JP2018094543A - Function liquid manufacturing device and function liquid manufacturing method - Google Patents

Function liquid manufacturing device and function liquid manufacturing method Download PDF

Info

Publication number
JP2018094543A
JP2018094543A JP2017017859A JP2017017859A JP2018094543A JP 2018094543 A JP2018094543 A JP 2018094543A JP 2017017859 A JP2017017859 A JP 2017017859A JP 2017017859 A JP2017017859 A JP 2017017859A JP 2018094543 A JP2018094543 A JP 2018094543A
Authority
JP
Japan
Prior art keywords
liquid
ultraviolet
ultraviolet light
light emitting
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017017859A
Other languages
Japanese (ja)
Inventor
西 舜司
Shunji Nishi
舜司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N Science Kk
Original Assignee
N Science Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Science Kk filed Critical N Science Kk
Publication of JP2018094543A publication Critical patent/JP2018094543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Hydroponics (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a function liquid manufacturing device generating ozone by energy saving and safe ultraviolet, large in bactericidal effect and having a washing function and a physiological function, and a functional liquid manufacturing method.SOLUTION: There is provided a function liquid manufacturing device 1 for generating ozone micro nano bubble and function water having sterilization, washing and physiological functions by discharging ozone-containing gas water two phase flow which is adsorbed to a micro nano bubble generator 10 by aspirating air or oxygen gas containing ozone generated by storing ultraviolet LED2 in a sleeve of a pipeline constitutional element and irradiating convergence ultraviolet of LED to oxygen molecule in air or oxygen molecule in oxygen gas stored passing through a sleeve 6 as pin point by an aspiration means, in which an ultraviolet LED2 as a light source for sterilization includes a light emission chip, a condenser lens 4 which converges light emission of the light emission chip, and the ultraviolet LED2 converge the light emission of the light emission chip with the condenser lens 4 and irradiates the same.SELECTED DRAWING: Figure 1

Description

本発明は、養殖海苔網の殺菌用液及び養殖用液、養殖魚介類の殺菌用液及び養殖用液、農産物の栽培殺菌用液及び栽培用液、食品の殺菌用液、半導体デバイス用シリコンウエ―ハ洗浄、廃液処理等に係わる機能液製造装置及び機能液製造方法に関する。   The present invention relates to an aquaculture laver sterilization liquid and aquaculture liquid, an aquaculture seafood sterilization liquid and an aquaculture liquid, an agricultural product sterilization liquid and a cultivation liquid, a food sterilization liquid, a semiconductor device silicon wafer -The present invention relates to a functional liquid manufacturing apparatus and a functional liquid manufacturing method related to cleaning, waste liquid processing, and the like.

海苔養殖において養殖海苔網を海に敷設するに際しては、雑藻類の混生や、雑菌等が原因の病害といった問題があり、こうした雑藻類や雑菌等の駆除、予防法としては、酸処理法が一般的に利用されている。海苔養殖酸処理剤の一例として、海水に無機塩類と酸とを加えたものを開示している(例えば、特許文献1参照)。又、有機酸にリンを含まない緩衝剤化合物と海水を混合し、pH変化の小さい酸処理剤を開示している(例えば、特許文献2参照)。そして又、乳酸、クエン酸等の有機酸でアオノリ・ケイソウおよび赤腐れ菌を同時に駆除、予防する殺藻殺菌剤を開示している(例えば、特許文献3参照)。しかしながら、このいずれもが、強い酸により、海苔葉体を傷つけ、海苔の生育に障害となっている。その結果、乾海苔は、硬くなり、食味を阻害している。そして、冷凍保存で傷つけられた葉体は、生理活性が低下し、雑藻類との生存競争に負け、又、雑菌に感染し易くなり、赤クサレ病、壷状病、スミ海苔となり、収益を低下させる。   When cultivating a cultured laver net in the seaweed culture, there are problems such as mixed algae and diseases caused by various germs, etc. Is used. As an example of a laver culture acid treatment agent, a solution obtained by adding an inorganic salt and an acid to seawater is disclosed (for example, see Patent Document 1). Moreover, an acid treatment agent having a small pH change is disclosed by mixing a buffer compound containing no organic acid with phosphorus and seawater (see, for example, Patent Document 2). Moreover, an algicidal fungicide that simultaneously eliminates and prevents Aonori diatom and red rot fungi with organic acids such as lactic acid and citric acid is disclosed (for example, see Patent Document 3). However, both of these damage the nori leaf bodies by strong acids and hinder the growth of nori. As a result, dry seaweed becomes hard and inhibits the taste. Leaf bodies damaged by cryopreservation have reduced physiological activity, lost survival competition with miscellaneous algae, and are more susceptible to infection with bacteria. Reduce.

又、魚介類の陸上養殖施設における飼育液は、循環使用の過程において、残餌や魚糞等で汚染される為、固形物処理、泡沫分離処理、溶解性有機物処理等が必要であるが、細菌及びウイルスによる病害を防止する為に、紫外線殺菌処理、オゾン殺菌処理等が行われている。一例として、オゾン発生器から供給されるオゾンを、気泡分散器で液槽内に分散している陸上養殖設備を開示している(例えば、特許文献4参照)。しかしながら、従来の紫外線殺菌装置は、260nm付近に最大波長を有する殺菌線を透過させる特殊ガラスで製作され、LEDに比べて、高価で消費電力が大きい等の問題を有している。   In addition, the rearing liquid in the onshore aquaculture facility for seafood is contaminated with residual food and fish excrement in the process of circulation use, so solids treatment, foam separation treatment, soluble organic matter treatment, etc. are necessary. In order to prevent diseases caused by bacteria and viruses, ultraviolet sterilization treatment, ozone sterilization treatment, and the like are performed. As an example, an aquaculture facility is disclosed in which ozone supplied from an ozone generator is dispersed in a liquid tank using a bubble disperser (see, for example, Patent Document 4). However, the conventional ultraviolet sterilizer is made of special glass that transmits a sterilization line having a maximum wavelength in the vicinity of 260 nm, and has problems such as higher cost and higher power consumption than an LED.

又、水耕栽培において、水耕液にオゾンナノバブルを含有させて除菌または殺菌し、オゾンナノミストによって温室建屋内の空気及び植物を除菌する知見を開示している(例えば、特許文献5参照)。   Moreover, in hydroponic cultivation, the knowledge which disinfects or disinfects by making an ozone nanobubble contain in a hydroponic liquid, and disinfects the air and a plant in a greenhouse building by ozone nanomist is disclosed (for example, refer patent document 5). ).

又、魚肉練り製品の製造において、冷凍食品をオゾンナノバブル水に浸漬して解凍する解凍方法と、オゾンナノバブル水を魚肉練り製品の原料に添加して、原料を無菌化する殺菌製造方法を開示している(例えば、特許文献6参照)。   In addition, in the production of fish paste products, a thawing method in which frozen food is immersed in ozone nanobubble water and thawed, and a sterilization manufacturing method in which ozone nano bubble water is added to the raw material of fish paste products and the raw material is sterilized are disclosed. (For example, refer to Patent Document 6).

又、無声放電式オゾン発生装置等で生成したオゾンで、オゾン含有ガスを生成し、該オゾン含有ガスを冷却部に導入し、液化オゾンを生成する知見が開示されている(例えば、特許文献7参照)。   Moreover, the knowledge which produces | generates ozone-containing gas with ozone produced | generated with the silent discharge type | mold ozone generator etc., introduce | transduces this ozone-containing gas into a cooling part, and produces | generates liquefied ozone is disclosed (for example, patent document 7). reference).

又、無声放電方法で、高電圧電極と接地電極の真中に誘電体を設け、該誘電体が放電柱に挟まれるように配設されたオゾン発生装置を開示している(例えば、特許文献8参照)   Also, an ozone generator is disclosed in which a dielectric is provided in the middle of a high-voltage electrode and a ground electrode by a silent discharge method, and the dielectric is disposed between discharge columns (for example, Patent Document 8). reference)

又、水銀および希ガスが封入された石英ガラスより成る低圧水銀蒸気放電等であって、矩形波電流又は10KHz以上の高周波電力を備える点灯装置とを備えた紫外線発生装置を開示している(例えば、特許文献9参照)。   Also disclosed is an ultraviolet ray generator including a low-pressure mercury vapor discharge made of quartz glass in which mercury and a rare gas are sealed, and a lighting device having a rectangular wave current or a high frequency power of 10 KHz or more (for example, , See Patent Document 9).

又、大型の被洗浄物を、洗浄する投げ込み型超音波洗浄装置を開示している(例えば、特許文献10参照)。   Further, a throw-in type ultrasonic cleaning apparatus for cleaning a large object to be cleaned is disclosed (for example, see Patent Document 10).

又、基準電極に対して高い電圧を有する放電電極で放電し、両電極を収容する空間に充填されたガスから発生するプラズマの電子を発光層に衝突させて深紫外線を発光する深紫外発光素子を開示している(例えば、特許文献11参照)。   Further, a deep ultraviolet light emitting element that emits deep ultraviolet light by discharging with a discharge electrode having a high voltage with respect to the reference electrode and causing electrons of plasma generated from a gas filled in a space accommodating both electrodes to collide with the light emitting layer. (For example, refer to Patent Document 11).

又、対象ガスを、絶縁管内において、大気圧下でのグロー放電で生起生成したガスプラズマジェットを放出する装置を開示している(例えば、特許文献12参照)。   Also disclosed is an apparatus that discharges a gas plasma jet generated by glow discharge under atmospheric pressure in an insulating tube as a target gas (see, for example, Patent Document 12).

又、空気中の酸素を濃縮して酸素冨化機において、空気を冷却した際に生成する凝縮水をドレンタンクから蒸発させて排除する酸素冨化機を開示している(例えば、特許文献13参照)。   Further, an oxygen incubator is disclosed that concentrates oxygen in the air to evaporate the condensed water generated when the air is cooled and removes it from the drain tank (for example, Patent Document 13). reference).

又、紫外線透過性の低い、切削油であっても殺菌効率が高い紫外線殺菌装置を開示している(例えば、特許文献14参照)。   Further, an ultraviolet sterilization apparatus having a high sterilization efficiency even with a cutting oil having a low ultraviolet transmittance is disclosed (for example, see Patent Document 14).

又、水耕栽培培養液収容容器の外側部分に、気体透過性多孔質フイルムを使用した水耕栽培装置を開示している(例えば、参考文献15参照)。   Moreover, the hydroponics apparatus which uses a gas-permeable porous film for the outer part of the hydroponics culture solution storage container is disclosed (for example, refer to reference 15).

そして又、セルロース、アセテート径樹脂を主成分とする、生分解性樹脂押出発泡体シートからなる水耕栽培マットを開示している(例えば、参考文献16参照)。   And the hydroponics mat | matte which consists of a biodegradable resin extrusion foam sheet | seat which has cellulose and an acetate diameter resin as a main component is disclosed (for example, refer to reference document 16).

又、従来のオゾン発生装置は、無声放電方式、電気分解方式、紫外線ランプ方式等があり、紫外線ランプ方式等があるが、いずれも価格が高価であり、紫外線ランプ方式以外では、有害な窒素酸化物を生成する問題を有し、又、紫外線ランプ方式においては、有害な窒素酸化物は生成しないものの、殺菌作用の最大値を示す波長である260nm付近の253.7の殺菌線を放射する殺菌灯が常用されているが、形状に制約があると共にLEDに比べ消費電力が大きい等の問題がある。又、紫外線殺菌装置又は光触媒殺菌装置においては、特に透過媒質距離が大きいか、透視度がおおき場合には、紫外線又は可視光が、透過媒質に吸収されて、殺菌効果を発揮出来ない。そして又、溶存酸素要求量がさほど大きくない水耕栽培等においては、動力を必要としないと共に効率が優れた溶存酸素供給手段が待たれている。   In addition, conventional ozone generators include silent discharge, electrolysis, ultraviolet lamp, etc., and there are ultraviolet lamps, etc., all of which are expensive and other than the ultraviolet lamp, harmful nitrogen oxidation Sterilization that emits 253.7 sterilization lines around 260 nm, which is the wavelength that shows the maximum value of sterilization action, although it does not produce harmful nitrogen oxides in the ultraviolet lamp system. Although lamps are commonly used, there are problems such as restrictions on the shape and higher power consumption than LEDs. In the ultraviolet sterilization apparatus or the photocatalytic sterilization apparatus, particularly when the transmission medium distance is large or the degree of transparency is large, the ultraviolet light or visible light is absorbed by the transmission medium, and the sterilization effect cannot be exhibited. Moreover, in hydroponics and the like in which the required amount of dissolved oxygen is not so large, there is a need for a dissolved oxygen supply means that does not require power and is highly efficient.

特許第3296174号公報Japanese Patent No. 3296174 特開2007―91690号公報JP 2007-91690 A 特許3121259号公報Japanese Patent No. 3121259 特開平11−318270JP 11-318270 A 特開2008―206448号公報JP 2008-206448 A 特開2007―97521号公報JP 2007-97521 A 特開2001―133142号公報Japanese Patent Laid-Open No. 2001-133142 特開2015―67480号公報JP 2015-67480 A 特開平5―135741号公報Japanese Patent Laid-Open No. 5-135741 特開2015―112586号公報JP2015-112586A 特開2015―103340号公報Japanese Patent Laid-Open No. 2015-103340 特開2013―225421号公報JP 2013-225421 A 特開2006―247552号公報JP 2006-247552 A 特開2011―225676号公報JP 2011-225676 A 特開2005―21107号公報Japanese Patent Laying-Open No. 2005-21107 特開2003―143984号公報JP 2003-143984 A

本発明は、上記従来技術に鑑み、解決しようとする問題点として、省エネルギーで安全性の高い深紫外発光LED又はマイクロプラズマ励起深紫外発光素子でオゾンを生成し、殺菌効果の大きなオゾンマイクロ・ナノバブル液とすることが課題である。又、深液紫外発光LED又はマイクロプラズマ励起遠紫外発光素子の紫外線を酸素分子に照射することにより生成したオゾンを、前記同一の深紫外発光LED又はマイクロプラズマ励起深紫外発光素子(MIPE)で分解しないことが課題である。又、何らの手段を講じることがなければ、本来では、酸素分子に照射しても、該酸素分子を僅かしかオゾン化出来ない波長範囲にある遠紫外発光LED又はマイクロプラズマ励起深紫外発光素子でオゾン化を可能にすることが課題である。又、簡単な構造及び構成でオゾン濃度を高めると共にオゾン発生量を増大することを課題とする。又、洗浄機能、生理活性機能を有する機能液も製造することも課題である。細菌やウイルス等を広範に殺菌することが課題である。又、環境への汚濁負荷を全く排出しないことが課題である。又、オゾンマイクロ・ナノバブル液程の強い殺菌力を必要としない場合には、空気マイクロ・ナノバブル液で代替することも課題である。被処理液及び光触媒への紫外線又は自然光到達率の向上が課題である。又、被処理液へ紫外線又は紫外線含有自然光で、核酸を損傷された微生物が、紫外線又は可視光線を照射され続けられて光回復現象が生起することを阻害する手段とする。又、単位容積当たりの光触媒表面積を増大させることが課題である。そして又、被処理液に、無動力で溶存酸素を供給することも課題である。   In view of the above-described prior art, the present invention has as a problem to be solved, ozone generated by an energy-saving and highly safe deep ultraviolet light emitting LED or microplasma excited deep ultraviolet light emitting element, and an ozone micro / nano bubble having a large bactericidal effect. The problem is to make it a liquid. In addition, ozone generated by irradiating oxygen molecules with ultraviolet light from deep liquid ultraviolet light emitting LED or microplasma excited far ultraviolet light emitting element is decomposed by the same deep ultraviolet light emitting LED or microplasma excited deep ultraviolet light emitting element (MIPE). It is a problem not to do. If no measures are taken, a far ultraviolet light emitting LED or a microplasma-excited deep ultraviolet light emitting element in a wavelength range in which oxygen molecules can be slightly ozonated even when irradiated with oxygen molecules. The challenge is to enable ozonization. Another object is to increase the ozone concentration and increase the amount of ozone generated with a simple structure and configuration. Another problem is to produce a functional liquid having a cleaning function and a physiologically active function. The challenge is to disinfect bacteria and viruses extensively. Another problem is not to discharge any environmental pollution load. Further, when the sterilizing power as strong as that of the ozone micro / nano bubble liquid is not required, it is also a problem to substitute with the air micro / nano bubble liquid. Improvement of the reach of ultraviolet rays or natural light to the liquid to be treated and the photocatalyst is a problem. Further, it is a means for inhibiting microorganisms whose nucleic acids have been damaged by ultraviolet light or ultraviolet light-containing natural light to the liquid to be treated and continuing to be irradiated with ultraviolet light or visible light to cause a photorecovery phenomenon. Another problem is to increase the surface area of the photocatalyst per unit volume. Another problem is to supply dissolved oxygen to the liquid to be treated without power.

本発明は、上記課題を解決するために、第一の発明において、波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起遠紫外発光素子又はフイールドエミッションランプFELにおいては、前記深紫外発光LED又はマイクロプラズマ励起深紫外発光素子の発光を集光レンズで収束して照射する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELとし、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブ内に配設して、配管の一部を構成するオゾン発生装置とする。前記スリーブ内を流過する空気中酸素分子又は酸素ガス中酸素分子に、前記波長範囲254nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELにおいては、前記深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの収束深紫外線がピンポイントで照射され、生成したオゾン含有空気又は酸素ガスが、吸引手段で吸引するマイクロ・ナノバブル発生装置に吸引され、オゾン含有気液二相流が生成するので、該気液二相流が液中へ吐出されると、オゾンマイクロバブルを生成し、該オゾンマイクロバブルが液中で縮小し、ついには消滅するが、消滅時に、自己加圧効果により、フリーラジカルを発生すると共に、気泡径1nm以下のオゾンナノバブルを生成して殺菌、洗浄、生理活性機能を有する機能液を生成する。オゾンナノバブルを効率的に発生させるためには、ある程度の電解質を含有する液中でマイクロバブルを発生させ、これを自然な状態で浮遊さるか、簡単な物理的刺激を加えることが好ましい。オゾンナノバブルは、高濃度電解質イオンで覆われ、気体が液中へ溶解し難くなり、液中で長時間に亘り安定した状態を維持する。ここで、300nm〜200nmの波長領域の電磁波を遠紫外線と定義する。又、海水、水耕栽培等のごとく、慣用的に使用されているもの以外は、例えば、機能水とせず、機能液と表現する。   In order to solve the above problems, the present invention provides a deep ultraviolet light emitting LED, a microplasma excited far ultraviolet light emitting element or a field emission lamp FEL having a central wavelength in a wavelength range of 240 nm to 200 nm. A deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL that converges and irradiates light emitted from an ultraviolet light emitting LED or a microplasma excited deep ultraviolet light emitting element with a condenser lens. An excited deep ultraviolet light emitting element or a field emission lamp FEL is arranged in the sleeve to form an ozone generator that constitutes a part of the piping. In deep oxygen light emitting LED, microplasma excited deep ultraviolet light emitting element or field emission lamp FEL having a central wavelength in the wavelength range of 254 nm to 200 nm, in the oxygen molecule in the air or oxygen gas flowing through the sleeve, To the micro / nano bubble generating device in which the deep ultraviolet light emitted from the deep ultraviolet light emitting LED, microplasma-excited deep ultraviolet light emitting element or field emission lamp FEL is irradiated with pinpoint, and the generated ozone-containing air or oxygen gas is sucked by a suction means Since it is sucked and an ozone-containing gas-liquid two-phase flow is generated, when the gas-liquid two-phase flow is discharged into the liquid, ozone microbubbles are generated, and the ozone microbubbles shrink in the liquid. It disappears, but when it disappears, it generates free radicals due to the self-pressurization effect. Sterilization generates the following ozone nanobubbles bubble diameter 1 nm, washing, to produce a functional fluid having physiological activity functions. In order to efficiently generate ozone nanobubbles, it is preferable to generate microbubbles in a liquid containing a certain amount of electrolyte and float them in a natural state or apply simple physical stimulation. Ozone nanobubbles are covered with high-concentration electrolyte ions, making it difficult for the gas to dissolve in the liquid and maintaining a stable state in the liquid for a long time. Here, electromagnetic waves in the wavelength region of 300 nm to 200 nm are defined as far ultraviolet rays. Moreover, except what is conventionally used like seawater, hydroponics, etc., it is expressed as a functional liquid instead of functional water.

光量子のエネルギーは波長に逆比例するので、中心波長185nmを放射して酸素分子をオゾン化する、従来の紫外線ランプの光量子が有するエネルギーは、例えば、中心波長240nmである遠紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELにおける光量子が有するエネルギーに対して、波長が1.3分の1程度であるので、紫外線LEDにおける光量子が有するエネルギー密度を、約2倍程度以上に強化する手段を講じれば、酸素分子が、オゾン化される。従って、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELは、発光を収束する集光レンズを備え、前記深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を集光レンズで、約1.3倍程度以上に深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELにおける光量子が有するエネルギー密度(単位面積当たりのエネルギー)を、ピンポイントで強化された収束紫外線を照射することにより、酸素分子はピンポイントでオゾン化される。前記深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELが発光する中心波長の選定に当たっては、可能な限りにおいて、200nmに近似又は200nmであることが、酸素分子に照射する全光量子エネルギー量が多いので、オゾン生成量が多くなるので、好ましい。   Since the energy of the photon is inversely proportional to the wavelength, the energy of the photon of a conventional ultraviolet lamp that emits a central wavelength of 185 nm to ozonize oxygen molecules is, for example, a far-ultraviolet LED, microplasma having a central wavelength of 240 nm. Since the wavelength is about 1 / 1.3 of the energy of the photon in the excited deep ultraviolet light emitting element or the field emission lamp FEL, the energy density of the photon in the ultraviolet LED is enhanced by about twice or more. If measures are taken, oxygen molecules are ozonized. Accordingly, the deep ultraviolet light emitting LED, the microplasma-excited deep ultraviolet light emitting element or the field emission lamp FEL includes a condenser lens for converging the light emission, and the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL With a condenser lens, the energy density (energy per unit area) of the photon in the deep ultraviolet LED, microplasma-excited deep ultraviolet light emitting element or field emission lamp FEL is about 1.3 times or more pinpointed. By irradiating with enhanced focused ultraviolet rays, oxygen molecules are ozonated pinpointed. In selecting the central wavelength emitted by the deep ultraviolet LED, microplasma-excited deep ultraviolet light emitting element or field emission lamp FEL, the total photon that irradiates oxygen molecules should be close to 200 nm or 200 nm as much as possible. Since the amount of energy is large, the amount of generated ozone is increased, which is preferable.

又、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELが放射する光量子束は、レーザー光を除いては、複数の波長からなるスペクトル分布で構成され、酸素分子をオゾン化する242nm以下の波長域の遠紫外光を放射するものも多く存在する。従って、242nm以下の波長域の深紫外光を集光レンズで集光して酸素分子に照射すれば、酸素分子はオゾン化される。   Further, the photon flux emitted from the deep ultraviolet light emitting LED, the microplasma-excited deep ultraviolet light emitting element or the field emission lamp FEL is composed of a spectral distribution having a plurality of wavelengths except for the laser beam, and ozonizes oxygen molecules. There are many that emit far ultraviolet light in the wavelength region of 242 nm or less. Accordingly, when deep ultraviolet light having a wavelength region of 242 nm or less is condensed by a condensing lens and irradiated to oxygen molecules, the oxygen molecules are ozonized.

又、第二の発明においては、2個以上の深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブに配設した、配管の一部を構成するオゾン発生装置と、2台以上の該オゾン発生装置が直列に配設された直列接続オゾン発生装置群と、該直列接続オゾン発生装置群が2組以上、互いに並列して配設され、オゾン濃度を高め、殺菌処理能力を高める。   In the second invention, an ozone generator that constitutes a part of a pipe, in which two or more deep ultraviolet light emitting LEDs, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL are arranged on a sleeve; Two or more series-connected ozone generator groups in which the ozone generators are arranged in series, and two or more series-connected ozone generator groups are arranged in parallel with each other to increase the ozone concentration and sterilization treatment capacity To increase.

又、第三の発明においては、マイクロバブル発生装置の気体吸引側配管系統において、該気体吸引側配管系統の上流側に二か所以上の支配管を配設し、支配管のそれぞれに、一つには、開閉手段を装備した大気解放口を配設し、又、開閉手段を装備した他の支配管に酸素ガスボンベ又は酸素冨化装置等の酸素供給手段を配設し、又、開閉手段を装備した他の支配管にオゾン発生装置を連通接続して、必要に応じて、それぞれの開閉手段を操作して、空気、酸素ガス、オゾン含有空気又はオゾン含有酸素ガスを選択する。   In the third aspect of the invention, in the gas suction side piping system of the microbubble generator, two or more control pipes are disposed upstream of the gas suction side piping system. One is provided with an air release port equipped with an opening / closing means, and another supply pipe equipped with the opening / closing means is provided with oxygen supply means such as an oxygen gas cylinder or an oxygen hatching device, and the opening / closing means The ozone generator is connected in communication with another control pipe equipped with the above, and the opening and closing means are operated as necessary to select air, oxygen gas, ozone-containing air, or ozone-containing oxygen gas.

又、第四の発明においては、第一の発明におけるオゾンが、マイクロ・ナノバブル発生装置に吸引され生成したオゾンマイクロ・ナノバブル液含有の機能液で殺菌、洗浄する前処理又は併用として、機能液貯槽に超音波発生装置を配設 し、液中で超音波振動を発生することで、キャビテーション効果により、フリーラジカルが発生すると共に被洗浄物を洗浄し、貯液槽に貯液された殺菌対象液を循環する循環ポンプ装置の循環配管に連通接続して殺菌対象液を、光透過壁を隔てて流過する前記殺菌対象液に含有する細菌等を殺菌する、240nm〜200nmの波長範囲に中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELを配設し、深紫外線を照射して殺菌すると共に前記光透過壁を隔てて流過する前記殺菌対象液中に光触媒コーティングフイルターを浸漬し、前記深紫外線で光触媒を励起して殺菌する紫外線殺菌及び光触媒併設装置に配設する。又、波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を収束する集光レンズを備え、前記遠紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を集光レンズで収束して照射する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブ内に配設して、配管の一部を構成するオゾン発生装置とする。該紫外線オゾン発生装置内を通過する空気中酸素分子又は酸素ガス中酸素分子に、波長範囲250nm〜200nmに中心波長を有する前記深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELにおいては、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの収束紫外線がピンポイントで照射され、生成したオゾン含有空気又は酸素ガスを、吸引手段で吸引するマイクロ・ナノバブル発生装置に吸引されて生成したオゾン含有気液二相流が水中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成して殺菌、洗浄、生理活性機能を有する機能液を生成する。   In addition, in the fourth invention, the functional liquid storage tank is used as a pretreatment or combined use in which the ozone in the first invention is sterilized and washed with a functional liquid containing ozone micro / nano bubble liquid generated by being sucked into the micro / nano bubble generator. An ultrasonic generator is installed in the liquid and ultrasonic vibrations are generated in the liquid, so that free radicals are generated due to the cavitation effect and the object to be cleaned is washed and stored in the liquid storage tank. A central wavelength in a wavelength range of 240 nm to 200 nm, which is connected to a circulation pipe of a circulation pump device that circulates and sterilizes bacteria to be sterilized in the sterilization target liquid flowing through a light transmission wall. A deep ultraviolet light emitting LED, a microplasma-excited deep ultraviolet light emitting element or a field emission lamp FEL is disposed and sterilized by irradiation with deep ultraviolet light. Immersing the photocatalytic coating filters on the sterilized solution to over-flow at a light permeable wall, arranged to UV sterilizer and photocatalytic features apparatus for sterilizing by exciting the photocatalyst in the deep UV. A deep ultraviolet light emitting LED having a central wavelength in a wavelength range of 240 nm to 200 nm, a condensing lens for converging light emitted from a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL, and the far ultraviolet light emitting LED, microplasma excited depth A deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element or field emission lamp FEL that converges and radiates the light emitted from the ultraviolet light emitting element or field emission lamp FEL with a condenser lens is disposed in the sleeve, and part of the piping Is an ozone generator. In the deep ultraviolet light emitting LED, the microplasma-excited deep ultraviolet light emitting element or the field emission lamp FEL having a central wavelength in the wavelength range of 250 nm to 200 nm on the oxygen molecules in the air or oxygen gas passing through the ultraviolet ozone generator. Is a micro / nano bubble generation device that sucks the generated ozone-containing air or oxygen gas with a suction means by irradiating the focused ultraviolet light of the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL at a pinpoint. The ozone-containing gas-liquid two-phase flow generated by suction is discharged into water to produce ozone microbubbles and nanobubbles to produce a functional liquid having sterilization, washing, and physiological activity functions.

