JP2018094514A - Method for recovering phosphorus in treatment water - Google Patents

Method for recovering phosphorus in treatment water Download PDF

Info

Publication number
JP2018094514A
JP2018094514A JP2016242688A JP2016242688A JP2018094514A JP 2018094514 A JP2018094514 A JP 2018094514A JP 2016242688 A JP2016242688 A JP 2016242688A JP 2016242688 A JP2016242688 A JP 2016242688A JP 2018094514 A JP2018094514 A JP 2018094514A
Authority
JP
Japan
Prior art keywords
phosphorus
hydrochloric acid
water
slag
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016242688A
Other languages
Japanese (ja)
Other versions
JP6197095B1 (en
Inventor
文香 金田
Fumika Kaneda
文香 金田
内藤 朗
Akira Naito
朗 内藤
慎太郎 小原
Shintaro Obara
慎太郎 小原
久夫 大竹
Hisao Otake
久夫 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2016242688A priority Critical patent/JP6197095B1/en
Application granted granted Critical
Publication of JP6197095B1 publication Critical patent/JP6197095B1/en
Priority to PCT/JP2017/043732 priority patent/WO2018110375A1/en
Priority to CN201780076694.9A priority patent/CN110267920A/en
Publication of JP2018094514A publication Critical patent/JP2018094514A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/01Treating phosphate ores or other raw phosphate materials to obtain phosphorus or phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Specific Substances (AREA)
  • Fertilizers (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering phosphorus in treatment water, capable of suppressing an elution of an element other than Ca from steel slag and reducing an amount of used hydrochloric acid, when hydrochloric acid is added to obtain a slurry in which Ca in the steel slag is eluted.SOLUTION: There is provided a method for recovering phosphorus in treatment water, including the steps of: stirring and mixing a predetermined amount of hydrochloric acid in a slag slurry composed of a steel slug and water, and obtaining the slag slurry for recovering phosphorus in which Ca in the steel slug is eluted; stirring and mixing the treatment water containing phosphorus in the slag slurry for recovering phosphorus and leaving it stationary to form a compound containing phosphorus and Ca, and making the compound coagulated and settled as a solid together with a residue of the steel slag; and recovering the precipitated solid matter. In obtaining the slug slurry for recovering phosphorus, hydrochloric acid is added while keeping pH of the slag slurry, which is being added with hydrochloric acid, in a range of 4.5 to 7.0.SELECTED DRAWING: Figure 1

Description

本発明は、被処理水中のリンの回収方法に関する。   The present invention relates to a method for recovering phosphorus in water to be treated.

製鉄所から排出される製鋼スラグには、Ca、Fe、SiやAl等の元素が含まれており、その有効活用が望まれている。製鋼スラグを再利用する方法として、特許文献1及び特許文献2にはそれぞれ、pH=2〜3、pH=0〜1の塩酸溶液を用いて、製鋼スラグに含まれるCa分とFe分とを分離し、製鉄所で再利用する方法が提案されている。   Steelmaking slag discharged from steelworks contains elements such as Ca, Fe, Si and Al, and their effective utilization is desired. As a method of reusing steelmaking slag, Patent Document 1 and Patent Document 2 use a hydrochloric acid solution having pH = 2 to 3 and pH = 0 to 1, respectively, and the Ca content and the Fe content contained in the steelmaking slag. A method of separating and reusing at steelworks has been proposed.

一方、リンは生物にとって欠かすことのできない元素であり、近年では、リン資源の枯渇が懸念されている。そのため、リン資源の様々な回収方法が検討されている。例えば、特許文献3では、多孔質のケイ酸カルシウム水和物を用いて、リンを含む被処理水中からリンを回収する方法が提案されている。   On the other hand, phosphorus is an indispensable element for living organisms, and in recent years there is concern about depletion of phosphorus resources. Therefore, various methods for recovering phosphorus resources are being studied. For example, Patent Document 3 proposes a method for recovering phosphorus from water to be treated containing phosphorus using porous calcium silicate hydrate.

そこで、本発明者らは、製鋼スラグの有効活用とリン資源の回収とを実現する方法として、製鉄所から排出される製鋼スラグを用いて、リンを含む被処理水中からリンを回収する技術を発明した。この方法は、まず、製鋼スラグと塩酸とを撹拌混合して、製鋼スラグ中のCaを溶出させたスラリーを得る。その後、製鋼スラグ中のCaを溶出させたスラリーとリンを含む排水とを撹拌混合する。これにより、製鋼スラグから溶出したCaと排水中のリンとが反応して化合物となり、この化合物が製鋼スラグの残渣と共に凝集沈降する。凝集沈降した化合物を脱水、乾燥させることによって、リンを含む固形物が得られる。これにより、リンを含む被処理水中からリンを回収することができる。回収した固形物中には、リンが高濃度で含まれているため、肥料または肥料原料として有効に利用することができる。しかし、この方法では、製鋼スラグと塩酸とを撹拌混合して、製鋼スラグ中のCaを溶出させたスラリーを得る際に、肥料成分であるCa以外の成分が溶出してしまう問題があり、特に、製鋼スラグ中のSiO溶出量が多くなるとスラグスラリーの粘性が大きくなるため、スラグスラリーの供給が困難になる問題がある。また、Caを溶出させるために使用する塩酸の量が多くなり、薬液コストが増大する問題等があった。 Therefore, the present inventors, as a method for realizing effective utilization of steelmaking slag and recovery of phosphorus resources, a technology for recovering phosphorus from treated water containing phosphorus using steelmaking slag discharged from steelworks. Invented. In this method, first, steelmaking slag and hydrochloric acid are stirred and mixed to obtain a slurry in which Ca in the steelmaking slag is eluted. Thereafter, the slurry from which Ca in the steelmaking slag is eluted is mixed with the waste water containing phosphorus. Thereby, Ca eluted from the steelmaking slag reacts with phosphorus in the waste water to form a compound, and this compound coagulates and settles together with the residue of the steelmaking slag. A solid matter containing phosphorus is obtained by dehydrating and drying the coagulated and precipitated compound. Thereby, phosphorus can be collect | recovered from the to-be-processed water containing phosphorus. Since the collected solid matter contains phosphorus at a high concentration, it can be effectively used as a fertilizer or a fertilizer raw material. However, in this method, when steelmaking slag and hydrochloric acid are stirred and mixed to obtain a slurry from which Ca in steelmaking slag is eluted, there is a problem that components other than Ca, which is a fertilizer component, are eluted. When the amount of SiO 2 elution in the steelmaking slag increases, the viscosity of the slag slurry increases, which makes it difficult to supply the slag slurry. In addition, there is a problem that the amount of hydrochloric acid used to elute Ca is increased, resulting in an increase in chemical cost.

特許第5790388号公報Japanese Patent No. 5790388 特開2016−20296号公報Japanese Patent Laid-Open No. 2006-20296 特開2015−91566号公報JP-A-2015-91566

本発明は、上述した事情に鑑みてなされたものであり、製鋼スラグを用いて被処理水中のリンを回収するリンの回収方法において、塩酸を添加して製鋼スラグ中のCaを溶出させたスラリーを得る際に、製鋼スラグからCaを十分に溶出させる一方で、Ca以外の成分の溶出を抑制し、使用する塩酸量を低減させることができる被処理水中のリンの回収方法を提供することを課題とする。   This invention is made | formed in view of the situation mentioned above, In the collection | recovery method of the phosphorus which collect | recovers phosphorus in to-be-processed water using steelmaking slag, the slurry which added hydrochloric acid and eluted Ca in steelmaking slag In order to provide a method for recovering phosphorus in water to be treated, which can sufficiently dissolve Ca from steelmaking slag while suppressing elution of components other than Ca and reducing the amount of hydrochloric acid to be used. Let it be an issue.

本発明の要旨は、以下の通りである。
(1) 製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸添加中の前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸を添加することを特徴とする被処理水中のリンの回収方法。
(2) 製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸の全量のうち、前記製鋼スラグ中のCaOと前記塩酸とのモル比率(HCl/CaO)が1.00未満となる量の前記塩酸を前記スラグスラリーに添加した後、前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸の残量を添加することを特徴とする被処理水中のリンの回収方法。
(3) 沈降させた前記固形物を乾燥させる(1)または(2)に記載の被処理水中のリンの回収方法。
(4) 前記製鋼スラグの塩基度が1〜7の範囲である(1)乃至(3)の何れか一項に記載の被処理水中のリンの回収方法。
(5) 前記製鋼スラグのカルシウム含有率が15〜55質量%の範囲である(1)乃至(4)の何れか一項に記載の被処理水中のリンの回収方法。
(6) 前記製鋼スラグの平均粒径が0.3mm以下である(1)乃至(5)の何れか一項に記載の被処理水中のリンの回収方法。
(7) 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、混合液のpHを7.2〜8.5に調整する(1)乃至(6)の何れか一項に記載の被処理水中のリンの回収方法。
(8) 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、前記製鋼スラグ中のカルシウム量と前記被処理水中のリン量のモル比率(Ca/P)が2以上4以下になるように調整する(1)乃至(7)の何れか一項に記載の被処理水中のリンの回収方法。
(9) 前記製鋼スラグと前記水及び前記塩酸との固液比が1:5以上である(1)乃至(8)の何れか一項に記載の被処理水中のリンの回収方法。
(10) 前記スラグスラリーに前記塩酸の全量を添加した後の撹拌時間を15分以上とする(1)乃至(9)の何れか一項に記載の被処理水中のリンの回収方法。
(11) 前記被処理水と前記リン回収用スラグスラリーとの撹拌時間を5分以上とする(1)乃至(10)の何れか一項に記載の被処理水中のリンの回収方法。
(12) 前記リンを含む被処理水が生活排水または産業排水のうちの何れか一方または両方を含む(1)乃至(11)の何れか一項に記載の被処理水中のリンの回収方法。
(13) 前記固形物を肥料とすることを特徴とする(1)乃至(12)の何れか一項に記載の被処理水中のリンの回収方法。
(14) 前記固形物を肥料原料とすることを特徴とする(1)乃至(13)の何れか一項に記載の被処理水中のリンの回収方法。
(15) 前記固形物を黄リン原料とすることを特徴とする(1)乃至(14)の何れか一項に記載の被処理水中のリンの回収方法。
The gist of the present invention is as follows.
(1) To a slag slurry composed of steelmaking slag and water, stir and mix the hydrochloric acid in such an amount that the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the steelmaking slag is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, the hydrochloric acid is added while maintaining the pH of the slag slurry during the addition of hydrochloric acid in the range of 4.5 to 7.0. Recovery method.
(2) To the slag slurry composed of steelmaking slag and water, stir and mix the hydrochloric acid in such an amount that the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the steelmaking slag is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, an amount of the hydrochloric acid in which the molar ratio (HCl / CaO) of CaO to the hydrochloric acid in the steelmaking slag is less than 1.00 out of the total amount of the hydrochloric acid is added to the slag. After adding to a slurry, the residual amount of the said hydrochloric acid is added, maintaining the pH of the said slag slurry in the range of 4.5-7.0, The collection | recovery method of the phosphorus in to-be-processed water characterized by the above-mentioned.
(3) The method for recovering phosphorus in the water to be treated according to (1) or (2), wherein the solid matter that has been precipitated is dried.
(4) The method for recovering phosphorus in the water to be treated according to any one of (1) to (3), wherein the basicity of the steelmaking slag is in a range of 1 to 7.
(5) The method for recovering phosphorus in the water to be treated according to any one of (1) to (4), wherein a calcium content of the steelmaking slag is in a range of 15 to 55 mass%.
(6) The method for recovering phosphorus in the water to be treated according to any one of (1) to (5), wherein the steelmaking slag has an average particle size of 0.3 mm or less.
(7) When mixing the water to be treated and the slag slurry for phosphorus recovery, the pH of the mixed solution is adjusted to 7.2 to 8.5. (1) to (6) To recover phosphorus in water to be treated.
(8) When the treated water and the phosphorus recovery slag slurry are mixed, the molar ratio (Ca / P) of the amount of calcium in the steelmaking slag and the amount of phosphorus in the treated water is 2 or more and 4 or less. The method for recovering phosphorus in the water to be treated according to any one of (1) to (7).
(9) The method for recovering phosphorus in the water to be treated according to any one of (1) to (8), wherein a solid-liquid ratio of the steelmaking slag, the water, and the hydrochloric acid is 1: 5 or more.
(10) The method for recovering phosphorus in the water to be treated according to any one of (1) to (9), wherein a stirring time after the total amount of the hydrochloric acid is added to the slag slurry is 15 minutes or more.
(11) The method for recovering phosphorus in the water to be treated according to any one of (1) to (10), wherein the stirring time of the water to be treated and the slag slurry for phosphorus recovery is 5 minutes or more.
(12) The method for recovering phosphorus in the water to be treated according to any one of (1) to (11), wherein the water to be treated containing phosphorus includes one or both of domestic wastewater and industrial wastewater.
(13) The method for recovering phosphorus in water to be treated according to any one of (1) to (12), wherein the solid matter is used as a fertilizer.
(14) The method for recovering phosphorus in water to be treated according to any one of (1) to (13), wherein the solid is used as a fertilizer raw material.
(15) The method for recovering phosphorus in the water to be treated according to any one of (1) to (14), wherein the solid is used as a raw material for yellow phosphorus.

本発明によれば、製鋼スラグを用いて被処理水中のリンを回収するリンの回収方法において、製鋼スラグ中のCaを溶出させたスラリーを得る際に、製鋼スラグからCaを十分に溶出させる一方で、Ca以外の成分の溶出を抑制し、使用する塩酸量を低減させることができる。   According to the present invention, in the phosphorus recovery method for recovering phosphorus in water to be treated using steelmaking slag, when obtaining a slurry from which Ca in steelmaking slag is eluted, Ca is sufficiently eluted from the steelmaking slag. Thus, elution of components other than Ca can be suppressed, and the amount of hydrochloric acid to be used can be reduced.

