とを加えて、ビーズミル(アシザワ・ファインテック株式会社製)により混合および解砕することで、スラリーを形成した。
Example 1
[Granulated powder]
In Example 1, first, the zinc oxide powder and the aluminum oxide powder were weighed so that the ratio of the aluminum oxide powder was 2% by mass. Pure water, polyvinyl alcohol (PVA) as a binder, and a dispersant are added so that the concentration of these raw material powders is 60% by mass, and they are mixed and crushed by a bead mill (manufactured by Ashizawa Finetech Co., Ltd.). As a result, a slurry was formed.

次に、このスラリーをスプレードライヤ(大川原化工機株式会社製、ODL−20型)で噴霧乾燥することにより、球状の造粒粉末を得た。この造粒粉末のタップ密度を振とう比重測定器(蔵持科学器械製作所製KRS−409)を用いて測定したところ、1.5g/cmであることが確認された。 Next, this granulated powder was obtained by spray-drying this slurry with a spray dryer (made by Okawahara Kako Co., Ltd., ODL-20 type). When the tap density of this granulated powder was measured using a shaking specific gravity measuring device (KRS-409, manufactured by Kuramochi Scientific Instruments), it was confirmed to be 1.5 g / cm 3 .

[成形工程]
この造粒粉末を円筒形ゴム型に充填した後、冷間静水圧プレス装置に投入し、保持圧力
を294MPa、保持時間を10分として加圧成形することにより、外径が180mm、内径が150mm、全長が350mmの円筒形セラミックス成形体を8個作製した。
[Molding process]
After filling this granulated powder into a cylindrical rubber mold, it is put into a cold isostatic press, and is molded by pressing with a holding pressure of 294 MPa and a holding time of 10 minutes, so that the outer diameter is 180 mm and the inner diameter is 150 mm. Eight cylindrical ceramic compacts having a total length of 350 mm were produced.

[焼成工程]
成形工程で得られた8個の円筒形セラミックス成形体を、内径40mm(開口面積:12.6cm)の8個の雰囲気ガス供給口を有する炉内容積が0.5mの常圧焼成炉(丸祥電器株式会社製)内に載置し、焼成した。
[Baking process]
A normal pressure firing furnace having eight cylindrical ceramic compacts obtained in the molding step and having an inner diameter of 40 mm (opening area: 12.6 cm 2 ) and eight atmosphere gas supply ports and a furnace volume of 0.5 m 3 It was placed in (Marusho Denki Co., Ltd.) and baked.

はじめに、円筒形セラミックス成形体のそれぞれに対して、内径30mm(開口面積:7.1cm)の通気孔を有する、縦250mm、横250mm、厚さ5mmのアルミナ製の敷板を用意し、この敷板を炉床上に、それぞれ設置した。次に、通気孔の周囲に、支持部材として、幅15mm、全長50mm、高さ1mmのアルミナ製の平板を3段、8箇所に計24本を、通気孔を中心として、その長手方向が、通気孔を中心とする円の径方向と一致するように、かつ、放射状に配置した。この際、平板は、周方向に、概ね等間隔となるように配置した。続いて、円筒形セラミックス成形体を、円筒軸が通気孔の中心と一致するように支持部材上に直立させた状態で載置した。なお、本実施例では、支持部材として、表面粗さ測定装置(株式会社ミツトヨ製、サーフテストSJ−210)による測定で、表面粗さが、算術平均粗さRaで3μmのものを用いた。 First, for each cylindrical ceramic molded body, an alumina flooring plate having an inner diameter of 30 mm (opening area: 7.1 cm 2 ) and having a ventilation hole of 250 mm length, 250 mm width, and 5 mm thickness is prepared. Were installed on the hearth. Next, around the vent hole, as a supporting member, a plate made of alumina having a width of 15 mm, a total length of 50 mm, and a height of 1 mm is arranged in three steps, a total of 24 pieces in eight locations, with the longitudinal direction centered on the vent hole, It was arranged radially so as to coincide with the radial direction of the circle centered on the vent hole. At this time, the flat plates were arranged at regular intervals in the circumferential direction. Subsequently, the cylindrical ceramic molded body was placed in an upright state on the support member so that the cylinder axis coincided with the center of the vent hole. In this example, as the support member, a surface roughness measured by a surface roughness measuring apparatus (manufactured by Mitutoyo Corporation, Surf Test SJ-210) having a surface roughness of 3 μm in arithmetic average roughness Ra was used.