又、第五の発明においては、真空紫外光漏洩防止手段を配設した、オゾン発生装置に、LED,フイールドエミッションランプ又はエキシマランプを配設し、該LED,フイールドエミッションランプ又はエキシマランプの投光窓部から200nm以下の真空紫外光が、第一発明等のマイクロ・ナノバブル発生装置等に吸引されて、空気吸引口から流入し、前記オゾン発生装置の内部を流下する空気中酸素分子を照射し、該酸素分子をオゾン化する。前記200nm以下の真空紫外光は空気で幾分吸収されるので、空気中を透過することにより、多少は減光するが、大部分は透過し、前記投光窓部に対向した前記オゾン発生装置の内壁又は該内壁に固着して配設する基板に塗布した真空紫外発光蛍光体を照射すると、真空紫外光が生成するので、該真空紫外光が空気中又は酸素ガス中酸素分子をオゾン化する。真空紫外光が漏洩し、人体に悪影響が及ぶことを防止するために、前記オゾン発生装置には、不透光性の遮蔽カバー等の真空紫外光漏洩防止手段を配設する。   In the fifth invention, an LED, a field emission lamp or an excimer lamp is provided in an ozone generator provided with a vacuum ultraviolet light leakage prevention means, and the LED, the field emission lamp or the excimer lamp is projected. Vacuum ultraviolet light of 200 nm or less from the window is sucked into the micro / nano bubble generating device of the first invention, etc., flows from the air suction port, and irradiates with oxygen molecules in the air flowing down the inside of the ozone generating device. The oxygen molecules are ozonized. The vacuum ultraviolet light of 200 nm or less is absorbed somewhat in the air, so that it is somewhat diminished by passing through the air, but most of it is transmitted and the ozone generator facing the projection window When irradiated with a vacuum ultraviolet light emitting phosphor applied to the inner wall of the substrate or the substrate fixedly disposed on the inner wall, vacuum ultraviolet light is generated, and the vacuum ultraviolet light ozonizes oxygen molecules in the air or oxygen gas. . In order to prevent the vacuum ultraviolet light from leaking and adversely affecting the human body, the ozone generator is provided with vacuum ultraviolet light leakage prevention means such as an opaque cover.

又、第六の発明においては、 波長範囲240nm〜200nmに中心波長を有する深紫外発光又は真空紫外光LED、マイクロプラズマ励起遠紫外発光素子又はフイールドエミッションランプFELにおいては、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を収束する集光レンズを備えた深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELと、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブ内に配設して第一の光源とし、該光源が照射された凹面鏡で反射して生成する第二の光源とし、前記第一及び第二の光源が照射する深紫外発光又は真空紫外光を前記集光レンズ及び凹面鏡の焦点付近における空気中又は酸素ガス中酸素分子をオゾン化する、配管の一部を構成するオゾン発生装置とし、生成したオゾン含有空気又は酸素ガスが、吸引手段有する吸引手段でマイクロ・ナノバブル発生装置に吸引されて生成する、オゾン含有気液二相流が、機能液貯槽の液中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成し、殺菌、洗浄、生理活性機能を有する機能液を生成する機能液製造装置を構成する。   In the sixth invention, a deep ultraviolet light emitting or vacuum ultraviolet light LED having a central wavelength in a wavelength range of 240 nm to 200 nm, a microplasma excited far ultraviolet light emitting element or a field emission lamp FEL, the deep ultraviolet light emitting LED, Deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element or field emission lamp FEL having a condensing lens for converging light emitted from plasma excited deep ultraviolet light emitting element or field emission lamp FEL, deep ultraviolet light emitting LED, microplasma excitation A deep ultraviolet light emitting element or a field emission lamp FEL is disposed in a sleeve as a first light source, and a second light source is generated by reflection by a concave mirror irradiated with the light source. The first and second light sources Condensates deep ultraviolet light or vacuum ultraviolet light irradiated by The ozone generating device that constitutes a part of the pipe that ozonizes oxygen molecules in the air or oxygen gas in the vicinity of the focal point of the lens and the concave mirror, and the generated ozone-containing air or oxygen gas is produced by the suction means having the suction means. The ozone-containing gas-liquid two-phase flow that is sucked and generated by the nanobubble generator is discharged into the liquid of the functional liquid storage tank to generate ozone microbubbles and nanobubbles, and has sterilization, washing, and bioactive functions A functional fluid production apparatus for generating a functional fluid is configured.

又、第七の発明においては、マイクロ・ナノバブル発生装置でオゾン含有空気又は酸素ガスを吸引して機能液を製造する配管系統と、循環ポンプで機能液貯槽の処理対象液を循環して紫外線及び光触媒で殺菌及び汚染物分解する配管系統とを有する機能液製造装置であって、空気又は酸素ガス流中の酸素を、真空紫外線でオゾン化するオゾン生成部においては、該オゾン生成部に配設した真空紫外線投光手段で照射される照射光を、分岐受光手段で二方向において分岐受光し、該分岐受光手段に、殺菌効果を有する深紫外線を発光する深紫外線発光蛍光粉体を塗布した深紫外線発光蛍光粉体塗布壁が放射する深紫外線を、殺菌及び分解手段部においては、光透過性液体流路を流下する液体に照射して、菌体を殺菌し、汚染物質を分解すると共に、前記液体中に浸漬した光触媒担持体に照射して菌体を殺菌し、汚染物質を分解する。前記オゾン生成部で生成するオゾン含有空気又は酸素ガスを吸引して機能液貯槽の機能液を吸入すると共に該機能液中にオゾン含有気液二相流を吐出して、オゾンマイクロ・ナノバブルを生成するマイクロ・ナノバブル発生装置で、前記機能液貯槽の液を循環する。又、前記殺菌及び分解手段部を流下する液を吸入及び吐出する循環ポンプを配設し、殺菌、洗浄、生理活性機能を有する機能液を生成する機能液製造装置とする。   In the seventh invention, a micro-nano bubble generating device sucks ozone-containing air or oxygen gas to produce a functional liquid, and a circulation pump circulates the liquid to be treated in the functional liquid storage tank to irradiate ultraviolet rays and A functional liquid production apparatus having a piping system that sterilizes and decomposes contaminants with a photocatalyst, and in an ozone generation unit that converts oxygen in an air or oxygen gas stream into ozone by vacuum ultraviolet rays, is disposed in the ozone generation unit The irradiation light irradiated by the vacuum ultraviolet light projecting means is branched and received in two directions by the branch light receiving means, and a deep ultraviolet light emitting fluorescent powder that emits deep ultraviolet light having a bactericidal effect is applied to the branch light receiving means. In the sterilizing and decomposing means section, deep ultraviolet rays radiated from the ultraviolet light emitting fluorescent powder coating wall are irradiated to the liquid flowing down the light-transmitting liquid flow path to sterilize the cells and decompose the pollutants. , By irradiating the photocatalyst carrying member was immersed in the liquid to sterilize the bacteria to decompose the contaminants. Ozone-containing air or oxygen gas generated by the ozone generator is sucked into the functional liquid storage tank, and an ozone-containing gas-liquid two-phase flow is discharged into the functional liquid to generate ozone micro / nano bubbles. The liquid in the functional liquid storage tank is circulated by the micro / nano bubble generator. Further, a circulating pump for sucking and discharging the liquid flowing down the sterilizing and decomposing means is provided, and a functional liquid manufacturing apparatus for generating a functional liquid having sterilizing, cleaning, and physiologically active functions is provided.

又、第八の発明においては、 殺菌、洗浄、生理活性機能を有する機能液を生成する魚介類・海藻養殖場等において、小舟、ゴムボート等の浮体を推進する手段として、マイクロ・ナノバブル発生装置の気液二相流吐出口を水平後方へ向けて、気液二相流を噴出して推進する、船外機として作用する。方向舵手段としては、運転手手動操作又はリモコン操作等を選択する。前記マイクロ・ナノバブル発生装置に加圧液を供給する循環ポンプの駆動源としては、エンジン駆動、交流電源モータ駆動等を選択する。前記マイクロ・ナノバブル発生装置に、オゾン含有空気又は酸素ガスを供給するオゾン生成装置も必要に応じて構成する。   Further, in the eighth invention, in the seafood / seaweed aquaculture farm that produces a functional liquid having sterilization, washing, and physiologically active functions, as a means for propelling floating bodies such as small boats, rubber boats, etc. Acts as an outboard motor that propells the gas-liquid two-phase flow by ejecting the gas-liquid two-phase flow outlet toward the horizontal rear. As the rudder means, a driver manual operation or a remote control operation is selected. Engine drive, AC power supply motor drive, or the like is selected as the drive source of the circulation pump that supplies the pressurized liquid to the micro / nano bubble generation device. An ozone generator that supplies ozone-containing air or oxygen gas to the micro / nano bubble generator is also configured as necessary.

又、第九の発明においては、機能液製造装置に使用するマイクロ・ナノバブル発生装置の加圧ポンプ吐出水は、速度水頭エネルギー、圧力水頭エネルギー及び位置水頭エネルギーを保有するが、加圧ポンプ吐出口から吐出される液が保有する水頭エネルギーは、液中に吐出されるまでに、位置水頭エネルギーの損出を無視すれば、マイクロ・ナノバブル生成に有効に利用されない水頭エネルギーは摩擦損出水頭エネルギーであるが、該摩擦損出水頭エネルギーは速度の2乗に比例するので、加圧ポンプ吐出水が保有する水頭エネルギーをマイクロ・ナノバブルの生成に有効に利用するためには、配管及びマイクロ・ナノバブル発生装置内における流速を極力低減することが、有効に作用する。従って、加圧ポンプからマイクロ・ナノバブル発生装置までの配管距離を出来るだけ短くすることが有効であり、加圧ポンプを水中ポンプ型とすることが好ましいが、送電線の距離延長による損出も考慮する必要があり、水中ポンプ型が最適とは、一概には決定出来ない。配管径は、経済性等を考慮して、可能な限り、大径とすることが有効である。マイクロ・ナノバブル発生装置の構造においては、旋回流室流入口までの断面積を大きくして流速を低減し、速度水頭エネルギーを圧力エネルギーに変換し、増大した圧力水頭エネルギーを有する水を、速度増大手段で旋回流室の円形内壁に沿う方向に噴出し、前記旋回流室に高速旋回流を生成し、多量のマイクロ・ナノバブル生成に寄与する作用を現出する。該旋回流室の断面積は、気体吸入口端を最大とし、気液二相流吐出口端を最低とする円錐形構造とすることにより、気液二相流口端における旋回流は高速となると共に気液二相流吐出流速も高速となり、周囲環境の液中に噴出されると急激に流速は激減する。又、製作し易く維持管理を容易にするために、出来るだけに、プレス加工する旋回流室を構成する円筒部以外は、規格製品を使用する構造とし、維持管理において、簡単に分解及び組み立て出来る構造とする。   In the ninth invention, the pressure pump discharge water of the micro / nano bubble generating device used in the functional liquid production apparatus has velocity head energy, pressure head energy and position head energy, but the pressure pump discharge port If the loss of the location head energy is ignored before it is discharged into the liquid, the head energy that is not effectively used for micro / nano bubble generation is the friction loss head energy. However, since the friction loss head energy is proportional to the square of the speed, in order to effectively use the head energy held by the pressurized pump discharge water for the generation of micro / nano bubbles, pipes and micro / nano bubbles are generated. It is effective to reduce the flow velocity in the apparatus as much as possible. Therefore, it is effective to shorten the piping distance from the pressure pump to the micro / nano bubble generator as much as possible, and it is preferable that the pressure pump is a submersible pump type, but loss due to extension of the transmission line distance is also taken into consideration Therefore, it is generally impossible to determine that the submersible pump type is optimal. It is effective to make the pipe diameter as large as possible in consideration of economy and the like. In the structure of the micro / nano bubble generator, the cross-sectional area to the swirl flow chamber inlet is increased to reduce the flow velocity, convert velocity head energy into pressure energy, and increase the velocity of water with increased pressure head energy. By means of jetting in the direction along the circular inner wall of the swirling flow chamber, a high-speed swirling flow is generated in the swirling flow chamber, and the action contributing to the generation of a large amount of micro / nano bubbles appears. The cross-sectional area of the swirl flow chamber has a conical structure in which the gas suction port end is maximized and the gas-liquid two-phase flow discharge port end is minimized. At the same time, the gas-liquid two-phase flow discharge velocity becomes high, and when it is ejected into the liquid in the surrounding environment, the flow velocity is drastically reduced. In addition, in order to facilitate manufacture and maintenance, as much as possible, except for the cylindrical part that constitutes the swirling flow chamber to be pressed, it is structured to use standard products, and can be easily disassembled and assembled in maintenance. Structure.

又、第十の発明においては、オゾン発生装置又はオゾン生成部のスリーブの外部に巻きつけて配設したソレノイドコイルに、に1MHz〜13.56MHzの中周波交流電源を供給し、前記ソレノイドコイルで、中周波磁場を生成すると共に中周波電場を誘導し、該中周波電場が、前記スリーブ内を流下する気体に作用し、該気体に含有する酸素分子を励起し、前記スリーブ内に配設した、深紫外発光LED励起深紫外発光素子の発光を集光レンズで集光し、対象気体の分子をピンポイントで照射した励起とで協調し、酸素分子のオゾン化を促進する。   In a tenth aspect of the invention, a 1 MHz to 13.56 MHz medium frequency AC power source is supplied to a solenoid coil that is wound around the ozone generator or the sleeve of the ozone generator, and the solenoid coil Generating an intermediate frequency magnetic field and inducing an intermediate frequency electric field, the intermediate frequency electric field acting on a gas flowing down in the sleeve, exciting oxygen molecules contained in the gas, and disposed in the sleeve The deep ultraviolet light emitting LED excitation The light emitted from the deep ultraviolet light emitting element is condensed by a condensing lens and cooperated with the excitation by pinpoint irradiation of molecules of the target gas to promote the ozonization of oxygen molecules.

さらに、前記ソレノイドコイルにより、スリーブの流入口及び内部には、中周波磁場が発生し、常磁性体である酸素分子をスリーブ内に誘導し、反磁性である窒素分子を排斥する。従って、前記スリーブへ流入する気体が大気中の空気である場合には、空気中の酸素ガス含有量が富化される作用をする。   Further, the solenoid coil generates a medium frequency magnetic field at the inlet and the inside of the sleeve, induces oxygen molecules as a paramagnetic substance into the sleeve, and eliminates nitrogen molecules as diamagnetism. Therefore, when the gas flowing into the sleeve is air in the atmosphere, the oxygen gas content in the air is enriched.

又、第十一の発明においては、深紫外発光LED等の紫外線発光素子を配設しているオゾン発生装置又はオゾン生成部のスリーブ内へ、吸入口から吸入した空気を選択的に透過する中空糸膜を配設した酸素冨化手段から酸素を透過導入し、酸素分子をオゾン化する。前記中空糸膜へ、大気中空気を空気吸引配管で吸引するが、露点近い空気を、冷却手段で冷却して結露水を生成し、該結露水を前記空気吸引配管からドレン排出器で排出することで、乾き空気の状態とする。さらに、該乾き空気を、補助加熱源を有する加熱手段で加熱することで、中空糸膜に空気が接触しても、結露する状態とはならない。前記冷却手段と加熱手段との間に、熱移動作動液を封入すると共に連通接続する連結手段を配設し、熱移動手段を構成する。結露水が生成すると、酸素よりも水分が、先に前記中空糸膜を透過するので、酸素の透過が阻害され、酸素透過速度が減退する。前記オゾン発生装置とマイクロ・ナノバブル発生装置間に配設する吸引配管に、付加して挿設した吸引手段の吸引力と前記マイクロ・ナノバブル発生装置の負圧吸引力とが加算されて、前記中空糸膜の内部から外部へ、酸素を選択的に吸引透過させる駆動力として作用し、透過出来ない窒素は窒素掃気手段で大気へ放出して、前記中空糸膜の内部へ、大気中の新鮮空気を導入し、酸素源を補給する。   In the eleventh aspect of the invention, a hollow that selectively permeates air sucked from an inlet into an ozone generator or an ozone generator sleeve provided with an ultraviolet light emitting element such as a deep ultraviolet light emitting LED. Oxygen is permeated and introduced into oxygen from the oxygen hatching means provided with the thread membrane to ozonize the oxygen molecules. Air in the atmosphere is sucked into the hollow fiber membrane through an air suction pipe, but air near the dew point is cooled by a cooling means to generate condensed water, and the condensed water is discharged from the air suction pipe with a drain discharger. In this way, it is in a dry air state. Further, by heating the dry air with a heating means having an auxiliary heating source, no condensation occurs even if air comes into contact with the hollow fiber membrane. Between the cooling means and the heating means, a heat transfer working fluid is sealed and a connection means for connecting and communicating is arranged to constitute the heat transfer means. When condensed water is generated, moisture permeates through the hollow fiber membrane earlier than oxygen, so that the permeation of oxygen is inhibited and the oxygen permeation rate decreases. The suction pipe disposed between the ozone generator and the micro / nano bubble generator is added with the suction force of the suction means additionally inserted and the negative pressure suction force of the micro / nano bubble generator to add the hollow Acts as a driving force for selectively sucking and permeating oxygen from the inside of the yarn membrane to the outside. Nitrogen that cannot be permeated is released to the atmosphere by a nitrogen scavenging means, and fresh air in the atmosphere is introduced into the hollow fiber membrane. To replenish the oxygen source.

又、第十二の発明においては、紫外線又は可視光が透過媒質に吸収されることなく、処理対象物に照射される比率を高めるために、可能な限りに紫外線又は可視光の透過距離を小さくすることが必要であるので、被処理対象液の処理方式が流動方式 であれ、滞留方式であっても、処理対象液の液深又は付着液厚 を小さくする手段とする。又、流路調整手段には、複数のVノッチ付き越流堰を配設し、該複数のVノッチ付き越流堰に紫外線又は可視光応答型光触媒を塗布固着し、又、処理対象液流路の側壁に紫外線又は可視光応答型光触媒を塗布固着すると共に紫外線又は可視光応答型光触媒を塗布固着した無機質多孔体板を処理対象液流路の底面に直立して配設し、処理対象液と紫外線又は可視光応答型光触媒を照射する深紫外線又は可視光発光LED照射手段を配設する。該深紫外線又は可視光発光LEDと、電気的に直列接続した可視光発光LEDパイロットランプを配設して、前記紫外線又は可視光発光LEDの点滅確認手段とする。前記紫外線又は可視光前記紫外線又は可視光応答型光触媒に紫外線又は可視光が照射されると、光励起し、OHラジカル等を生成して、微生物又は有害有機物を酸化分解すると共に光触媒が超撥水性能を付与され、流量調整を容易にする手段となる。機能液化された被処理液は、処理液貯留槽に遮光状態で貯留され、曝気手段で溶存酸素を供給し、殺菌処理と溶存酸素を供給された良好な給液として貯留される。そして又、殺菌処理済み処理液貯留槽の処理液に自然光線が照射されて、微生物が光回復することを阻害するために、処理液貯留槽に貯留した処理液に自然光線が照射されることを阻止する手段を配設する。   In the twelfth aspect of the invention, the transmission distance of ultraviolet light or visible light is made as small as possible in order to increase the ratio of irradiation to the object to be processed without absorbing the ultraviolet light or visible light by the transmission medium. Therefore, even if the treatment method of the liquid to be treated is the flow method or the retention method, it is a means for reducing the depth or thickness of the liquid to be treated. Further, the flow path adjusting means is provided with a plurality of overflow weirs with V notches, and UV or visible light responsive photocatalyst is applied and fixed to the plurality of overflow notches with V notches. An inorganic porous plate having an ultraviolet or visible light responsive photocatalyst applied and fixed to the side wall of the passage and an ultraviolet or visible light responsive photocatalyst applied and fixed is arranged upright on the bottom surface of the processing target liquid flow path, and the processing target liquid And a deep ultraviolet or visible light emitting LED irradiation means for irradiating the ultraviolet or visible light responsive photocatalyst. The deep ultraviolet or visible light emitting LED and a visible light emitting LED pilot lamp electrically connected in series are arranged to serve as blinking confirmation means for the ultraviolet or visible light emitting LED. When the ultraviolet light or visible light is irradiated with ultraviolet light or visible light, it is photoexcited to generate OH radicals, etc., and oxidatively decompose microorganisms or harmful organic substances, and the photocatalyst has super water-repellent performance. Is provided to facilitate the flow rate adjustment. The liquid to be treated, which has been liquefied, is stored in the processing liquid storage tank in a light-shielded state, supplied with dissolved oxygen by the aeration means, and stored as a good supply liquid supplied with sterilization treatment and dissolved oxygen. In addition, the treatment liquid stored in the treatment liquid storage tank is irradiated with natural light in order to prevent the treatment liquid in the sterilized treatment liquid storage tank from being irradiated with natural light and the microorganisms recovering light. A means for preventing this is provided.

又、第十三の発明においては、流量調整手段で被処理液を流量調整して流下し、下方底方向へ分流させるために、多孔質体を下方分流手段の槽底に削孔した分流孔を貫通して配設する。前記多孔質体の上端部は下方分流手段の水面下に水没すると共に孔開きキャップで被覆され、被処理液が流量調整して流下し、下方分流手段の槽底よりも下方部分の多孔質体は、大気中に露出して配設されるが、前記多孔質体には、紫外線応答型又は可視光応答型光触媒を塗布固着する。前記多孔質体は、紫外線応答型又は可視光応答型光触媒を塗布固着されているので、深紫外線又は可視光照射手段で照射すると、光触媒が光励起することで超親水化し、流下液の膜厚が極力に薄く調整される。極薄く調整された流下液に紫外線又は自然光が照射されると、該紫外線又は自然光に含有する紫外線が微生物の拡散に作用して微生物を殺菌すると共に紫外線又は可視光応答型光触媒を照射し、該光触媒を光励起して、OHラジカル等を生成して、微生物又は有害有機物を酸化分解する。機能液化された被処理液は、自然光が照射されると、微生物が光回復するので、一時遮光状態の処理液貯槽に貯留される。尚、前記深紫外線又は可視光照射手段と、電気的に直列接続した可視光発光LEDパイロットランプを配設して、前記紫外線又は可視光発光LEDの点滅確認手段とする。   Further, in the thirteenth aspect of the invention, in order to flow down the liquid to be treated by the flow rate adjusting means to flow down and to divert in the lower bottom direction, the porous body is divided into holes at the bottom of the lower diverting means. Is disposed through. The upper end portion of the porous body is submerged under the water surface of the lower flow dividing means and covered with a perforated cap, and the liquid to be treated flows down with the flow rate adjusted, and the porous body at a lower portion than the tank bottom of the lower flow dividing means. Are exposed to the atmosphere, and an ultraviolet-responsive or visible-light-responsive photocatalyst is applied and fixed to the porous body. The porous body is coated and fixed with an ultraviolet-responsive or visible light-responsive photocatalyst, so when irradiated with deep ultraviolet or visible light irradiation means, the photocatalyst is photoexcited to become superhydrophilic, and the film thickness of the falling liquid is reduced. It is adjusted as thin as possible. When ultraviolet light or natural light is irradiated to the flow-down liquid adjusted to be extremely thin, the ultraviolet light contained in the ultraviolet light or natural light acts on the diffusion of microorganisms to sterilize the microorganisms and irradiates the ultraviolet light or visible light responsive photocatalyst, The photocatalyst is photoexcited to generate OH radicals and the like, and oxidatively decompose microorganisms or harmful organic substances. The functionalized liquid to be processed is stored in a processing liquid storage tank in a temporary light-shielded state because the microorganisms recover the light when irradiated with natural light. The deep ultraviolet or visible light irradiating means and a visible light emitting LED pilot lamp electrically connected in series are provided as blinking confirmation means for the ultraviolet or visible light emitting LED.

又、第十四の発明においては、流量調整手段の後処理に、処理対象液流路の側壁及び流路の底面に直立した無機質多孔体板に、紫外線応答型光触媒又は可視光応答型光触媒を塗布固着した無機質多孔体板に、深紫外線発光LEDで紫外線を照射するか又は可視光発光LEDを照射する。該紫外線発光LED又は可視光発光LEDの点滅を確認する可視光発光LEDパイロットランプを配設配設して、、前記紫外線発光LED又は可視光発光LEDと電気的に直列接続して配設する。紫外線殺菌・紫外線応答型光触媒殺菌又は自然光含有紫外線・可視光応答型光触媒殺菌した被処理液に、円筒状又は中空糸状酸素透過多孔膜の上端口を浸漬すると共に円筒状又は中空糸状酸素透過多孔膜を、前記処理対象液流路の底板に削孔した孔に貫通すると共に下部を大気中に曝露して配設し、前記被処理対象液に溶存酸素を供給する手段とする。前記処理対象液内の円筒状又は中空糸状酸素透過多孔膜には、前記上端口へ流入する処理対象液量を調整する上端開口キャップで被覆し、流量調整する。前記円筒状又は中空糸状酸素透過多孔膜内には、被処理対象液が充満し、サイホン作用で下降流が形成される。前記円筒状又は中空糸状酸素透過多孔膜の外部は、大気中に曝露されているので、大気中酸素ガスは、ヘンリーの法則に従い、該外部から内部への濃度勾配により、被処理液に拡散する。前記円筒状又は中空糸状酸素透過多孔膜内の被処理液が滞留した流れの無い状態であれば、大気から静止被処理液への拡散移動は減衰するが、液流が形成されているので、ベルヌイ―の定理により、大気中よりも、前記円筒状又は中空糸状酸素透過多孔膜内の被処理液の静圧が低くなるので、ヘンリーの法則により、酸素ガスの溶解作用が大きくなると共に溶存酸素濃度が低い被処理液が入れ替わり、酸素溶解量が大きくなる作用が働く。   In the fourteenth aspect of the present invention, an ultraviolet responsive photocatalyst or a visible light responsive photocatalyst is applied to the inorganic porous plate upright on the side wall and the bottom surface of the flow path of the liquid to be treated for the post-treatment of the flow rate adjusting means The coated inorganic inorganic porous plate is irradiated with ultraviolet rays using a deep ultraviolet light emitting LED or with a visible light emitting LED. A visible light emitting LED pilot lamp for confirming blinking of the ultraviolet light emitting LED or visible light emitting LED is disposed and disposed in series with the ultraviolet light emitting LED or visible light emitting LED. The cylindrical or hollow fiber-like oxygen permeable porous membrane is immersed in the treatment liquid sterilized by ultraviolet sterilization / ultraviolet-responsive photocatalyst or natural light-containing ultraviolet / visible light responsive photocatalyst and the upper end of the cylindrical or hollow fiber-like oxygen permeable porous membrane is immersed therein And a means for supplying dissolved oxygen to the liquid to be processed by arranging the lower part exposed to the atmosphere and penetrating through a hole cut in the bottom plate of the liquid liquid to be processed. The cylindrical or hollow fiber oxygen permeable porous membrane in the treatment target liquid is covered with an upper end opening cap that adjusts the amount of the treatment target liquid flowing into the upper end port, and the flow rate is adjusted. The cylindrical or hollow fiber-like oxygen permeable porous membrane is filled with the liquid to be treated, and a downward flow is formed by siphon action. Since the outside of the cylindrical or hollow fiber-like oxygen permeable porous membrane is exposed to the atmosphere, the oxygen gas in the atmosphere diffuses into the liquid to be treated by a concentration gradient from the outside to the inside according to Henry's law. . If there is no flow in which the liquid to be treated in the cylindrical or hollow fiber oxygen-permeable porous membrane stays, the diffusion movement from the atmosphere to the stationary liquid to be treated is attenuated, but the liquid flow is formed. According to Bernoulli's theorem, the static pressure of the liquid to be treated in the cylindrical or hollow fiber-shaped oxygen permeable porous membrane is lower than in the atmosphere. Therefore, according to Henry's law, the dissolving action of oxygen gas increases and dissolved oxygen The liquid to be treated having a low concentration is replaced, and the action of increasing the amount of dissolved oxygen works.