本発明の被処理水中のリン回収方法に用いるリン回収システムの一例を示す模式図。The schematic diagram which shows an example of the phosphorus collection | recovery system used for the phosphorus collection | recovery method in the to-be-processed water of this invention. 各pHにおける、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)と製鋼スラグから溶出した元素の溶出量との関係を示す図。The figure which shows the relationship between the molar ratio (HCl / CaO) of CaO and hydrochloric acid in steelmaking slag in each pH, and the elution amount of the element eluted from steelmaking slag. 各pHにおける、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)と、残渣回収率との関係を示す図。The figure which shows the relationship between the molar ratio (HCl / CaO) of CaO and hydrochloric acid in steelmaking slag in each pH, and a residue recovery rate. 経過時間とスラリーのpHとの関係を示す図。The figure which shows the relationship between elapsed time and the pH of a slurry. 実施例No.1における、経過時間とスラリーのpH、温度との関係を示す図。Example No. The figure which shows the relationship between elapsed time in 1 and pH and temperature of slurry. 実施例No.3における、経過時間とスラリーのpH、温度との関係を示す図。Example No. FIG. 3 is a diagram showing the relationship between elapsed time and pH and temperature of slurry in FIG. 実施例No.10における、経過時間とスラリーのpH、温度との関係を示す図。Example No. 10 is a diagram showing the relationship between elapsed time, pH of slurry, and temperature in FIG. 実施例No.15における、経過時間とスラリーのpH、温度との関係を示す図。Example No. 15 is a graph showing the relationship between the elapsed time and the pH and temperature of the slurry in FIG. 実施例No.16における、経過時間とスラリーのpH、温度との関係を示す図。Example No. The figure which shows the relationship between elapsed time, pH of slurry, and temperature in FIG. 実施例No.18〜No.20における、経過時間とスラリーのpH、温度との関係を示す図。Example No. 18-No. The figure which shows the relationship between elapsed time in 20 and pH and temperature of slurry.

[第1の実施形態]
本実施形態のリンの回収方法は、製鋼スラグと水とからなるスラグスラリーに、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸を撹拌混合して製鋼スラグ中のCaを溶出させたリン回収用スラグスラリーを得る段階と、リンを含む被処理水にリン回収用スラグスラリーを撹拌混合してから静置することにより、リンとCaとを含む化合物を形成させ、化合物を製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、沈降させた固形物を回収する段階と、を備え、リン回収用スラグスラリーを得る段階において、スラグスラリーのpHを4.5〜7.0の範囲に維持しながら塩酸を添加することを特徴とする。以下に、本実施形態について、図1に示すリン回収システムを参照しつつ、詳細に説明する。
[First Embodiment]
The phosphorus recovery method of the present embodiment is a slag slurry composed of steelmaking slag and water, and an amount of hydrochloric acid in which the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. The step of obtaining a phosphorus recovery slag slurry in which Ca in the steelmaking slag is eluted by stirring and mixing, and stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, A step of forming a compound containing Ca, coagulating and precipitating the compound as a solid together with a steelmaking slag residue, and recovering the precipitated solid, and obtaining a phosphorus recovery slag slurry, Hydrochloric acid is added while maintaining the pH of the slurry in the range of 4.5 to 7.0. Hereinafter, the present embodiment will be described in detail with reference to the phosphorus recovery system shown in FIG.

まず、図1に示すリン回収システム1について説明する。図1に示すリン回収システム1は、リン回収反応槽2と、リン回収反応槽2にリン回収用スラグスラリーS2を供給するリン回収用スラグスラリー供給部3と、リン回収用スラグスラリー供給部3のCa溶出反応槽3aに塩酸A1を供給する塩酸供給部4と、リン回収反応槽2にリンを含む被処理水W2を供給する被処理水供給部5と、リン回収反応槽2に水酸化カルシウムA2を供給するpH調整装置9と、リン回収反応槽2内に沈降した固形物S3を脱水する脱水装置6と、リン回収反応槽2内の上澄み水W3を外部に放流する放流部7と、が備えられている。また、図1に示すリン回収システム1には、脱水後の脱水物S4を乾燥させる乾燥装置8が備えられている。   First, the phosphorus recovery system 1 shown in FIG. 1 will be described. A phosphorus recovery system 1 shown in FIG. 1 includes a phosphorus recovery reaction tank 2, a phosphorus recovery slag slurry supply unit 3 that supplies a phosphorus recovery slag slurry S 2 to the phosphorus recovery reaction tank 2, and a phosphorus recovery slag slurry supply unit 3. Hydrochloric acid supply part 4 for supplying hydrochloric acid A1 to Ca elution reaction tank 3a, treated water supply part 5 for supplying treated water W2 containing phosphorus to phosphorus recovery reaction tank 2, and hydroxylation for phosphorus recovery reaction tank 2 A pH adjusting device 9 for supplying calcium A2, a dehydrating device 6 for dehydrating the solid S3 settled in the phosphorus recovery reaction tank 2, and a discharge section 7 for discharging the supernatant water W3 in the phosphorus recovery reaction tank 2 to the outside. , Is provided. Further, the phosphorus recovery system 1 shown in FIG. 1 is provided with a drying device 8 for drying the dehydrated product S4 after dehydration.

リン回収反応槽2には、図示略の撹拌装置が備えられている。また、リン回収反応槽2は、苛性ソーダ供給ラインL14を介してpH調整装置9と接続されている。リン回収反応槽2には、被処理水W2にリン回収用スラグスラリーS2と被処理水W2とが順次投入され、これらを撹拌した後に静置させることで、被処理水W2中のリンを、リン及びCaを含む化合物として沈降させる。   The phosphorus recovery reaction tank 2 is provided with a stirring device (not shown). Moreover, the phosphorus collection | recovery reaction tank 2 is connected with the pH adjuster 9 via the caustic soda supply line L14. In the phosphorus recovery reaction tank 2, the phosphorus recovery slag slurry S2 and the water to be treated W2 are sequentially added to the water to be treated W2, and after stirring these, the phosphorus in the water to be treated W2 is allowed to stand. Precipitate as a compound containing phosphorus and Ca.

pH調整装置9は、苛性ソーダ供給ラインL14と、水酸化ナトリウム貯留槽9aとから構成されている。水酸化ナトリウム貯留槽9aには、外部から水酸化ナトリウムA2が供給できるようになっている。水酸化ナトリウム貯留槽9aは、苛性ソーダ供給ラインL14を介して、水酸化ナトリウムA2をリン回収反応槽2に供給できるようになっている。   The pH adjusting device 9 includes a caustic soda supply line L14 and a sodium hydroxide storage tank 9a. Sodium hydroxide A2 can be supplied to the sodium hydroxide storage tank 9a from the outside. The sodium hydroxide storage tank 9a can supply sodium hydroxide A2 to the phosphorus recovery reaction tank 2 through the caustic soda supply line L14.

リン回収用スラグスラリー供給部3は、Ca溶出反応槽3aと、Ca溶出反応槽3aとリン回収反応槽2とを接続するスラグスラリー供給ラインL1と、Ca溶出反応槽3aに塩酸A1を供給する塩酸供給部4と、とから構成されている。Ca溶出反応槽3aには、図示略の撹拌装置が備えられている。また、Ca溶出反応槽3aには、外部から製鋼スラグS1を供給するための製鋼スラグ供給ラインL2と、外部から水W1を供給するための水供給ラインL3と、外部から塩酸A1を供給するための塩酸供給ラインL6と、が接続されている。Ca溶出反応槽3aには、水W1と製鋼スラグS1と塩酸A1とが順次投入され、これらを撹拌してリン回収用スラグスラリーS2を得る。Ca溶出反応槽3aは、スラグスラリー供給ラインL1を介してリン回収用スラグスラリーS2をリン回収反応槽2に供給できるようになっている。   The phosphorus recovery slag slurry supply unit 3 supplies the hydrochloric acid A1 to the Ca elution reaction tank 3a, the slag slurry supply line L1 connecting the Ca elution reaction tank 3a and the phosphorus recovery reaction tank 2, and the Ca elution reaction tank 3a. A hydrochloric acid supply unit 4; The Ca elution reaction tank 3a is provided with a stirrer (not shown). Moreover, in order to supply hydrochloric acid A1 to the Ca elution reaction tank 3a, the steelmaking slag supply line L2 for supplying steelmaking slag S1 from the outside, the water supply line L3 for supplying water W1 from the outside, and And a hydrochloric acid supply line L6. The Ca elution reaction tank 3a is sequentially charged with water W1, steelmaking slag S1, and hydrochloric acid A1, and these are stirred to obtain phosphorus recovery slag slurry S2. The Ca elution reaction tank 3a can supply the phosphorus recovery slag slurry S2 to the phosphorus recovery reaction tank 2 via the slag slurry supply line L1.

塩酸供給部4は、Ca溶出反応槽3aに塩酸A1を供給する塩酸供給ラインL6から構成されている。塩酸供給ラインL6の上流側には、図示略の塩酸貯留タンクが接続されていてもよい。塩酸供給部4は、酸供給ラインL6を介して塩酸A1をCa溶出反応槽3aに供給できるようになっている。   The hydrochloric acid supply unit 4 includes a hydrochloric acid supply line L6 that supplies hydrochloric acid A1 to the Ca elution reaction tank 3a. A hydrochloric acid storage tank (not shown) may be connected to the upstream side of the hydrochloric acid supply line L6. The hydrochloric acid supply unit 4 can supply hydrochloric acid A1 to the Ca elution reaction tank 3a via the acid supply line L6.

被処理水供給部5は、原水貯留槽5aと、原水貯留槽5aとリン回収反応槽2とを接続する原水供給ラインL4とから構成されている。原水貯留槽5aには、外部から被処理水W2を供給するための供給ラインL5が接続されている。被処理水供給部5は、原水貯留槽5aに貯留された被処理水W2をリン回収反応槽2に供給できるようになっている。   The to-be-processed water supply part 5 is comprised from the raw | natural water storage tank 5a and the raw | natural water supply line L4 which connects the raw | natural water storage tank 5a and the phosphorus collection | recovery reaction tank 2. FIG. A supply line L5 for supplying the treated water W2 from the outside is connected to the raw water storage tank 5a. The to-be-treated water supply unit 5 can supply the to-be-treated water W2 stored in the raw water storage tank 5a to the phosphorus recovery reaction tank 2.

放流部7は、固形物S3が沈降した後の上澄み水W3を排出する排水ラインL7と、排水ラインL7の先に接続された排水貯留タンク7aと、排水貯留タンク7aに接続された放流ラインL13とから構成されている。   The discharge section 7 includes a drain line L7 that discharges the supernatant water W3 after the solid matter S3 settles, a drain storage tank 7a that is connected to the tip of the drain line L7, and a discharge line L13 that is connected to the drain storage tank 7a. It consists of and.

また、リン回収反応槽2には、沈降後の固形物S3を外部に排出する排出ラインL8が接続されている。排出ラインL8の先には脱水装置6が接続されている。脱水装置6では、リン回収反応槽2内に沈降した固形物S3を受け入れて、脱水が行なわれる。また、脱水装置6には、固形物S3から脱水された脱水水W4を、上澄み水W3の排水ラインL7に送るための別の排水ラインL9が接続されている。更に、脱水装置6には、脱水後の脱水物S4を外部に排出する搬送ラインL10が接続されている。   The phosphorus recovery reaction tank 2 is connected to a discharge line L8 that discharges the settled solid matter S3 to the outside. A dehydrator 6 is connected to the end of the discharge line L8. The dehydrator 6 receives the solid S3 that has settled in the phosphorus recovery reaction tank 2 and performs dehydration. The dewatering device 6 is connected to another drainage line L9 for sending the dewatered water W4 dehydrated from the solid S3 to the drainage line L7 of the supernatant water W3. Furthermore, the dehydrator 6 is connected to a transport line L10 for discharging the dehydrated dehydrated material S4 to the outside.

搬送ラインL10は、その途中から別の搬送ラインL11が分岐している。分岐した搬送ラインL11の先には乾燥装置8が接続されている。乾燥装置8には、乾燥後の乾燥物S5を排出する排出ラインL12が接続されている。   As for the conveyance line L10, another conveyance line L11 has branched from the middle. A drying device 8 is connected to the end of the branched transfer line L11. The drying device 8 is connected to a discharge line L12 for discharging the dried product S5 after drying.

次に、図1に示すリン回収システム1を用いた被処理水中のリンの回収方法を説明する。
本実施形態で使用する製鋼スラグS1は、製鉄所から排出される製鋼スラグS1を使用する。
Next, a method for recovering phosphorus in the water to be treated using the phosphorus recovery system 1 shown in FIG. 1 will be described.
Steelmaking slag S1 used in this embodiment uses steelmaking slag S1 discharged from an ironworks.

製鋼スラグS1の平均粒径は、0.3mm以下が好ましく、0.2mm以下がより好ましく、0.15mm以下が更に好ましい。ただし、製鋼スラグS1の平均粒径を、粉砕により小さくするにしたがってコストが上昇するので、コストとの兼ね合いで最適な値を決めるとよい。また、粉砕しすぎると微細な残渣が多量に生成して、固液分離時に時間を要することになるので、製鋼スラグS1の粒径は固液分離が円滑に行える程度の平均粒径に留めるとよい。例えば0.01mm以上がよい。 The average particle diameter of the steelmaking slag S1 is preferably 0.3 mm or less, more preferably 0.2 mm or less, and still more preferably 0.15 mm or less. However, since the cost increases as the average particle diameter of the steelmaking slag S1 is reduced by pulverization, an optimal value may be determined in consideration of the cost. In addition, if it is pulverized too much, a large amount of fine residue is generated and time is required for solid-liquid separation. Therefore, the particle diameter of the steelmaking slag S1 is limited to an average particle diameter that allows smooth solid-liquid separation. Good. For example, 0.01 mm or more is preferable.