この状態で、雰囲気ガス供給口を介して、常圧焼成炉内に、炉内容積1mあたり300L/分で空気を流通させながら450℃(脱バインダ温度)まで160時間かけて昇温することによりバインダを除去した。その後、炉内容積1mあたり300L/分で酸素を流通させながら、1350℃まで昇温して、この温度(焼成温度)で20時間保持し、円筒形セラミックス成形体を焼結させることにより、8個の円筒形セラミックス焼結体を作製した。これらの円筒形セラミックス焼結体を炉内から取り出し、その変形量を測定した。 In this state, the temperature is raised to 450 ° C. (debinder temperature) over 160 hours while circulating air at 300 L / min per 1 m 3 of the furnace volume through the atmospheric gas supply port. The binder was removed by Then, while circulating oxygen at a volume of 300 L / min per 1 m 3 in the furnace, the temperature was raised to 1350 ° C., held at this temperature (firing temperature) for 20 hours, and the cylindrical ceramic compact was sintered, Eight cylindrical ceramic sintered bodies were produced. These cylindrical ceramic sintered bodies were taken out from the furnace, and the amount of deformation was measured.

上記手順で、5回繰り返し、計40個の円筒形セラミックス焼結体を作製した。この時の1.5mm以上の変形量の個数を数えた。   The above procedure was repeated 5 times to produce a total of 40 cylindrical ceramic sintered bodies. The number of deformation amounts of 1.5 mm or more at this time was counted.

(実施例2)
実施例2では、原料粉末を、酸化インジウム粉末と酸化スズ粉末との混合粉末とし、酸化スズ粉末の割合を10質量%としたこと、および、原料粉末の濃度を65質量%としてスラリーを形成した。また、円筒形セラミックス成形体の形状を、外径が200mm、内径が160mm、全長が330mmとしたこと以外は、実施例1と同様にして、球状の造粒粉末を得た。この造粒粉末のタップ密度は、1.5g/cmであった。円筒形セラミックス成形体はそれぞれに対して、内径30mm(開口面積:7.1cm)の通気孔を有する炉床の上にそれぞれ支持部材を介して設置した。また、脱バインダ温度を500℃としたこと、および、焼成温度を1550℃としたこと以外は、実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。その結果を表1に示す。
(Example 2)
In Example 2, the raw material powder was a mixed powder of indium oxide powder and tin oxide powder, the ratio of the tin oxide powder was 10% by mass, and the concentration of the raw material powder was 65% by mass to form a slurry. . A spherical granulated powder was obtained in the same manner as in Example 1 except that the cylindrical ceramic molded body had an outer diameter of 200 mm, an inner diameter of 160 mm, and a total length of 330 mm. The tap density of this granulated powder was 1.5 g / cm 3 . The cylindrical ceramic compacts were respectively installed on a hearth having a vent hole with an inner diameter of 30 mm (opening area: 7.1 cm 2 ) via a support member. In addition, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1 except that the binder removal temperature was 500 ° C. and the firing temperature was 1550 ° C. The results are shown in Table 1.

(実施例3)
実施例3では、支持部材の段数を5段とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 3)
In Example 3, the number of steps of the support member was five. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例4)
実施例4では、支持部材をジルコニア製とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
Example 4
In Example 4, the support member was made of zirconia. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例5)
実施例5では、支持部材として、表面粗さが、算術平均粗さRaで5μmのものを用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 5)
In Example 5, the support member having a surface roughness of 5 μm in arithmetic average roughness Ra was used. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例6)
実施例6では、支持部材をジルコニア製とし、表面粗さが、算術平均粗さRaで5μmのものを用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 6)
In Example 6, the support member was made of zirconia, and the surface roughness was 5 μm in arithmetic average roughness Ra. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(実施例7)
実施例7では、支持部材をジルコニア製とし、支持部材の幅を10mmとした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Example 7)
In Example 7, the support member was made of zirconia, and the width of the support member was 10 mm. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例1)
比較例1では、支持部材の段数を2段とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 1)
In Comparative Example 1, the number of steps of the support member was two. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例2)
比較例2では、支持部材の段数を1段とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 2)
In Comparative Example 2, the number of steps of the support member was one. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例3)
比較例3では、支持部材として、表面粗さが、算術平均粗さRaで6μmのものを用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 3)
In Comparative Example 3, a support member having a surface roughness of 6 μm in arithmetic average roughness Ra was used. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例4)
比較例4では、支持部材をジルコニア製とし、支持部材の段数を2段とした。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 4)
In Comparative Example 4, the support member was made of zirconia, and the number of steps of the support member was two. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例5)
比較例5では、支持部材をジルコニア製とし、表面粗さが、算術平均粗さRaで6μmのものを用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 5)
In Comparative Example 5, the support member was made of zirconia, and the surface roughness was 6 μm in arithmetic mean roughness Ra. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例6)
比較例6では、幅3mm、全長50mmの円柱状の支持部材(1段)を用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 6)
In Comparative Example 6, a cylindrical support member (one stage) having a width of 3 mm and a total length of 50 mm was used. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

(比較例7)
比較例7では、幅3mm、全長50mmの角柱状の支持部材(1段)を用いた。その他は実施例1と同様にして、40個の円筒形セラミックス焼結体を作製した。
(Comparative Example 7)
In Comparative Example 7, a prismatic support member (one stage) having a width of 3 mm and a total length of 50 mm was used. Other than that, 40 cylindrical ceramic sintered bodies were produced in the same manner as in Example 1.