又、第十五の発明においては、流量調整手段の後処理に、処理対象液流路の側壁及び流路の底面に直立した無機質多孔体板に、紫外線応答型光触媒又は可視光応答型光触媒を塗布固着した無機質多孔体板に、紫外線発光手段で紫外線を照射するか又は自然光を照射し、紫外線殺菌・紫外線応答型光触媒殺菌又は自然光含有紫外線・可視光応答型光触媒殺菌した被処理液に、円筒状又は中空糸状酸素透過多孔膜内に前記被処理液を流下すると共に中空糸状酸素透過多孔膜外を大気中に曝露して前記溶存酸素を供給し、殺菌されると共に溶存酸素を供給された処理液とする。該処理液に、肥料成分を追加又は無追加して生成した培養液を、高設式栽培ベッドの下方に配設すると共に培養土に植物由来のペレット状、粒状又は粉体状の生分解性プラスチックを任意の配合割合で配合した培養土を入れた配合培養土を入れたプランターに施用する。尚、前記培養土に植物由来のペレット状、粒状又は粉体状の生分解性プラスチックを任意の配合割合で配合した培養土を入れた配合培養土を入れたプランターとしては、家庭用に供用することも出来る。   In the fifteenth aspect of the invention, an ultraviolet responsive photocatalyst or a visible light responsive photocatalyst is applied to the inorganic porous plate standing upright on the side wall and the bottom surface of the flow path of the liquid to be treated for the post-treatment of the flow rate adjusting means. The coated porous inorganic plate is irradiated with ultraviolet light by ultraviolet light emitting means or irradiated with natural light, and treated with a liquid to be treated which has been subjected to ultraviolet sterilization / UV-responsive photocatalyst sterilization or natural light-containing UV / visible light-responsive photocatalyst sterilization. A treatment in which the liquid to be treated flows down into a hollow or hollow fiber-like oxygen permeable porous membrane and the dissolved oxygen is supplied by exposing the outside of the hollow fiber-like oxygen permeable porous membrane to the atmosphere to be sterilized and supplied with dissolved oxygen Use liquid. A culture solution produced by adding or not adding a fertilizer component to the treatment solution is disposed below the elevated cultivation bed and is biodegradable in the form of plant-derived pellets, granules or powders in the culture soil. It is applied to a planter containing mixed culture soil containing culture soil containing plastic in an arbitrary mixing ratio. In addition, as a planter in which the mixed culture soil in which the biodegradable plastic derived from the plant is mixed with the culture soil in an arbitrary mixing ratio is added to the culture soil, the planter is used for home use. You can also

そして又、第十六の発明においては、病原菌又は汚染性有機物含有の水溶液の浄化処理するために、0.1μm以上の孔径を有する精密濾過膜又は限外濾過膜で、生物の生育環境を決めるほとんどの微生物及び粗大有機物を濾過して、被処理液から濾別し、被処理液に残留したウイルス及び有害有機物質は、紫外線及び(/又は)光触媒処理手段で、殺菌及び分解処理し、作物又は魚介類の生育に必要な溶存酸素を供給するために、曝気手段で曝気処理する。但し、紫外線及び(/又は)光触媒処理手段で、殺菌及び分解処理する操作に先行して、曝気手段で曝気処理する操作をしても何ら支障はない。尚、紫外線としては、自然光含有の紫外線であってもよく、又、深紫外線発光LEDによる深紫外線でもよく、何ら支障はない。   In the sixteenth invention, in order to purify the aqueous solution containing pathogenic bacteria or polluting organic substances, the living environment of the organism is determined by a microfiltration membrane or an ultrafiltration membrane having a pore diameter of 0.1 μm or more. Most microorganisms and coarse organic substances are filtered and separated from the liquid to be treated, and viruses and harmful organic substances remaining in the liquid to be treated are sterilized and decomposed by ultraviolet rays and / or photocatalytic treatment means, Or in order to supply the dissolved oxygen necessary for the growth of fish and shellfish, aeration treatment is performed by aeration means. However, there is no problem even if the aeration means is operated by the aeration means prior to the sterilization and decomposition treatment by the ultraviolet and / or photocatalyst processing means. The ultraviolet light may be natural light-containing ultraviolet light or deep ultraviolet light emitted from a deep ultraviolet light emitting LED, and there is no problem.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

第一の発明においては、オゾンマイクロ・ナノバブル発生装置の気体吸引配管の一部を構成するオゾン発生装置内に深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELを配設するので、極めて安全である効果を奏する。 In the first invention, since the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL is disposed in the ozone generating device constituting a part of the gas suction pipe of the ozone micro / nano bubble generating device. The effect is extremely safe.

又、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を集光レンズで収束することで、光量子が有する単位面積当たりの光量子エネルギーを高められるため、露光して使用することは、人体、特に目に対して危険であるが、前記深紫外線LEDをスリーブに収納して使用するため、露光することがなく、深紫外発光LED又はマイクロプラズマ励起深紫外発光素子を深紫外線発光装置として使用する上で、極めて安全となる効果を奏する。   Further, the light quantum energy per unit area of the photon can be increased by converging the light emitted from the deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element, or field emission lamp FEL with a condenser lens. This is dangerous to the human body, especially the eyes, but since the deep ultraviolet LED is housed in a sleeve and used, the deep ultraviolet light emitting LED or the microplasma excited deep ultraviolet light emitting element is not exposed to the deep ultraviolet light without exposure. When used as a light-emitting device, it has an extremely safe effect.

又、242nm以下の波長域に主波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELを使用する場合には、オゾン生成効率が大きくなる効果を奏する。   In addition, when a deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL having a dominant wavelength in a wavelength region of 242 nm or less is used, an effect of increasing ozone generation efficiency is obtained.

又、オゾン液で殺菌した後に残るのは酸素で、汚染物と有害物を一切生じないので、環境への汚濁負荷を全く排出しない効果を奏する。   In addition, oxygen remains after sterilization with ozone liquid, and no pollutants or harmful substances are produced. Therefore, there is an effect that no pollution load to the environment is discharged.

又、従来のオゾン発生装置に使用されていた紫外線発生ランプは、石英ガラス管に水銀を封入し、高電力を必要としていたが、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELでオゾンを生成できるので、低出力のオゾン発生装置とすることが出来るので、極めて省エネルギーであると共に低価格とする効果を奏する。   In addition, the ultraviolet ray generation lamp used in the conventional ozone generator has encapsulated mercury in a quartz glass tube and required high power. Since ozone can be generated by FEL, an ozone generator with low output can be obtained, which has the effect of saving energy and reducing cost.

又、マイクロ・ナノバブルが、電解質を含有する液中で生成すると、圧壊時にフリーラジカルが生成すると共にナノバブルが長時間安定であるので、オゾンの殺菌作用との相乗効果で、強力で、持続的殺菌効果を奏する。   In addition, when micro / nano bubbles are generated in a liquid containing an electrolyte, free radicals are generated at the time of crushing and the nano bubbles are stable for a long time. There is an effect.

又、イチゴ栽培等においては、紫外線が直接照射される部分は殺菌され、影の部分は殺菌されないが、オゾンナノバブル含有の機能液を噴霧状にして殺菌出来る効果を奏する。   Moreover, in strawberry cultivation etc., the part directly irradiated with ultraviolet rays is sterilized, and the shaded part is not sterilized.

又、200nm付近に中心波長を有する、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELが発光する深紫外線により酸素分子をオゾン化する作用は小さいが、集光レンズで集光し、ピンポイントで酸素分子を照射することにより、単位照射面積当たりのオゾン化作用が強くなるので、従来においては、酸素分子のオゾン化に利用出来なかった深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELを酸素分子のオゾン化に活用出来る効果を奏する。   In addition, the deep UV light emitting element, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL having a center wavelength near 200 nm has a small effect on the ozonization of oxygen molecules, but the light is condensed by a condenser lens. However, by irradiating oxygen molecules at a pinpoint, the ozonization action per unit irradiation area becomes stronger. Therefore, in the past, deep ultraviolet light emitting LEDs, microplasma excited deep ultraviolet which could not be used for ozonization of oxygen molecules. The light emitting element or the field emission lamp FEL can be used for the ozonization of oxygen molecules.

又、第二の発明においては、2個以上の深紫外発光LED又はマイクロプラズマ励起深紫外発光素子が、直列に配設された管体とすることにより、オゾン濃度が高まり、殺菌効果を高める効果を奏する。   Moreover, in 2nd invention, an ozone density | concentration raises and the effect which raises a bactericidal effect by using two or more deep ultraviolet light emission LED or microplasma excitation deep ultraviolet light emitting element as the pipe | tube arrange | positioned in series. Play.

又、管体が2組以上、互いに並列して配設されることにより、オゾン量を多くすることが出来るので、殺菌処理能力を大きくする効果を奏する。   Moreover, since two or more sets of tubes are arranged in parallel with each other, the amount of ozone can be increased, which has the effect of increasing the sterilization treatment capacity.

又、第三の発明においては、マイクロ・ナノバブル発生装置の気体吸引支管を、大気、酸素ガス及びオゾンガス吸引支管を配設すると共に前記各支管に開閉弁を装備することにより、大気吸引支管を選択して、開閉弁を開にし、空気マイクロ・ナノバブル水を生成すると、空気マイクロバブルの自己加圧効果により、汚染物質等の化学物質を酸化分解するフリーラジカルを生成すると共に液中に長時間浮遊して滞留するナノバブルを生成するので、殺菌機能、洗浄機能及び生理活性機能を有する機能液とし、酸素ガス支管を選択して、開閉弁を開にし、酸素マイクロ・ナノバブル液を生成すると、殺菌機能と洗浄機能は前記空気マイクロ・ナノバブル液と同様であるが、生理活性機能に極めて優れた機能液とし、オゾン支管を選択して、開閉弁を開にし、オゾンマイクロ・ナノバブル液を生成すると、洗浄機能と生理活性機能は同様であるが、殺菌機能に極めて優れた機能液とすることが出来るので、同一の装置で、処理対象物に対する、要求性能の程度を判断して、柔軟なシステム運用が出来る効果を奏する。   In the third aspect of the invention, the gas suction branch of the micro / nano bubble generator is provided with an atmosphere, oxygen gas and ozone gas suction branch, and each branch is equipped with an opening / closing valve, thereby selecting the air suction branch. When the open / close valve is opened and air micro / nano bubble water is generated, the self-pressurization effect of the air micro bubble generates free radicals that oxidize and decompose chemical substances such as pollutants and floats in the liquid for a long time. Since the nanobubbles that stay are generated, the functional liquid having the sterilizing function, cleaning function and physiological activity function is selected, the oxygen gas branch pipe is selected, the on-off valve is opened, and the oxygen micro / nanobubble liquid is generated. The cleaning function is the same as that of the air micro / nano bubble liquid, but the functional liquid is extremely superior in physiological activity function. When the ozone micro / nano bubble liquid is opened, the cleaning function and the physiologically active function are the same, but it can be a functional liquid that is extremely excellent in the sterilization function. Judging the degree of required performance, there is an effect of flexible system operation.

又、第四の発明においては、殺菌対象液を、安価で省エネルギーな深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELで生成するオゾンを、マイクロ・ナノバブル発生装置で吸引して生成するオゾンマイクロ・ナノバブル液で殺菌及び洗浄する前処理として、被洗浄物に付着した菌体又は芽胞の表層に付着した有機物を超音波振動装置及び紫外線・光触媒併設殺菌装置で殺菌除去しておくことにより、オゾン液だけでは抵抗を示す黄色ブドウ球菌をはじめとするグラム陽性菌及び芽胞菌等をオゾンマイクロ・ナノバブル液で殺菌防除することが容易となり、広範な細菌等に対して強力な殺菌効果を奏する。さらに、前記紫外線・光触媒殺菌装置における、紫外線殺菌機能と光触媒殺菌機能は、同一の深紫外発光LED又はマイクロプラズマ励起深紫外発光素子が放射する光量子エネルギーの作用で生起する省エネルギー効果を奏する。   In the fourth invention, the sterilization target liquid is sucked with a micro / nano bubble generator by ozone generated by an inexpensive and energy-saving deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL. As a pretreatment to sterilize and wash with the generated ozone micro / nano bubble liquid, sterilization and removal of bacteria attached to the object to be cleaned or organic matter attached to the surface layer of the spore using an ultrasonic vibration device and a sterilizer with ultraviolet / photocatalyst Therefore, it is easy to sterilize and control gram-positive bacteria such as Staphylococcus aureus and spore bacteria, which are resistant only with ozone liquid, with ozone micro / nano bubble liquid, and have a strong bactericidal effect against a wide range of bacteria, etc. Play. Furthermore, the ultraviolet sterilization function and the photocatalyst sterilization function in the ultraviolet / photocatalyst sterilization apparatus have an energy saving effect caused by the action of photon energy emitted from the same deep ultraviolet light emitting LED or microplasma excited deep ultraviolet light emitting element.

又、マイクロ・ナノバブル発生装置で生成するマイクロバブル、及びナノバブル及びフリーラジカルが増大して、洗浄機能、生理活性機能が増大する効果を奏する。   In addition, microbubbles generated by the micro / nanobubble generator, nanobubbles and free radicals are increased, and the cleaning function and physiological activity function are increased.

又、第五の発明においては、真空紫外光漏洩防止手段を配設した、オゾン発生装置に、LED,フイールドエミッションランプ又はエキシマランプを配設し、該LED,フイールドエミッションランプ又はエキシマランプの投光窓部から200nm以下の真空紫外光が、第一発明等のマイクロ・ナノバブル発生装置等に吸引されて、空気吸引口から流入し、前記オゾン発生装置の内部を流下する空気中酸素分子を照射し、該酸素分子をオゾン化する。前記200nm以下の真空紫外光は空気で幾分吸収されるので、空気中を透過することにより、多少は減光するが、大部分は透過し、前記投光窓部に対向した前記オゾン発生装置の内壁又は該内壁に固着して配設する基板に塗布した真空紫外発光蛍光体を照射すると、真空紫外光が生成するので、該真空紫外光が空気中又は酸素ガス中酸素分子をオゾン化するので、LED,フイールドエミッションランプ又はエキシマランプ等の光源で酸素分子をオゾン化し、前記光源の残光で、真空紫外発光蛍光体を励起して、前記酸素分子とは別の酸素分子をオゾン化するので、同一外形の装置で、オゾン生成効率を増大する効果を奏する。   In the fifth invention, an LED, a field emission lamp or an excimer lamp is provided in an ozone generator provided with a vacuum ultraviolet light leakage prevention means, and the LED, the field emission lamp or the excimer lamp is projected. Vacuum ultraviolet light of 200 nm or less from the window is sucked into the micro / nano bubble generating device of the first invention, etc., flows from the air suction port, and irradiates with oxygen molecules in the air flowing down the inside of the ozone generating device. The oxygen molecules are ozonized. The vacuum ultraviolet light of 200 nm or less is absorbed somewhat in the air, so that it is somewhat diminished by passing through the air, but most of it is transmitted and the ozone generator facing the projection window When irradiated with a vacuum ultraviolet light emitting phosphor applied to the inner wall of the substrate or the substrate fixedly disposed on the inner wall, vacuum ultraviolet light is generated, and the vacuum ultraviolet light ozonizes oxygen molecules in the air or oxygen gas. Therefore, oxygen molecules are ozonized with a light source such as an LED, a field emission lamp or an excimer lamp, and a vacuum ultraviolet light emitting phosphor is excited with the afterglow of the light source to ozonize oxygen molecules different from the oxygen molecules. Therefore, the apparatus having the same outer shape has an effect of increasing the ozone generation efficiency.

又、第六の発明においては、深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を、集光レンズを経て、焦点付近で高密度化した光量子エネルギーを、酸素分子にピンポイントで照射して、酸素分子をオゾン化すると共に前記集光レンズの焦点を経て再び拡散した深紫外光で、スリーブの壁面に固着して配設した凹面鏡での反射深紫外線が酸素分子に照射され、酸素分子をオゾン化するので、同一の光源で、酸素分子をオゾン化し、省エネルギーとすると共にオゾン濃度が向上する効果を奏する。   In the sixth invention, the photon energy obtained by increasing the density of light emitted from the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL through the condenser lens in the vicinity of the focal point is converted into oxygen molecules. Irradiated at a pinpoint, ozonized oxygen molecules and deep ultraviolet light diffused again through the focal point of the condenser lens, and deep ultraviolet light reflected by a concave mirror fixed to the wall surface of the sleeve is converted into oxygen molecules. Irradiation is performed to ozonize oxygen molecules, so that the same light source can be used to ozonize oxygen molecules to save energy and improve the ozone concentration.

又、第七の発明においては、真空紫外線発光手段で生成する真空紫外線を、空気又は酸素ガス中の酸素分子に照射してオゾン化し、前記空気又は酸素ガス中を通過した真空紫外線を、二方向へ分岐照射し、該二方向分岐照射紫外線を受光した、深紫外線発光蛍光粉体を塗布した深紫外線発光蛍光粉体塗布壁は、深紫外線を放射し、殺菌及び分解対象液に照射すると共に液中に浸漬した光触媒担持体に照射して、菌体を殺菌し、汚染物質を分解出来るので、真空紫外線発光手段で照射する真空紫外線をオゾン液製造と、菌体の殺菌及び汚染物の分解に供与出来る省エネルギーと経済効果を奏する。   Further, in the seventh invention, vacuum ultraviolet light generated by the vacuum ultraviolet light emitting means is irradiated with oxygen molecules in the air or oxygen gas to be ozonized, and the vacuum ultraviolet light that has passed through the air or oxygen gas is converted into two directions. The deep ultraviolet light emitting fluorescent powder coating wall coated with the deep ultraviolet light emitting fluorescent powder that receives the two-way branched irradiation ultraviolet light radiates deep ultraviolet light and irradiates the liquid to be sterilized and decomposed. Irradiate the photocatalyst carrier soaked in it to sterilize the cells and decompose the pollutants, so the vacuum ultraviolet rays irradiated by the vacuum ultraviolet light emitting means can be used for ozone liquid production, sterilization of the cells and decomposition of contaminants Energy saving and economic effect that can be provided.

又、第八の発明においては、小舟等の浮体に、気液二相流を水平後方へ向けて配設することにより、対象水域に溶存酸素を供給しながら、病原菌を殺菌し、養殖対象の生理を活性化する作業を、広範に省エネルギーを達成する効果を奏する。   Moreover, in the eighth invention, by disposing the gas-liquid two-phase flow in the horizontal rearward direction on a floating body such as a small boat, sterilizing pathogenic bacteria while supplying dissolved oxygen to the target water area, The work to activate the physiology has the effect of achieving a wide range of energy savings.

又、第九の発明においては、マイクロ・ナノバブル発生装置における、加圧ポンプ吐出液の流路流速を、多量のマイクロ・ナノバブル生成に寄与する旋回流室以外流路流速を減速し、速度水頭エネルギーの一部を圧力水頭エネルギーとすることにより、摩擦損出エネルギーを低減し、該摩擦損出エネルギー低減分を、旋回流室におけるマイクロ・ナノバブル生成に寄与する速度水頭エネルギーを増大することが出来ると共に、旋回流室が、気体流入口から、気液二相流吐出口に向かって、円錐筒が縮小する構造により、前記気液二相液吐出速度が増大し、前記気液二相流が周囲水域に吐出された際に速度が激減する結果、吐出前後の速度差の増大により、マイクロバブルのナノバブル化が増大する効果を奏する。又、可能な限り、規格部材で構成し、組み立て及び解体が簡単な構造とすることにより、省エネルギーでナノバブル生成効率を高めると共に製作費及び維持管理費を低減する効果を奏する。さらに、 部品及び部材の大部分を、大量生産市販品である配管部品を調達出来るので、製造費及び部品交換費が安価となる効果を奏する。   In the ninth invention, in the micro / nano bubble generator, the flow velocity of the pressure pump discharge liquid is reduced to reduce the flow velocity other than the swirl flow chamber that contributes to the generation of a large amount of micro / nano bubbles. By using a part of the pressure head energy as the pressure head energy, the friction head energy can be reduced and the speed head head energy contributing to the generation of micro / nano bubbles in the swirling flow chamber can be increased. The swirl flow chamber has a structure in which the conical cylinder shrinks from the gas inlet toward the gas-liquid two-phase flow outlet, thereby increasing the gas-liquid two-phase liquid discharge speed and surrounding the gas-liquid two-phase flow. As a result of drastically decreasing the speed when discharged into the water area, there is an effect of increasing the formation of microbubbles into nanobubbles by increasing the speed difference before and after discharge. Further, as much as possible, the structure is made of standard members and has a structure that is easy to assemble and disassemble, thereby producing an effect of increasing energy generation efficiency and reducing production costs and maintenance costs. Furthermore, since most of the parts and members can be procured as pipe parts, which are mass-produced commercial products, the manufacturing cost and the parts replacement cost are reduced.

又、第十の発明においては、 深紫外発光LED照射手段で、酸素分子を照射しても、酸素分子をオゾン化するには、光量子エネルギーが微弱であるが、前記深紫外発光LED照射手段で、酸素分子を照射し、光励起エネルギー状態にある酸素分子が流下しているスリーブの外周に配設したソレノイドコイルに、10MHz〜30MHzの高周波交流電力印加することにより、光励起に近い酸素分子を、さらに高周波励起することにより、酸素分子を大量にオゾン化出来る効果を奏する。   In the tenth invention, even if oxygen molecules are irradiated with the deep ultraviolet light emitting LED irradiating means, the photon energy is weak in order to ozonize the oxygen molecules. By applying high-frequency AC power of 10 MHz to 30 MHz to the solenoid coil disposed on the outer periphery of the sleeve where the oxygen molecules in the photoexcitation energy state are flowing down, the oxygen molecules close to photoexcitation are further applied. By high frequency excitation, there is an effect that a large amount of oxygen molecules can be ozonized.

又、第十一の発明においては、波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELが有する光量子エネルギーは、酸素分子をオゾン化するエネルギーが弱いが、プラズマを生成するほどの強力な高調波交流電力を供給することなく、小型で低電力の中周波交流電源で、励起準位に近い状態にある酸素分子に作用して、酸素イオンと自由電子に分離すると共に前記酸素分子をオゾン化する。さらに、豊富になった前記自由電子は、酸素分子に作用し、酸素分子の解離とオゾン化を促進する効果を奏する。 さらに、常磁性の空気中酸素分子を交番磁力線で誘引すると共に反磁性の窒素分子を排斥し、酸素冨化空気がマイクロ・ナノバブル発生装置に吸引され、殺菌作用、洗浄作用及び生理活性作用が強いオゾンマイクロ・ナノバブルを生成する効果を奏する。   In the eleventh aspect of the invention, the photon energy of the deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element or field emission lamp FEL having a central wavelength in the wavelength range of 240 nm to 200 nm is the energy for ozoneizing oxygen molecules. Although it is weak, it does not supply strong harmonic AC power that generates plasma, but it is a small, low-power, medium-frequency AC power supply that acts on oxygen molecules that are close to the excitation level to generate oxygen ions. And the oxygen molecules are ozonized. Furthermore, the free electrons that have become abundant act on oxygen molecules, and have the effect of promoting dissociation and ozonization of oxygen molecules. Furthermore, paramagnetic air oxygen molecules are attracted by alternating magnetic field lines and diamagnetic nitrogen molecules are eliminated, and oxygen-enriched air is attracted to the micro / nano bubble generator, which has a strong bactericidal action, cleaning action and physiological activity action. It produces the effect of generating ozone micro / nano bubbles.

又、第十二の発明においては、被処理水の流路及び光触媒被塗布固着多孔質体に光触媒を塗布固着することにより、紫外線又は自然光含有の紫外線が透過する媒質の距離及び光触媒への到達距離を小さくすることが出来るので、紫外線殺菌・光触媒殺菌が増大する効果をそうする。   In the twelfth aspect of the invention, the photocatalyst is applied and fixed to the flow path of the water to be treated and the photocatalyst-coated fixed porous body, so that the distance of the medium through which ultraviolet rays or natural light-containing ultraviolet rays pass and the arrival of the photocatalyst are reached. Since the distance can be reduced, the effect of increasing UV sterilization / photocatalytic sterilization is achieved.

又、第十三の発明においては、光触媒を塗布固着した光透過型多孔質板を下方に垂架すると共に被処理液を流下し、紫外線又は自然光含有紫外線を照射すると、前記光透過型多孔質板は、超親水化するので、水溶液に対する濡れ性能が格段に向上し、該光透過型多孔質板を流下する被処理液の付着流下膜厚を、細やかに調整できるので、被処理液媒質を透過する紫外線の光量子エネルギーは減衰し難くなるので、殺菌効果が減退しない効果を奏する。   In the thirteenth invention, when the light-transmitting porous plate on which the photocatalyst is applied and fixed is suspended downward and the liquid to be treated is flown down and irradiated with ultraviolet rays or ultraviolet rays containing natural light, the light-transmitting porous plates Since the plate becomes superhydrophilic, the wettability with respect to the aqueous solution is remarkably improved, and the attached flow thickness of the liquid to be treated flowing down the light transmission type porous plate can be finely adjusted. Since the photon energy of the transmitted ultraviolet light is difficult to attenuate, there is an effect that the bactericidal effect is not reduced.

又、第十四の発明においては、サイホン作用が生成するように、円筒状又は中空糸状の酸素ガス透過膜を垂直に配設するので、該酸素ガス透過膜の内部に、被処理液の流動が生成すると共に大気圧に対して負圧が生成するので、前記酸素ガス透過膜外周囲の大気から内部への吸引力として作用するので、前記酸素ガス透過膜の内部被処理液は、常時、新たな被処理液となると共に大気と被処理液との酸素ガス差圧が、常時最大に維持され、内部におけるガス拡散と酸素溶解度が、常時最大に維持され、溶存酸素溶解量を大きくすると共に無動力酸素ガス供給の省エネルギー効果を奏する。   In the fourteenth aspect of the invention, a cylindrical or hollow fiber-shaped oxygen gas permeable membrane is vertically arranged so that a siphon action is generated. And a negative pressure with respect to the atmospheric pressure is generated, so that it acts as a suction force from the atmosphere outside the oxygen gas permeable membrane to the inside. While becoming a new liquid to be treated, the oxygen gas differential pressure between the atmosphere and the liquid to be treated is always maintained at the maximum, gas diffusion and oxygen solubility in the interior are always maintained at the maximum, and the dissolved oxygen dissolution amount is increased The energy saving effect of non-powered oxygen gas supply is achieved.

又、第十五の発明においては、生分解性プラスチックを培養土として利用するので、重量が小さい培養土入りのプランターとなり、小さい人力による作業が出来ると共に、堆肥化による肥育効果と培養液廃棄処分に苦労しない効果を奏する。   In the fifteenth invention, since biodegradable plastic is used as culture soil, it becomes a planter with a small weight of culture soil, and can be operated by a small amount of manpower. There is an effect that does not have a hard time.