また、製鋼スラグS1のCa含有率は、15〜55質量%の範囲であることが好ましく、25〜55質量%の範囲がより好ましい。製鋼スラグS1中のCa含有率が低すぎるとリンの回収率が低下するので好ましくない。一方、製鋼スラグS1中のCa含有率が高すぎると、Ca溶出後の製鋼スラグS1の残渣の量が少なくなる。製鋼スラグS1の残渣の量が少なくなると、リンの回収率も低下するので好ましくない。   Moreover, it is preferable that the Ca content rate of steelmaking slag S1 is the range of 15-55 mass%, and the range of 25-55 mass% is more preferable. If the Ca content in steelmaking slag S1 is too low, the phosphorus recovery rate is lowered, which is not preferable. On the other hand, if the Ca content in the steelmaking slag S1 is too high, the amount of the steelmaking slag S1 residue after elution of Ca is reduced. If the amount of the steelmaking slag S1 residue is reduced, the phosphorus recovery rate is also lowered, which is not preferable.

表1に、製鋼スラグS1に含まれる成分の一例を示す。表1に示すように、製鋼スラグS1にはCaや、肥料成分であるFe、Al、Si等が含まれている。ここで、本実施形態では、塩基度(CaO/SiO(重量比))が1〜7の範囲である製鋼スラグS1を用いることが好ましい。 Table 1 shows an example of components contained in the steelmaking slag S1. As shown in Table 1, the steelmaking slag S1 contains Ca, fertilizer components such as Fe, Al, and Si. In this embodiment, the basicity (CaO / SiO 2 (weight ratio)) it is preferable to use a steel slag S1 as in the range of 1-7.

Figure 2018094514
Figure 2018094514

本実施形態で利用可能な水W1としては、水道水や工業用水等が例示される。   Examples of the water W1 that can be used in the present embodiment include tap water and industrial water.

本実施形態で利用可能な塩酸A1としては、塩酸や濃塩酸が例示される。塩酸や濃塩酸の濃度は、0.5〜12.0N程度であるが、いずれの濃度のものを用いても構わない。なお、塩酸以外の酸として硫酸や硝酸が挙げられるが、硫酸は製鋼スラグS1から溶出したCaと反応して石膏(CaSO)を形成してしまうので好ましくない。また、硝酸は窒素を含むため、リン回収後の処理水W5を公共水域に放流した際に富栄養化の原因になるので好ましくない。 Examples of hydrochloric acid A1 that can be used in this embodiment include hydrochloric acid and concentrated hydrochloric acid. The concentration of hydrochloric acid or concentrated hydrochloric acid is about 0.5 to 12.0 N, but any concentration may be used. Although a sulfate or nitrate as an acid other than hydrochloric acid, the sulfuric acid would form a gypsum reacts with Ca eluted from steelmaking slag S1 (CaSO 4) is not preferable. Moreover, since nitric acid contains nitrogen, it becomes unpleasant because it causes eutrophication when the treated water W5 after phosphorus recovery is discharged into public water areas.

本実施形態で使用する被処理水W2は、リンを含むものであればよく、リンの濃度に特に制限はない。本実施形態の被処理水W2として、例えば、公共下水道から終末処理場に流入する下水が挙げられる。このような下水としては、主に市街地などから排出される都市排水が挙げられる。都市排水には、一般家庭から排出される生活排水や、店舗、その他の施設から排出される排水が含まれる。また、このような下水には、製鉄所等の金属精錬工場やその他の工場などから排出される産業排水が含まれる場合もある。特に、生活排水や産業排水には、リンが比較的多く含まれる場合がある。したがって、公共下水道の終末処理場で処理される下水は、本実施形態のリンの回収方法における被処理水W2として好適に用いることができる、また、本実施形態のリンの回収方法は、終末処理場においてリンを回収する際に適用してもよい。更に、本実施形態の被処理水W2は生活排水や産業排水に限られず、リンを含むものであれば適用可能である。   The water to be treated W2 used in the present embodiment is not particularly limited as long as it contains phosphorus and the concentration of phosphorus is not particularly limited. As the to-be-processed water W2 of this embodiment, the sewage which flows into a terminal treatment plant from a public sewer is mentioned, for example. Examples of such sewage include urban wastewater discharged mainly from urban areas. Urban wastewater includes domestic wastewater discharged from ordinary households and wastewater discharged from stores and other facilities. In addition, such sewage may include industrial wastewater discharged from metal refining factories such as steelworks and other factories. In particular, domestic wastewater and industrial wastewater may contain a relatively large amount of phosphorus. Therefore, the sewage treated in the terminal treatment plant of the public sewer can be suitably used as the treated water W2 in the phosphorus recovery method of the present embodiment. Also, the phosphorus recovery method of the present embodiment is a final treatment. It may be applied when phosphorus is recovered in the field. Furthermore, the to-be-processed water W2 of this embodiment is not restricted to domestic wastewater or industrial wastewater, but can be applied if it contains phosphorus.

本実施形態のリンの回収方法は、製鋼スラグS1と水W1とからなるリン回収用スラグスラリーS2に、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1を撹拌混合して、製鋼スラグS1中のCaを溶出させたリン回収用スラグスラリーを得る段階と、リン回収用スラグスラリーにリンを含む被処理水W2を撹拌混合してから静置することにより、リンとCaとを含む化合物を形成させ、化合物を製鋼スラグS1の残渣とともに固形物S3として凝集沈降させる段階と、沈降させた固形物S3を回収する段階と、を備え、リン回収用スラグスラリーを得る段階において、リン回収用スラグスラリーS2のpHを4.5〜7.0の範囲に維持しながら塩酸A1を添加することを特徴とする。以下、各段階について説明する。   In the phosphorus recovery method of the present embodiment, the molar ratio (HCl / CaO) of CaO and hydrochloric acid A1 in the steelmaking slag S1 to the phosphorus recovery slag slurry S2 composed of the steelmaking slag S1 and the water W1 is 1.00. 1. Stirring and mixing an amount of hydrochloric acid A1 of 1.50 to obtain a phosphorus recovery slag slurry in which Ca in the steelmaking slag S1 is eluted, and stirring the treated water W2 containing phosphorus in the phosphorus recovery slag slurry The mixture is allowed to stand after mixing to form a compound containing phosphorus and Ca, and the compound is coagulated and settled as a solid S3 together with the residue of the steelmaking slag S1, and the collected solid S3 is recovered. In the step of obtaining the phosphorus recovery slag slurry, the hydrochloric acid A1 is added while maintaining the pH of the phosphorus recovery slag slurry S2 in the range of 4.5 to 7.0. To. Hereinafter, each step will be described.

まず、水W1に製鋼スラグS1を添加してスラグスラリーを得る。図1のリン回収システム1においては、Ca溶出反応槽3aに水W1及び製鋼スラグS1を供給し、これらを撹拌混合してスラグスラリーとする。スラグスラリーのpHを安定させるためには、1分以上撹拌することが好ましく、5分以上撹拌することがより好ましく、10分以上撹拌することが更に好ましい。このとき、撹拌混合中に、製鋼スラグS1中のf−CaO(フリーライム)が溶出して、スラグスラリーのpHが上昇してアルカリ性を示す場合がある。   First, steelmaking slag S1 is added to water W1 to obtain a slag slurry. In the phosphorus recovery system 1 of FIG. 1, water W1 and steelmaking slag S1 are supplied to the Ca elution reaction tank 3a, and these are stirred and mixed to form slag slurry. In order to stabilize the pH of the slag slurry, stirring is preferably performed for 1 minute or more, more preferably stirring for 5 minutes or more, and further preferably stirring for 10 minutes or more. At this time, during stirring and mixing, f-CaO (free lime) in the steelmaking slag S1 may be eluted, and the pH of the slag slurry may increase to show alkalinity.

次に、塩酸供給部4からCa溶出反応槽3aに塩酸A1を供給し、Ca溶出反応槽3aにおいてスラグスラリーと塩酸A1とを撹拌混合してリン回収用スラグスラリーS2とする。このとき、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1をCa溶出反応槽3aに供給する。さらに、Ca溶出反応槽3a内のスラグスラリーのpHを4.5〜7.0の範囲に維持しながら、塩酸A1を供給する。なお、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1を供給した後の撹拌時間は、15分以上が好ましく、20分以上がより好ましい。   Next, hydrochloric acid A1 is supplied from the hydrochloric acid supply unit 4 to the Ca elution reaction tank 3a, and the slag slurry and hydrochloric acid A1 are stirred and mixed in the Ca elution reaction tank 3a to obtain phosphorus recovery slag slurry S2. At this time, an amount of hydrochloric acid A1 in which the molar ratio (HCl / CaO) of CaO to hydrochloric acid A1 in the steelmaking slag S1 is 1.00 to 1.50 is supplied to the Ca elution reaction tank 3a. Furthermore, hydrochloric acid A1 is supplied while maintaining the pH of the slag slurry in the Ca elution reaction tank 3a in the range of 4.5 to 7.0. The stirring time after supplying hydrochloric acid A1 in such an amount that the molar ratio of CaO to hydrochloric acid A1 (HCl / CaO) in steelmaking slag S1 is 1.00 to 1.50 is preferably 15 minutes or more, and 20 More than minutes are more preferable.

リン回収反応槽において、塩酸A1供給中のスラグスラリーS2のpHが4.5〜7.0の範囲であると、製鋼スラグS1からCaが優先的に溶出し、Ca以外の成分の溶出が抑制される。これは、pHが4.5〜7.0の範囲では主に、製鋼スラグS1に供給された水素イオンと、製鋼スラグS1から放出される水酸化物イオンとのイオン交換による溶出が起こり、製鋼スラグS1に含まれる成分の中でイオン化傾向の大きいCaが優先的に溶出するためだと考えられる。   In the phosphorus recovery reaction tank, when the pH of the slag slurry S2 during supply of hydrochloric acid A1 is in the range of 4.5 to 7.0, Ca elutes preferentially from the steelmaking slag S1, and the elution of components other than Ca is suppressed. Is done. This is mainly due to elution by ion exchange between hydrogen ions supplied to the steelmaking slag S1 and hydroxide ions released from the steelmaking slag S1 in a pH range of 4.5 to 7.0. It is considered that Ca having a large ionization tendency preferentially elutes among the components contained in the slag S1.

一方、塩酸A1供給中のスラグスラリーS2のpHが4.5未満であると、製鋼スラグS1からCa以外の成分の溶出量が増加してしまう。これは、製鋼スラグS1に多量の水素イオンが供給されることにより、製鋼スラグS1表面の金属酸化物(SiO、Al、FeO、Fe等)が水素イオンと反応して製鋼スラグS1表面から崩壊し、溶出するためだと考えられる。これにより、製鋼スラグS1からCa以外の元素が溶出し、Ca溶出のために供給した塩酸A1がCa溶出以外にも使用されるため、Ca溶出のために使用する塩酸A1の量が多くなる。 On the other hand, if the pH of the slag slurry S2 during supply of hydrochloric acid A1 is less than 4.5, the amount of elution of components other than Ca from the steelmaking slag S1 increases. This is because a large amount of hydrogen ions supplied to the steelmaking slag S1, metal oxides steelmaking slag S1 surface (SiO 2, Al 2 O 3 , FeO, Fe 2 O 3 , etc.) react with hydrogen ions This is thought to be due to the collapse and elution from the surface of the steelmaking slag S1. Thereby, since elements other than Ca elute from steelmaking slag S1, and hydrochloric acid A1 supplied for Ca elution is used besides Ca elution, the quantity of hydrochloric acid A1 used for Ca elution increases.

また、塩酸A1供給中のスラグスラリーS2のpHが7.0超となると、製鋼スラグS1からCaが十分に溶出しない。   Further, when the pH of the slag slurry S2 during supply of hydrochloric acid A1 exceeds 7.0, Ca is not sufficiently eluted from the steelmaking slag S1.

Ca溶出反応槽3aに供給する塩酸A1の量は、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量である。製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00未満であると、製鋼スラグS1中のCaを十分に溶出させることができず、被処理水中のリンを効率的に回収するために必要なCa溶出量を確保することができない。一方、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.50超であると、後の工程でpH調整のために使用する水酸化ナトリウムA2の量が多くなり、薬液コストの増大を招く。なお、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)を調整するために、製鋼スラグS1中のCaO濃度は事前に計測しておくことが好ましい。また、リン回収用スラグスラリーS2のCaイオン濃度を、イオン電極等を用いて常時モニタリングすることも好ましい。   The amount of hydrochloric acid A1 supplied to the Ca elution reaction tank 3a is such that the molar ratio (HCl / CaO) between CaO and hydrochloric acid A1 in the steelmaking slag S1 is 1.00 to 1.50. When the molar ratio (HCl / CaO) between CaO and hydrochloric acid A1 in the steelmaking slag S1 is less than 1.00, Ca in the steelmaking slag S1 cannot be sufficiently eluted, and phosphorus in the treated water is efficiently used. Therefore, it is not possible to secure the amount of Ca elution necessary for the recovery. On the other hand, when the molar ratio (HCl / CaO) of CaO and hydrochloric acid A1 in the steelmaking slag S1 is more than 1.50, the amount of sodium hydroxide A2 used for pH adjustment in the subsequent step increases. This increases the cost of chemicals. In addition, in order to adjust the molar ratio (HCl / CaO) of CaO and hydrochloric acid A1 in the steelmaking slag S1, it is preferable to measure the CaO concentration in the steelmaking slag S1 in advance. It is also preferable to constantly monitor the Ca ion concentration of the phosphorus recovery slag slurry S2 using an ion electrode or the like.