なお、比較例6、7では、敷板の支持部材と接触する面は、支持部材と同等の表面粗さとした。また、繰り返し行うときは、そのままの状態で支持部材を設置した。   In Comparative Examples 6 and 7, the surface of the floor plate that comes into contact with the support member had a surface roughness equivalent to that of the support member. Moreover, when performing repeatedly, the supporting member was installed in the state as it is.

上記実施例と比較例について、それぞれ40個の円筒形セラミックス焼結体の変形量を測定し、その時の1.5mm以上の変形量の個数を数えた。また、窪み量を測定した。その結果を表1に示す。   About the said Example and the comparative example, the deformation amount of 40 cylindrical ceramic sintered compacts was measured, respectively, and the number of the deformation amount of 1.5 mm or more at that time was counted. Moreover, the amount of depressions was measured. The results are shown in Table 1.

Figure 2018095504
Figure 2018095504

表1より、実施例においては変形量が1.5mmを超える個数が0であり焼結体の形状寸法が良好であり、繰り返し5回行っても寸法精度が維持されていることが判る。比較例においては、比較例2にあるように支持部材が1枚で、摩擦抵抗が大きく滑りが発生しない場合、変形量が大きいことが判る。また、支持部材の表面粗さがRa5μmを超えると摩擦抵抗が大きくなり、一部に変形量が1.5mmを超える焼結体が発生する。なお、焼結体の窪み量は、平板の支持部材を使用したため、0.3mm以上窪みは発生していなかった。   From Table 1, it can be seen that in the examples, the number of deformation exceeding 1.5 mm is 0, the shape of the sintered body is good, and the dimensional accuracy is maintained even after repeated 5 times. In the comparative example, as in comparative example 2, it can be seen that the amount of deformation is large when the number of supporting members is one, the frictional resistance is large, and no slip occurs. If the surface roughness of the support member exceeds Ra 5 μm, the frictional resistance increases, and a sintered body having a deformation amount exceeding 1.5 mm is generated in part. In addition, since the hollow amount of the sintered compact used the flat support member, the hollow did not generate | occur | produce 0.3 mm or more.

11 炉床、12 (炉床の)通気口、13 敷板、14 (敷板の)通気口、15(15A、15B、15C) 支持部材、16 円筒形セラミックス成形体 DESCRIPTION OF SYMBOLS 11 Hearth, 12 (furnace floor) vent, 13 laying board, 14 (laying board) vent, 15 (15A, 15B, 15C) Support member, 16 Cylindrical ceramic molded object

Claims (7)