そして又、第十六の発明においては、作物の水耕栽培又は、魚介類及び藻類の栽培において、病害となるほぼほとんど全ての微生物と粗大固形有機物を、膜濾過分離出来るので、後処理となる紫外線殺菌及び光触媒殺菌処理において、被処理液媒質を透過する紫外線の光量子エネルギーは減衰し難くなるので、殺菌効果が減退しない効果を奏すると共にウイルスに対する殺菌効果を大きくする効果を奏する。   In the sixteenth invention, almost all microorganisms and coarse solid organic matter that cause diseases can be separated by membrane filtration in hydroponic cultivation of crops or in the cultivation of seafood and algae. In the ultraviolet sterilization and the photocatalytic sterilization treatment, the photon energy of the ultraviolet light that passes through the liquid medium to be treated is not easily attenuated.

図1は、第一の発明に係わる、概略説明縦断面図である。FIG. 1 is a schematic explanatory longitudinal sectional view according to the first invention.

図2は、第一の発明に係わる、オゾン発生装置の概略説明縦断面図である。FIG. 2 is a schematic longitudinal sectional view of an ozone generator according to the first invention.

図3は、第二の発明に係わる、概略説明縦断面図である。FIG. 3 is a schematic explanatory longitudinal sectional view according to the second invention.

図4は、第三の発明の水耕栽培に係わる第1実施例で、概略説明縦断面図である。FIG. 4 is a schematic longitudinal sectional view of a first embodiment relating to hydroponics of the third invention.

図5は、第三の発明の海苔養殖に係わる第2実施例で、概略説明縦断面図である。FIG. 5 is a schematic longitudinal sectional view of a second embodiment relating to nori culture of the third invention.

図6は、第四の発明に係わる、概略説明縦断面図である。FIG. 6 is a schematic explanatory longitudinal sectional view according to the fourth invention.

図7は、第四の発明に係わり、図6における、紫外線・光触媒併用殺菌装置の、(a)は概略説明部分拡大縦断面図であり、(b)は(a)における概略説明A−A断面図である。FIG. 7 relates to the fourth invention, and FIG. 6A is a partially enlarged longitudinal sectional view of the ultraviolet / photocatalyst combined sterilization apparatus in FIG. 6, and FIG. 7B is a schematic explanatory view AA in FIG. It is sectional drawing.

図8は、第五の発明に係わる、概略説明縦断面図である。FIG. 8 is a schematic explanatory longitudinal sectional view according to the fifth invention.

図9は、第六の発明に係わる、概略説明縦断面図である。FIG. 9 is a schematic explanatory longitudinal sectional view according to the sixth invention.

図10は、第七の発明に係わり、(a)は概略説明平断面図で、(b)は(a)における、概略説明B−B縦断面図である。10A and 10B relate to the seventh invention, wherein FIG. 10A is a schematic sectional plan view, and FIG. 10B is a schematic sectional BB longitudinal sectional view in FIG.

図11は、第八の発明に係わり、(a)は概略説明縦断面図で、(b)は(a)における、概略説明立面図である。FIG. 11 is related to the eighth invention, (a) is a schematic explanatory longitudinal sectional view, and (b) is a schematic explanatory elevational view in (a).

図12は、第九発明の第1実施例に係わる、概略説明縦断面図である。(b)は(a)における、概略説明C−C平断面図である。FIG. 12 is a schematic longitudinal sectional view according to the first embodiment of the ninth invention. (B) is a schematic explanatory CC cross-sectional view in (a).

図13−bは、第九発明の第2実施例に係わる、図13−aにおける、概略説明D−D平断面図である。FIG. 13B is a schematic cross-sectional view along DD line in FIG. 13A according to the second embodiment of the ninth invention.

図14は、第十の発明に係わり、(a)は大気中の空気を吸引する概略説明側面図で、(b)は酸素ボンベの酸素を吸引する概略説明部分フロー図である。FIG. 14 relates to the tenth invention, (a) is a schematic explanatory side view for sucking air in the atmosphere, and (b) is a schematic explanatory partial flow chart for sucking oxygen from an oxygen cylinder.

図15は、第十一の発明に係わり、酸素冨化空気をオゾン発生装置を経て、マイクロ・ナノバブル発生装置へ吸引する概略説明フロー図である。FIG. 15 relates to the eleventh invention, and is a schematic explanatory flow diagram for sucking oxygen-enriched air to the micro / nano bubble generating device through the ozone generating device.

図16は、第十二発明の第1実施例に係わる、概略説明縦断面図であって、(a)は、水中紫外線発光LEDによる紫外線殺菌・光触媒廃液処理装置を例示した概略説明縦断面図で、(b)は、(a)におけるE−E視の概略説明平断面図で、(c)は、(b)におけるF−F視及びG−Gの概略説明正面図で、(d)は、(a)及び(b)に記載の水密紫外線灯の概略説明拡大縦断面図である。FIG. 16 is a schematic longitudinal cross-sectional view according to the first embodiment of the twelfth aspect of the invention, wherein (a) is a schematic longitudinal cross-sectional view illustrating an ultraviolet sterilization / photocatalytic waste liquid treatment apparatus using an underwater ultraviolet light emitting LED. (B) is a schematic cross-sectional plan view of the EE view in (a), (c) is a front view of the FF view and GG in (b), and (d) These are the schematic explanation expansion longitudinal cross-sectional views of the watertight ultraviolet lamp as described in (a) and (b).

図17は、第十二発明の第2実施例に係わる、(a)は、太陽光による自然光含有紫外線殺菌・可視応答光触媒殺菌装置を例示した概略説明縦断面図で、(b)は、(a)におけるH−H視の概略説明平断面図で、(c)は、(b)におけるI−I視及びJ−J視の概略説明正面図である。FIG. 17 is a schematic longitudinal cross-sectional view illustrating a natural light-containing ultraviolet sterilization / visible response photocatalyst sterilization apparatus using sunlight, according to a second embodiment of the twelfth invention. It is a schematic explanatory plan sectional view of HH view in a), (c) is a schematic front view of II view and JJ view in (b).

図18は、第十三発明の第1実施例に係り、(a)は、複数の光透過性多孔質セラミック板間に配設した水密構造深紫外線発光LEDによる紫外線殺菌・光触媒廃液処理装置を例示した概略説明縦断面図で、(b)は、(a)におけるK−K視の概略説明平断面図で、(c)は、(b)におけるL−L視の概略説明正面図である。FIG. 18 relates to the first embodiment of the thirteenth invention, wherein (a) shows an ultraviolet sterilization / photocatalyst waste liquid treatment apparatus using a watertight deep UV light emitting LED disposed between a plurality of light transmissive porous ceramic plates. BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explanatory longitudinal cross-sectional view illustrated, (b) is a schematic explanatory plan sectional view of the KK view in (a), (c) is a schematic explanatory front view of the LL view in (b). .

図19は、第十三発明の第2実施例に係わる、(a)は、太陽光及び可視光線発光LED光源を液体ガイドラインシステムによる受光照射を自然光含有紫外線殺菌・可視光応答光触媒殺菌装置を例示した概略説明縦断面図で、(b)は、(a)におけるM−M視の概略説明平断面図で、(c)は、(b)におけるN−N視の概略説明正面図である。FIG. 19 shows a second embodiment of the thirteenth aspect of the invention. FIG. 19 (a) shows a natural light-containing ultraviolet sterilization / visible light responsive photocatalyst sterilization apparatus using sunlight and a visible light emitting LED light source with a liquid guideline system. FIG. 2B is a schematic sectional plan view of the MM view in (a), and FIG. 2C is a schematic front view of the NN view in FIG.

図20は、第十四発明に係わる、自然光含有紫外線殺菌・可視光応答光触媒殺菌槽での殺菌処理液に円筒状酸素ガス透過膜で溶存酸素を供給する概略説明縦断面図である。FIG. 20 is a schematic longitudinal cross-sectional view of supplying dissolved oxygen through a cylindrical oxygen gas permeable membrane to a sterilization treatment liquid in a natural light-containing ultraviolet sterilization / visible light responsive photocatalyst sterilization tank according to the fourteenth aspect of the invention.

図21は、第十五発明に係わる、自然光含有紫外線殺菌・可視光応答光触媒殺菌槽での殺菌処理液に円筒状酸素ガス透過膜で溶存酸素を供給し、液肥調整した培養液を、生分解性プラスチック粒体混合培養土入りプランターに施用している概略説明縦断面図である。FIG. 21 shows a biodegradation of a culture solution prepared by supplying dissolved oxygen to a sterilization treatment liquid in a natural light-containing ultraviolet sterilization / visible light responsive photocatalyst sterilization tank according to the fifteenth invention using a cylindrical oxygen gas permeable membrane. It is a schematic explanatory longitudinal cross-sectional view applied to the planter containing a mixed plastic particle mixed culture soil.

図22は、第十六発明に係わる、被処理液を精密濾過膜で濾過処理した濾過処理液を、紫外線発光LEDと光触媒で殺菌処理し、該処理液を曝気する概略説明縦断面図である。FIG. 22 is a schematic longitudinal cross-sectional view of a sixteenth aspect of the present invention, in which a liquid to be treated is filtered with a microfiltration membrane, sterilized with an ultraviolet light emitting LED and a photocatalyst, and the processed liquid is aerated. .

以下、本発明の実施例を図面に基づいて説明する。但し、以下に示す実施例は、本発明の技術思想を具体化するための機能水製造装置を例示するものであって、本発明は機能液製造装置を以下のものに限定しない。さらに、この明細書は、特許請求の範囲に記載される部材を、実施例の部材に限定するものでは決してない。   Embodiments of the present invention will be described below with reference to the drawings. However, the Example shown below illustrates the functional water manufacturing apparatus for actualizing the technical idea of this invention, and this invention does not limit a functional liquid manufacturing apparatus to the following. Furthermore, this specification does not limit the members described in the claims to the members of the examples.

図1、図2、は、第一発明の第1の実施例に係わる概略説明縦断面図であって、本実施例は、オゾンマイクロバブルを生成すると共に殺菌、洗浄、生理活性機能を有する機能液を生成する機能液製造装置1に係わるものである。深紫外線を発生する光源として深紫外発光LED2を備える。該深紫外発光LED2は、220nmの波長領域に中心波長を有する深紫外線を放射する発光チップ3を備える。又、前記深紫外発光LED2は、発光チップ3の発光を収束する集光レンズ4を備える。前記深紫外発光LED2は、発光チップ3の発光を集光レンズ4で収束して、前記深紫外発光LED2の近距離前方を通過する空気に含有されている酸素分子にピンポイントで照射して酸素分子をオゾン化する。前記遠紫外発光LED2は、基板5に固定されると共にフッ素樹脂製のスリーブ6に収納して配設され、気体吸引配管7の一部を構成するオゾン発生装置8としている。前記スリーブ6の空気吸気口6aからは大気中の空気が流入し、前記スリーブ6の中を流過する。該スリーブ6を流過したオゾン含有空気は、前記気体吸引配管7を経由し、機能液貯槽9の液中に浸漬した旋回流型のマイクロ・ナノバブル発生装置10の気体吸引口10aに吸引され、気液二相流を前記機能液貯槽9に吐出して、オゾンマイクロ・ナノバブルを生成し、前記機能液貯槽9の液を機能液化する。前記旋回流型のマイクロ・ナノバブル発生装置10には、循環ポンプ11の吐出側配管11aで,高圧液が導入されて旋回流が発生すると共に負圧を生成し、前記気体吸引口10aから前記旋回流型のマイクロ・ナノバブル発生装置10へ空気又はオゾン含有空気が吸引される。空気マイクロ・ナノバブルは、少なからず、洗浄機能、殺菌機能及び生理活性機能を有していて、オゾンマイクロ・ナノバブル液は、前記空気マイクロ・ナノバブル液と同様に生理活性機能を有しているが、強力な洗浄機能及び殺菌機能を有している。従って、空気マイクロ・ナノバブル液を選択するか又はオゾンマイクロ・ナノバブル液を選択するかを状況に応じて選択するために、大気吸引支管7a及び前記スリーブ6の吐出側配管7bに、開閉弁12a及び12bをそれぞれ装備し、空気は大気を、オゾンは、前記オゾン発生装置8から吸引し、空気又はオゾンを選択して供給する。尚、図3には、点線で光の軌跡を模して、二本の線が交わる位置は、集光レンズの焦点を表しているが、前記集光レンズ4の焦点における光跡は、前記遠紫外発光LED2及び集光レンズ4の特性に応じて、特定の広がり(面積)を示す。該集光レンズ4の焦点において、単位面積当たりの光量子エネルギー(エネルギー密度)はもっとも大きく、前記焦点付近にある酸素分子に照射されて、該酸素分子をオゾン化する。尚、本実施例では、旋回流型のマイクロ・ナノバブル発生装置10としているが、ベンチュリー型、オリフィス型及び圧力型、圧力型等のマイクロ・ナノバブル発生装置であっても良く、何ら制限されない。   FIG. 1 and FIG. 2 are schematic explanatory longitudinal sectional views according to the first embodiment of the first invention. This embodiment generates ozone microbubbles and has a function of sterilization, washing, and physiological activity. The present invention relates to a functional liquid manufacturing apparatus 1 that generates a liquid. A deep ultraviolet light emitting LED 2 is provided as a light source for generating deep ultraviolet light. The deep ultraviolet light emitting LED 2 includes a light emitting chip 3 that emits deep ultraviolet light having a center wavelength in a wavelength region of 220 nm. The deep ultraviolet light emitting LED 2 includes a condenser lens 4 that converges light emitted from the light emitting chip 3. The deep ultraviolet light emitting LED 2 converges the light emitted from the light emitting chip 3 by the condenser lens 4 and irradiates oxygen molecules contained in the air passing through the short distance forward of the deep ultraviolet light emitting LED 2 at a pinpoint. Ozonize molecules. The far-ultraviolet LED 2 is fixed to the substrate 5 and accommodated in a fluororesin sleeve 6, and is an ozone generator 8 constituting a part of the gas suction pipe 7. Air in the atmosphere flows from the air inlet 6 a of the sleeve 6 and flows through the sleeve 6. The ozone-containing air that has flowed through the sleeve 6 is sucked into the gas suction port 10a of the swirling flow type micro / nano bubble generator 10 immersed in the liquid of the functional liquid storage tank 9 via the gas suction pipe 7. A gas-liquid two-phase flow is discharged into the functional liquid storage tank 9 to generate ozone micro / nano bubbles, and the liquid in the functional liquid storage tank 9 is functionalized. In the swirling flow type micro / nano bubble generating device 10, a high-pressure liquid is introduced in a discharge-side pipe 11 a of a circulation pump 11 to generate a swirling flow and to generate a negative pressure. Air or ozone-containing air is sucked into the flow-type micro / nano bubble generator 10. The air micro / nano bubble has a cleaning function, a sterilization function, and a physiological activity function, and the ozone micro / nano bubble liquid has a physiological activity function similar to the air micro / nano bubble liquid, It has a strong cleaning function and sterilization function. Therefore, in order to select the air micro / nano bubble liquid or the ozone micro / nano bubble liquid according to the situation, the air suction branch pipe 7a and the discharge side pipe 7b of the sleeve 6 are connected to the on-off valve 12a and 12b is provided, and air is sucked from the atmosphere and ozone is sucked from the ozone generator 8, and air or ozone is selected and supplied. In FIG. 3, the position where the two lines intersect represents the focal point of the condenser lens, imitating the locus of light with a dotted line, but the light trace at the focal point of the condenser lens 4 is A specific spread (area) is shown according to the characteristics of the far-ultraviolet LED 2 and the condenser lens 4. At the focal point of the condenser lens 4, the photon energy (energy density) per unit area is the largest, and the oxygen molecules in the vicinity of the focal point are irradiated to ozonize the oxygen molecules. In this embodiment, the swirling flow type micro / nano bubble generating device 10 is used, but a micro / nano bubble generating device such as a venturi type, an orifice type, a pressure type, or a pressure type may be used, and is not limited at all.

一般的に、深紫外発光LED又はマイクロプラズマ励起深紫外発光素子においては、複数の波長域のスペクトルで構成されるので、集光レンズ4の焦点では、発光素子特有の面積を有する光束を示す。従って、前記集光レンズ4での集光において、主波長の光量子エネルギー密度よりも、242nm以下の光量子エネルギー密度が大きければ、242nm以下の深紫外領域に焦点を合わせた選択をすべきである。   In general, a deep ultraviolet light emitting LED or a microplasma excited deep ultraviolet light emitting element is configured with a spectrum of a plurality of wavelength regions, and therefore, a light beam having an area specific to the light emitting element is shown at the focal point of the condenser lens 4. Therefore, in the condensing by the condensing lens 4, if the photon energy density of 242 nm or less is larger than the photon energy density of the main wavelength, the selection should be focused on the deep ultraviolet region of 242 nm or less.

図3は第二発明の第1の実施例に係わる概略説明縦断面図であって、深紫外発光LED2をスリーブ6に収納して配設され、気体吸引配管7の一部を構成するオゾン発生装置8を、直列に連通接続して配設したものを、並列に二組配設していて、オゾン濃度を高めると共に処理能力を高めている。   FIG. 3 is a longitudinal cross-sectional view schematically illustrating the first embodiment of the second invention. Ozone generation in which a deep ultraviolet light emitting LED 2 is accommodated in a sleeve 6 and constitutes a part of a gas suction pipe 7 is shown. Two sets of apparatuses 8 connected in series are arranged in parallel to increase the ozone concentration and the processing capacity.

図4は第三発明の第1の実施例に係わる概略説明図であって、水耕栽培の分野に適用した実施例の概略説明縦断面図で、旋回流型のマイクロ・ナノバブル発生装置10Aの気体吸引口10Aaへ吸引する気体として、機能液に求められる、生理活性及び殺菌機能の強弱に応じて、空気、酸素、オゾン含有空気又はオゾン含有酸素であるかを判断して選択開閉するために、それぞれ、開閉弁12a,12b,12c及び12dを大気吸引支管7a、オゾン含有空気吸引支管7b、オゾン含有酸素吸引支管7c及び酸素ガス吸引支管7dに配設している。オゾン含有酸素吸引支管7c及び酸素ガス吸引支管7dへの酸素ガス供給源として、酸素ガスボンベ13を配設しているが、該酸素ガスボンベ13の代替として、酸素冨化装置とすることも出来る。機能液貯槽9Aに貯液している機能液を、栽培対象種の露出部及び栽培室内空間の殺菌に利用する場合には、前記オゾン発生装置8を通して、前記旋回流型のマイクロ・ナノバブル発生装置10Aの気体吸引口10Aaへ大気を吸引して、オゾンマイクロ・ナノバブル液を生成し、水中ポンプ14Aの吐出側配管15Aに配設している開閉弁15Aaを開にし、スプレーノズル16Aから噴霧液を噴霧して殺菌し、収穫物を洗浄及び殺菌する場合には、開閉弁15Abを開にしてスプレーノズル16Bで洗浄及び殺菌する。水耕栽培法を適用する栽培ベッド17による前記栽培対象種の栽培においては、機能液貯槽9Bに貯液された肥料溶液を水中ポンプ14Bの吐出側に配設した吐出側配管15Bで、前記栽培ベッド17へ送液して栽培するが、該栽培ベッド17の肥料溶液は、順次に押出し流れにより押し出されて流出し、戻り配管18で前記機能液貯槽9Bへ移流して循環される。病原菌の殺菌を重視する場合には、オゾン発生装置8を通して、旋回流型のマイクロ・ナノバブル発生装置10Bの気体吸引口10Baへ吸引する気体として、機能液に求められる、生理活性及び殺菌機能の強弱に応じて、空気、酸素、オゾン含有空気又はオゾン含有酸素であるかを判断して、前記機能液貯槽9Aにおける旋回流型のマイクロ・ナノバブル発生装置10Aの気体吸引口10Aaへ吸引する気体と同様に前記開閉弁12a,12b,12c及び12dを開閉操作する。   FIG. 4 is a schematic explanatory view according to the first embodiment of the third invention, which is a schematic longitudinal sectional view of an embodiment applied to the field of hydroponics, and shows a swirling flow type micro / nano bubble generator 10A. In order to selectively open and close by judging whether it is air, oxygen, ozone-containing air or ozone-containing oxygen according to the strength of physiological activity and sterilization function required for the functional liquid as the gas sucked into the gas suction port 10Aa On-off valves 12a, 12b, 12c, and 12d are disposed in the atmospheric suction branch 7a, the ozone-containing air suction branch 7b, the ozone-containing oxygen suction branch 7c, and the oxygen gas suction branch 7d, respectively. Although an oxygen gas cylinder 13 is provided as an oxygen gas supply source to the ozone-containing oxygen suction branch 7c and the oxygen gas suction branch 7d, an oxygen hatching apparatus can be used as an alternative to the oxygen gas cylinder 13. When the functional liquid stored in the functional liquid storage tank 9A is used for sterilization of the exposed part of the cultivation target species and the cultivation room space, the swirling flow type micro / nano bubble generating apparatus is passed through the ozone generator 8. The air is sucked into the gas suction port 10Aa of 10A to generate ozone micro / nano bubble liquid, the on-off valve 15Aa arranged in the discharge side pipe 15A of the submersible pump 14A is opened, and the spray liquid is supplied from the spray nozzle 16A. When sprayed and sterilized, and the harvested product is washed and sterilized, the on-off valve 15Ab is opened and the spray nozzle 16B is used for washing and sterilization. In the cultivation of the cultivation target species by the cultivation bed 17 to which the hydroponics method is applied, the cultivation is performed by the discharge side pipe 15B in which the fertilizer solution stored in the functional liquid storage tank 9B is disposed on the discharge side of the submersible pump 14B. The solution is fed to the bed 17 and cultivated. The fertilizer solution in the cultivation bed 17 is sequentially pushed out by the extrusion flow and flows out, and is transferred to the functional liquid storage tank 9B through the return pipe 18 and circulated. When emphasizing the sterilization of pathogenic bacteria, the physiological activity and the strength of the sterilizing function required for the functional liquid as gas to be sucked into the gas suction port 10Ba of the swirling flow type micro / nano bubble generating device 10B through the ozone generator 8 Depending on the air, oxygen, ozone-containing air or ozone-containing oxygen is determined, and the same as the gas sucked into the gas suction port 10Aa of the swirl type micro / nano bubble generating device 10A in the functional liquid storage tank 9A The on-off valves 12a, 12b, 12c and 12d are opened and closed.

図5は第三発明の第1の実施例に係わる概略説明図であって、海苔養殖の分野に適用した実施例の概略説明縦断面図で、図4の第三実施例と同様に、選択的に空気、オゾン含有空気、オゾン含有酸素ガス及び酸素ガスを選択し、旋回流型のマイクロ・ナノバブル発生装置10A及び10Bで吸引し、海水を貯留した機能液貯槽9及び海苔原藻貯蔵槽19に気液二相流を吐出する。前記海苔原藻貯蔵槽19において、海苔原藻を貯蔵するには、海水で25%程度に薄めて貯蔵する。生きた海苔葉体は、生体を維持するために、酸素呼吸と炭酸同化作用で、貯蔵海水の溶存酸素が低下すると、海苔葉体の細胞が破壊され、海苔葉体が部分的白化症状を呈すると共に細胞膜が破壊されて溶出したヌメリが放出される現象を呈するが、すると、該海水汚染によって、さらに前記酸素呼吸と炭酸同化作用が著しく阻害される。又、前記海苔葉体及び海水中には、雑菌等を含有していて、該海苔葉体が劣化しかねないので、本実施例では、先ず、選択的に開閉弁12b、12cを開とし、オゾン発生装置8で生成するオゾン含有空気又はオゾン含有酸素を前記旋回流型のマイクロ・ナノバブル発生装置10A及び10Bで吸引し、それぞれ、前記機能液貯槽9及び海苔原藻貯蔵槽19の液中にオゾン含有気液二相流を吐出し、オゾンマイクロ・ナノバブル液を生成し、酸素を供給すると共に雑菌等を殺菌する。30分の殺菌工程を終えると、開閉弁12dを開とし、酸素ガスボンベ13から吐出する酸素ガスを、前記旋回流型のマイクロ・ナノバブル発生装置10A及び10Bで吸引し、それぞれ、前記機能液貯槽9及び海苔原藻貯蔵槽19の液中に酸素ガス含有気液二相流を吐出し、酸素ガスマイクロ・ナノバブル液を生成し、溶存酸素を供給する。該酸素ガスマイクロ・ナノバブル液の生理活性機能により、前記生きた海苔葉体の細胞を活性化し、養殖海苔採取時よりも品質が向上した状態とすることが出来る。30分の該生理活性化工程を終えると、開閉弁12aを開とし、大気を、前記旋回流型のマイクロ・ナノバブル発生装置10A及び10Bで吸引し、それぞれ、前記機能液貯槽9及び海苔原藻貯蔵槽19の液中に空気含有気液二相流を吐出し、空気マイクロ・ナノバブル液を生成して、溶存酸素を供給する、溶存酸素供給工程とする。尚、前記旋回流型のマイクロ・ナノバブル発生装置10A、10Bには、それぞれ、循環ポンプ11及び水中ポンプ14で高圧液が導入されて旋回流が発生すると共に負圧を生成し、前記気体吸引口10Aa、10Baから前記旋回流型のマイクロ・ナノバブル発生装置10A、10Bへ、選択的にそれぞれ、前記殺菌工程、生理活性化工程又は溶存酸素供給工程に応じて、オゾン含有酸素ガス、酸素ガス又は空気が吸引される。又、海苔原藻貯蔵槽19には、ドラフトチューブ19a内に撹拌翼20aを配設し、撹拌電動減速装置20で駆動し、前記ドラフトチューブ19a内に上向流を生成すると共に下降流路部19bに下降流を生成し、前記海苔原藻を撹拌混合すると共に前記生きた海苔葉体に酸素を供給している。又、前記循環ポンプ11Bの圧力液を、前記旋回流型のマイクロ・ナノバブル発生装置10Bに送液して生成する、殺菌工程、生理活性化工程又は酸素供給工程に応じた気体と、前記機能液貯槽9Aの機能液化した海水の気液二相流を、前記海苔原藻貯蔵槽19に吐出すると、上向流路部19cを流過し、越流堰部19dを流下し、トラフ部19eに連通接続した還流配管21Aを流下して、前記機能液貯槽9へ還流される。前記海苔原藻貯蔵槽19での貯蔵を終えた海苔原藻は、乾藻海苔等の加工処理前に、すき水と称する真水を貯水した図示してない塩分除去槽へ移送するために、前記海苔原藻貯蔵槽19の底部19eに連通接続した移送ポンプ22の吸込管22aで吸入し、前記移送ポンプ22の吐出管22bを連通接続した液体サイクロン23に連通接続し、該液体サイクロン23で分離した脱海水原藻は、図示してない塩分除去槽へ、脱海水原藻移送管23aで移送され、海水は、還流配管21Bで前記機能水貯槽9へ還流される。   FIG. 5 is a schematic explanatory view according to the first embodiment of the third invention, and is a schematic longitudinal sectional view of the embodiment applied to the field of seaweed cultivation, and is selected similarly to the third embodiment of FIG. In particular, air, ozone-containing air, ozone-containing oxygen gas and oxygen gas are selected and sucked by the swirl type micro / nano bubble generators 10A and 10B, and the functional liquid storage tank 9 and seaweed raw algae storage tank 19 storing seawater are stored. A gas-liquid two-phase flow is discharged. In order to store the seaweed original algae in the seaweed original algae storage tank 19, the seaweed original algae is diluted to about 25% with seawater and stored. In order to maintain the living body, living nori leaves are oxygen respiration and carbon dioxide assimilation, and when dissolved oxygen in stored seawater decreases, the cells of the nori leaves are destroyed and the nori leaves show partial whitening symptoms At the same time, the cell membrane is destroyed and the eluted slime is released. In this case, the oxygen respiration and carbon dioxide assimilation are significantly inhibited by the seawater contamination. In addition, since the laver leaf body and seawater contain various bacteria and the laver leaf body may deteriorate, in this embodiment, first, the on-off valves 12b and 12c are selectively opened, Ozone-containing air or ozone-containing oxygen generated by the ozone generator 8 is sucked by the swirl type micro / nano bubble generators 10A and 10B, and is put into the liquid of the functional liquid storage tank 9 and the laver raw algae storage tank 19, respectively. It discharges ozone-containing gas-liquid two-phase flow, generates ozone micro / nano bubble liquid, supplies oxygen and sterilizes germs. When the sterilization process for 30 minutes is completed, the on-off valve 12d is opened, and oxygen gas discharged from the oxygen gas cylinder 13 is sucked by the swirl type micro / nano bubble generating devices 10A and 10B, and the functional liquid storage tank 9 In addition, an oxygen gas-containing gas-liquid two-phase flow is discharged into the liquid of the seaweed original algae storage tank 19 to generate an oxygen gas micro / nano bubble liquid and supply dissolved oxygen. By virtue of the physiologically active function of the oxygen gas micro / nano bubble solution, the cells of the living laver leaf bodies can be activated and the quality can be improved as compared with the time of collecting cultured laver. When the physiological activation step for 30 minutes is finished, the on-off valve 12a is opened, and the atmosphere is sucked by the swirling flow type micro / nano bubble generating devices 10A and 10B, respectively, and the functional liquid storage tank 9 and the seaweed original algae, respectively. A dissolved oxygen supply process is performed in which an air-containing gas-liquid two-phase flow is discharged into the liquid in the storage tank 19 to generate an air micro / nano bubble liquid to supply dissolved oxygen. The swirling flow type micro / nano bubble generating devices 10A and 10B are respectively introduced with high-pressure liquid by the circulation pump 11 and the submersible pump 14 to generate swirling flow and generate negative pressure, and the gas suction port. 10Aa, 10Ba to the swirl type micro / nano bubble generators 10A, 10B, respectively, according to the sterilization step, physiological activation step or dissolved oxygen supply step, respectively, ozone-containing oxygen gas, oxygen gas or air Is sucked. In addition, the laver original algae storage tank 19 is provided with a stirring blade 20a in a draft tube 19a and driven by a stirring electric speed reducer 20 to generate an upward flow in the draft tube 19a and a descending flow path section. A downward flow is generated in 19b, and the nori seaweed algae is stirred and mixed, and oxygen is supplied to the living nori leaf bodies. Further, the pressure liquid of the circulation pump 11B is sent to the swirling flow type micro / nano bubble generator 10B to generate the gas corresponding to the sterilization process, physiological activation process or oxygen supply process, and the functional liquid. When the gas-liquid two-phase flow of seawater that has been liquefied in the storage tank 9A is discharged to the laver original algae storage tank 19, it flows through the upward flow path section 19c, flows down the overflow weir section 19d, and flows into the trough section 19e. It flows down to the recirculation pipe 21 </ b> A connected in communication and is recirculated to the functional liquid storage tank 9. In order to transfer the seaweed original algae that have been stored in the seaweed original algae storage tank 19 to a salt removal tank (not shown) that stores fresh water called plow water before processing such as dry algae nori. Inhalation is performed by a suction pipe 22 a of a transfer pump 22 that is connected to the bottom 19 e of the seaweed original algae storage tank 19, and a discharge pipe 22 b of the transfer pump 22 is connected to a liquid cyclone 23 that is connected and separated by the liquid cyclone 23. The dewatered seaweed algae are transferred to a salt removal tank (not shown) through a dewatered seaweed algae transfer pipe 23a, and the seawater is returned to the functional water storage tank 9 through a return pipe 21B.