また、製鋼スラグS1と反応に使用する液量(水W1及び塩酸A1の量)との固液比は、1:5(kg:kg)以上となるように調整する。製鋼スラグS1中のCaO濃度が決まると、塩酸A1の使用量が製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)から求めることができるので、残りの液量を水W1の量とすればよい。   The solid-liquid ratio between the steelmaking slag S1 and the amount of liquid used for the reaction (the amount of water W1 and hydrochloric acid A1) is adjusted to be 1: 5 (kg: kg) or more. When the CaO concentration in the steelmaking slag S1 is determined, the amount of hydrochloric acid A1 used can be determined from the molar ratio (HCl / CaO) of CaO and hydrochloric acid A1 in the steelmaking slag S1, so that the remaining amount of liquid W1 It can be an amount.

以下に、一例として、Ca溶出反応槽3aのスラグスラリーのpHを5.0に維持しながら塩酸A1を供給して、リン回収用スラグスラリーS2を得る場合について詳細に説明する。   As an example, a case where the hydrochloric acid A1 is supplied while maintaining the pH of the slag slurry in the Ca elution reaction tank 3a at 5.0 to obtain the phosphorus recovery slag slurry S2 will be described in detail.

まず、Ca溶出反応槽3aにおいて、水W1と製鋼スラグS1とからなるスラグスラリーを撹拌混合しつつ、スラグスラリーのpHが5.0に低下するまで塩酸供給部4から塩酸A1を供給する。スラグスラリーのpHが5.0まで低下したら、一旦、塩酸A1の供給を中断する。塩酸A1の供給を中断した後もスラグスラリーの撹拌混合を続けると、製鋼スラグS1中のCaが溶出してスラグスラリーのpHが上昇する。すると、スラグスラリーのpHが5.0超となるため、再度、塩酸A1を供給しつつ撹拌混合して、スラグスラリーのpHを5.0まで低下させる。スラグスラリーのpHが5.0となったら、塩酸A1の供給を中断して、撹拌混合する。するとまた、製鋼スラグS1中のCaが溶出し、スラグスラリーのpHが上昇して5.0超となるため、塩酸A1を供給しつつ撹拌混合して、スラグスラリーのpHを5.0まで低下させる。この操作を、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1を供給するまで繰り返す。塩酸A1の全量を供給し終えたら、15分以上撹拌混合する。以上説明したように、スラグスラリーのpHを一定に維持しながら塩酸A1を供給することで、リン回収用スラグスラリーS2を得る。   First, in the Ca elution reaction tank 3a, hydrochloric acid A1 is supplied from the hydrochloric acid supply unit 4 while stirring and mixing the slag slurry composed of the water W1 and the steelmaking slag S1 until the pH of the slag slurry decreases to 5.0. When the pH of the slag slurry is lowered to 5.0, the supply of hydrochloric acid A1 is once interrupted. If the stirring and mixing of the slag slurry is continued even after the supply of the hydrochloric acid A1 is interrupted, Ca in the steelmaking slag S1 is eluted and the pH of the slag slurry is increased. Then, since the pH of the slag slurry becomes greater than 5.0, the pH of the slag slurry is lowered to 5.0 by stirring and mixing again while supplying hydrochloric acid A1. When the pH of the slag slurry reaches 5.0, the supply of hydrochloric acid A1 is interrupted and mixed with stirring. Then, Ca in the steelmaking slag S1 elutes, and the pH of the slag slurry rises to more than 5.0. Therefore, stirring and mixing while supplying hydrochloric acid A1, the pH of the slag slurry is lowered to 5.0. Let This operation is repeated until hydrochloric acid A1 is supplied in such an amount that the molar ratio of CaO to hydrochloric acid A1 (HCl / CaO) in steelmaking slag S1 is 1.00 to 1.50. After supplying the entire amount of hydrochloric acid A1, the mixture is stirred and mixed for 15 minutes or longer. As explained above, phosphorus recovery slag slurry S2 is obtained by supplying hydrochloric acid A1 while maintaining the pH of the slag slurry constant.

次に、原水貯留槽5aから被処理水W2を、原水供給ラインL4を介してリン回収反応槽2に供給するとともに、リン回収用スラグスラリーS2を、リン回収用スラグスラリー供給ラインL2を介してリン回収反応槽2に供給し、リン回収用スラグスラリーS2と被処理水W2とを撹拌混合した後、静置する。製鋼スラグS1中のCa量と被処理水W2中のリン量との混合割合は、Ca/P比率が2〜4の範囲になるように調整すればよい。Ca/P比率の調整は、リン回収用スラグスラリーS2と被処理水W2の混合割合等によって制御すればよい。また、Ca/P比率を調整するために、リン回収用スラグスラリーS2中のCa濃度と被処理水W2中のリン濃度は事前に計測しておくことが好ましい。   Next, the treated water W2 is supplied from the raw water storage tank 5a to the phosphorus recovery reaction tank 2 via the raw water supply line L4, and the phosphorus recovery slag slurry S2 is supplied via the phosphorus recovery slag slurry supply line L2. It supplies to the phosphorus collection | recovery reaction tank 2, stirs and mixes the phosphorus collection | recovery slag slurry S2 and the to-be-processed water W2, and leaves still. What is necessary is just to adjust the mixing ratio of the amount of Ca in steelmaking slag S1, and the amount of phosphorus in the to-be-processed water W2 so that Ca / P ratio may be in the range of 2-4. The adjustment of the Ca / P ratio may be controlled by the mixing ratio of the phosphorus recovery slag slurry S2 and the water to be treated W2. In order to adjust the Ca / P ratio, the Ca concentration in the phosphorus recovery slag slurry S2 and the phosphorus concentration in the water to be treated W2 are preferably measured in advance.

被処理水中W2のリンと、リン回収用スラグスラリーS2中のCaとを十分に反応させるためには、被処理水W2とリン回収用スラグスラリーS2との撹拌時間は、5分以上とするとよい。撹拌時間が短すぎると、Caとリンとの反応が十分に進まない可能性がある。また、撹拌時間が長すぎると、装置が大きくなり、設備コストが高くなる。   In order to sufficiently react phosphorus in the treated water W2 and Ca in the phosphorus recovery slag slurry S2, the stirring time of the treated water W2 and the phosphorus recovery slag slurry S2 is preferably 5 minutes or more. . If the stirring time is too short, the reaction between Ca and phosphorus may not proceed sufficiently. Moreover, when stirring time is too long, an apparatus will become large and an installation cost will become high.

被処理水W2とリン回収用スラグスラリーS2とを撹拌混合することで、被処理水W2中に含まれるリンと、製鋼スラグS1から溶出されたリン回収用スラグスラリーS2中のCaとが反応して、リンとCaとを含む化合物が形成する。形成する化合物としては次のようなものが考えられる。被処理水W2中に含まれるリンの一部はリン酸水素イオン(HPO 2−)として存在しており、リン酸水素イオンとCaイオンが反応してリン酸水素カルシウム(CaHPO)が形成されると推測する。また、このとき、リン酸水素カルシウムにCaが更に結合してCaHPO 2+(トリプレット)も形成すると思われる。 By mixing the water to be treated W2 and the phosphorus recovery slag slurry S2 with stirring, phosphorus contained in the water to be treated W2 reacts with Ca in the phosphorus recovery slag slurry S2 eluted from the steelmaking slag S1. Thus, a compound containing phosphorus and Ca is formed. The following compounds can be considered as the compound to be formed. Part of the phosphorus contained in the water to be treated W2 exists as hydrogen phosphate ions (HPO 4 2− ), and the hydrogen phosphate ions and Ca ions react to form calcium hydrogen phosphate (CaHPO 4 ). I guess it will be. At this time, it is considered that Ca further binds to calcium hydrogen phosphate to form Ca 2 HPO 4 2+ (triplet).

撹拌混合時に形成されるリン酸水素イオンを安定して存在させるためには、リン回収用スラグスラリーS2と被処理水W2とからなる混合液のpHを7.2〜8.5の範囲に調整することが好ましい。混合液のpHが7.2未満になると、リン酸水素イオンよりもリン酸二水素イオンが多く存在することになる。リン酸二水素イオンとCaイオンとの溶解度積は、リン酸水素イオンとCaイオンとの溶解度積よりも大きいため、混合液のpHが7.2未満ではリン酸水素カルシウムの析出量が少なくなってリンの回収率が低下する可能性がある。また、pHが8.5を超えると、被処理水W2中に炭酸イオンが生成し、Caが炭酸イオンと結合して炭酸カルシウムを析出させ、リンが析出しにくくなり、リンの回収率が低下してしまう。被処理水W2中のpHは、苛性ソーダ供給ラインL14を介して、pH調整装置9から水酸化ナトリウムA2を供給して調整すればよい。   In order to make hydrogen phosphate ions formed at the time of stirring and mixing stable, the pH of the liquid mixture composed of the phosphorus recovery slag slurry S2 and the water to be treated W2 is adjusted to a range of 7.2 to 8.5. It is preferable to do. When the pH of the mixed solution is less than 7.2, more dihydrogen phosphate ions are present than hydrogen phosphate ions. Since the solubility product of dihydrogen phosphate ion and Ca ion is larger than the solubility product of hydrogen phosphate ion and Ca ion, the precipitation amount of calcium hydrogen phosphate decreases when the pH of the mixed solution is less than 7.2. This may reduce the phosphorus recovery rate. Further, when the pH exceeds 8.5, carbonate ions are generated in the water W2 to be treated, Ca binds to carbonate ions to precipitate calcium carbonate, and phosphorus hardly precipitates, resulting in a decrease in phosphorus recovery rate. Resulting in. The pH in the water to be treated W2 may be adjusted by supplying sodium hydroxide A2 from the pH adjusting device 9 via the caustic soda supply line L14.

また、リン及びCaを含む化合物の形成と同時または形成後に、製鋼スラグS1の残渣を利用してこれら化合物を凝集沈降させる。製鋼スラグS1の残渣は、Caが陽イオンとして溶出したものであるので、全体として負に帯電している。一方、リン酸水素カルシウム及びCaHPO 2+は、見かけ比重が小さい状態であるため、被処理水W2中に浮遊し、かつCaHPO 2+は正に帯電している。このように負に帯電した製鋼スラグS1の残渣と浮遊するリン酸水素カルシウム及びCaHPO 2+が共存することで、両者の間に静電的な相互作用が発生し、製鋼スラグS1の残渣に対してリン酸水素カルシウム並びにCaHPO 2+等の化合物が凝集し、ついには固形物S3として沈降する。以上のメカニズムにより凝集沈降が進むと考えられるため、固形物S3を沈降させる際に、凝集剤を添加する必要はない。 In addition, at the same time as or after the formation of the compound containing phosphorus and Ca, these compounds are agglomerated and precipitated using the residue of the steelmaking slag S1. The residue of the steelmaking slag S1 is negatively charged as a whole because Ca is eluted as a cation. On the other hand, calcium hydrogen phosphate and Ca 2 HPO 4 2+ have a small apparent specific gravity, so that they float in the water W2 to be treated, and Ca 2 HPO 4 2+ is positively charged. In this way, the negatively charged residue of the steelmaking slag S1 and the floating calcium hydrogen phosphate and Ca 2 HPO 4 2+ coexist, thereby generating an electrostatic interaction between them, and the residue of the steelmaking slag S1. In contrast, calcium hydrogen phosphate and compounds such as Ca 2 HPO 4 2+ aggregate and finally settle as solid S3. Since it is considered that coagulation sedimentation proceeds by the above mechanism, it is not necessary to add a coagulant when the solid S3 is sedimented.

沈降時間は、リン回収反応槽2の大きさにもよるが、7分以上が好ましく、10分以上がより好ましく、30分以上が更に好ましい。上限は、60分以下が好ましく、50分以下がより好ましく、40分以下が更に好ましい。   Although depending on the size of the phosphorus recovery reaction tank 2, the sedimentation time is preferably 7 minutes or more, more preferably 10 minutes or more, and still more preferably 30 minutes or more. The upper limit is preferably 60 minutes or less, more preferably 50 minutes or less, and even more preferably 40 minutes or less.

次に、リン回収反応槽2において、固形物S3沈降後の上澄みである上澄み水W3を、排水ラインL7を介して排水貯留タンク7aに送る。その後、上澄み水W3は脱水装置6からの脱水水W4とともに、排水貯留タンク7aから処理水W5として公共水域に放流されるか、あるいは、別の水処理設備に送られる。   Next, in the phosphorus recovery reaction tank 2, the supernatant water W3, which is the supernatant after sedimentation of the solid S3, is sent to the drainage storage tank 7a via the drainage line L7. Thereafter, the supernatant water W3 is discharged into the public water area as the treated water W5 from the drainage storage tank 7a together with the dehydrated water W4 from the dehydrator 6, or is sent to another water treatment facility.

一方、リン回収反応槽2の底に凝集沈降した固形物S3は、排出ラインL8を介して脱水装置6に送られる。脱水装置6において固形物S3は脱水され、その際に分離された脱水水W4は排水ラインL9を介して排水貯留タンク7aへ送られる。なお、沈降させた固形物S3の脱水は、濾過、遠心分離、加圧脱水(ローラーブレス、フィルタープレス、スクリュープレス)、多重円板回転脱水、多重振動フィルターなどを用いても良い。   On the other hand, the solid S3 that has aggregated and settled at the bottom of the phosphorus recovery reaction tank 2 is sent to the dehydrator 6 via the discharge line L8. The solid material S3 is dehydrated in the dehydrating device 6, and the dehydrated water W4 separated at that time is sent to the drainage storage tank 7a via the drainage line L9. The sedimented solid matter S3 may be dehydrated by using filtration, centrifugation, pressure dehydration (roller breath, filter press, screw press), multiple disk rotation dehydration, multiple vibration filter, or the like.