焼成炉を用いて円筒形セラミックス成形体を焼成する円筒形セラミックス焼結体の製造方法であって、
円筒形成形型のキャビティ内に原料粉末を充填し、加圧成形して円筒形セラミックス成形体を得る成形工程と、
前記円筒形セラミックス成形体を前記焼成炉内に配置する配置工程と、
前記配置した円筒形セラミックス成形体を前記焼成炉において焼成して円筒形セラミックス焼結体を得る焼成工程とを有し、
前記配置工程では、前記焼成炉内の炉床あるいは炉床の上に設置した敷板に、複数の支持部材を並べ、該支持部材は1箇所につき3段以上重ねあわせて載置し、該支持部材上に前記円筒形セラミックス成形体を直立させた状態で載置する円筒形セラミックス焼結体の製造方法。
A method for producing a cylindrical ceramic sintered body by firing a cylindrical ceramic molded body using a firing furnace,
A forming step of filling a raw material powder into a cavity of a cylindrical forming mold and press-molding to obtain a cylindrical ceramic molded body,
An arranging step of arranging the cylindrical ceramic molded body in the firing furnace;
A firing step of firing the arranged cylindrical ceramic compact in the firing furnace to obtain a cylindrical ceramic sintered body;
In the arrangement step, a plurality of support members are arranged on a hearth in the firing furnace or a floor plate installed on the hearth, and the support members are stacked in three or more stages at one place. A method for producing a cylindrical ceramic sintered body, wherein the cylindrical ceramic molded body is placed in an upright state.
前記支持部材として平板を用いる請求項1に記載の円筒形セラミックス焼結体の製造方法。   The method for manufacturing a cylindrical ceramic sintered body according to claim 1, wherein a flat plate is used as the support member. 前記支持部材の厚さが、0.5mm以上5mm以下である請求項2に記載の焼結体の製造方法。   The method for manufacturing a sintered body according to claim 2, wherein the support member has a thickness of 0.5 mm or more and 5 mm or less. 前記支持部材が、セラミックス焼結体製である請求項1乃至請求項3の何れか1項に記載の円筒形セラミックス焼結体の製造方法。   The method for manufacturing a cylindrical ceramic sintered body according to any one of claims 1 to 3, wherein the support member is made of a ceramic sintered body. 前記支持部材が、アルミナ製又はジルコニア製である請求項1乃至請求項3の何れか1項に記載の円筒形セラミックス焼結体の製造方法。   The method for producing a cylindrical ceramic sintered body according to any one of claims 1 to 3, wherein the support member is made of alumina or zirconia. 前記支持部材の表面粗さを、算術平均粗さRaで5μm以下とする請求項4又は請求項5に記載の円筒形セラミックス焼結体の製造方法。   The method for producing a cylindrical ceramic sintered body according to claim 4 or 5, wherein the surface roughness of the support member is 5 μm or less in terms of arithmetic average roughness Ra. 接地面側の端面において、周方向4箇所以上の位置で測定した内径の最大値と最小値の差が1.5mm以下でかつ焼成時支持部材との接触面の窪みが0.3mm以下である円筒形セラミックス焼結体。   The difference between the maximum value and the minimum value of the inner diameter measured at four or more positions in the circumferential direction on the end surface on the ground surface side is 1.5 mm or less, and the depression on the contact surface with the support member during firing is 0.3 mm or less. Cylindrical ceramic sintered body.
JP2016241234A 2016-12-13 2016-12-13 Manufacturing method of cylindrical ceramic sintered body Active JP6842293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241234A JP6842293B2 (en) 2016-12-13 2016-12-13 Manufacturing method of cylindrical ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241234A JP6842293B2 (en) 2016-12-13 2016-12-13 Manufacturing method of cylindrical ceramic sintered body

Publications (2)

Publication Number Publication Date
JP2018095504A true JP2018095504A (en) 2018-06-21
JP6842293B2 JP6842293B2 (en) 2021-03-17

Family

ID=62634417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241234A Active JP6842293B2 (en) 2016-12-13 2016-12-13 Manufacturing method of cylindrical ceramic sintered body

Country Status (1)

Country Link
JP (1) JP6842293B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof
JP2016147778A (en) * 2015-02-12 2016-08-18 日立金属株式会社 Method for producing inorganic powder sintered compact

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof
JP2016147778A (en) * 2015-02-12 2016-08-18 日立金属株式会社 Method for producing inorganic powder sintered compact

Also Published As

Publication number Publication date
JP6842293B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6464776B2 (en) Cylindrical ceramic sintered body and manufacturing method thereof
JP5750060B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP2006225186A (en) Firing setter and method of manufacturing the same
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
KR102165558B1 (en) Multi-layered structure for sintering of thin ceramic plate and manufacturing method of thin ceramic plate using the same
JP6032903B2 (en) Setter for firing
JP2018095504A (en) Manufacturing method of cylindrical ceramic sintered body and its cylindrical ceramic sintered body
JP6148845B2 (en) Method for manufacturing electrode-embedded ceramic sintered body
CN107986794A (en) The preparation method of large scale aluminum nitride ceramic substrate
JP5784849B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP6875890B2 (en) Manufacturing method of cylindrical oxide sintered body and floor plate
TWI723974B (en) Method for manufacturing cylindrical target material, cylindrical sputtering target and firing jig
JP6842369B2 (en) Manufacturing method of cylindrical ceramic sintered body
JP7216611B2 (en) Manufacturing method of SiC sintered member
WO2022158072A1 (en) Plate-shaped firing jig
JP5169969B2 (en) Method for producing sintered body for transparent conductive film
CN113277835B (en) Positioning tool and sintering method of planar target
JP7507076B2 (en) Setter
KR101270471B1 (en) Method for producing the rotatable target sintered article and Rotatable target sintered article produced by the method
JP2022177988A (en) firing setter
JP2016014191A (en) Ceramic cylindrical type sputtering target material, and method of manufacturing the same
JP2017178691A (en) Production method of alumina sintered body
JP5143783B2 (en) Mold, method for producing the same, and method for producing hollow ceramic products
JPH05226176A (en) Method for burning ferrite core
JP2000086352A (en) Production of bottomed cylindrical sintered ceramic material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210219

R150 Certificate of patent or registration of utility model

Ref document number: 6842293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250