図6及び図7は第四発明の第1の実施例に係わる概略説明縦断面図で、機能液貯槽9の液中に、投込み型超音波振動子24を配設して、被洗浄物に付着した菌体、芽胞及び有機物を洗浄し、又、前記機能液貯槽9の機能液を、循環ポンプ11、砂ろ過槽25及び紫外線・光触媒併設殺菌装置26を順次に、循環配管27で連通接続すると共に前記機能液貯槽9に吐出口27aを水没させた循環配管系統28を循環して、機能液に浮遊している細菌類を殺菌防除している。尚、本実施例では、超音波洗浄装置29において、前記投込み型超音波振動子24だけを図示していて、超音波発振器は図示してない。前記循環配管系統28を循環している機能液に含有する養殖海苔病害細菌類は、前記紫外線・光触媒併設殺菌装置26を流過する際には、石英ガラス製の反応セル30の光透過壁30aを隔てて配設された265nmの中心波長を有する遠紫外発光LED2が照射する遠紫外光で分解殺菌されると共に前記紫外線・光触媒併用殺菌装置26の光触媒が深紫外線で励起されるが、前記紫外線・光触媒併設殺菌装置26は、図7に示すとおり、前記光透過壁30aを隔てて被処理液が流過する液中に浸漬した光触媒コーティングフイルター31の光触媒層32を励起して生成するフリーラジカルで殺菌される。尚、前記紫外発光LED2は、フッ素樹脂製のスリーブ6Bに収納し、外部への紫外線の漏洩はないと共に前記スリーブ6Bが遠紫外線で劣化することはない。又、210nmに中心波長を有するマイクロプラズマ励起遠紫外発光素子33は、該マイクロプラズマ励起遠紫外発光素子33の発光を収束する集光レンズ4を備え、前記マイクロプラズマ励起遠紫外発光素子33をフッ素樹脂製のスリーブ6A内に配設して、気体吸引配管7の一部を構成するオゾン発生装置8とする。該オゾン発生装置8内を流過する空気中酸素分子又は酸素ガス中酸素分子に、前記マイクロプラズマ励起深紫外発光素子33の収束遠紫外線がピンポイントで照射され、生成したオゾン含有空気又は酸素ガスを、吸引手段で吸引する旋回流型のマイクロ・ナノバブル発生装置10に吸引されて生成したオゾン含有気液二相流が水中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成して殺菌、洗浄、生理活性機能を有する機能液を生成する。養殖海苔の病害菌としては、壷状菌、赤グサレ病菌及びスミ海苔病菌と多く、これらの菌による海苔葉体の病害は、海水温、塩分濃度及び日射量等の環境条件と養殖海苔の生理状態に左右されて発生するので、養殖海苔葉体に付着する病原菌の濃度を低下させ、罹患の機会を低減させるためには、病原菌を洗浄して防除することも重要であるので、前記投込み型超音波振動子24で、養殖海苔葉体に付着する有機物及び病原菌を洗浄除去すると共に前記紫外線・光触媒併設殺菌装置26でも病原菌を殺菌する前処理を行うことにより、オゾンマイクロ・ナノバブル液による殺菌が有効に働き、広範な細菌等に対して強力な殺菌効果を奏する。尚、本実施例では、投込み式超音波振動子24としているが、固定式超音波振動子も使用出来て、又、前記砂濾過槽の代替としては、従来から多用されている固液分離装置である、ドラムフイルター、液体サイクロン等も使用出来て、何ら妨げられない。   FIG. 6 and FIG. 7 are schematic longitudinal cross-sectional views according to the first embodiment of the fourth invention. The bacterial cells, spores, and organic substances adhering to the liquid are washed, and the functional liquid in the functional liquid storage tank 9 is communicated with the circulation pump 27, the sand filtration tank 25, and the ultraviolet / photocatalyst sterilizer 26 in order through the circulation pipe 27. The bacteria floating in the functional liquid are sterilized and controlled by circulating the circulation piping system 28 in which the discharge port 27a is submerged in the functional liquid storage tank 9 while being connected. In the present embodiment, in the ultrasonic cleaning device 29, only the throwing-type ultrasonic transducer 24 is illustrated, and the ultrasonic oscillator is not illustrated. When the cultured laver disease bacteria contained in the functional fluid circulating in the circulation piping system 28 flow through the ultraviolet light / photocatalyst sterilizer 26, the light transmitting wall 30a of the reaction cell 30 made of quartz glass. The far-UV light emitting LED 2 having a central wavelength of 265 nm disposed at a distance from each other is decomposed and sterilized by far-ultraviolet light, and the photocatalyst of the UV / photocatalyst combined sterilizer 26 is excited by deep ultraviolet light. As shown in FIG. 7, the photocatalyst sterilizer 26 excites and generates free radicals generated by exciting the photocatalyst layer 32 of the photocatalyst-coated filter 31 immersed in the liquid to which the liquid to be treated flows across the light transmitting wall 30a. Sterilized with. The ultraviolet light emitting LED 2 is housed in a sleeve 6B made of a fluororesin so that there is no leakage of ultraviolet rays to the outside and the sleeve 6B is not deteriorated by far ultraviolet rays. The microplasma-excited far ultraviolet light-emitting element 33 having a central wavelength of 210 nm includes a condenser lens 4 that converges the light emitted from the microplasma-excited far ultraviolet light-emitting element 33. An ozone generator 8 that constitutes a part of the gas suction pipe 7 is provided in the resin sleeve 6A. Ozone air or oxygen gas generated by irradiating oxygen molecules in the air or oxygen gas flowing through the ozone generator 8 with the focused far ultraviolet rays of the microplasma-excited deep ultraviolet light emitting element 33 at a pinpoint. The ozone-containing gas-liquid two-phase flow generated by being sucked into the swirling flow type micro / nano bubble generating device 10 sucked by the suction means is discharged into the water to generate ozone micro bubbles and sterilize by generating nano bubbles. A functional liquid having a washing and bioactive function is generated. As the pathogenic fungi of cultured seaweed, there are many fungi, fungus and red seaweed pathogenic fungi, and the diseases of laver leaf bodies caused by these fungi are related to environmental conditions such as seawater temperature, salinity and solar radiation, and the physiological conditions of cultured laver. Since it occurs depending on the state, in order to reduce the concentration of pathogenic bacteria adhering to cultured laver leaves and reduce the chance of morbidity, it is also important to wash and control the pathogenic bacteria, so Sterilization with ozone micro / nano bubble liquid by washing and removing organic substances and pathogens adhering to the cultured laver leaf body with the ultrasonic transducer 24 and pretreatment for sterilizing the pathogens with the ultraviolet light / photocatalyst sterilizer 26 Works effectively and has a strong bactericidal effect against a wide range of bacteria. In this embodiment, the throwing-type ultrasonic vibrator 24 is used. However, a fixed ultrasonic vibrator can also be used, and as an alternative to the sand filtration tank, a solid-liquid separation that has been widely used conventionally. A device such as a drum filter or a hydrocyclone can also be used and is not obstructed.

図8は第五発明の第1の実施例に係わる概略説明縦断面図であって、オゾン発生装置8のスリーブ6の管壁6aを貫通して、フイールドエミッションランプ34が配設されていて、該フイールドエミッションランプ34の投光窓部34aから200nmの真空紫外光が、図示してない旋回流型のマイクロ・ナノバブル発生装置10に吸引されて、空気吸気口6aから流入し、前記スリーブ6内を流下する空気中酸素分子を照射し、該酸素分子をオゾン化する。前記200nmの真空紫外光は空気で幾分吸収されるので、空気中を透過することにより、多少は減光するが、大部分は透過し、前記投光窓部34aに対向した前記スリーブの内壁6bに塗布した真空紫外発光蛍光体35を照射し、真空紫外光が生成するので、該真空紫外光が空気中酸素分子をオゾン化する。合成石英製の前記投光窓部34a以外の合成石英製の真空管34bから真空紫外光が漏洩し、人体に悪影響が及ぶことを防止するために、前記真空管34bに不透光性の遮蔽カバー36で被覆する。   FIG. 8 is a schematic longitudinal sectional view according to the first embodiment of the fifth invention, wherein a field emission lamp 34 is disposed through the tube wall 6a of the sleeve 6 of the ozone generator 8, 200 nm vacuum ultraviolet light is sucked into the swirling flow type micro / nano bubble generator 10 (not shown) from the projection window 34 a of the field emission lamp 34 and flows into the sleeve 6 from the air inlet 6 a. Oxygen molecules in the air flowing down are irradiated to ozonize the oxygen molecules. The 200 nm vacuum ultraviolet light is absorbed somewhat in the air, so it is somewhat diminished by passing through the air, but most of it is transmitted and the inner wall of the sleeve facing the projection window 34a. The vacuum ultraviolet light-emitting phosphor 35 applied to 6b is irradiated to generate vacuum ultraviolet light, and the vacuum ultraviolet light ozonizes oxygen molecules in the air. In order to prevent the vacuum ultraviolet light from leaking from the synthetic quartz vacuum tube 34b other than the synthetic quartz light projection window 34a and adversely affecting the human body, the opaque cover 36 is provided on the vacuum tube 34b. Cover with.

図9は第六発明の第1の実施例に係わる概略説明縦断面図であって、220nmの波長領域に中心波長を有する深紫外線を放射する発光チップ3を備える深紫外発光LED2の近距離前方の焦点付近を通過する空気に含有されている酸素分子にピンポイントで照射して酸素分子をオゾン化すると共に前記集光レンズ4で集光された紫外線が、該集光レンズの焦点を経て凹面鏡37で反射し、該凹面鏡37の焦点で酸素分子をオゾン化する。   FIG. 9 is a schematic longitudinal sectional view according to the first embodiment of the sixth invention, which is a short distance front of a deep ultraviolet light emitting LED 2 having a light emitting chip 3 that emits deep ultraviolet light having a central wavelength in a wavelength region of 220 nm. The oxygen molecules contained in the air passing in the vicinity of the focal point of the lens are irradiated with pinpoints to ozonize the oxygen molecules, and the ultraviolet rays collected by the condenser lens 4 pass through the focal point of the condenser lens and are concave mirrors. The oxygen molecules are ozonized at the focal point of the concave mirror 37.

図10は第七発明の第1の実施例に係わる概略説明図であって、(a)はオゾン発生・紫外線殺菌・光触媒殺菌ユニット38の概略説明平断面図で、(b)は(a)における概略説明B−B縦断面図で、前記オゾン発生・紫外線殺菌・光触媒殺菌ユニット38は、空気又は酸素ガス流路部39と殺菌・分解流路部40とで構成される。前記空気又は酸素ガス流路部39に流入気体の選択に応じて、流入側の気体吸引管7が、図1等に図示の大気吸引支管7a、オゾン含有空気吸引支管7b、オゾン含有酸素ガス吸引支管7cに連通接続され、流出側の気体吸引管7aが旋回流型のマイクロ・ナノバブル発生装置10の気体吸引口10aに連通接続され、フイールドエミッションランプ41で生成する、波長200nmの真空紫外線が投光窓41Aa、41Baから、前記空気又は酸素ガス流路部39を流下する酸素ガスに照射され、オゾン化する。前記真空紫外線は、空気又は酸素ガス等の気体中を透過し、深紫外発光蛍光体42を塗布した深紫外発光体43に照射され、該深紫外線発光体43に塗布された深紫外発光蛍光体42は、主波長260nmの深紫外線を発光し、前記殺菌・分解流路部40の殺菌対象液を照射して殺菌又は汚染物質を分解すると共に光触媒を塗布した多孔質体44を照射して殺菌又は汚染物質を分解する。本実施例では、真空紫外線照射手段としてフイールドエミッションランプ41を例示しているが、真空紫外発光LED、マイクロプラズマ励起紫外発光素子又はエキシマランプであってもよく、何ら制限されない。   FIG. 10 is a schematic explanatory view according to the first embodiment of the seventh invention, wherein (a) is a schematic cross-sectional plan view of the ozone generation / ultraviolet sterilization / photocatalytic sterilization unit 38, and (b) is (a). The ozone generation / ultraviolet ray sterilization / photocatalyst sterilization unit 38 is composed of an air or oxygen gas flow path section 39 and a sterilization / decomposition flow path section 40. FIG. Depending on the selection of the gas flowing into the air or oxygen gas flow path 39, the gas suction tube 7 on the inflow side is replaced with the atmospheric suction branch 7a, the ozone-containing air suction branch 7b, the ozone-containing oxygen gas suction shown in FIG. The gas suction pipe 7a connected to the branch pipe 7c is connected to the gas suction port 10a of the swirling flow type micro / nano bubble generating apparatus 10, and vacuum ultraviolet rays having a wavelength of 200 nm generated by the field emission lamp 41 are projected. Oxygen gas is irradiated from the light windows 41Aa and 41Ba to the oxygen gas flowing down the air or the oxygen gas flow channel 39 to be ozonized. The vacuum ultraviolet light is transmitted through a gas such as air or oxygen gas, irradiated to the deep ultraviolet light emitting body 43 coated with the deep ultraviolet light emitting phosphor 42, and the deep ultraviolet light emitting phosphor coated on the deep ultraviolet light emitting body 43. 42 emits deep ultraviolet light having a main wavelength of 260 nm, sterilizes or decomposes contaminants by irradiating the sterilization target liquid in the sterilization / decomposition flow path 40 and irradiates the porous body 44 coated with a photocatalyst Or decompose pollutants. In the present embodiment, the field emission lamp 41 is exemplified as the vacuum ultraviolet irradiation means, but it may be a vacuum ultraviolet light emitting LED, a microplasma excitation ultraviolet light emitting element, or an excimer lamp, and is not limited at all.

図11は第八発明の第1の実施例に係わる概略説明図であって、(a)は旋回流型のマイクロ・ナノバブル発生装置を船外推進手段とした概略説明縦断面図で、(b)は(a)における概略説明C−C縦断面図で、小型船45に装備した船外機46の推進手段として旋回流型のマイクロ・ナノバブル発生装置10を配設している。そして、循環ポンプ11の吐出側配管11aを前記旋回流型のマイクロ・ナノバブル発生装置10に圧力水を供給し、該旋回流型のマイクロ・ナノバブル発生装置10の気体吸引口10aに連通接続している。   FIG. 11 is a schematic explanatory view according to the first embodiment of the eighth invention, wherein (a) is a schematic vertical sectional view of a swirling flow type micro / nano bubble generating device as an outboard propulsion means, (b ) Is a longitudinal cross-sectional view taken along the line CC in (a), in which a swirling flow type micro / nano bubble generating device 10 is disposed as a propulsion means for the outboard motor 46 equipped in the small boat 45. Then, the discharge pipe 11a of the circulation pump 11 is connected to the gas suction port 10a of the swirling flow type micro / nano bubble generating device 10 by supplying pressure water to the swirling flow type micro / nano bubble generating device 10. Yes.

図12は第九発明の第1の実施例に係わる概略説明図であって、(a)は旋回流型のマイクロ・ナノバブル発生装置10の概略説明縦断面図で、(b)は(a)における概略説明C−C断平面図で、実施例1の図1に記載の循環ポンプ11に接続する吐出側配管11aが、液体流入口である液体流入ソケット47に連通接続され、加圧液体が圧力室48に流入する。前記吐出側配管11a及び液体流入ソケット47の流路断面積よりも圧力室48の流路断面積は、はるかに大きいので、前記吐出側配管11aにおける速度水頭エネルギーの一部は、圧力室48における圧力水頭エネルギーに変換され、前記圧力室48における、液体流速は減少するので、流体摩擦損出は減少する。該圧力室48の高圧力液が、液噴出ノズル49から、旋回流室50を構成する円錐筒体51における内壁面51aに沿う接線方向へ噴射され、前記旋回流室50に旋回流が生成し、遠向心分離作用により、前記円錐筒体51の筒心位置付近に形成される旋回空洞部52へ、中蓋53に削孔した気体吸引口53aから気体が吸引され、前記旋回空洞部52を形成する。気体と液体との比重差により、気体には向心力が作用し、液体には遠心力が作用する前記遠向心分離作用として、表現した。前記気体吸引口53aへ吸引される気体は、気体流入ソケット54及び気体吸引配管7で吸引されるが、該気体吸引配管7の図示してない吸引側は、空気を吸引する場合には、大気に解放され、酸素ガスを吸引する場合には、酸素ボンベ又は酸素冨化装置に接続され、オゾンガスを吸引する場合には、オゾン発生装置に接続される。ここで、前記旋回流型のマイクロ・ナノバブル発生装置10の構造を説明する。前記圧力室48を内包した最外殻を構成する部材として、円筒胴体55の両端55a、55bに、配管用規格のキャップ56A、56Bを螺合接続して、最外殻胴体57を構成する。前記中蓋53は、円錐胴体51の一端51aに螺合した、プレス加工製のキャップ58に、前記気体吸引口53aが旋回流室50に向かう方向で熔着され、前記キャッ58プには、さらに、前記気体流入ソケット54を、熔着している。本実施例では、プレス加工製のキャップ58としているが、ヘラ絞り加工製としてもよく、又は、配管用規格のキャップを使用出来るが、該配管規格のキャップを適用する場合は、該キャップと円筒胴体57とで構成する液流路の断面積の減少が、流体抵抗を増大させないように前記円筒胴体57のサイズを一ランク上げる考慮も必要となる。前記キャップ56Aの軸芯位置にOリング59用の溝56Aaを削孔すると共に、六角ニップル60を挿入する孔56Abを削孔する。又、前記キャップ56Bの軸芯位置に、配管用規格の径違いソケット61を熔着し、該ソケット61の一端61aに前記円錐筒体51の他端51bを螺合する。そして、前記六角ニップル60を、孔56Abに挿入すると共に気体流入ソケット54にねじ込むと、前記円錐筒体51を固着すると共に水密性と気密性が保持される。前記液体流入ソケット47から高圧水が圧力室48へ導入されると、液噴出ノズル49から旋回流室50へ高速水が噴出して液体旋回流が生成し、前記径違いソケット61の気液二相流吐出口61aへ向かい、又、気体吸引口53aから吸引された気体は、旋回空洞部52を生成して、前記気液二相流吐出口61aへ向かい、該気液二相流吐出口61aから、周囲環境の液中に噴出されると、流速が急激に減少し、微細気泡が生成する。   FIG. 12 is a schematic explanatory view according to the first embodiment of the ninth invention, wherein (a) is a schematic vertical sectional view of the swirling flow type micro / nano bubble generating device 10, and (b) is (a). In FIG. 1, the discharge side pipe 11 a connected to the circulation pump 11 shown in FIG. 1 of the first embodiment is connected in communication with a liquid inflow socket 47 that is a liquid inlet, and pressurized liquid is supplied. It flows into the pressure chamber 48. Since the flow passage cross-sectional area of the pressure chamber 48 is much larger than the flow passage cross-sectional area of the discharge side pipe 11 a and the liquid inflow socket 47, a part of the velocity head energy in the discharge side pipe 11 a is in the pressure chamber 48. Since it is converted to pressure head energy and the liquid flow velocity in the pressure chamber 48 is reduced, fluid friction loss is reduced. The high pressure liquid in the pressure chamber 48 is ejected from the liquid ejection nozzle 49 in a tangential direction along the inner wall surface 51 a of the conical cylinder 51 constituting the swirling flow chamber 50, and swirling flow is generated in the swirling flow chamber 50. The gas is sucked from the gas suction port 53a drilled in the inner lid 53 into the swirl cavity 52 formed near the cylinder center position of the conical cylinder 51 by the far-center separation action, and the swirl cavity 52 Form. The centripetal force acts on the gas due to the specific gravity difference between the gas and the liquid, and is expressed as the far centripetal separation action where the centrifugal force acts on the liquid. The gas sucked into the gas suction port 53a is sucked by the gas inflow socket 54 and the gas suction pipe 7, but the suction side (not shown) of the gas suction pipe 7 is in the atmosphere when sucking air. When oxygen gas is sucked and connected to an oxygen cylinder or an oxygen hatching device, it is connected to an ozone generator when ozone gas is sucked. Here, the structure of the swirl type micro / nano bubble generator 10 will be described. As members constituting the outermost shell including the pressure chamber 48, pipe-standard caps 56A and 56B are screwed and connected to both ends 55a and 55b of the cylindrical body 55 to constitute the outermost shell body 57. The inner lid 53 is welded to a press-processed cap 58 screwed into one end 51a of the conical body 51 in a direction in which the gas suction port 53a faces the swirling flow chamber 50. Further, the gas inflow socket 54 is welded. In this embodiment, the press-processed cap 58 is used. However, a spatula-drawn cap may be used, or a pipe standard cap can be used. When the pipe standard cap is applied, the cap and the cylinder are used. It is also necessary to consider raising the size of the cylindrical body 57 by one rank so that the reduction in the cross-sectional area of the liquid flow path constituted by the body 57 does not increase the fluid resistance. A groove 56Aa for the O-ring 59 is drilled at the axial center position of the cap 56A, and a hole 56Ab into which the hexagon nipple 60 is inserted is drilled. In addition, a pipe standard different diameter socket 61 is welded to the axial center position of the cap 56B, and the other end 51b of the conical cylinder 51 is screwed into one end 61a of the socket 61. When the hexagonal nipple 60 is inserted into the hole 56Ab and screwed into the gas inflow socket 54, the conical cylinder 51 is fixed and watertightness and airtightness are maintained. When high-pressure water is introduced into the pressure chamber 48 from the liquid inflow socket 47, high-speed water is ejected from the liquid ejection nozzle 49 into the swirling flow chamber 50 to generate a liquid swirling flow. The gas that is directed to the phase flow discharge port 61a and sucked from the gas suction port 53a generates a swirl cavity 52, and is directed to the gas-liquid two-phase flow discharge port 61a. When the liquid is ejected from the liquid 61a in the surrounding environment, the flow velocity is rapidly reduced and fine bubbles are generated.

図13は第九発明の第2の実施例に係わる概略説明図であって、(a)は旋回流型のマイクロ・ナノバブル発生装置10の概略説明縦断面図で、(b)は(a)における概略説明D−D断平面図で、本実施例においては、主に、螺合接合で構成しているが、図13に示すごとく、円筒胴体55にフランジ62を配設すると共に円錐胴体51と中蓋53を鏡板63で押圧封止する構成とすることも出来る。   FIG. 13 is a schematic explanatory view according to the second embodiment of the ninth invention, wherein (a) is a schematic vertical sectional view of the swirling flow type micro / nano bubble generating device 10, and (b) is (a). FIG. 13 is a schematic sectional view taken along the line D-D. In this embodiment, it is mainly constituted by a screw joint. However, as shown in FIG. Also, the inner lid 53 can be configured to be pressed and sealed with the end plate 63.