脱水後の脱水物S4は、搬送ラインL10によって系外に排出されるか、搬送ラインL11を経由して乾燥装置8に送られる。肥料または肥料原料として搬出される。または、乾燥装置8に送られて乾燥される。脱水物S4の乾燥処理は、室温環境下において放置することによる自然乾燥でもよい。室温環境下であれば、例えば、12時間程度放置しておけば、十分に乾燥される。乾燥装置8に送られた脱水物S4は、乾燥させられた後に乾燥物S5として系外に排出される。   The dehydrated product S4 after the dehydration is discharged out of the system by the transfer line L10 or is sent to the drying device 8 via the transfer line L11. Carried out as fertilizer or fertilizer raw material. Or it is sent to the drying apparatus 8 and dried. The drying treatment of the dehydrated product S4 may be natural drying by leaving it in a room temperature environment. In a room temperature environment, for example, if it is left for about 12 hours, it will be sufficiently dried. The dehydrated product S4 sent to the drying device 8 is dried and then discharged out of the system as a dried product S5.

脱水装置6から搬出される脱水物S4は、回収物をそのまま肥料用途に向けるための、ク溶性リン含有率の規格値である15質量%以上のク溶性リンを含んでおり、そのまま肥料として用いられる。また、肥料有効成分であるFe、Si、Mn、Mg等の元素を多く含んでいる。なお、ク溶性とは2%のクエン酸水溶液に溶解する性質をいう。また、ク溶性リンとは2%のクエン酸水溶液に溶解するリンをいう。   The dehydrated matter S4 carried out from the dehydrating apparatus 6 contains 15% by mass or more of kurea-soluble phosphorus, which is the standard value of the kurea-soluble phosphorus content for directing the recovered material for fertilizer use, and is used as it is as a fertilizer. It is done. Moreover, it contains many elements such as Fe, Si, Mn, Mg, etc., which are fertilizer active ingredients. The term “soluble” refers to the property of being dissolved in a 2% aqueous citric acid solution. The term “soluble phosphorus” refers to phosphorus that is dissolved in a 2% aqueous citric acid solution.

また、乾燥装置8から搬出される乾燥物S5は、回収物をそのまま肥料用途に向けるための、ク溶性リン含有率の規格値である15質量%以上のク溶性リンを含んでおり、そのまま肥料として用いられるか、肥料原料として肥料の製造に利用されるか、あるいは黄リン原料として利用される。また、肥料有効成分であるCa、Fe、Mg、Mn、Si等の成分を多く含んでいる。   Moreover, the dried product S5 carried out from the drying device 8 contains 15% by mass or more of solute-soluble phosphorus, which is a standard value of the solute-soluble phosphorus content, in order to direct the recovered material for fertilizer use as it is. Used as a fertilizer raw material, or as a yellow phosphorus raw material. Moreover, it contains many components such as Ca, Fe, Mg, Mn, and Si, which are fertilizer active components.

以上説明したように、本実施形態の被処理水中のリンの回収方法によれば、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸を撹拌混合して製鋼スラグ中のCaを溶出させたリン回収用スラグスラリーを得る段階において、スラグスラリーのpHを4.5〜7.0の範囲に維持しながら塩酸を添加することによって、製鋼スラグ中のCaを十分に溶出させることができ、また、Ca以外の成分の溶出を抑制することができ、回収した固形物中に肥料成分を多く残存させることができる。また、使用する塩酸量を低減させることができ、薬液コストを低減させることができる。さらに、使用する塩酸量が低減されることにより、被処理水とリン回収用スラグスラリーとを撹拌混合する際に、pH調整のために使用する水酸化ナトリウムの量を少なくすることができるため、薬液コストを更に低減させることができる。   As described above, according to the method for recovering phosphorus in the water to be treated according to the present embodiment, the molar ratio (HCl / CaO) between CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. In the step of obtaining a phosphorus recovery slag slurry in which hydrochloric acid is stirred and mixed to elute Ca in the steelmaking slag, hydrochloric acid is added while maintaining the pH of the slag slurry in the range of 4.5 to 7.0, Ca in the steelmaking slag can be sufficiently eluted, elution of components other than Ca can be suppressed, and a large amount of fertilizer components can remain in the collected solid matter. In addition, the amount of hydrochloric acid to be used can be reduced, and the chemical cost can be reduced. Furthermore, when the amount of hydrochloric acid to be used is reduced, the amount of sodium hydroxide used for pH adjustment can be reduced when the water to be treated and the slag slurry for phosphorus recovery are stirred and mixed. The chemical cost can be further reduced.

また、製鋼スラグからCaを溶出させてこれを被処理水中のリン酸水素イオンと反応させてリン酸水素カルシウムとし、更に製鋼スラグからカルシウムを溶出した後の残渣を利用して、リン酸水素カルシウムを凝集沈降させるので、被処理水中のリンを高い収率で効率よく回収できる。
特に、Ca溶出後の製鋼スラグの残渣を利用することで、短時間でリン酸水素カルシウムを凝集沈降させることができ、リンの回収効率を高めることができる。また、リン酸水素カルシウムを凝集させるための凝集剤を別途添加する必要がなく、凝集剤を添加するための設備も必要ない。更には、リン酸水素カルシウムの生成と凝集を同時に行うことができ、短時間でリンを回収できるとともに、リンを回収させる際に必要な反応槽が1つで済み、リン回収反応槽2を小型化できる。
Also, Ca is eluted from the steelmaking slag, and this is reacted with hydrogenphosphate ions in the water to be treated to form calcium hydrogenphosphate. Further, using the residue after the calcium is eluted from the steelmaking slag, calcium hydrogenphosphate is used. As a result, the phosphorus in the water to be treated can be efficiently recovered with high yield.
In particular, by utilizing the steelmaking slag residue after elution of Ca, calcium hydrogenphosphate can be coagulated and settled in a short time, and the recovery efficiency of phosphorus can be increased. Further, it is not necessary to separately add a flocculant for aggregating calcium hydrogen phosphate, and there is no need for equipment for adding the flocculant. Furthermore, calcium hydrogen phosphate can be generated and aggregated simultaneously, phosphorus can be recovered in a short time, and only one reaction tank is required to recover phosphorus, and the phosphorus recovery reaction tank 2 can be made compact. Can be

また、製鋼スラグ中のCa以外の成分の溶出を抑制できるため、リン回収用スラグスラリー中の製鋼スラグ残渣の微粒化を防ぐことができる。さらに、リン回収用スラグスラリー中の製鋼スラグの残渣量を多くすることができ、下記式(1)で表される残渣回収率が80%以上となる。そのため、被処理水中のリンをさらに効率よく回収することができる。   Moreover, since elution of components other than Ca in steelmaking slag can be suppressed, atomization of the steelmaking slag residue in phosphorus recovery slag slurry can be prevented. Furthermore, the amount of residue of the steelmaking slag in the phosphorus recovery slag slurry can be increased, and the residue recovery rate represented by the following formula (1) is 80% or more. Therefore, phosphorus in the for-treatment water can be recovered more efficiently.

製鋼スラグ残渣回収率=(製鋼スラグ残渣重量(g)/投入製鋼スラグ重量(g))×100 … (1)   Steelmaking slag residue recovery rate = (steelmaking slag residue weight (g) / input steelmaking slag weight (g)) × 100 (1)

また、本実施形態のリン回収方法では、下記式(2)で表される塩酸消費率が85%以上となり、本発明者らが発明した従来法に比べ、塩酸消費率を10〜30%上昇させることができる。そのため、製鋼スラグからCaを溶出させる際に使用する塩酸量を大幅に低減することができる。なお、下記式(2)中のCa溶出に使用された塩酸量(mol)は下記式(3)で表され、添加したCl量(mol)は下記式(4)で表される。   Further, in the phosphorus recovery method of the present embodiment, the hydrochloric acid consumption rate represented by the following formula (2) is 85% or more, and the hydrochloric acid consumption rate is increased by 10 to 30% compared to the conventional method invented by the present inventors. Can be made. Therefore, the amount of hydrochloric acid used when Ca is eluted from the steelmaking slag can be greatly reduced. In addition, the amount (mol) of hydrochloric acid used for Ca elution in the following formula (2) is represented by the following formula (3), and the added Cl amount (mol) is represented by the following formula (4).

塩酸消費率(%)=(Ca溶出に使用された塩酸量(mol)/添加したCl量(mol))×100 … (2)   Hydrochloric acid consumption rate (%) = (amount of hydrochloric acid used for Ca elution (mol) / amount of added Cl (mol)) × 100 (2)

Ca溶出に使用された塩酸量(mol)=濾液中のCa量(g/L)×(水量+塩酸量)(L)/40.0784×2 … (3)
添加したCl量(mol)=添加した塩酸量(L)×塩酸濃度(mol/L) … (4)
The amount of hydrochloric acid used for Ca elution (mol) = the amount of Ca in the filtrate (g / L) × (the amount of water + the amount of hydrochloric acid) (L) /40.0784×2 (3)
The amount of added Cl (mol) = the amount of added hydrochloric acid (L) × the concentration of hydrochloric acid (mol / L) (4)

また、製鋼スラグには、製鉄所から排出されるリンが多く含まれているものがある。本実施形態によれば、この製鋼スラグ中のリンと被処理水中のリンとが一装置で同時に回収されるとともに、凝集沈降物中のリンの含有率を高めることができ、凝集沈降物を有用なリン資源として再活用できる。さらに、被処理水として終末処理場(下水処理場)で処理される下水を用いる場合、海や湖などの富栄養化の原因である下水中のリンを回収できる。したがって、本実施形態を下水中のリンの回収に適用することにより、リンの2大排出源である鉄鋼産業からのリン(日本で約8万t−P/Yの排出)と下水処理場からのリン(日本で約5万t−P/Yの排出)の両方のリンを同時に回収リサイクルすることが可能になる。   Some steelmaking slag contains a large amount of phosphorus discharged from steelworks. According to this embodiment, the phosphorus in the steelmaking slag and the phosphorus in the water to be treated are simultaneously recovered with one apparatus, and the phosphorus content in the aggregated sediment can be increased, and the aggregated sediment is useful. Can be reused as a valuable phosphorus resource. Furthermore, when using sewage treated at a terminal treatment plant (sewage treatment plant) as treated water, phosphorus in sewage that is a cause of eutrophication of the sea or lake can be recovered. Therefore, by applying this embodiment to the recovery of phosphorus in sewage, phosphorus from the steel industry (about 80,000 t-P / Y discharge in Japan) and sewage treatment plants are the two major sources of phosphorus. It is possible to simultaneously collect and recycle both phosphorus (of about 50,000 t-P / Y in Japan).

また、凝集沈降した固形物を脱水後に乾燥させることで、固形物の容積を減少できるとともに、凝集沈降した固形物の取り扱いが容易になる。   Further, by drying the aggregated and settled solid matter after dehydration, the volume of the solid matter can be reduced, and handling of the aggregated and settled solid matter becomes easy.

更に、回収された固形物は、製鋼スラグ中の肥料成分である元素とリンとを高濃度で含むため、肥料、肥料原料または黄リン原料等として好適に用いることができる。
また、本実施形態によれば、リンの回収に用いた製鋼スラグの全量を肥料または肥料原料として利用できるので、製鋼スラグを有効活用することができる。
Furthermore, since the collect | recovered solid substance contains the element and phosphorus which are fertilizer components in steelmaking slag in high concentration, it can be used suitably as a fertilizer, a fertilizer raw material, or a yellow phosphorus raw material.
Moreover, according to this embodiment, since the whole quantity of the steelmaking slag used for the collection | recovery of phosphorus can be utilized as a fertilizer or a fertilizer raw material, steelmaking slag can be used effectively.

[第2の実施形態]
次に、第2の実施形態について、図1に示すリン回収システムを参照しつつ説明する。なお、以下の説明では、第1の実施形態と重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment will be described with reference to the phosphorus recovery system shown in FIG. In the following description, the description overlapping with the first embodiment is omitted.

本実施形態のリンの回収方法は、水W1と製鋼スラグS1とからなるスラグスラリーに、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1を撹拌混合して、製鋼スラグS1中のCaを溶出させたリン回収用スラグスラリーS2を得る段階と、リン回収用スラグスラリーS2にリンを含む被処理水W2を撹拌混合してから静置することにより、リンとCaとを含む化合物を形成させ、化合物を製鋼スラグS1の残渣とともに固形物S3として凝集沈降させる段階と、沈降させた固形物S3を回収する段階と、を備え、リン回収用スラグスラリーを得る段階において、塩酸A1の全量のうち、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00未満となる量の塩酸A1をスラグスラリーに添加した後、スラグスラリーのpHを4.5〜7.0の範囲に維持しながら塩酸A1の残量を添加することを特徴とする。以下に、各段階について詳細に説明する。   In the phosphorus recovery method of the present embodiment, the molar ratio (HCl / CaO) of CaO and hydrochloric acid A1 in the steelmaking slag S1 is 1.00 to 1.50 in the slag slurry composed of the water W1 and the steelmaking slag S1. A step of obtaining a phosphorus recovery slag slurry S2 in which Ca in the steelmaking slag S1 is eluted, and a water W2 containing phosphorus in the phosphorus recovery slag slurry S2 with stirring. And then allowing the compound containing phosphorus and Ca to form, coagulating and precipitating the compound together with the residue of the steelmaking slag S1 as a solid S3, and recovering the precipitated solid S3. And in the stage of obtaining a phosphorus recovery slag slurry, the molar ratio (HCl / CaO) of CaO to hydrochloric acid A1 in the steelmaking slag S1 is less than 1.00 out of the total amount of hydrochloric acid A1. The amount of hydrochloric acid A1 was added to the slag slurry that is characterized by adding the remaining amount of hydrochloric A1 while maintaining the pH of the slag slurry in the range of 4.5 to 7.0. Hereinafter, each stage will be described in detail.

まず、Ca溶出反応槽3aに水W1及び製鋼スラグS1を供給し、これらを撹拌混合してスラグスラリーとする。   First, water W1 and steelmaking slag S1 are supplied to the Ca elution reaction tank 3a, and these are stirred and mixed to form slag slurry.

次に、塩酸供給部4からCa溶出反応槽3aに塩酸A1を供給し、Ca溶出反応槽3aにおいてスラグスラリーと塩酸A1を撹拌混合してリン回収用スラグスラリーS2とする。このとき、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1のうち、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00未満となる量の塩酸A1を、pHの調整を行わずに、リン回収反応槽2に供給する。なお、このときの塩酸添加量は、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が0.75となる量であることが好ましく、0.70となる量であることがより好ましい。なお、塩酸A1を供給する際のpHは特に制御しないが、pHが4.5未満になるとCa以外の成分の溶出量が増大するので、pHが4.5未満とならない程度の塩酸A1を添加することが好ましい。その後、Ca溶出反応槽3a内のスラグスラリーのpHを4.5〜7.0の範囲に維持しながら、塩酸A1の残量を供給する。塩酸A1の全量を添加した後は、15分間以上撹拌混合してリン回収用スラグスラリーS2を得る。   Next, hydrochloric acid A1 is supplied from the hydrochloric acid supply unit 4 to the Ca elution reaction tank 3a, and the slag slurry and hydrochloric acid A1 are stirred and mixed in the Ca elution reaction tank 3a to obtain a phosphorus recovery slag slurry S2. At this time, out of the amount of hydrochloric acid A1 in which the molar ratio (HCl / CaO) of CaO to hydrochloric acid A1 in steelmaking slag S1 is 1.00 to 1.50, the mole of CaO and hydrochloric acid A1 in steelmaking slag S1 An amount of hydrochloric acid A1 with a ratio (HCl / CaO) of less than 1.00 is supplied to the phosphorus recovery reaction tank 2 without adjusting the pH. The amount of hydrochloric acid added at this time is preferably such that the molar ratio of CaO to hydrochloric acid A1 (HCl / CaO) in steelmaking slag S1 is 0.75, and is 0.70. Is more preferable. The pH at the time of supplying hydrochloric acid A1 is not particularly controlled. However, since the elution amount of components other than Ca increases when the pH is less than 4.5, hydrochloric acid A1 is added so that the pH does not become less than 4.5. It is preferable to do. Thereafter, the remaining amount of hydrochloric acid A1 is supplied while maintaining the pH of the slag slurry in the Ca elution reaction tank 3a in the range of 4.5 to 7.0. After the total amount of hydrochloric acid A1 is added, the mixture is stirred and mixed for 15 minutes or longer to obtain phosphorus recovery slag slurry S2.

以下に、一例として、スラグスラリーに、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸A1のうち、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が0.70となる量の塩酸A1を添加した後、スラグスラリーのpHを5.0に維持しながら塩酸A1の残量を添加して、リン回収用スラグスラリーS2を得る場合について詳細に説明する。   Below, as an example, among the hydrochloric acid A1 in an amount such that the molar ratio (HCl / CaO) between CaO and hydrochloric acid A1 in the steelmaking slag S1 is 1.00 to 1.50, the slag slurry contains the steelmaking slag S1. After adding hydrochloric acid A1 in such an amount that the molar ratio of CaO to hydrochloric acid A1 (HCl / CaO) is 0.70, the remaining amount of hydrochloric acid A1 is added while maintaining the pH of the slag slurry at 5.0, The case where the phosphorus collection | recovery slag slurry S2 is obtained is demonstrated in detail.

まず、Ca溶出反応槽3aにおいて、水W1と製鋼スラグS1とからなるスラグスラリーを撹拌混合しつつ、HCl/CaO比率が1.00〜1.50となる量の塩酸のうち、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が0.70となる量の塩酸A1を、塩酸供給部4から供給する。このとき、スラグスラリーのpHの調整を行わずに塩酸A1を供給する。すると、スラグスラリーのpHが低下して5.0未満となるが、撹拌混合を続けると、製鋼スラグS1中のCaが溶出してスラグスラリーのpHが上昇する。スラグスラリーのpHが5.0超となったら、塩酸A1を供給しつつ撹拌混合して、スラグスラリーのpHを5.0まで低下させる。スラグスラリーのpHが5.0となったら、塩酸A1の供給を中断して、撹拌混合する。するとまた、製鋼スラグS1中のCaが溶出し、スラグスラリーのpHが上昇して5.0超となるため、再度、塩酸A1を供給しつつ撹拌混合して、スラグスラリーのpHを5.0まで低下させる。このような操作を、塩酸A1の残量を供給し終えるまで繰り返す。塩酸A1の全量を供給し終えたら、15分以上撹拌混合する。以上説明したように、HCl/CaO比率が1.00〜1.50となる量の塩酸のうち、製鋼スラグS1中のCaOと塩酸A1とのモル比率(HCl/CaO)が0.70となる量の塩酸A1を、pHの調整を行わずに供給した後、スラグスラリーのpHを一定に維持しながら塩酸A1の残量を供給することで、リン回収用スラグスラリーS2を得る。   First, in the Ca elution reaction tank 3a, while stirring and mixing the slag slurry composed of the water W1 and the steelmaking slag S1, among the hydrochloric acid having an HCl / CaO ratio of 1.00 to 1.50, in the steelmaking slag S1 Hydrochloric acid A1 in an amount such that the molar ratio of CaO to hydrochloric acid A1 (HCl / CaO) is 0.70 is supplied from the hydrochloric acid supply unit 4. At this time, hydrochloric acid A1 is supplied without adjusting the pH of the slag slurry. Then, the pH of the slag slurry is reduced to less than 5.0, but when stirring and mixing is continued, Ca in the steelmaking slag S1 is eluted and the pH of the slag slurry is increased. When the pH of the slag slurry exceeds 5.0, the mixture is stirred and mixed while supplying hydrochloric acid A1, and the pH of the slag slurry is lowered to 5.0. When the pH of the slag slurry reaches 5.0, the supply of hydrochloric acid A1 is interrupted and mixed with stirring. Then, Ca in the steelmaking slag S1 elutes, and the pH of the slag slurry rises to over 5.0. Therefore, stirring and mixing is performed again while supplying hydrochloric acid A1, and the pH of the slag slurry is adjusted to 5.0. To lower. Such an operation is repeated until the supply of the remaining amount of hydrochloric acid A1 is completed. After supplying the entire amount of hydrochloric acid A1, the mixture is stirred and mixed for 15 minutes or longer. As described above, among hydrochloric acid in an amount such that the HCl / CaO ratio is 1.00 to 1.50, the molar ratio (HCl / CaO) between CaO and hydrochloric acid A1 in the steelmaking slag S1 is 0.70. After supplying an amount of hydrochloric acid A1 without adjusting the pH, the remaining amount of hydrochloric acid A1 is supplied while maintaining the pH of the slag slurry constant, thereby obtaining phosphorus recovery slag slurry S2.

次に、原水貯留槽5aから被処理水W2を、原水供給ラインL4を介してリン回収反応槽2に供給するとともに、リン回収用スラグスラリーS2を、リン回収用スラグスラリー供給ラインL2を介してリン回収反応槽2に供給し、リン回収用スラグスラリーS2と被処理水W2とを撹拌混合した後、静置する。リン回収反応槽2の底に凝集沈降した固形物S3は、脱水装置6に送られる。脱水装置6において固形物S3は脱水され、その際に分離された脱水水W4は排水貯留タンク7aへ送られる。また、脱水後の脱水物S4は、肥料または肥料原料として搬出される。または、乾燥装置8に送られて乾燥された後、肥料または肥料原料として搬出される。一方、固形物S3の沈降後の上澄みである上澄み水W3は、排出ラインL7を介して排水貯留タンク7aに送られる。その後、上澄み水W3は脱水装置6からの脱水水W4とともに脱リン水として、排水貯留タンク7aから処理水W5として公共水域に放流されるか、あるいは、別の水処理設備に送られる。   Next, the treated water W2 is supplied from the raw water storage tank 5a to the phosphorus recovery reaction tank 2 via the raw water supply line L4, and the phosphorus recovery slag slurry S2 is supplied via the phosphorus recovery slag slurry supply line L2. It supplies to the phosphorus collection | recovery reaction tank 2, stirs and mixes the phosphorus collection | recovery slag slurry S2 and the to-be-processed water W2, and leaves still. The solid S3 that has aggregated and settled at the bottom of the phosphorus recovery reaction tank 2 is sent to the dehydrator 6. In the dehydrator 6, the solid S3 is dehydrated, and the dewatered water W4 separated at that time is sent to the drainage storage tank 7a. Further, the dehydrated product S4 after dehydration is carried out as fertilizer or a fertilizer raw material. Or after sending to the drying apparatus 8 and drying, it is carried out as a fertilizer or a fertilizer raw material. On the other hand, the supernatant water W3, which is the supernatant after sedimentation of the solid matter S3, is sent to the drainage storage tank 7a via the discharge line L7. Thereafter, the supernatant water W3 is discharged as dephosphorized water together with the dewatered water W4 from the dewatering device 6 into the public water area as the treated water W5 from the drainage storage tank 7a, or sent to another water treatment facility.

以上説明したように、本実施形態の被処理水中のリンの回収方法によれば、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の塩酸を撹拌混合して製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階において、塩酸の全量のうち、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00未満となる量の塩酸をスラグスラリーに添加した後、スラグスラリーのpHを4.5〜7.0の範囲に維持しながら塩酸の残量を添加することによって、製鋼スラグ中のCa以外の成分の溶出を抑制することができ、また、Caの溶出を十分に行うことができ、回収した固形物中に肥料成分を多く残存させることができる。また、使用する塩酸量を低減させることができ、薬液コストを少なくすることができる。さらに、使用する塩酸量が低減されることにより、被処理水とリン回収用スラグスラリーとを撹拌混合する際に、pH調整のために使用する水酸化ナトリウムの量を少なくすることができるため、薬液コストを更に少なくすることができる。   As described above, according to the method for recovering phosphorus in the water to be treated according to the present embodiment, the molar ratio (HCl / CaO) between CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. In the step of obtaining a phosphorus recovery slag slurry in which hydrochloric acid is stirred and mixed to elute calcium in the steelmaking slag, the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1. After adding an amount of hydrochloric acid that is less than 00 to the slag slurry, the remaining amount of hydrochloric acid is added while maintaining the pH of the slag slurry in the range of 4.5 to 7.0. Elution of components can be suppressed, Ca can be sufficiently eluted, and a large amount of fertilizer components can remain in the collected solid matter. In addition, the amount of hydrochloric acid to be used can be reduced, and the chemical cost can be reduced. Furthermore, when the amount of hydrochloric acid to be used is reduced, the amount of sodium hydroxide used for pH adjustment can be reduced when the water to be treated and the slag slurry for phosphorus recovery are stirred and mixed. The chemical cost can be further reduced.

また、リン回収用スラグスラリーを得る段階において、HCl/CaO比率が1.00〜1.50となる量の塩酸のうち、HCl/CaO比率が1.00未満となる量の塩酸を、pH調整を行わずに添加するため、第1の実施形態に比べて、塩酸添加に要する時間を短縮することができる。   In addition, in the stage of obtaining the phosphorus recovery slag slurry, the amount of hydrochloric acid whose HCl / CaO ratio is less than 1.00 out of the amount of hydrochloric acid whose HCl / CaO ratio is 1.00 to 1.50 is adjusted to pH. Therefore, the time required for adding hydrochloric acid can be shortened compared to the first embodiment.

本発明の実施形態における、様々な因子の関係を調べるため行った実験例1〜5について以下に説明する。   Experimental examples 1 to 5 performed for examining the relationship between various factors in the embodiment of the present invention will be described below.

[実験例1]
粒径が0.125mm未満の製鋼スラグ20gと水とを10分間撹拌混合し、スラグスラリーを得た。その後、スラグスラリーのpHをそれぞれ、1.5、3.0、4.0、5.0、5.5に維持しながら、2mol/Lの塩酸を添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70〜1.90となる量の塩酸を添加した後、30分間撹拌混合して、リン回収用スラグスラリーを得た。なお、製鋼スラグと、水量及び塩酸量との固液比が1:10となるように、水量を調整した。
また、製鋼スラグ20gと、1mol/Lの塩酸200mLとを撹拌混合し、リン回収用スラグスラリーを得た。
[Experimental Example 1]
20 g of steelmaking slag having a particle size of less than 0.125 mm and water were stirred and mixed for 10 minutes to obtain a slag slurry. Thereafter, 2 mol / L hydrochloric acid was added while maintaining the pH of the slag slurry at 1.5, 3.0, 4.0, 5.0, and 5.5, respectively. After adding hydrochloric acid in such an amount that the molar ratio of CaO to hydrochloric acid (HCl / CaO) in steelmaking slag was 0.70 to 1.90, the mixture was stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. The amount of water was adjusted so that the solid-liquid ratio of the steelmaking slag, the amount of water and the amount of hydrochloric acid was 1:10.
Further, 20 g of steelmaking slag and 200 mL of 1 mol / L hydrochloric acid were mixed with stirring to obtain a slag slurry for phosphorus recovery.

以上の工程によって得られたリン回収用スラグスラリーを濾過し、製鋼スラグの残渣と液分とに分離した。そして、製鋼スラグの残渣に含まれるCa、Si、Al量をICP発光分光分析装置により測定した。測定して得られたCa、Si、Al量をそれぞれ、図2(a)〜(c)に示す。   The phosphorus recovery slag slurry obtained by the above steps was filtered and separated into a steelmaking slag residue and liquid. And the amount of Ca, Si, and Al contained in the residue of steelmaking slag was measured with the ICP emission spectroscopic analyzer. The amounts of Ca, Si, and Al obtained by measurement are shown in FIGS. 2 (a) to 2 (c), respectively.