図14は第十発明の第1の実施例に係わる概略説明図であって、大気中空気を吸引し、空気中酸素分子をオゾン化する、(a)はオゾン発生装置8で空気を対象気体として、酸素分子をオゾン化する概略説明平断面図で、(b)は前記オゾン発生装置で酸素ガスを対象気体として、酸素分子をオゾン化する概略説明平断面図である。先ず(a)において、実施例1の図1と同様に、深紫外線を発光する光源として深紫外発光LED2を備える。該深紫外発光LED2は、220nmの波長領域に中心波長を有する深紫外線を放射する発光チップ3を備えると共に発光チップ3の発光を収束する集光レンズ4を備える。前記深紫外発光LED2は、発光チップ3の発光を集光レンズ4で収束して、前記深紫外発光LED2の近距離前方を通過する空気に含有されている酸素分子にピンポイントで照射して酸素分子をオゾン化する。しかし、220nmの波長領域に中心波長を有する深紫外線では、酸素分子をオゾン化するには、光量子エネルギーが弱く、前記スリーブ6内を流下する酸素分子の大部分は、酸素分子のままで流下するが、前記スリーブ6の外周にソレノイドコイル64を巻き付け、中周波交流電源65で、中周波交流電力を印加すると、220nm波長の深紫外発光LED2によっては、前記酸素分子が解離するエネルギーレベルに達してない該酸素分子に、前記ソレノイドコイル64による中周波交番磁界が作用すると、前記酸素分子は、活発に振動し、解離して酸素原子、イオン及び自由電子を生成し、該酸素原子は、他の酸素分子と結合して、オゾンを生成する。前記自由電子も活発に振動し、酸素分子を励起し、活発にオゾンを生成する。又、前記ソレノイドコイル64に生成する中周波交番磁界により、常磁性体の酸素分子は、強力に磁化し、図示してない旋回流型のマイクロ・ナノバブル発生装置の吸引作用と相まって、前記スリーブ6内に吸引され、窒素分子は、反磁性体であるので、空気から排斥され、前記スリーブ6内に流入する空気は、酸素が豊富になった、酸素冨化空気となる。次に(b)においても、オゾン発生装置8で、図示してない酸素ガス供給源から供給される酸素ガスを対象気体として、酸素分子をオゾン化するオゾンの生成機構は、(a)と同様であるが、図示してないマイクロ・ナノバブル発生装置に吸引される気体は、オゾンだけであるので、殺菌、洗浄及び生理活性機能に富んだ機能液とすることが出来る。   FIG. 14 is a schematic explanatory view according to the first embodiment of the tenth aspect of the present invention, which sucks air in the atmosphere and ozonizes oxygen molecules in the air. FIG. 4 is a schematic cross-sectional view schematically illustrating ozonization of oxygen molecules, and (b) is a schematic cross-sectional view schematically illustrating oxygenation of oxygen molecules using the ozone generator as an object gas. First, in (a), as in FIG. 1 of Example 1, a deep ultraviolet light emitting LED 2 is provided as a light source that emits deep ultraviolet light. The deep ultraviolet light emitting LED 2 includes a light emitting chip 3 that emits deep ultraviolet light having a central wavelength in a wavelength region of 220 nm and a condensing lens 4 that converges light emitted from the light emitting chip 3. The deep ultraviolet light emitting LED 2 converges the light emitted from the light emitting chip 3 by the condenser lens 4 and irradiates oxygen molecules contained in the air passing through the short distance forward of the deep ultraviolet light emitting LED 2 at a pinpoint. Ozonize molecules. However, in deep ultraviolet rays having a central wavelength in the wavelength region of 220 nm, the photon energy is weak to ozonize oxygen molecules, and most of the oxygen molecules flowing down in the sleeve 6 flow down as oxygen molecules. However, when a solenoid coil 64 is wound around the outer periphery of the sleeve 6 and a medium frequency AC power is applied by a medium frequency AC power supply 65, an energy level at which the oxygen molecules are dissociated is reached depending on the 220 nm wavelength deep ultraviolet light emitting LED2. When an intermediate frequency alternating magnetic field generated by the solenoid coil 64 acts on the oxygen molecule, the oxygen molecule vibrates actively and dissociates to generate oxygen atoms, ions, and free electrons. Combines with oxygen molecules to produce ozone. The free electrons also vibrate actively, excite oxygen molecules and actively generate ozone. Further, due to the medium frequency alternating magnetic field generated in the solenoid coil 64, the paramagnetic oxygen molecules are strongly magnetized, and coupled with the attraction action of the swirling flow type micro / nano bubble generator (not shown), the sleeve 6 Since the nitrogen molecules sucked into the inside are diamagnetic materials, they are exhausted from the air, and the air flowing into the sleeve 6 becomes oxygen enriched air enriched in oxygen. Next, also in (b), the ozone generation device 8 uses the oxygen gas supplied from an oxygen gas supply source (not shown) as a target gas, and the ozone generation mechanism that ozone-converts oxygen molecules is the same as in (a). However, since the only gas sucked into the micro / nano bubble generating apparatus (not shown) is ozone, it can be a functional liquid rich in sterilization, cleaning, and physiological activity functions.

図15は第十一発明の第1の実施例に係る概略説明図であって、オゾン発生装置8は、スリーブ6内に、紫外発光LEDは、220nmの波長領域に中心波長を有する深紫外線を放射する発光チップ3を備えると共に発光チップ3の発光を収束する集光レンズ4を備えた、深紫外発光LED2を配設していて、さらに、酸素分子をオゾン化する能力を向上させるために、中周波交流電源65で中周波交番磁界を発生するソレノイドコイル64をスリーブ6の外周に巻き付けている。前項の実施例においては、前記スリーブ6への吸気は、大気中の空気であったが、本実施例では、酸素冨化空気を吸気する為に、中空糸膜66aを内設した酸素冨化装置66を、酸素冨化空気吸引支管7eに連通接続している。前記中空糸膜66aは、空気中の酸素よりも、水蒸気等の水分を優先して透過しやすいと共に窒素が透過し難い性能を有するので、吸入空気を冷却して結露水を生成するために、ヒートパイプ67の冷却部67aを配設した冷却装置68を、前記酸素冨化空気吸引支管7eの空気吸引端7fに連通接続する。前記冷却装置68に生成した結露水は、該冷却装置68に連通接続したドレン排出器69で排出される。前記冷却装置68を流下した乾き空気中の塵埃を除去し、前記中空糸膜66aの細孔が、目詰まりするのを防止するために、ダストフイルター70に連通接続する。そして、該ダストフイルター70と前記酸素冨化装置66との間に、前記ヒートパイプ67の加熱部67bを配設した加熱装置71を連通接続して、前記乾き空気を加熱し、前記中空糸膜66aを透過する酸素に対する、透過妨害要因を排除する。本実施例では、空気の冷却と加熱に、ヒートパイプ67の冷却部67aと加熱部67bを配設して例示しているが、ヒートポンプ冷暖房装置における、蒸発部と凝縮部とすることも出来る。前記中空糸膜66aの内部よりも外部の圧力を低くし、酸素を透過しやすくするために、前記酸素冨化装置66に後置したブロワー72を、気体吸引管7に連通接続する。前記中空糸膜66aの内部よりも外部の圧力を低くする吸引力としては、前記ブロワー72と旋回流型のマイクロ・ナノバブル発生装置10の吸引力が作用する。   FIG. 15 is a schematic explanatory view according to the first embodiment of the eleventh aspect of the present invention. The ozone generator 8 includes a sleeve 6 and an ultraviolet LED emits deep ultraviolet light having a central wavelength in a wavelength region of 220 nm. In order to improve the ability to ozonize oxygen molecules, further comprising a deep ultraviolet light emitting LED 2 having a light emitting chip 3 that radiates and a condensing lens 4 that converges the light emission of the light emitting chip 3. A solenoid coil 64 that generates an intermediate frequency alternating magnetic field by an intermediate frequency AC power source 65 is wound around the outer periphery of the sleeve 6. In the embodiment of the preceding paragraph, the intake to the sleeve 6 was air in the atmosphere. However, in this embodiment, in order to inhale the oxygen-enriched air, the oxygen-enriched with a hollow fiber membrane 66a provided therein. The device 66 is connected in communication with the oxygen enriched air suction branch 7e. Since the hollow fiber membrane 66a has a performance that allows moisture such as water vapor to preferentially permeate over oxygen in the air and does not easily permeate nitrogen, in order to cool the intake air and generate condensed water, A cooling device 68 provided with a cooling portion 67a of the heat pipe 67 is connected in communication with the air suction end 7f of the oxygen enriched air suction branch 7e. Condensed water generated in the cooling device 68 is discharged by a drain discharger 69 connected to the cooling device 68. In order to remove dust in the dry air flowing down the cooling device 68 and prevent the pores of the hollow fiber membrane 66a from being clogged, the dust filter 70 is connected in communication. A heating device 71 provided with a heating portion 67b of the heat pipe 67 is connected between the dust filter 70 and the oxygen hatching device 66 to heat the dry air, and the hollow fiber membrane. Eliminating permeation factors for oxygen permeating 66a. In the present embodiment, the cooling part 67a and the heating part 67b of the heat pipe 67 are provided for cooling and heating the air, but it can also be an evaporation part and a condensation part in the heat pump air conditioner. In order to make the pressure outside the hollow fiber membrane 66a lower than the inside of the hollow fiber membrane 66a and to facilitate the permeation of oxygen, a blower 72 placed behind the oxygen hatching device 66 is connected in communication with the gas suction pipe 7. As the suction force for lowering the pressure outside the hollow fiber membrane 66a, the suction force of the blower 72 and the swirling flow type micro / nano bubble generating device 10 acts.

図16、は、第十二発明の第1の実施例に係わる概略説明図であって、循環式水耕栽培における高設式栽培ベッド17に機能液貯槽9Aに貯液した培養液73を給液ポンプ74で、先下がりの勾配を有する高設式栽培ベッド17に揚液している。栽培植物に養分を吸収され、養分組成が変化すると共に雑菌が繁殖している廃培養液は、廃培養液槽75に流下し、廃液ポンプ76で、紫外線殺菌・紫外線応答型光触媒廃液処理装置77Aの潜り堰78aを配設した流量調整槽78へ揚液する。前記潜り堰78aで整流された被処理水は、複数のVノッチ加工した第一越流堰78bで流量調整されて、紫外線殺菌・紫外線応答型光触媒廃液処理槽79Aに流下する。前記給液ポンプ74は、流量可変の定流量ポンプとすることも出来る(以下同様)。該紫外線殺菌・紫外線応答型光触媒廃液処理槽79Aの側壁79Aaと底板79Abには、紫外線殺菌・紫外線応答型光触媒が塗布固着され、前記底板79Abに直立して、紫外線殺菌・紫外線応答型光触媒を塗布固着した光透過性多孔質セラミック板80が配設されると共に260nmに主波長を有する複数の深紫外発光LED2を基板6に配設し、水密石英ガラス管81に収納して構成した水密深紫外線灯82を配設している。前記流量調整槽78と紫外線殺菌・紫外線応答型光触媒廃液槽79Aの上部には、紫外線が漏出して、人体への危険が生じることを防止する遮光蓋83が配設されているが、前記水密紫外線灯82を図示してない手動スイッチだけで点滅せずに、遮光蓋83の開閉に伴って前記水密紫外線灯82を点滅する近接スイッチ84を配設している。被処理水が前記紫外線殺菌・紫外線応答型光触媒廃液槽79Aでの処理を終えた処理水は、複数のVノッチ加工した第二越流堰78cを流下し、一時処理水貯留ピット78dを経由して流下し、機能液貯槽9Bに貯留される。該機能液貯槽9B内の処理水は、養分組成が崩れているので、組成調整して機能液貯槽9Aへ、移流ポンプ85で移流されるが、該移流ポンプ85の移流管85aの吐出口85bにマイクロ・ナノバブル発生装置10を配設して溶存酸素を供給している。該マイクロ・ナノバブル発生装置19においては、大気中の空気を吸引してマイクロ・ナノバブルを生成しているが、植物又は魚介類の細胞活性を促すとされる、酸素供給装置から酸素を吸引してマイクロ・ナノバブルを生成することも出来る(以下同様)。   FIG. 16 is a schematic explanatory view according to the first embodiment of the twelfth aspect of the present invention, and supplies the culture solution 73 stored in the functional liquid storage tank 9A to the elevated culture bed 17 in the circulation hydroponics. The liquid pump 74 pumps the liquid to the elevated cultivation bed 17 having a downward slope. The waste culture solution in which nutrients are absorbed by the cultivated plant, the nutrient composition is changed, and various germs are propagated flows down to the waste culture solution tank 75, and the waste liquid pump 76 uses the ultraviolet sterilization / ultraviolet response photocatalyst waste liquid treatment device 77A. The liquid is pumped to the flow rate adjusting tank 78 provided with the diving weir 78a. The water to be treated rectified by the submerged weir 78a is adjusted in flow rate by a plurality of first V-notched first overflow weirs 78b and flows down to the ultraviolet sterilization / ultraviolet responsive photocatalyst waste liquid treatment tank 79A. The liquid supply pump 74 may be a constant flow rate pump with variable flow rate (the same applies hereinafter). The side wall 79Aa and the bottom plate 79Ab of the UV sterilization / UV response photocatalyst waste liquid treatment tank 79A are coated and fixed with UV sterilization / UV response photocatalyst. A water-tight deep ultraviolet light comprising a light-transmitting porous ceramic plate 80 and a plurality of deep ultraviolet light-emitting LEDs 2 having a main wavelength of 260 nm disposed on a substrate 6 and housed in a water-tight quartz glass tube 81. A lamp 82 is provided. A light-shielding lid 83 is disposed above the flow rate adjusting tank 78 and the UV sterilization / UV-responsive photocatalyst waste liquid tank 79A to prevent ultraviolet rays from leaking and causing danger to the human body. A proximity switch 84 is provided that blinks the watertight ultraviolet lamp 82 in accordance with the opening and closing of the light shielding lid 83 without blinking the ultraviolet lamp 82 only by a manual switch (not shown). The treated water that has been treated in the ultraviolet sterilization / ultraviolet-responsive photocatalyst waste tank 79A flows down the plurality of V-notched second overflow weirs 78c and passes through the temporarily treated water storage pits 78d. And then stored in the functional liquid storage tank 9B. Since the nutrient composition of the treated water in the functional liquid storage tank 9B is broken, the composition is adjusted and transferred to the functional liquid storage tank 9A by the transfer pump 85, but the discharge port 85b of the transfer pipe 85a of the transfer pump 85 is used. The micro / nano bubble generating device 10 is provided to supply dissolved oxygen. In the micro / nano bubble generation device 19, air in the atmosphere is sucked to generate micro / nano bubbles, but oxygen is sucked from an oxygen supply device, which is supposed to promote the cell activity of plants or seafood. Micro / nano bubbles can also be generated (the same applies hereinafter).

図17は第十二発明の第2の実施例に係わる概略説明図であって、実施例1の図1と同様の循環式水耕栽培における高設式栽培ベッド17に機能液貯槽9Aに貯液した培養液73を給液ポンプ74で、先下がりの勾配を有する高設式栽培ベッド17に揚液している。栽培植物に養分を吸収され、養分組成が変化すると共に雑菌が繁殖している廃培養液は、廃培養液槽75に流下し、廃液ポンプ76で、可視光線殺菌・可視光線応答型光触媒廃液処理装置86Aの潜り堰78aを配設した流量調整槽78へ揚液する。前記潜り堰78aで整流された被処理水は、複数のVノッチ加工した第一越流堰78bで流量調整されて、可視光線殺菌・可視光線応答型光触媒槽87Aに流下する。該可視光線殺菌・可視光線応答型光触媒廃液処理槽87Aの底板87Abには、可視光線応答型光触媒が塗布固着され、前記底板87Abに直立して、可視光線殺菌・可視光線応答型光触媒を塗布固着した光透過性多孔質セラミック板80が配設されると共に可視光線発光LEDを内設した防水性集魚灯88を配設している。被処理水が前記可視光線線殺菌・可視線応答型光触媒廃液処理槽87Aでの処理を終えた処理水は、複数のVノッチ加工した第二越流堰78cを流下し、一時処理水貯留ピット78dを経由して流下し、機能液貯槽9Bに貯留される。該機能液貯槽9B内の処理水は、養分組成が崩れているので、組成調整して機能液貯槽9Aへ、移流ポンプ85で移流されるが、該移流ポンプ85の移流管85aの吐出口85bにマイクロ・ナノバブル発生装置10を配設して溶存酸素を供給している。   FIG. 17 is a schematic explanatory view according to the second embodiment of the twelfth aspect of the present invention, and is stored in the functional liquid storage tank 9A in the elevated culture bed 17 in the circulating hydroponics similar to FIG. The cultivated culture solution 73 is pumped by the feed pump 74 to the upright cultivation bed 17 having a downward slope. The waste culture liquid in which the nutrients are absorbed by the cultivated plant, the nutrient composition is changed, and the germs are propagated flows down to the waste culture liquid tank 75 and is treated with the visible light sterilization / visible light response type photocatalytic waste liquid by the waste liquid pump 76. The liquid is pumped to the flow rate adjusting tank 78 provided with the diving weir 78a of the device 86A. The water to be treated rectified by the submerged weir 78a is adjusted in flow rate by a plurality of V-notched first overflow weirs 78b and flows down to the visible light sterilization / visible light responsive photocatalyst tank 87A. A visible light responsive photocatalyst is applied and fixed to the bottom plate 87Ab of the visible light sterilizing / visible light responsive photocatalyst waste liquid treatment tank 87A, and the visible light sterilizing / visible light responsive photocatalyst is applied and fixed upright on the bottom plate 87Ab. A light-transmitting porous ceramic plate 80 is disposed, and a waterproof fish-collecting lamp 88 having a visible light-emitting LED is disposed. The treated water that has been treated in the visible light ray sterilization / visible ray responsive photocatalyst waste liquid treatment tank 87A flows down a plurality of V-notched second overflow weirs 78c, and temporarily treated water storage pits It flows down via 78d and is stored in the functional liquid storage tank 9B. Since the nutrient composition of the treated water in the functional liquid storage tank 9B is broken, the composition is adjusted and transferred to the functional liquid storage tank 9A by the transfer pump 85, but the discharge port 85b of the transfer pipe 85a of the transfer pump 85 is used. The micro / nano bubble generating device 10 is provided to supply dissolved oxygen.

図18は第十三発明の第1の実施例に係わる概略説明図であって、実施例1の図1と同様の循環式水耕栽培における高設式栽培ベッド17に機能液貯槽9Aに貯液した培養液73を給液ポンプ74で、先下がりの勾配を有する高設式栽培ベッド17に揚液している。栽培植物に養分を吸収され、養分組成が変化すると共に雑菌が繁殖している廃培養液は、廃培養液槽75に流下し、廃液ポンプ76で、紫外線殺菌・紫外線応答型光触媒廃液処理装置77Bの潜り堰78aを配設した流量調整槽78へ揚液する。前記潜り堰78aで整流された被処理水は、複数のVノッチ加工した第一越流堰78bで流量調整されて、紫外線殺菌・紫外線応答型光触媒槽79Bに流下する。該紫外線殺菌・紫外線応答型光触媒廃液処理槽79Bの側壁79Baと底板79Bbには、紫外線応答型光触媒が塗布固着され、下方底方向へ分流させるために、紫外線応答型光触媒が塗布固着された光透過性多孔質セラミック板80を、底板79Bbに削孔した分流孔79Bcを貫通して配設する。前記光透過性多孔質セラミック板80の上端80aは、液面下に水没すると共に流量調整開孔キャップ89で被覆され、被処理液が流量調整して流下し、前記分流孔79Bcよりも下方部分の光透過性多孔質セラミック板80は、大気中に露出して配設されるが、前記光透過性多孔質セラミック板80には、紫外線応答型光触媒を塗布固着する。前記光透過性多孔質セラミック板80は、紫外線応答型光触媒が塗布固着されているため、光触媒が光励起するので、超親水化し、流下液の膜厚が極力に薄く調整可能である。該極薄く調整された流下液に紫外線が照射されると、該紫外線が微生物の核酸に作用して微生物を殺菌すると共に紫外線応答型光触媒を照射し、該光触媒を光励起して、OHラジカル等を生成して、微生物又は有害有機物を酸化分解する。前記光透過性多孔質セラミック板80及び該光透過性多孔質セラミック板80に沿って流下する被処理液を照射する紫外線灯としては、実施例1の図1における水密深紫外灯82を配設している。前記紫外線殺菌・紫外線応答型光触媒廃液処理槽79Bでの処理を終えた処理水は、オーバーフロー移流管90を流下して機能液貯槽9Bに貯留される。該機能液貯槽9B内の処理水は、養分組成が崩れているので、組成調整して機能液貯槽9Aへ、移流ポンプ85で移流されるが、該移流ポンプ85の移流管85aの吐出口85bにマイクロ・ナノバブル発生装置10を配設して溶存酸素を供給している。   FIG. 18 is a schematic explanatory view according to the first embodiment of the thirteenth invention, and is stored in the functional liquid storage tank 9A in the elevated culture bed 17 in the circulating hydroponics similar to FIG. The cultivated culture solution 73 is pumped by the feed pump 74 to the upright cultivation bed 17 having a downward slope. The waste culture liquid in which the nutrients are absorbed by the cultivated plant, the nutrient composition is changed, and the germs are propagated flows down into the waste culture liquid tank 75, and the waste liquid pump 76 uses the UV sterilization / UV response photocatalyst waste liquid treatment apparatus 77B. The liquid is pumped to the flow rate adjusting tank 78 provided with the diving weir 78a. The water to be treated rectified by the diving weir 78a is adjusted in flow rate by the first overflow weir 78b having a plurality of V-notches and flows down to the ultraviolet sterilization / ultraviolet response photocatalyst tank 79B. The side wall 79Ba and the bottom plate 79Bb of the ultraviolet sterilization / ultraviolet responsive photocatalyst waste liquid treatment tank 79B are coated and fixed with an ultraviolet responsive photocatalyst. The porous porous ceramic plate 80 is disposed through the diversion holes 79Bc drilled in the bottom plate 79Bb. An upper end 80a of the light-transmitting porous ceramic plate 80 is submerged under the liquid surface and covered with a flow rate adjusting hole cap 89, and the liquid to be treated flows down with the flow rate adjusted, and is located below the flow dividing hole 79Bc. The light-transmitting porous ceramic plate 80 is disposed so as to be exposed to the atmosphere, and an ultraviolet-responsive photocatalyst is applied and fixed to the light-transmitting porous ceramic plate 80. Since the light-transmitting porous ceramic plate 80 is coated and fixed with an ultraviolet-responsive photocatalyst, the photocatalyst is photoexcited, so that it becomes superhydrophilic and the film thickness of the falling liquid can be adjusted as thin as possible. When the ultra-thin adjusted flow-down solution is irradiated with ultraviolet rays, the ultraviolet rays act on the nucleic acids of the microorganisms to sterilize the microorganisms and irradiate the ultraviolet-responsive photocatalyst to photoexcite the photocatalyst to generate OH radicals, etc. It produces and oxidatively decomposes microorganisms or harmful organic substances. As the ultraviolet lamp for irradiating the light-transmitting porous ceramic plate 80 and the liquid to be processed flowing along the light-transmitting porous ceramic plate 80, the watertight deep ultraviolet lamp 82 in FIG. doing. The treated water that has been treated in the ultraviolet sterilization / ultraviolet responsive photocatalyst waste liquid treatment tank 79B flows down the overflow advection pipe 90 and is stored in the functional liquid storage tank 9B. Since the nutrient composition of the treated water in the functional liquid storage tank 9B is broken, the composition is adjusted and transferred to the functional liquid storage tank 9A by the transfer pump 85, but the discharge port 85b of the transfer pipe 85a of the transfer pump 85 is used. The micro / nano bubble generating device 10 is provided to supply dissolved oxygen.

図19は第十三発明の第2の実施例に係わる概略説明図であって、実施例1の図1と同様の循環式水耕栽培における高設式栽培ベッド17に機能液貯槽9Aに貯液した培養液73を給液ポンプ74で、先下がりの勾配を有する高設式栽培ベッド17に揚液している。栽培植物に養分を吸収され、養分組成が変化すると共に雑菌が繁殖している廃培養液は、廃培養液槽75に流下し、廃液ポンプ76で、可視光線殺菌・可視光線応答型光触媒廃液処理装置86Bの潜り堰78aを配設した流量調整槽78へ揚液する。前記潜り堰78aで整流された被処理水は、複数のVノッチ加工した第一越流堰78bで流量調整されて、可視光線殺菌・可視光線応答型光触媒槽87Bに流下する。該可視光線殺菌・可視光線応答型光触媒廃液処理槽87Bの側壁87Baと底板87Bbには、可視光線応答型光触媒が塗布固着され、下方底方向へ分流させるために、可視光応答型光触媒が塗布固着された光透過性多孔質セラミック板80を、底板80Bbに削孔した分流孔80Bcを貫通して配設する。前記光透過性多孔質セラミック板80の上端80aは、液面下に水没すると共に流量調整開孔キャップ89で被覆され、被処理液が流量調整して流下し、前記分流孔80Bcよりも下方部分の光透過性多孔質セラミック板80は、大気中に露出して配設されるが、前記光透過性多孔質セラミック板80には、可視光応答型光触媒を塗布固着する。前記光透過性多孔質セラミック板80は、可視光応答型光触媒が塗布固着されているため、光触媒が光励起するので、超親水化し、流下液の膜厚が極力に薄く調整可能である。該極薄く調整された流下液に自然光が照射されると、該自然光に含有する紫外線が微生物の核酸に作用して微生物を殺菌すると共に可視光応答型光触媒を照射し、該光触媒を光励起して、OHラジカル等を生成して、微生物又は有害有機物を酸化分解する。前記光透過性多孔質セラミック板80及び該光透過性多孔質セラミック板80に沿って流下する被処理液を照射する自然光は、採光部91a、導光部91b、分岐部91c、照射部92dで構成する液体ライトガイドシステム91で採光、導光及び照射するが、自然光を採光不能な曇り又は雨模様に際しては、図示してない照度センサーにより制御されて、自然光が採光不能であれば、駆動装置92により、可視光波長を有する可視光LED投光装置93の光源が、前記採光部91aの上方に移動して点灯し、前記液体ライトガイドシステム91の採光部91aに採光されて、導光及び照射される。前記可視光線殺菌・可視線応答型光触媒槽87Bでの処理を終えた処理水は、オーバーフロー移流管90を流下して機能液貯槽9Bに貯留される。該機能液貯槽9B内の処理水は、養分組成が崩れているので、組成調整して機能液貯槽9Aへ、移流ポンプ85で移流されるが、該移流ポンプ85の移流管85aの吐出口85bにマイクロ・ナノバブル発生装置10を配設して溶存酸素を供給している。   FIG. 19 is a schematic explanatory view according to the second embodiment of the thirteenth invention, and is stored in the functional liquid storage tank 9A in the elevated culture bed 17 in the circulation hydroponics similar to FIG. The cultivated culture solution 73 is pumped by the feed pump 74 to the upright cultivation bed 17 having a downward slope. The waste culture liquid in which the nutrients are absorbed by the cultivated plant, the nutrient composition is changed, and the germs are propagated flows down to the waste culture liquid tank 75 and is treated with the visible light sterilization / visible light response type photocatalytic waste liquid by the waste liquid pump 76. The liquid is pumped to the flow rate adjusting tank 78 provided with the diving weir 78a of the device 86B. The water to be treated rectified by the diving weir 78a is adjusted in flow rate by a plurality of V-notched first overflow weirs 78b and flows down to the visible light sterilization / visible light responsive photocatalyst tank 87B. The visible light responsive photocatalyst is applied and fixed to the side wall 87Ba and the bottom plate 87Bb of the visible light sterilization / visible light responsive photocatalyst waste liquid treatment tank 87B, and the visible light responsive photocatalyst is applied and fixed to divert downward. The light-transmitting porous ceramic plate 80 is disposed through the flow dividing hole 80Bc cut out in the bottom plate 80Bb. An upper end 80a of the light-transmitting porous ceramic plate 80 is submerged below the liquid surface and covered with a flow rate adjusting hole cap 89, and the liquid to be treated flows down with the flow rate adjusted, and a portion below the flow dividing hole 80Bc. The light transmissive porous ceramic plate 80 is disposed so as to be exposed to the atmosphere, and a visible light responsive photocatalyst is applied and fixed to the light transmissive porous ceramic plate 80. Since the light transmissive porous ceramic plate 80 is coated and fixed with a visible light responsive photocatalyst, the photocatalyst is photoexcited, so that it becomes superhydrophilic and the film thickness of the falling liquid can be adjusted as thin as possible. When natural light is irradiated to the flow-down solution adjusted to be extremely thin, ultraviolet rays contained in the natural light act on the nucleic acid of the microorganism to sterilize the microorganism and irradiate the visible light responsive photocatalyst to photoexcite the photocatalyst. OH radicals are generated to oxidize and decompose microorganisms or harmful organic substances. The natural light that irradiates the light-transmitting porous ceramic plate 80 and the liquid to be processed flowing along the light-transmitting porous ceramic plate 80 is received by the daylighting unit 91a, the light guide unit 91b, the branching unit 91c, and the irradiation unit 92d. The liquid light guide system 91 is configured to illuminate, guide and irradiate light. However, in the case of cloudy or rainy patterns where natural light cannot be extracted, the driving device is controlled by an illuminance sensor (not shown) and natural light cannot be collected. 92, the light source of the visible light LED floodlight 93 having a visible light wavelength is moved to the upper side of the daylighting unit 91a to be turned on, and the daylighting unit 91a of the liquid light guide system 91 is daylighted to guide the light. Irradiated. The treated water that has been treated in the visible light sterilization / visible ray responsive photocatalyst tank 87B flows down the overflow advection pipe 90 and is stored in the functional liquid storage tank 9B. Since the nutrient composition of the treated water in the functional liquid storage tank 9B is broken, the composition is adjusted and transferred to the functional liquid storage tank 9A by the transfer pump 85, but the discharge port 85b of the transfer pipe 85a of the transfer pump 85 is used. The micro / nano bubble generating device 10 is provided to supply dissolved oxygen.