図2(a)を見ると、スラグスラリーのpHを4.5以上に維持した場合では、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50の範囲において、Ca溶出量が多くなっている。
また、図2(b)及び図2(c)を見ると、スラグスラリーのpHを4.5以上に維持した場合では、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50の範囲において、Si及びAlがほとんど溶出していない。一方、スラグスラリーのpHを4.5未満に維持した場合と、製鋼スラグと塩酸とを直接混合した場合とにおいては、Si及びAlの溶出量が多くなっている。
As shown in FIG. 2 (a), when the pH of the slag slurry is maintained at 4.5 or more, the molar ratio (HCl / CaO) between CaO and hydrochloric acid in the steelmaking slag is in the range of 1.00 to 1.50. , The Ca elution amount is increased.
Moreover, when FIG.2 (b) and FIG.2 (c) are seen, when the pH of slag slurry is maintained at 4.5 or more, the molar ratio (HCl / CaO) of CaO and hydrochloric acid in steelmaking slag is 1. Si and Al are hardly eluted in the range of 0.001 to 1.50. On the other hand, when the pH of the slag slurry is maintained below 4.5 and when steelmaking slag and hydrochloric acid are directly mixed, the elution amounts of Si and Al are increased.

以上より、塩酸添加中のpHを4.5以上に維持することによって、製鋼スラグから溶出するCa量が多くなり、また、Ca以外の元素の溶出量を低減させることができることが分かる。そのため、Ca溶出のために使用する塩酸量を低減させることができる。   From the above, it can be seen that by maintaining the pH during addition of hydrochloric acid at 4.5 or more, the amount of Ca eluted from the steelmaking slag increases, and the amount of elements other than Ca can be reduced. Therefore, the amount of hydrochloric acid used for Ca elution can be reduced.

[実験例2]
粒径が0.125mm未満の製鋼スラグ20gと水とを10分間撹拌混合し、スラグスラリーを得た。その後、スラグスラリーのpHを1.5、2.0、3.0、4.0、4.5、5.0、5.5に維持しながら、2mol/Lの塩酸を添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70〜1.96になるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。なお、水量及び塩酸量と、製鋼スラグとの固液比が1:10となるように水量を調整した。
また、製鋼スラグ20gと、1mol/Lの塩酸200mLとを撹拌混合し、リン回収用スラグスラリーを得た。
[Experiment 2]
20 g of steelmaking slag having a particle size of less than 0.125 mm and water were stirred and mixed for 10 minutes to obtain a slag slurry. Thereafter, 2 mol / L hydrochloric acid was added while maintaining the pH of the slag slurry at 1.5, 2.0, 3.0, 4.0, 4.5, 5.0, 5.5. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid (HCl / CaO) in the steelmaking slag became 0.70 to 1.96, and then stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. The amount of water was adjusted so that the solid-liquid ratio between the amount of water and hydrochloric acid and the steelmaking slag was 1:10.
Further, 20 g of steelmaking slag and 200 mL of 1 mol / L hydrochloric acid were mixed with stirring to obtain a slag slurry for phosphorus recovery.

以上の方法により得たリン回収用スラグスラリーをろ過し、製鋼スラグの残渣と液分とに分離した。製鋼スラグの残渣量を測定し、下記式(1)により残渣回収率を求めた。その結果を図3に示す。なお、図3において、「反応方法A」と記載された試験例では、塩酸と製鋼スラグとを撹拌混合することによりリン回収用スラグスラリーを得た。また、図3において、「反応方法B」と記載された試験例では、水と製鋼スラグとを撹拌混合して得たスラグスラリーに、一定のpHに維持しながら塩酸を添加してリン回収用スラグスラリーを得た。   The phosphorus recovery slag slurry obtained by the above method was filtered and separated into a steelmaking slag residue and liquid. The amount of residual steelmaking slag was measured, and the residue recovery rate was determined by the following formula (1). The result is shown in FIG. In addition, in the test example described as "Reaction method A" in FIG. 3, the slag slurry for phosphorus collection | recovery was obtained by stirring and mixing hydrochloric acid and steelmaking slag. Further, in the test example described as “Reaction Method B” in FIG. 3, hydrochloric acid is added to a slag slurry obtained by stirring and mixing water and steelmaking slag while maintaining a constant pH for phosphorus recovery. A slag slurry was obtained.

残渣回収率(%)=(製鋼スラグの残渣量(g)/水と撹拌混合したスラグ量(g))×100 … (1)   Residue recovery rate (%) = (residue amount of steelmaking slag (g) / slag amount mixed with water (g)) × 100 (1)

図3を見ると、スラグスラリーのpHを4.5以上に維持した場合では、残渣回収率が80%以上となっている。一方、スラグスラリーのpHを4.5未満に維持した場合と、製鋼スラグと塩酸とを直接混合した場合とにおいては残渣回収率が低くなっている。   Referring to FIG. 3, when the pH of the slag slurry is maintained at 4.5 or higher, the residue recovery rate is 80% or higher. On the other hand, the residue recovery rate is low when the pH of the slag slurry is maintained below 4.5 and when the steelmaking slag and hydrochloric acid are directly mixed.

以上より、塩酸添加中のpHを4.5以上に維持することによって、製鋼スラグの残渣回収率を多くすることができることが分かる。そのため、被処理水中のリンを効率よく回収することが可能になる。   From the above, it can be seen that by maintaining the pH during addition of hydrochloric acid at 4.5 or more, the residue recovery rate of steelmaking slag can be increased. Therefore, it becomes possible to collect | recover phosphorus in to-be-processed water efficiently.

[実験例3]
粒径が0.125mm未満の製鋼スラグ20gと水100mLとを10分間撹拌混合し、スラグスラリーを得た。その後、スラグスラリーのpHを4.5に調整しながら、2mol/Lの塩酸85mLを添加した。塩酸の全量を添加した後、撹拌混合し、リン回収用スラグスラリーを得た。
[Experiment 3]
20 g of steelmaking slag having a particle size of less than 0.125 mm and 100 mL of water were stirred and mixed for 10 minutes to obtain a slag slurry. Thereafter, 85 mL of 2 mol / L hydrochloric acid was added while adjusting the pH of the slag slurry to 4.5. After adding the entire amount of hydrochloric acid, the mixture was stirred and mixed to obtain a slag slurry for phosphorus recovery.

スラグスラリーを得る段階及びリン回収用スラグスラリーを得る段階における経過時間と、スラグスラリーのpHとの関係を図4に示す。図4によると、塩酸の全量を添加してから15分程度でpHの上昇が緩やかになっているのが分かる。これより、塩酸の全量を添加してから15分程度撹拌混合すると、添加した塩酸の全量が製鋼スラグとの反応に消費されることが分かる。そのため、塩酸の全量を添加した後の撹拌時間は、15分以上とすることが好ましいことが分かる。   FIG. 4 shows the relationship between the elapsed time in the stage of obtaining the slag slurry and the stage of obtaining the phosphorus recovery slag slurry and the pH of the slag slurry. According to FIG. 4, it can be seen that the increase in pH becomes moderate in about 15 minutes after the addition of the total amount of hydrochloric acid. From this, it can be seen that when the total amount of hydrochloric acid is added and stirred for about 15 minutes, the total amount of added hydrochloric acid is consumed for the reaction with the steelmaking slag. Therefore, it turns out that it is preferable that the stirring time after adding the whole quantity of hydrochloric acid shall be 15 minutes or more.

[実験例4]
表2に示す条件によりリン回収用スラグスラリーを得た。表2において「反応方法A」と記載された試験例では、塩酸と製鋼スラグとを撹拌混合することによりリン回収用スラグスラリーを得た。表2において「反応方法B」と記載された試験例では、水と製鋼スラグとを撹拌混合して得たスラグスラリーに、一定のpHに維持しながら塩酸を添加してリン回収用スラグスラリーを得た。表2において「反応方法C」と記載された試験例では、水と製鋼スラグとを撹拌混合して得たスラグスラリーに、pH調整を行わずに製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00未満となる量の塩酸を添加した後、スラリーのpHを一定に維持しながら塩酸の残量を添加してリン回収用スラグスラリーを得た。なお、No.1〜No.13、No.15〜No.17で使用した塩酸は希塩酸であり、No.14で使用した塩酸は濃塩酸である。
[Experimental Example 4]
A slag slurry for phosphorus recovery was obtained under the conditions shown in Table 2. In the test example described as “Reaction Method A” in Table 2, slag slurry for phosphorus recovery was obtained by stirring and mixing hydrochloric acid and steelmaking slag. In the test example described as “Reaction Method B” in Table 2, hydrochloric acid was added to a slag slurry obtained by stirring and mixing water and steelmaking slag while maintaining a constant pH, and a slag slurry for phosphorus recovery was added. Obtained. In the test example described as “Reaction Method C” in Table 2, the molar ratio of CaO and hydrochloric acid in the steelmaking slag without adjusting the pH to the slag slurry obtained by stirring and mixing water and steelmaking slag ( After adding an amount of hydrochloric acid such that (HCl / CaO) was less than 1.00, the remaining amount of hydrochloric acid was added while maintaining the pH of the slurry to obtain a slag slurry for phosphorus recovery. In addition, No. 1-No. 13, no. 15-No. The hydrochloric acid used in No. 17 is dilute hydrochloric acid. The hydrochloric acid used in 14 is concentrated hydrochloric acid.

また、表2に示す条件により得たリン回収用スラグスラリーを濾過して、製鋼スラグの残渣と液分とに固液分離した。そして、液分に含まれるCa量をICP発光分光分析装置により測定した。測定した液分中のCa量と、下記式(2)とを用いて塩酸消費率を求めた。ただし、下記式(2)において、Ca溶出に使用された塩酸量(mol)は下記式(3)で表され、添加したCl量(mol)は下記式(4)で表される。得られた結果を表2に示す。   Moreover, the phosphorus collection | recovery slag slurry obtained on the conditions shown in Table 2 was filtered, and it solid-liquid-separated into the residue and liquid component of steelmaking slag. Then, the amount of Ca contained in the liquid was measured with an ICP emission spectroscopic analyzer. The hydrochloric acid consumption rate was calculated | required using Ca amount in the measured liquid component, and following formula (2). However, in the following formula (2), the hydrochloric acid amount (mol) used for Ca elution is represented by the following formula (3), and the added Cl amount (mol) is represented by the following formula (4). The obtained results are shown in Table 2.

塩酸消費率(%)=(Ca溶出に使用された塩酸量(mol)/添加したCl量(mol))×100 …(2)   Hydrochloric acid consumption rate (%) = (amount of hydrochloric acid used for Ca elution (mol) / amount of added Cl (mol)) × 100 (2)

Ca溶出に使用された塩酸量(mol)=濾液中のCa量(g/L)×(水量+塩酸量)(L)/40.0784×2 … (3)
添加したCl量(mol)=添加した塩酸量(L)×塩酸濃度(mol/L) … (4)
The amount of hydrochloric acid used for Ca elution (mol) = the amount of Ca in the filtrate (g / L) × (the amount of water + the amount of hydrochloric acid) (L) /40.0784×2 (3)
The amount of added Cl (mol) = the amount of added hydrochloric acid (L) × the concentration of hydrochloric acid (mol / L) (4)

Figure 2018094514
Figure 2018094514

ここで、例として、表2に示すNo.1、No.3、No.10、No.15、No.16の各条件について、図5〜図9を参照して詳細に説明する。図5〜図9は、スラグスラリーを得る段階及びリン回収用スラグスラリーを得る段階における経過時間と、スラグスラリーのpHとの関係を示す図である。なお、図5、図6、図7、図8、図9はそれぞれ、表2のNo.1、No.3、No.10、No.15、No.16と対応している。   Here, as an example, No. 2 shown in Table 2 is used. 1, no. 3, no. 10, no. 15, no. Each of the 16 conditions will be described in detail with reference to FIGS. 5 to 9 are diagrams showing the relationship between the elapsed time in the stage of obtaining the slag slurry and the stage of obtaining the phosphorus recovery slag slurry and the pH of the slag slurry. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 1, no. 3, no. 10, no. 15, no. 16 corresponds.

図5と対応するNo.1では、製鋼スラグ20gに1mol/Lの塩酸200mLを添加して、30分間撹拌混合することによりリン回収用スラグスラリーを得た。図5を見ると、塩酸添加時にpHが低下して0程度となり、その後、時間の経過とともにpHが上昇していることが分かる。その結果、表2を見ると、塩酸消費率が76%となっている。このように、図5と対応するNo.1では、塩酸の全量を一度に投入し、塩酸添加中のスラグスラリーのpHが4.5〜7.0の範囲に維持されていないため、塩酸消費率が低くなっている。   No. corresponding to FIG. In No. 1, 200 mL of 1 mol / L hydrochloric acid was added to 20 g of steelmaking slag, and a slag slurry for phosphorus recovery was obtained by stirring and mixing for 30 minutes. As can be seen from FIG. 5, the pH decreases to about 0 when hydrochloric acid is added, and then increases with the passage of time. As a result, looking at Table 2, the hydrochloric acid consumption rate is 76%. In this way, No. 1 corresponding to FIG. In No. 1, the entire amount of hydrochloric acid is charged at once, and the pH of the slag slurry during the addition of hydrochloric acid is not maintained in the range of 4.5 to 7.0, so the hydrochloric acid consumption rate is low.