図20は第十4発明に係わる概略説明図であって、 実施例1の図1と同様の循環式水耕栽培における高設式栽培ベッド17に機能液貯槽9Aに貯液した培養液73を給液ポンプ74で、先下がりの勾配を有する高設式栽培ベッド17に揚液している。栽培植物に養分を吸収され、養分組成が変化すると共に雑菌が繁殖している廃培養液は、廃培養液槽75に流下し、廃液ポンプ77で、自然光含有紫外線線殺菌・可視光線応答型光触媒廃液処理装置86Bの潜り堰78aを配設した流量調整槽78へ揚液する。前記潜り堰78aで整流された被処理水は、複数のVノッチ加工した第一越流堰78bで流量調整されて、自然光含有紫外線殺菌・可視光線応答型光触媒廃液処理槽87Bに流下する。該自然光含有紫外線殺菌・可視光線応答型光触媒槽87Bの底板87Bbには、下方底方向へ分流させるために、円筒状酸素ガス透過膜94を、底板87Bbに削孔した分流孔87Bcを貫通して配設する。前記円筒状酸素ガス透過膜94の上端94aは、液面下に水没すると共に流量調整開孔キャップ89で被覆され、被処理液が流量調整して流下し、前記分流孔87Bcよりも下方部分の円筒状酸素ガス透過膜94は、大気中に露出して配設されている。前記円筒状酸素ガス透過膜94の内部94bに、被処理水が流下すると、ベルヌーイの定理に従い前記円筒状酸素ガス透過膜94の内部94bは、円筒状酸素ガス透過膜94の外部94c周囲の大気圧よりも低圧状態となり、ヘンリーの法則に従って、空気中の酸素ガスが円筒状酸素ガス透過膜94の内部94bを流下する被処理水への溶解拡散作用が、増進する。前記自然光含有紫外線殺菌・可視光応答型光触媒廃液処理槽87Bで自然光含有紫外線殺菌・可視光応答光触媒で殺菌され、前記円筒状酸素ガス透過膜94で溶存酸素を溶解された被処理水は、機能液貯槽9Bに移流し、肥料組成を調整後、移流ポンプ85で機能液貯槽9Aへ送液される。   FIG. 20 is a schematic explanatory diagram according to the fourteenth aspect of the invention. The culture solution 73 stored in the functional liquid storage tank 9A is placed on the elevated culture bed 17 in the circulating hydroponics similar to FIG. The liquid feed pump 74 pumps the liquid to the elevated cultivation bed 17 having a downward slope. The waste culture liquid in which nutrients are absorbed by the cultivated plant, the nutrient composition is changed, and various germs are propagated flows down to the waste culture liquid tank 75, and the waste liquid pump 77 uses the natural light-containing ultraviolet ray sterilization / visible light responsive photocatalyst. The liquid is pumped to the flow rate adjusting tank 78 provided with the diving weir 78a of the waste liquid processing device 86B. The flow rate of the water to be treated rectified by the diving weir 78a is adjusted by the first overflow weir 78b having a plurality of V-notches, and flows down to the natural light containing ultraviolet sterilization / visible light responsive photocatalyst waste liquid treatment tank 87B. The bottom plate 87Bb of the natural light-containing ultraviolet sterilization / visible light responsive photocatalyst tank 87B passes through a diverting hole 87Bc having a cylindrical oxygen gas permeable film 94 drilled in the bottom plate 87Bb in order to divert it downward. Arrange. An upper end 94a of the cylindrical oxygen gas permeable membrane 94 is submerged below the liquid surface and covered with a flow rate adjusting hole cap 89, and the liquid to be processed flows down with the flow rate adjusted, and is located below the diverting hole 87Bc. The cylindrical oxygen gas permeable membrane 94 is exposed and disposed in the atmosphere. When the water to be treated flows into the inside 94b of the cylindrical oxygen gas permeable membrane 94, the inside 94b of the cylindrical oxygen gas permeable membrane 94 is large around the outside 94c of the cylindrical oxygen gas permeable membrane 94 according to Bernoulli's theorem. The pressure is lower than the atmospheric pressure, and in accordance with Henry's law, the action of dissolving and diffusing into the water to be treated where oxygen gas in the air flows down inside the cylindrical oxygen gas permeable membrane 94 is enhanced. The treated water that has been sterilized with the natural light-containing ultraviolet sterilization / visible light responsive photocatalyst in the natural light-containing ultraviolet sterilization / visible light responsive photocatalyst waste liquid treatment tank 87B, and dissolved oxygen dissolved in the cylindrical oxygen gas permeable membrane 94 is functional. After moving to the liquid storage tank 9B and adjusting the fertilizer composition, the liquid is sent to the functional liquid storage tank 9A by the advection pump 85.

図21は第十五発明に係わる概略説明図であって、図22の第20実施例における、機能液貯槽9Bに移流した被処理液を、移流ポンプ85で高置液槽95へ移流されるが、該高置液槽95の底板95bには、下方底方向へ分流させるために、円筒状酸素ガス透過膜94を、底板87Bbに削孔した分流孔87Bcを貫通して配設する。前記円筒状酸素ガス透過膜94の上端94aは、液面下に水没すると共に流量調整開孔キャップ89で被覆され、被処理液が流量調整して流下し、前記分流孔87Bcよりも下方部分の円筒状酸素ガス透過膜94は、大気中に露出して配設されている。前記円筒状酸素ガス透過膜94で溶存酸素を供給された被処理液は、高設式栽培ベッドの下部露地に配設した、培養土に粒状生分解性プラスチックを混合して生成した新たな培養土96を配設したプランター97に、培養液配液管98で施用される。尚、培養土に粒状生分解性プラスチックを混合する割合は、特に限定されず、流受生分解性プラスチックを100%とすることも出来る。   FIG. 21 is a schematic explanatory view according to the fifteenth aspect of the invention. In the twentieth embodiment of FIG. 22, the liquid to be treated transferred to the functional liquid storage tank 9B is transferred to the elevated liquid tank 95 by the transfer pump 85. However, in order to divert the bottom plate 95b of the elevated liquid tank 95 in the lower bottom direction, a cylindrical oxygen gas permeable film 94 is disposed through the diverting hole 87Bc drilled in the bottom plate 87Bb. An upper end 94a of the cylindrical oxygen gas permeable membrane 94 is submerged below the liquid surface and covered with a flow rate adjusting hole cap 89, and the liquid to be processed flows down with the flow rate adjusted, and is located below the diverting hole 87Bc. The cylindrical oxygen gas permeable membrane 94 is exposed and disposed in the atmosphere. The liquid to be treated supplied with dissolved oxygen by the cylindrical oxygen gas permeable membrane 94 is a new culture produced by mixing granular biodegradable plastics with culture soil, which is disposed in the lower open ground of an elevated cultivation bed. The plant solution 97 provided with the soil 96 is applied with a culture solution distribution pipe 98. In addition, the ratio which mixes a granular biodegradable plastic with culture soil is not specifically limited, A flow receiving biodegradable plastic can also be made into 100%.

図22は第十六発明に係わる概略説明図であって、高設式栽培ベッド17から排出する廃培養液を貯留する廃培養液槽75に配設した膜供給ポンプ99で、精密濾過膜モジュール100に、廃培養液を供給すると、膜濾過処理液は、可視光線殺菌・可視光線応答型光触媒廃液処理装置86Aの流量調整槽78へ移流され、流量調整されながら可視光線殺菌・可視光線応答型光触媒廃液処理槽87Aへ流下し、紫外線殺菌・光触媒殺菌処理されて、機能液貯槽9Bで前記膜濾過処理液の肥効を補充調整後、該機能液貯槽9Bに配設した移流ポンプ85で、吐出側配管85aに配設したマイクロ ・ナノバブル発生装置10を経てマイクロ・ナノバブル含有の気液二相流として、機能液貯槽9Aへ移流される。一方、前記廃培養液から膜濾過処理液を分離して残留して生成した濃厚汚水は、濃厚汚水貯槽101へ移流して、一時貯留され、廃棄処分される。本実施例では、自然光含有の紫外線による殺菌処理と、自然光含有の可視光線応答型光触媒殺菌処理としているが、深紫外線発効LEDによる紫外線殺菌処理と、紫外線応答型光触媒殺菌とすることも出来る。   FIG. 22 is a schematic explanatory view according to the sixteenth aspect of the invention, and is a microfiltration membrane module with a membrane supply pump 99 disposed in a waste culture solution tank 75 for storing waste culture solution discharged from the elevated cultivation bed 17. When the waste culture liquid is supplied to 100, the membrane filtration treatment liquid is transferred to the flow rate adjustment tank 78 of the visible light sterilization / visible light response type photocatalyst waste liquid treatment device 86A, and the visible light sterilization / visible light response type is adjusted while the flow rate is adjusted. After flowing down to the photocatalyst waste liquid treatment tank 87A, subjected to ultraviolet sterilization / photocatalyst sterilization treatment, and supplementing and adjusting the fertilization effect of the membrane filtration treatment liquid in the functional liquid storage tank 9B, the advection pump 85 disposed in the functional liquid storage tank 9B After passing through the micro / nano bubble generator 10 disposed in the discharge side pipe 85a, the micro / nano bubble-containing gas-liquid two-phase flow is transferred to the functional liquid storage tank 9A. On the other hand, the concentrated sewage produced by separating the membrane filtration solution from the waste culture solution is transferred to the concentrated sewage storage tank 101, temporarily stored, and discarded. In this embodiment, a sterilization treatment with natural light-containing ultraviolet light and a natural light-containing visible light responsive photocatalyst sterilization treatment are used, but an ultraviolet sterilization treatment with a deep ultraviolet light emitting LED and an ultraviolet responsive photocatalyst sterilization can also be used.

本発明は、紫外線LED2における発光チップ3の発光を、集光レンズ4で収束し、光量子の有するエネルギー密度を高めると共に酸素分子をピンポイントで照射することによりオゾンを生成し、該オゾンを旋回流型マイクロ・ナノバブル発生装置で吸引して生成する気液二相流を液中に吐出して生成するオゾンマイクロ・ナノバブル液は、安価で、安全で、省エネルギーに製造出来るので、海苔養殖、魚介類養殖、農産物栽培、食品産業、半導体デバイス用シリコンウエ―ハ製造、廃水処理、店舗及び家庭等の洗浄、殺菌及び消臭等の多彩な分野において利用することが出来る。   In the present invention, the light emitted from the light-emitting chip 3 in the ultraviolet LED 2 is converged by the condenser lens 4 to increase the energy density of the photons and to irradiate oxygen molecules at a pinpoint, thereby generating ozone and swirling the ozone. Ozone micro / nano bubble liquid produced by discharging a gas-liquid two-phase flow generated by suction using a micro / nano bubble generator into the liquid is inexpensive, safe and energy-saving, so nori culture, seafood It can be used in various fields such as aquaculture, agricultural production, food industry, silicon wafer production for semiconductor devices, wastewater treatment, store and household cleaning, sterilization and deodorization.

1 機能液製造装置
2 深紫外発光LED
3 発光チップ
4 集光レンズ
5 基板
6、6A、6B スリーブ
7 気体吸引配管
8 オゾン発生装置
6a、6Ba 空気吸気口
9、9A、9B 機能液貯槽
10、10A、10B マイクロ・ナノバブル発生装置
10a、10Aa、10Ba 気体気口
11、11A、11B 循環ポンプ
11a 吐出側配管
7a 大気吸引支管
7b 吐出側配管
12a、12b、12c、12d、15Aa、15Ab 開閉弁
7b オゾン含有空気吸引支管
7c オゾン含有酸素ガス吸引支管
7d 酸素ガス吸引支管
13 酸素ガスボンベ
14A、14B、14 水中ポンプ
15A、15B 吐出側配管
16A、16B スプレーノズル
17 高設式栽培ベッド
18 還流配管
19 海苔原藻貯蔵槽
19a ドラフトチューブ
20a 撹拌翼
20 撹拌電動減速装置
19b 下降流路部
19c 上向流路部
19d 越流堰部
19e トラフ部
21A、21B 還流配管
19e 底部
22 移送ポンプ
22a 吸込管
22b 吐出管
23 液体サイクロン
23a 脱海水原藻移送管
24 投込み型超音波振動子
25 砂ろ過槽
26 紫外線・光触媒併設殺菌装置
27 循環配管
27a 吐出口
28 循環配管系統
29 超音波洗浄装置
30 反応セル
30a 光透過壁
31 光触媒コーティングフイルター
32 光触媒層
33 マイクロプラズマ励起深紫外発光素子
34、41A、41B フイールドエミッションランプ
34a 投光窓部
6b 内壁
35 真空紫外発光蛍光体
34b 真空管
36 遮蔽カバー
37 凹面鏡
38 オゾン発生・紫外線殺菌・光触媒殺菌ユニット
39 空気又は酸素ガス流路部
40 殺菌・分解流路部
41Aa、41Ba 投光窓
42 真空紫外線発光蛍光体塗膜
43 深紫外線発光体
44 多孔質体
45 小型船
46 船外機
47 液体流入ソケット
48 圧力室
49 液噴出ノズル
50 旋回流室
51 円錐筒体
52 旋回空洞部
53 中蓋
53a 気体吸引口
54 気体流入ソケット
55 円筒胴体
55a、55b 両端
56A、56B キャップ
57 最外殻胴体
51a 一端
58 キャップ
59 Oリング
56Aa 溝
60 六角ニップル
56Ab 孔
61 径違いソケット
61a 一端
51b 他端
61a 気液二相流吐出口
62 フランジ
63 鏡板
64 ソレノイドコイル
65 中周波交流電源
66a 中空糸膜
66 酸素冨化装置
7e 酸素冨化空気吸引支管
67 ヒートパイプ
67a 冷却部
68 冷却装置
7f 空気吸引端
69 ドレン排出器
70 ダストフイルター
67b 加熱部
71 加熱装置
72 ブロワー
9A 機能液貯槽
73 培養液
74 給液ポンプ
75 廃培養液槽
76 廃液ポンプ
77A 紫外線殺菌・紫外線応答型光触媒廃液処理装置
78a 潜り堰
78 流量調整槽
78b 第一越流堰
79A 紫外線殺菌・紫外線応答型光触媒廃液処理槽
79Aa 側壁
79Ab 底板
80 光透過性多孔質セラミック板
81 水密石英ガラス管
82 水密深紫外線灯
83 遮光蓋
84 近接スイッチ
78c 第二越流堰
78d 一時処理水貯留ピット
9B 機能液貯槽
85 移流ポンプ
85b 移流管
85c 吐出口
86A 可視光線殺菌・可視光線応答型光触媒廃液処理装置
87A 可視光線殺菌・可視光線応答型光触媒処理槽
87Ab 底板
88 防水性集魚灯
77B 紫外線殺菌・紫外線応答型光触媒廃液処理装置
79B 紫外線殺菌・紫外線応答型光触媒処理槽
79Ba 側壁
79Bb 底板
79Bc 分流孔
80a 上端
89 流量調整開孔キャップ
90 オーバーフロー移流管
86B 自然光含有紫外線殺菌・可視光線応答型光触媒廃液処理装置
87B 自然光含有紫外線殺菌・可視光線応答型光触媒処理槽
87Ba 側壁
87Bb 底板
87Bc 分流孔
91a 採光部
91b 導光部
91c 分岐部
91d 照射部
91 液体ライトガイドシステム
92 駆動装置
93 可視光LED投光装置
94 円筒状酸素透過膜
94a 上端
94b 内部
94c 外部
95 高置液槽
96 培養土
97 プランター
98 培養液配液管
99 膜供給ポンプ
100 精密濾過膜モジュール
101 濃厚汚水貯槽














1 Functional liquid production equipment 2 Deep UV light emitting LED
3 Light emitting chip 4 Condensing lens 5 Substrate 6, 6A, 6B Sleeve 7 Gas suction pipe 8 Ozone generator 6a, 6Ba Air inlet 9, 9A, 9B Functional liquid storage tank 10, 10A, 10B Micro / nano bubble generator 10a, 10Aa 10Ba Gas vent 11, 11A, 11B Circulation pump 11a Discharge side piping 7a Atmospheric suction branch 7b Discharge side piping 12a, 12b, 12c, 12d, 15Aa, 15Ab On-off valve 7b Ozone-containing air suction branch 7c Ozone-containing oxygen gas suction branch 7d Oxygen gas suction branch 13 Oxygen gas cylinders 14A, 14B, 14 Submersible pumps 15A, 15B Discharge-side piping 16A, 16B Spray nozzle 17 High-arrangement cultivation bed 18 Reflux piping 19 Nori seaweed algae storage tank 19a Draft tube 20a Stirring blade 20 Stirring motor Reducer 19b Downstream channel section 19c Upstream channel section 19d Overflow weir section 19e Trough section 21A, 21B Reflux pipe 19e Bottom section 22 Transfer pump 22a Suction pipe 22b Discharge pipe 23 Liquid cyclone 23a Dewatered seaweed transfer pipe 24 Cast-in type ultrasonic wave Vibrator 25 Sand filtration tank 26 UV / photocatalyst sterilizer 27 Circulation piping 27a Discharge port 28 Circulation piping system 29 Ultrasonic cleaning device 30 Reaction cell 30a Light transmission wall 31 Photocatalyst coating filter 32 Photocatalyst layer 33 Microplasma excited deep ultraviolet light emitting device 34, 41A, 41B Field emission lamp 34a Projection window part 6b Inner wall 35 Vacuum ultraviolet light emitting phosphor 34b Vacuum tube 36 Shielding cover 37 Concave mirror 38 Ozone generation / UV sterilization / photocatalyst sterilization unit 39 Air or oxygen gas flow path part 40 Sterilization / decomposition Channel part 41Aa , 41Ba Projection window 42 Vacuum ultraviolet light emitting phosphor coating film 43 Deep ultraviolet light emitting material 44 Porous material 45 Small ship 46 Outboard motor 47 Liquid inflow socket 48 Pressure chamber 49 Liquid ejection nozzle 50 Swirling flow chamber 51 Conical cylinder 52 Swirl Cavity 53 Inner lid 53a Gas suction port 54 Gas inflow socket 55 Cylindrical body 55a, 55b Both ends 56A, 56B Cap 57 Outermost shell body 51a One end 58 Cap 59 O-ring 56Aa Groove 60 Hex nipple 56Ab hole 61 Different diameter socket 61a One end 51b The other end 61a Gas-liquid two-phase flow outlet 62 Flange 63 End plate 64 Solenoid coil 65 Medium frequency AC power supply 66a Hollow fiber membrane 66 Oxygen hatching device 7e Oxygenated air suction branch 67 Heat pipe 67a Cooling unit 68 Cooling device 7f Air suction End 69 Drain discharger 70 Dust cup Illter 67b Heating unit 71 Heating device 72 Blower 9A Functional liquid storage tank 73 Culture liquid 74 Liquid supply pump 75 Waste culture liquid tank 76 Waste liquid pump 77A Ultraviolet sterilization / ultraviolet response photocatalyst waste liquid treatment device 78a Submerged weir 78 Flow rate adjustment tank 78b First pass Flow weir 79A UV sterilization / UV response photocatalyst waste liquid treatment tank 79Aa Side wall 79Ab Bottom plate 80 Light transmissive porous ceramic plate 81 Watertight quartz glass tube
82 Watertight Deep UV Light
83 Shading cover 84 Proximity switch 78c Second overflow weir 78d Temporary treated water storage pit 9B Functional liquid storage tank 85 Advection pump 85b Advection pipe 85c Discharge port 86A Visible light sterilization / visible light response type photocatalyst waste liquid treatment device 87A Visible light sterilization / visible Photoresponsive photocatalyst treatment tank 87Ab Bottom plate
88 Waterproof Fish Collection Light 77B UV Sterilization / UV Responsive Photocatalytic Waste Liquid Treatment Equipment 79B UV Sterilization / UV Responsive Photocatalytic Treatment Tank 79Ba Side Wall 79Bb Bottom Plate 79Bc Distributing Hole 80a Upper End 89 Flow Control Opening Cap 90 Overflow Advection Tube 86B Natural Light Containing UV Sterilization・ Visible light responsive photocatalyst waste liquid treatment equipment 87B Natural light-containing UV sterilization ・ Visible light responsive photocatalyst treatment tank 87Ba Side wall 87Bb Bottom plate 87Bc Distributing hole 91a Daylighting unit
91b Light guide portion 91c Branch portion 91d Irradiation portion 91 Liquid light guide system 92 Drive device 93 Visible light LED projector 94 Cylindrical oxygen permeable membrane 94a Upper end 94b Inside 94c Outside 95 High placement tank 96 Culture soil 97 Planter 98 Culture solution Distribution pipe 99 Membrane supply pump 100 Microfiltration membrane module 101 Concentrated sewage storage tank














Claims (19)

波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELにおいては、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を収束する集光レンズを備えた深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELと、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブ内に配設した、配管の一部を構成するオゾン発生装置と、前記スリーブ内を流過する空気中酸素分子又は酸素ガス中酸素分子に、前記波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの収束紫外線がピンポイントで照射され、生成したオゾン含有空気又は酸素ガスを、吸引手段で吸引するマイクロ・ナノバブル発生装置と、該マイクロ・ナノバブル発生装置に吸引されて生成したオゾン含有気液二相流が、機能液貯槽の液中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成して殺菌、洗浄、生理活性機能を有する機能液を生成することを特徴とする機能液製造装置。 In a deep ultraviolet light emitting LED, microplasma-excited deep ultraviolet light emitting element or field emission lamp FEL having a central wavelength in a wavelength range of 240 nm to 200 nm, light emission of the deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element or field emission lamp FEL A deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL having a condenser lens for converging the light, and the deep ultraviolet light emitting LED, microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL in a sleeve A deep ultraviolet light emitting LED having a central wavelength in the wavelength range of 240 nm to 200 nm in the ozone generator that constitutes a part of the pipe disposed, and in the oxygen molecules in the air or oxygen gas flowing in the sleeve ,micro A micro / nano bubble generation device that sucks the generated ozone-containing air or oxygen gas by a suction means by the focused ultraviolet light of a laser-excited deep ultraviolet light emitting element or a field emission lamp FEL, and the micro / nano bubble generation device. The ozone-containing gas-liquid two-phase flow generated by suction is discharged into the liquid in the functional liquid storage tank to generate ozone microbubbles and nanobubbles to generate a functional liquid having sterilization, washing, and physiologically active functions. A functional liquid manufacturing apparatus characterized by the above. 1個以上の深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELをスリーブに配設した、配管の一部を構成するオゾン発生装置と、2台以上の該オゾン発生装置が直列に配設された直列接続オゾン発生装置群と、該直列接続オゾン発生装置群が2組以上、互いに並列して配設されたことを特徴とする請求項1記載の機能液製造装置。 One or more deep ultraviolet light emitting LEDs, microplasma-excited deep ultraviolet light emitting elements or field emission lamps FEL are arranged on the sleeve, and an ozone generator that constitutes a part of the piping and two or more ozone generators are connected in series. 2. The functional liquid production apparatus according to claim 1, wherein two or more series-connected ozone generator groups disposed in parallel and two or more series-connected ozone generator groups are disposed in parallel with each other. マイクロ・ナノバブル発生装置の気体吸引側配管と、該気体吸引側配管の二か所以上の支配管と、該支配管のそれぞれに配設した大気供給手段、酸素ガス供給手段及びオゾン含有気体供給手段と、該大気供給手段、酸素ガス供給手段及びオゾン含有気体供給手段から供給される気体種別を選択する開閉手段を配設することを特徴とする請求項1又は2記載の機能液製造装置。 Gas suction side pipe of micro / nano bubble generator, two or more control pipes of the gas suction side pipe, air supply means, oxygen gas supply means and ozone-containing gas supply means arranged in each of the control pipes 3. A functional liquid manufacturing apparatus according to claim 1, further comprising an opening / closing means for selecting a gas type supplied from the air supply means, oxygen gas supply means and ozone-containing gas supply means. 請求項1記載の機能液製造装置において、マイクロ・ナノバブル発生装置に吸引されて生成したオゾン含有気液二相流が、機能液貯槽の液中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成して殺菌、洗浄、生理活性機能を有する機能液を生成した機能液で殺菌、洗浄する前処理又は同時併用として、前記機能液貯槽の被洗浄対象物を超音波洗浄する超音波振動装置と、殺菌対象液が循環される循環ポンプ装備の循環配管と、該循環配管に連通接続して殺菌対象液を、光透過製セルの光透過壁を隔てて流過する前記殺菌対象液に含有する細菌等を殺菌する300nm〜200nmの波長範囲に中心波長を有する深紫外発光LED又はマイクロプラズマ励起深紫外発光素子と、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの深紫外線を照射して殺菌すると共に前記光透過壁を隔てて流過する前記殺菌対象液中に光触媒コーティング多孔体を浸漬した紫外線及び光触媒併設殺菌装置を配設することを特徴とする請求項1、2又は3記載の機能液製造装置。 The functional liquid production apparatus according to claim 1, wherein the ozone-containing gas-liquid two-phase flow sucked and generated by the micro / nano bubble generator is discharged into the liquid of the functional liquid storage tank to generate ozone micro bubbles and nano bubbles. An ultrasonic vibration device for ultrasonically cleaning an object to be cleaned in the functional liquid storage tank as a pretreatment or a simultaneous use of sterilizing and cleaning with a functional liquid that has been generated and sterilized, washed, and a functional liquid having a physiologically active function A circulation pipe equipped with a circulation pump through which the liquid to be sterilized is circulated, and the liquid to be sterilized by being connected to the circulation pipe and flowing through the light transmitting wall of the light transmitting cell. Deep ultraviolet light emitting LED or microplasma excited deep ultraviolet light emitting element having a central wavelength in a wavelength range of 300 nm to 200 nm for sterilizing bacteria, the deep ultraviolet light emitting LED, microplasma excited Dispose of ultraviolet light emitting element or field emission lamp FEL by irradiating deep ultraviolet light and disinfecting ultraviolet light and photocatalyst with a photocatalyst coating porous body immersed in the liquid to be sterilized flowing through the light transmitting wall. The functional liquid manufacturing apparatus according to claim 1, 2, or 3. 請求項1記載の、オゾン発生装置において、該オゾン発生装置におけるスリーブを貫通して配設したフイールドエミッションランプと、該フイールドエミッションランプの投光窓部から主波長200nm以下の真空紫外光が、前記スリーブを流下する空気中酸素分子又は酸素ガス中酸素分子を照射して、前記酸素分子をオゾン化後に、空気層を透過後に、前記紫外光が照射される、前記投光窓部に対向した管壁に塗布された、主波長200nm以下の真空紫外発光蛍光体が発光する主波長200nm以下の真空紫外光で酸素分子をオゾン化することを特徴とする請求1,2又は3記載の機能液製造装置。 The ozone generator according to claim 1, wherein a field emission lamp disposed through a sleeve in the ozone generator, and vacuum ultraviolet light having a main wavelength of 200 nm or less from a light projection window portion of the field emission lamp, A tube facing the light projection window, irradiated with oxygen molecules in the air flowing down the sleeve or oxygen molecules in the oxygen gas, ozonized, then transmitted through the air layer, and irradiated with the ultraviolet light The functional liquid production according to claim 1, 2 or 3, wherein oxygen molecules are ozonated by vacuum ultraviolet light having a main wavelength of 200 nm or less, which is emitted from a vacuum ultraviolet light emitting phosphor having a main wavelength of 200 nm or less, which is applied to a wall. apparatus. 波長範囲240nm〜200nmに主波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFEL等においては、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの発光を収束する集光レンズを備えた深紫外発光LED、マイクロプラズマ励起遠紫外発光素子又はフイールドエミッションランプFELと、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFEL等の第一の光源を、スリーブ内に固着配設した、第一のオゾン発生手段と、前記スリーブ内壁面に、前記第一の発光手段の発光放射を受けて、300nm〜250nmの主波長範囲で励起発光する深紫外線発光蛍光粉体が凹面状基板に塗布された紫外線発光蛍光体を第二の光源を配設した、第二のオゾン発生手段と、前記スリーブ内を流過する空気中酸素分子又は酸素ガス中酸素分子に、前記第一の光源及び第二の光源が照射され、オゾンを生成するオゾン発生装置と、該生成するオゾン含有空気又は酸素ガスを、吸引手段で吸引するマイクロ・ナノバブル発生装置と、該マイクロ・ナノバブル発生装置に吸引されて生成したオゾン含有気液二相流が、機能液貯槽の液中へ吐出されてオゾンマイクロバブルを生成すると共にナノバブルを生成して、殺菌、洗浄、生理活性機能を有する機能液を生成することを特徴とする請求項1、2、3、4又は5記載の機能液製造装置。 In a deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL having a dominant wavelength in a wavelength range of 240 nm to 200 nm, the deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL Deep ultraviolet light-emitting LED, microplasma-excited far ultraviolet light-emitting element or field emission lamp FEL provided with a condensing lens for converging light emission, and deep ultraviolet light-emitting LED, microplasma-excited deep ultraviolet light-emitting element or field emission lamp FEL, etc. One light source is fixedly disposed in the sleeve, and the first ozone generating means, and the inner wall surface of the sleeve receives the emission radiation of the first light emitting means, and emits excitation light in the main wavelength range of 300 nm to 250 nm. Deep UV light emitting fluorescent powder is concave A second ozone generation means provided with a second light source and an ultraviolet light emitting phosphor applied to the plate, and oxygen molecules in the air or oxygen gas flowing through the sleeve, An ozone generator that irradiates the light source and the second light source to generate ozone, a micro / nano bubble generator that sucks the generated ozone-containing air or oxygen gas by a suction means, and a suction to the micro / nano bubble generator The generated ozone-containing gas-liquid two-phase flow is discharged into the liquid of the functional liquid storage tank to generate ozone microbubbles and nanobubbles to generate a functional liquid having sterilization, washing, and physiologically active functions. The functional liquid production apparatus according to claim 1, 2, 3, 4 or 5. マイクロ・ナノバブル発生装置でオゾンを吸引して機能液を製造する配管系統と、循環ポンプで処理対象液を循環して紫外線及び光触媒で殺菌及び汚染物分解する配管系統とを有する機能液製造装置において、空気又は酸素ガス流中の酸素を、真空紫外線照射手段でオゾン化するオゾン生成部と、紫外線及び光触媒殺菌部と、前記オゾン生成部に配設した真空紫外線照射手段と、該真空紫外線照射手段で照射される照射光を受光し、深紫外線発光し、二方向へ分岐照射する深紫外蛍光粉体塗布壁と、前記オゾン生成部と紫外線及び光触媒殺菌部との隔壁であって、前記深紫外蛍光粉体が発光する深紫外線を透過する透明隔壁と、前記深紫外線蛍光粉体塗布壁が放射する深紫外線を、光透過製液体流路を流下する液体に照射殺菌及び分解すると共に、前記液体中に浸漬した光触媒担持して殺菌及び分解する殺菌及び分解手段と、前記オゾン生成部で生成するオゾン含有空気又は酸素ガスを吸引して機能液貯槽の機能液を吸入すると共に該機能液中にオゾン含有気液二相流を吐出して、オゾンマイクロ・ナノバブルを生成するマイクロ・ナノバブル発生装置と、前記殺菌及び分解手段を流下する液を吸入及び吐出する循環ポンプを配設することを特徴とする、殺菌、洗浄、生理活性機能を有する機能液を生成することを特徴とする請求項1、2又は3記載の機能液製造装置。 In a functional liquid production apparatus having a piping system for producing functional liquid by sucking ozone with a micro / nano bubble generator and a piping system for circulating a liquid to be treated with a circulation pump and sterilizing and decomposing contaminants with ultraviolet rays and a photocatalyst An ozone generating unit that converts oxygen in an air or oxygen gas stream into ozone by a vacuum ultraviolet irradiation unit, an ultraviolet and photocatalytic sterilization unit, a vacuum ultraviolet irradiation unit disposed in the ozone generation unit, and the vacuum ultraviolet irradiation unit A deep ultraviolet fluorescent powder coating wall that receives irradiation light emitted from the substrate, emits deep ultraviolet light, and divides and emits light in two directions; a partition wall between the ozone generation unit, the ultraviolet light, and the photocatalyst sterilization unit, Transparent sterilization that transmits deep ultraviolet light emitted by the fluorescent powder and deep ultraviolet light emitted by the deep ultraviolet fluorescent powder coating wall are irradiated and sterilized and decomposed into liquid flowing down the light-transmitting liquid flow path. In addition, a sterilizing and decomposing means for carrying and sterilizing and decomposing by supporting the photocatalyst immersed in the liquid, and sucking the functional liquid in the functional liquid storage tank by sucking the ozone-containing air or oxygen gas generated in the ozone generating unit A micro / nano bubble generator for generating ozone micro / nano bubbles by discharging an ozone-containing gas-liquid two-phase flow into the functional liquid, and a circulation pump for sucking and discharging the liquid flowing down the sterilizing and decomposing means are provided. The functional liquid production apparatus according to claim 1, 2 or 3, wherein a functional liquid having sterilization, washing, and physiologically active functions is generated. 殺菌、洗浄、生理活性機能を有する機能液を生成する魚介類・海藻養殖場において、浮体と、該浮体を推進する船外配設のマイクロ・ナノバブル発生装置と、方向舵手段と、前記マイクロ・ナノバブル発生装置に加圧液を供給する循環ポンプと、前記マイクロ・ナノバブル発生装置に、オゾン含有空気又は酸素ガスを供給するオゾン発生装置とで少なくとも構成することを特徴とする、請求項1、2、3、4、5、6、7又は8記載の機能液製造装置。 In a seafood / seaweed aquaculture farm that produces a functional liquid having sterilization, washing, and bioactive functions, a floating body, an outboard micro / nano bubble generator for propelling the floating body, rudder means, and the micro / nano bubble It comprises at least a circulation pump that supplies pressurized liquid to the generator and an ozone generator that supplies ozone-containing air or oxygen gas to the micro / nano bubble generator. The functional liquid production apparatus according to 3, 4, 5, 6, 7 or 8. 機能液製造装置に使用するマイクロ・ナノバブル発生装置の加圧ポンプ吐出液保有エネルギーにおいて、速度水頭エネルギー低減手段と、該速度水頭エネルギー低減分で増大した圧力水頭エネルギーを利用した旋回速度水頭エネルギー変換手段と、市販配管部材を利用した、製作及び維持管理費低減手段とを有することを特徴とする請求項1、3、4,6,7及び8記載の機能液製造装置。 In the pressure pump discharge liquid possessed energy of the micro / nano bubble generator used in the functional liquid production apparatus, the speed head energy reducing means and the turning speed head energy converting means using the pressure head energy increased by the speed head energy reduction amount And a production and maintenance cost reduction means using a commercially available piping member. 9. The functional liquid production apparatus according to claim 1, wherein 深紫外発光LEDを配設しているオゾン発生装置又はオゾン生成部のスリーブであって、該スリーブの外部に巻き付けて配設したソレノイドコイルと、該ソレノイドコイルに10MHz〜30MHzの高周波交流電力を供給する高周波交流電源制御装置を配設することを特徴とする請求項1、2,3,4,5又は6記載の機能液製造装置。 A sleeve of an ozone generator or ozone generator having a deep ultraviolet LED, a solenoid coil wound around the sleeve, and a high frequency AC power of 10 MHz to 30 MHz supplied to the solenoid coil 7. The functional liquid production apparatus according to claim 1, wherein a high-frequency AC power supply control device is provided. 深紫外発光LEDを配設しているオゾン発生装置又はオゾン生成部のスリーブ内へ流入する気体流に、酸素冨化気体を適用する酸素冨化手段において、中空糸膜を配設した酸素冨化手段と、前記中空糸膜の外側である、マイクロ・ナノバブル発生装置の気体吸引配管に連通接続して配設した気体吸引手段と、前記中空糸膜へ吸引される大気中空気の空気吸引配管と、該吸引配管の途中に、吸引空気の露点以下に冷却する冷却手段と、該冷却手段で冷却して生成する結露水を前記空気吸引配管から排除するドレン排出器と、前記冷却手段と中空糸膜との間の空気吸引配管に連通接続して挿設した加熱手段と、該加熱手段と前記冷却手段とを連通接続する連結管と、該連結管に熱移動作動液を封入して構成した熱移動手段を配設することを特徴とする請求項1,2,3,4、5又は6記載の機能液製造装置。 Oxygen hatching in which a hollow fiber membrane is provided in an oxygen hatching means in which an oxygen hatching gas is applied to a gas flow flowing into a sleeve of an ozone generator or ozone generator having a deep ultraviolet LED. Means, gas suction means disposed outside the hollow fiber membrane, in communication connection with the gas suction pipe of the micro / nano bubble generator, and an air suction pipe for atmospheric air sucked into the hollow fiber membrane A cooling means that cools below the dew point of the suction air in the middle of the suction pipe, a drain discharger that removes the condensed water generated by cooling with the cooling means from the air suction pipe, the cooling means and the hollow fiber Heating means inserted in communication with the air suction pipe between the membrane, a connecting pipe connecting the heating means and the cooling means, and a heat transfer hydraulic fluid enclosed in the connecting pipe It is characterized by arranging heat transfer means Functional liquid manufacturing apparatus according to claim 2, 3, 4, 5 or 6, wherein that. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整手段と、該流量調整手段の下流側に配設した紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽と、該紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌槽の被処理液中に浸漬した紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板と、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の被処理液に浸漬した防水型深紫外線又は可視光発光LED水中紫外線又は可視光照射手段と、該防水型深紫外線又は可視光発光LED水中紫外線又は可視光照射手段と電気的に直列接続する可視光発光LEDパイロットランプとを配設することを特徴とする機能液製造装置。 In the purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, flow rate adjusting means for adjusting the flow rate of the liquid to be treated and flowing down, ultraviolet light or natural light-containing ultraviolet sterilization / ultraviolet light or visible light disposed downstream of the flow rate adjusting means Responsive photocatalyst sterilization waste liquid treatment tank, and light transmissive porous plate coated with ultraviolet or visible light responsive photocatalyst immersed in the treatment liquid of the ultraviolet light or natural light containing ultraviolet sterilization / ultraviolet light or visible light responsive photocatalyst sterilization tank A waterproof deep ultraviolet ray or visible light emitting LED underwater ultraviolet ray or visible light irradiating means immersed in a treatment liquid of the ultraviolet ray or natural light-containing ultraviolet sterilization / ultraviolet ray or visible light responsive photocatalyst sterilization waste liquid treatment tank; An ultraviolet or visible light emitting LED is provided with a visible light emitting LED pilot lamp electrically connected in series with an underwater ultraviolet or visible light irradiation means. Functional liquid manufacturing equipment. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整手段と、該流量調整手段の下流側に配設した紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽と、該紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の被処理液中に浸漬した紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板と、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の被処理液に浸漬した防水型深紫外線又は可視光発光LED照射手段と、該防水型深紫外線又は可視光発光LED照射手段と電気的に直列接続する可視光発光LEDパイロットランプと、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の底部に削孔した分流孔を貫通し、上端部が水面下に浸漬され、前記底部より下方が大気中に曝露され、紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板を照射する深紫外線又は可視光発光LED照射手段と、該電気的に直列接続する可視光発光LEDパイロットランプと、前記深紫外線又は可視光発光LED照射手段で紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板を照射すると、前記紫外線又は可視光応答型光触媒を光励起して発生するOHラジカル等を生成することを特徴とする請求項12記載の機能液製造装置。 In the purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, flow rate adjusting means for adjusting the flow rate of the liquid to be treated and flowing down, ultraviolet light or natural light-containing ultraviolet sterilization / ultraviolet light or visible light disposed downstream of the flow rate adjusting means Response type photocatalyst sterilization waste liquid treatment tank and light transmission type porous coated with ultraviolet or visible light responsive photocatalyst immersed in the treatment liquid of the ultraviolet ray or natural light containing ultraviolet sterilization / ultraviolet light or visible light response type photocatalyst sterilization waste liquid treatment tank And a waterproof deep ultraviolet or visible light emitting LED irradiating means immersed in a liquid to be treated in the treatment liquid of the ultraviolet or natural light-containing ultraviolet sterilization / ultraviolet or visible light responsive photocatalyst sterilization waste liquid treatment tank, the waterproof deep ultraviolet or visible Visible light emitting LED pilot lamp electrically connected in series with the light emitting LED irradiating means, and the ultraviolet light or natural light containing ultraviolet sterilization / UV light or visible light response Light penetrating through a diversion hole drilled in the bottom of the processing tank for photocatalytic sterilization waste liquid, the upper end is immersed below the surface of the water, the lower part is exposed to the atmosphere, and UV or visible light responsive photocatalyst is applied UV or visible light emitting LED irradiating means for irradiating the mold porous plate, the visible light emitting LED pilot lamp electrically connected in series, and the deep UV or visible light emitting LED irradiating means for ultraviolet or visible light responsive type 13. The functional liquid production apparatus according to claim 12, wherein when irradiated with a light-transmitting porous plate coated with a photocatalyst, OH radicals and the like generated by photoexcitation of the ultraviolet light or visible light responsive photocatalyst are generated. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整手段と、該流量調整手段の下流側に配設した紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽と、該紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌槽の被処理液に浸漬して配設した紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板と、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌槽の被処理液に浸漬した防水紫外線又は可視光発光LED水中紫外線照射手段と、該防水紫外線又は可視光発光LED水中紫外線照射手段と電気的に直列接続した可視光発光LEDパイロットランプと、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の底部に削孔した分流孔を貫通し、上端部が水面下に浸漬され、前記底部より下方が大気中又は下方配設の被処理液受水槽に浸漬した円筒状又は中空糸状酸素ガス透過膜とで構成することを特徴とする請求項12又は13記載の機能液製造装置。 In the purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, flow rate adjusting means for adjusting the flow rate of the liquid to be treated and flowing down, ultraviolet light or natural light-containing ultraviolet sterilization / ultraviolet light or visible light disposed downstream of the flow rate adjusting means Responsive photocatalyst sterilization waste liquid treatment tank and light transmission type coated with ultraviolet or visible light responsive photocatalyst immersed in the treatment liquid of the ultraviolet light or natural light containing ultraviolet sterilization / ultraviolet light or visible light responsive photocatalyst sterilization tank A porous plate, a waterproof ultraviolet or visible light emitting LED underwater ultraviolet irradiation means immersed in a liquid to be treated in the ultraviolet or natural light-containing ultraviolet sterilization / ultraviolet or visible light responsive photocatalyst sterilization tank, and the waterproof ultraviolet or visible light emitting LED Visible light emitting LED pilot lamp electrically connected in series with underwater ultraviolet light irradiation means, and ultraviolet light or natural light containing ultraviolet light sterilization / ultraviolet light or visible light Cylindrical shape penetrating through a diversion hole drilled in the bottom of the answer type photocatalyst sterilization waste liquid treatment tank, the upper end is immersed below the water surface, and the lower part is immersed in the water receiving tank to be treated in the atmosphere or below. Alternatively, the functional liquid production apparatus according to claim 12 or 13, wherein the functional liquid production apparatus comprises a hollow fiber oxygen gas permeable membrane. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整手段と、該流量調整手段の下流側に配設した紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽と、該紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の被処理液に浸漬して配設した紫外線又は可視光応答型光触媒を塗布した光透過型多孔質板と、前記紫外線又は自然光含有紫外線殺菌・紫外線又は自然光含有紫外線応答型光触媒殺菌廃液処理槽の被処理液に浸漬した防水紫外線又は可視光発光LED水中紫外線照射手段と、該防水紫外線又は可視光発光LED水中紫外線照射手段と電気的に直列接続した可視光発光LED照射手段と、前記紫外線又は自然光含有紫外線殺菌・紫外線又は可視光応答型光触媒殺菌廃液処理槽の底部に削孔した分流孔を貫通し、上端部が水面下に浸漬され、前記底部より下方が大気中又は下方配設の被処理液受水槽に浸漬した円筒状又は中空糸状酸素透過膜と、該円筒状又は中空糸状酸素透過膜から放出された処理液を散布される、培養土壌と植物由来の小片状体、ペレット状体、粒子状体又は粉末状体等の生分解性プラスチックを任意の配合割合で混合した培養土壌で構成することを特徴とする請求項12又は13記載の機能液製造装置。 In the purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, flow rate adjusting means for adjusting the flow rate of the liquid to be treated and flowing down, ultraviolet light or natural light-containing ultraviolet sterilization / ultraviolet light or visible light disposed downstream of the flow rate adjusting means Light coated with UV or visible light responsive photocatalyst immersed in the liquid to be treated in the responsive photocatalyst sterilization waste liquid treatment tank and the ultraviolet or natural light-containing UV sterilization / ultraviolet light or visible light responsive photocatalyst sterilization waste liquid treatment tank Transmission type porous plate, waterproof ultraviolet ray or visible light emitting LED underwater ultraviolet ray irradiation means immersed in the treatment liquid of the ultraviolet ray or natural light containing ultraviolet sterilization / ultraviolet light or natural light containing ultraviolet light responsive photocatalyst sterilization waste liquid treatment tank, and the waterproof ultraviolet ray Alternatively, visible light emitting LED irradiating means electrically connected in series with visible light emitting LED underwater ultraviolet irradiating means, and ultraviolet or natural light-containing UV sterilization Ultraviolet or visible light responsive photocatalyst sterilization waste liquid treatment tank penetrating through a diverting hole drilled at the bottom, the upper end is immersed below the surface of the water, below the bottom is in the atmosphere or the liquid receiving tank to be disposed below Cultivated soil and plant-derived small pieces, pellets, and particles that are sprayed with the immersed cylindrical or hollow fiber oxygen permeable membrane and the treatment liquid released from the cylindrical or hollow fiber oxygen permeable membrane. Alternatively, the functional liquid production apparatus according to claim 12 or 13, wherein the functional liquid production apparatus comprises a culture soil in which a biodegradable plastic such as a powder is mixed at an arbitrary blending ratio. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、0.1μm以上の孔径を有する精密濾過膜及び限外濾過膜と、紫外線(自然光含有紫外線含む)及び(/又は)光触媒殺菌処理手段と、曝気手段で構成することを特徴とする機能液製造装置。 In purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, microfiltration membranes and ultrafiltration membranes having a pore size of 0.1 μm or more, ultraviolet light (including natural light-containing ultraviolet rays) and / or photocatalytic sterilization treatment means, aeration An apparatus for producing a functional liquid, characterized by comprising means. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整工程と、被処理液中に紫外線応答型光触媒を塗布した光透過型多孔質無機板を浸漬する工程と、該光透過型多孔質無機板に深紫外線を照射する工程と、被処理液を深紫外線で殺菌する工程と、紫外線応答型光触媒を紫外線励起して発生するOHラジカル等を生成する機能液製造装置方法。 In purification treatment of aqueous solutions containing pathogenic bacteria or polluting organic substances, a flow rate adjustment step for adjusting the flow rate of the liquid to be treated and a flow-through porous inorganic plate coated with an ultraviolet-responsive photocatalyst is immersed in the liquid to be treated. A step, a step of irradiating the light-transmitting porous inorganic plate with deep ultraviolet rays, a step of sterilizing the liquid to be treated with deep ultraviolet rays, and a function of generating OH radicals and the like generated by exciting the ultraviolet-responsive photocatalyst with ultraviolet rays. Liquid manufacturing apparatus method. 殺菌対象物を浸漬した機能水が貯水された機能水貯槽において、波長範囲240nm〜200nmに中心波長を有する深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELを、配管の一部を構成するスリーブ内に配設したオゾン発生装置において、前記深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELは、該深紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELが放射する発光を収束する集光レンズを備え、前記深紫外発光LED、マイクロプラズマ励起紫外発光素子又はフイールドエミッションランプFELの発光を集光レンズで収束して照射する工程と、前記スリーブ内を流過する空気中酸素分子又は酸素ガス中酸素分子に、波長範囲240nm〜200nmに中心波長を有する遠紫外発光LED、マイクロプラズマ励起深紫外発光素子又はフイールドエミッションランプFELの収束紫外線がピンポイントで照射され、酸素ガスをオゾン化する工程と、生成したオゾンガス含有の空気又は酸素ガスを、マイクロ・ナノバブル発生装置の吸引手段で吸引して生成する気液二相流が液中へ吐出されて、オゾンマイクロバブルを生成すると共にナノバブルを生成する工程で構成することを特徴とする請求項1、2、3、4又は5記載の機能液製造方法。 In a functional water storage tank in which functional water in which an object to be sterilized is stored is stored, a deep ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL having a central wavelength in a wavelength range of 240 nm to 200 nm is part of a pipe. In the ozone generator disposed in the sleeve constituting the above, the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission lamp FEL is the deep ultraviolet light emitting LED, the microplasma excited deep ultraviolet light emitting element or the field emission. A condensing lens for converging the light emitted by the lamp FEL, and converging and irradiating the light emitted from the deep ultraviolet LED, the microplasma-excited ultraviolet light emitting element or the field emission lamp FEL with the condensing lens; Oxygen in the air flowing through Oxygen molecules in a child or oxygen gas are irradiated with focused ultraviolet light from a far ultraviolet light emitting LED, a microplasma excited deep ultraviolet light emitting element or a field emission lamp FEL having a central wavelength in a wavelength range of 240 nm to 200 nm at a pinpoint, And a gas-liquid two-phase flow generated by sucking the generated ozone gas-containing air or oxygen gas with the suction means of the micro / nano bubble generating device is discharged into the liquid to generate ozone micro bubbles 6. The method for producing a functional liquid according to claim 1, comprising a step of generating nanobubbles. 病原菌又は汚染性有機物含有の水溶液の浄化処理において、被処理液を流量調整して流下する流量調整工程と、該流量調整工程の下流側に配設した分流手段の底部に削孔した分流孔において分流する分流工程と、該分流孔を貫通し、上端部が前記下方分流手段の水面下に浸漬され、前記下方分流手段の底部より下方が大気中に曝露され、自然光応答型光触媒を塗布した光透過型多孔質板と、該可自然光応答型光触媒を塗布した光透過型多孔質板を照射する可視光照射工程と、前記自然光応答型光触媒を光励起して発生するOHラジカル等を生成する機能液製造装置方法。 In purification treatment of aqueous solutions containing pathogenic bacteria or pollutant organic substances, in a flow rate adjusting step for adjusting the flow rate of the liquid to be treated and flowing down, and in a diverting hole drilled in the bottom of the diverting means arranged downstream of the flow rate adjusting step A diverting step for diverting, light that passes through the diverting holes, has an upper end immersed under the water surface of the lower diverting means, and exposed to the atmosphere below the bottom of the lower diverting means, and is coated with a natural light-responsive photocatalyst A transmission type porous plate, a visible light irradiation step for irradiating the light transmission type porous plate coated with the natural light responsive photocatalyst, and a functional liquid that generates OH radicals generated by photoexcitation of the natural light responsive photocatalyst Manufacturing equipment method.
JP2017017859A 2016-03-23 2017-02-02 Function liquid manufacturing device and function liquid manufacturing method Pending JP2018094543A (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016058180 2016-03-23
JP2016058180 2016-03-23
JP2016099915 2016-05-18
JP2016099915 2016-05-18
JP2016140955 2016-07-17
JP2016140955 2016-07-17
JP2016235489 2016-12-04
JP2016235489 2016-12-04
JP2016238875 2016-12-08
JP2016238875 2016-12-08

Publications (1)

Publication Number Publication Date
JP2018094543A true JP2018094543A (en) 2018-06-21

Family

ID=62633997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017859A Pending JP2018094543A (en) 2016-03-23 2017-02-02 Function liquid manufacturing device and function liquid manufacturing method

Country Status (1)

Country Link
JP (1) JP2018094543A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019055384A (en) * 2017-09-22 2019-04-11 トスレック株式会社 Fine air bubble sterilization system, and method for sterilization of seafood, beverage and food product
CN111268761A (en) * 2020-02-27 2020-06-12 广东波达电子科技有限公司 Deep ultraviolet sterilization module
CN111620486A (en) * 2020-04-22 2020-09-04 山东大学 UV-LED/O3Method for treating hexazinone pesticide wastewater in combined mode
WO2020189271A1 (en) 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
CN112456632A (en) * 2020-12-24 2021-03-09 江苏治水有数环保科技有限公司 Ozone catalytic oxidation wastewater treatment device and treatment method
NO346397B1 (en) * 2020-12-28 2022-07-11 Oeverland Marius A method for separating out fish sludge (faeces + pre-spill) from large hydraulic flows in accordance with breeding cages

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019055384A (en) * 2017-09-22 2019-04-11 トスレック株式会社 Fine air bubble sterilization system, and method for sterilization of seafood, beverage and food product
JP7106089B2 (en) 2017-09-22 2022-07-26 トスレック株式会社 Microbubble sterilization system and method for sterilizing seafood, beverages and foods
WO2020189271A1 (en) 2019-03-19 2020-09-24 株式会社村田製作所 Bubble generation device
CN111268761A (en) * 2020-02-27 2020-06-12 广东波达电子科技有限公司 Deep ultraviolet sterilization module
CN111620486A (en) * 2020-04-22 2020-09-04 山东大学 UV-LED/O3Method for treating hexazinone pesticide wastewater in combined mode
CN111620486B (en) * 2020-04-22 2021-09-28 山东大学 UV-LED/O3Method for treating hexazinone pesticide wastewater in combined mode
CN112456632A (en) * 2020-12-24 2021-03-09 江苏治水有数环保科技有限公司 Ozone catalytic oxidation wastewater treatment device and treatment method
CN112456632B (en) * 2020-12-24 2023-10-31 江苏治水有数环保科技有限公司 Ozone catalytic oxidation wastewater treatment device and treatment method
NO346397B1 (en) * 2020-12-28 2022-07-11 Oeverland Marius A method for separating out fish sludge (faeces + pre-spill) from large hydraulic flows in accordance with breeding cages

Similar Documents

Publication Publication Date Title
JP2018094543A (en) Function liquid manufacturing device and function liquid manufacturing method
JP2018094541A (en) Function liquid manufacturing device and function liquid manufacturing method
US7442306B2 (en) Autotrofic sulfur denitration chamber and calcium reactor
US7481935B2 (en) Waste water treatment process
JP4754512B2 (en) Sanitizable hydroponics apparatus and hydroponics method
JPH11226351A (en) Production of cleaned air and apparatus for cleaning air
KR101188635B1 (en) Ventury tube type Nano Bubble proceded water Generator
JP2005506076A (en) Methods and means for treating water in aquaculture systems
CN201398376Y (en) Fish fry hatching device with function of biological purification
JP2005518933A (en) Pre-treatment and post-treatment system and method for filtering attached algae using ozone
CA2430154A1 (en) Purifying device
JPH11290848A (en) Method and apparatus for filtration
KR101732662B1 (en) Flush Toilet System With Sewage Treatment System
JP3190126B2 (en) Aquaculture equipment
KR20200017707A (en) Water quality improvement system using ozone supply unit and micro bubble
KR102324510B1 (en) Air purification device using microalgae
JPH0427493A (en) Cleaning and sterilizing device for water and method for utilizing cleaned and sterilized water
CN210352747U (en) High-density temporary-culture circulating water treatment equipment for live seafood
KR200164399Y1 (en) The device for filtering water in the aquarium
JP2022113450A (en) air purifier
CN1037426C (en) Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave
JPH0323359Y2 (en)
CN110078197A (en) It is a kind of for handle fish pond, pond, container quality purifying device for water
CN214457379U (en) Environment-friendly medical wastewater treatment device
CN210030148U (en) Water quality purifying device for treating fishpond, water pool and container

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180429