図6と対応するNo.3では、水100mLと製鋼スラグ20gとを10分間撹拌混合してスラグスラリーを得た後、2mol/Lの塩酸100mLを、pHが3.0になるように調整しながら添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.40となるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。図6を見ると、水と製鋼スラグとを撹拌混合した際に、pHが上昇してアルカリ性となり、その後、塩酸を添加した際には、pHが低下しているのが分かる。また、スラグスラリーのpHが3.0に調整されつつ、塩酸が添加されていることが分かる。その結果、表2を見ると、塩酸消費率が78%となっている。このように、図6と対応するNo.3では、塩酸添加中のスラグスラリーのpHが4.5〜7.0の範囲に維持されていないため、塩酸消費率が低くなっている。   No. corresponding to FIG. In No. 3, 100 mL of water and 20 g of steelmaking slag were stirred and mixed for 10 minutes to obtain a slag slurry, and then 100 mL of 2 mol / L hydrochloric acid was added while adjusting the pH to 3.0. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 1.40, and the mixture was stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. Referring to FIG. 6, it can be seen that when water and steelmaking slag are stirred and mixed, the pH increases and becomes alkaline, and then when hydrochloric acid is added, the pH decreases. Moreover, it turns out that hydrochloric acid is added, adjusting pH of slag slurry to 3.0. As a result, referring to Table 2, the hydrochloric acid consumption rate is 78%. In this way, No. 1 corresponding to FIG. In No. 3, since the pH of the slag slurry during the addition of hydrochloric acid is not maintained in the range of 4.5 to 7.0, the hydrochloric acid consumption rate is low.

図7と対応するNo.10では、水130mLと製鋼スラグ20gとを10分間撹拌混合してスラグスラリーを得た後、2mol/Lの塩酸70mLをpHが5.0になるように調整しながら添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00となるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。図7を見ると、水と製鋼スラグとを撹拌混合した際に、pHが上昇してアルカリ性となり、その後、塩酸を添加した際には、pHが低下しているのが分かる。また、スラグスラリーのpHが5.0に調整されつつ、塩酸が添加されていることが分かる。その結果、表2を見ると、塩酸消費率が97%となっている。このように、図7と対応するNo.10では、塩酸添加中のスラグスラリーのpHが4.5〜7.0の範囲に維持されているため、塩酸消費率が高くなっている。   No. corresponding to FIG. In No. 10, 130 mL of water and 20 g of steelmaking slag were stirred and mixed for 10 minutes to obtain a slag slurry, and then 70 mL of 2 mol / L hydrochloric acid was added while adjusting the pH to 5.0. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 1.00, and then stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. Referring to FIG. 7, it can be seen that when water and steelmaking slag are stirred and mixed, the pH increases and becomes alkaline, and then when hydrochloric acid is added, the pH decreases. Moreover, it turns out that hydrochloric acid is added, adjusting pH of slag slurry to 5.0. As a result, looking at Table 2, the hydrochloric acid consumption rate is 97%. In this way, No. 1 corresponding to FIG. In No. 10, since the pH of the slag slurry during hydrochloric acid addition is maintained in the range of 4.5 to 7.0, the hydrochloric acid consumption rate is high.

図8と対応するNo.15では、水130mLと製鋼スラグ20gとを10分間撹拌混合してスラグスラリーを得た後、2mol/Lの塩酸70mLをpHが5.5になるように調整しながら添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00となるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。図8を見ると、水と製鋼スラグとを撹拌混合した際に、pHが上昇してアルカリ性となり、その後、塩酸を添加した際には、pHが低下しているのが分かる。また、スラグスラリーのpHが5.5に調整されつつ、塩酸が添加されていることが分かる。その結果、表2を見ると、塩酸消費率が97%となっている。このように、図8と対応するNo.15では、塩酸添加中のスラグスラリーのpHが4.5〜7.0の範囲に維持されているため、塩酸消費率が高くなっている。   No. corresponding to FIG. In No. 15, 130 mL of water and 20 g of steelmaking slag were stirred and mixed for 10 minutes to obtain a slag slurry, and then 70 mL of 2 mol / L hydrochloric acid was added while adjusting the pH to 5.5. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 1.00, and then stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. Referring to FIG. 8, it can be seen that when water and steelmaking slag are stirred and mixed, the pH increases and becomes alkaline, and then when hydrochloric acid is added, the pH decreases. Moreover, it turns out that hydrochloric acid is added, adjusting pH of slag slurry to 5.5. As a result, looking at Table 2, the hydrochloric acid consumption rate is 97%. In this way, No. 1 corresponding to FIG. In No. 15, since the pH of the slag slurry during the addition of hydrochloric acid is maintained in the range of 4.5 to 7.0, the hydrochloric acid consumption rate is high.

図9と対応するNo.16では、水128mLと製鋼スラグ20gとを10分間撹拌混合して、スラグスラリーのpHを調整せずに2mol/Lの塩酸を50mL添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70となる2mol/Lの塩酸を50mL添加した後、一旦、塩酸添加を中止し、スラグスラリーのpHが5.1〜7まで上昇するまで撹拌混合した。スラグスラリーのpHが5.1〜7まで上昇したことを確認した後、2mol/Lの塩酸22mLをスラグスラリーのpHがpH=5になるように調整しながら添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)がトータルで1.00となるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。図9を見ると、水と製鋼スラグとを撹拌混合した際に、pHが上昇してアルカリ性となり、その後、塩酸を添加した際には、pHが低下しているのが分かる。また、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70になる量の塩酸を添加した直後は、スラグスラリーのpHが4.5になっていることが分かる。さらに、塩酸の残量を添加する際には、スラグスラリーのpHが5.0に調整されつつ、塩酸が添加されていることが分かる。その結果、表2を見ると、塩酸消費率が90%となっている。このように、図9と対応するNo.16では、スラグスラリーのpH調整を行わずにモル比率(HCl/CaO)が0.70の量の塩酸を添加した際にはpHが5.0未満となっているが、残量の塩酸を添加する際には、塩酸添加中のスラグスラリーのpHが4.5〜7.0の範囲に維持されているため、塩酸消費率が高くなっている。さらに、図7と対応するNo.10と比較すると、塩酸添加に要する時間が短縮できることが分かる。   No. corresponding to FIG. In No. 16, 128 mL of water and 20 g of steelmaking slag were stirred and mixed for 10 minutes, and 50 mL of 2 mol / L hydrochloric acid was added without adjusting the pH of the slag slurry. After adding 50 mL of 2 mol / L hydrochloric acid at which the molar ratio of CaO to hydrochloric acid (HCl / CaO) in steelmaking slag becomes 0.70, the addition of hydrochloric acid was once stopped, and the pH of the slag slurry was 5.1 to 5.1. Stir and mix until it rises to 7. After confirming that the pH of the slag slurry was raised to 5.1-7, 22 mL of 2 mol / L hydrochloric acid was added while adjusting the pH of the slag slurry to be pH = 5. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) reached 1.00 in total, and then stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. Referring to FIG. 9, it can be seen that when water and steelmaking slag are stirred and mixed, the pH increases and becomes alkaline, and then when hydrochloric acid is added, the pH decreases. Moreover, it turns out that the pH of slag slurry is set to 4.5 immediately after adding hydrochloric acid of the quantity from which the molar ratio (HCl / CaO) of CaO and hydrochloric acid in steelmaking slag becomes 0.70. Furthermore, when adding the residual amount of hydrochloric acid, it turns out that hydrochloric acid is added, adjusting the pH of slag slurry to 5.0. As a result, referring to Table 2, the hydrochloric acid consumption rate is 90%. In this way, No. 1 corresponding to FIG. 16, the pH was less than 5.0 when hydrochloric acid having a molar ratio (HCl / CaO) of 0.70 was added without adjusting the pH of the slag slurry. When adding, since the pH of the slag slurry during the addition of hydrochloric acid is maintained in the range of 4.5 to 7.0, the hydrochloric acid consumption rate is high. Further, No. 1 corresponding to FIG. Compared with 10, it can be seen that the time required for the addition of hydrochloric acid can be shortened.

また、表2によると、本発明例であるNo.5、No.9、No.10、No.14、No.15、No.16では塩酸消費率が85%以上を示している。
一方、比較例であるNo.1は、製鋼スラグに塩酸を直接添加してスラグスラリーを得ており、塩酸の添加方法が本発明の方法ではないため、塩酸消費率が低くなっている。
No.2〜No.4、No.8は、スラグスラリーに塩酸を添加する際のpHが低かったため、Ca溶出以外の溶出にも塩酸が使用され、塩酸消費率が低くなっている。
No.11〜No.13は、塩酸消費率が85%以上となっているが、表3に示すように、濾液中のCa量(g/L)が本発明例に比べて少なく、11000mg/L以下となり、被処理水中のリンを回収するには不十分な溶出量であった。これは、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が低かったため、Caが十分に溶出しなかったことに起因する。
Further, according to Table 2, No. which is an example of the present invention. 5, no. 9, no. 10, no. 14, no. 15, no. 16, the hydrochloric acid consumption rate is 85% or more.
On the other hand, No. which is a comparative example. In No. 1, hydrochloric acid is directly added to steelmaking slag to obtain a slag slurry. Since the method of adding hydrochloric acid is not the method of the present invention, the consumption rate of hydrochloric acid is low.
No. 2-No. 4, no. In No. 8, since the pH when adding hydrochloric acid to the slag slurry was low, hydrochloric acid was used for elution other than Ca elution, and the hydrochloric acid consumption rate was low.
No. 11-No. No. 13 has a hydrochloric acid consumption rate of 85% or more, but as shown in Table 3, the amount of Ca (g / L) in the filtrate is less than that of the present invention example, and it is 11000 mg / L or less, and the treatment The amount of elution was insufficient to recover phosphorus in water. This is because Ca was not sufficiently eluted because the molar ratio of CaO to hydrochloric acid (HCl / CaO) in the steelmaking slag was low.

また、表2のNo.7、No.8、No.10、No.13、No.14、No.15、No.16に示す条件で得たリン回収用スラグスラリーを濾過して、製鋼スラグの残渣と液分とに固液分離した。そして、液分中に含まれるCa、Si、Al量をICP発光分光分析装置により測定した。測定した結果を表3に示す。
なお、No.16については、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70となる量の塩酸を添加した直後の、スラグスラリーの一部を採取して、測定した結果(No.16−1)と、その後、塩酸の残量をpH調整しながら添加して撹拌混合して得たリン回収用スラグスラリーを採取して測定した結果(No.16−2)とを示している。
また、表3のNo.17は、以下に示す条件でリン回収用スラグスラリーを得た。水130mLと製鋼スラグ20gとを10分間撹拌混合してスラグスラリーを得た後、2mol/Lの塩酸70mLをpHが3.5になるように調整しながら添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00となるまで塩酸を添加した後、30分間撹拌混合し、リン回収用スラグスラリーを得た。この時のリン回収用スラグスラリーを採取して測定した結果が、表3のNo.17である。
In Table 2, No. 7, no. 8, no. 10, no. 13, no. 14, no. 15, no. The phosphorus recovery slag slurry obtained under the conditions shown in No. 16 was filtered, and solid-liquid separation was performed into a steelmaking slag residue and liquid. And the amount of Ca, Si, and Al contained in the liquid was measured with an ICP emission spectroscopic analyzer. Table 3 shows the measurement results.
In addition, No. For No. 16, a part of the slag slurry was sampled immediately after the addition of hydrochloric acid in such an amount that the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 0.70. 16-1), and the result (No. 16-2) of collecting and measuring the phosphorus recovery slag slurry obtained by adding the remaining amount of hydrochloric acid while adjusting the pH and stirring and mixing. Yes.
In Table 3, No. In No. 17, a slag slurry for phosphorus recovery was obtained under the following conditions. 130 mL of water and 20 g of steelmaking slag were stirred and mixed for 10 minutes to obtain a slag slurry, and then 70 mL of 2 mol / L hydrochloric acid was added while adjusting the pH to 3.5. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 1.00, and then stirred and mixed for 30 minutes to obtain a slag slurry for phosphorus recovery. The results obtained by collecting and measuring the slag slurry for phosphorus recovery at this time are No. 1 in Table 3. 17.

Figure 2018094514
Figure 2018094514

表3によると、本発明例(No.10及びNo.14、No.15及びNo.16)は、Ca溶出量が比較例(No.7、No.8、No.11〜No.13、No.17)に比べて多いことが分かる。また、本発明例は、Si及びAlの溶出量が比較例に比べて少ないことが分かる。また、リン回収用スラグスラリーを得る段階で使用する塩酸が、希塩酸でも濃塩酸であっても、Ca溶出に使用する塩酸量が低減すること及びCa以外の元素の溶出を抑制することができていることが分かる。さらに、スラグスラリーのpHをpH5.5に制御してもCa溶出に使用する塩酸量が低減すること及びCa以外の元素の溶出を抑制することができていることが分かる。   According to Table 3, as for the present invention example (No.10 and No.14, No.15 and No.16), Ca elution amount is a comparative example (No.7, No.8, No.11-No.13, It can be seen that there are many compared to No. 17). Moreover, it turns out that the example of this invention has few elution amounts of Si and Al compared with a comparative example. Moreover, even if the hydrochloric acid used in the stage of obtaining the phosphorus recovery slag slurry is dilute hydrochloric acid or concentrated hydrochloric acid, the amount of hydrochloric acid used for Ca elution can be reduced and the elution of elements other than Ca can be suppressed. I understand that. Further, it can be seen that even when the pH of the slag slurry is controlled to pH 5.5, the amount of hydrochloric acid used for Ca elution is reduced and elution of elements other than Ca can be suppressed.

No.7、No.8及びNo.17は、塩酸添加中のpHが低かったため、Si及びAlの溶出量が多くなっているのが分かる。   No. 7, no. 8 and no. It can be seen that No. 17 has a high pH during the addition of hydrochloric acid, so that the elution amount of Si and Al is increased.

No.11〜No.13は、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70であったため、Si及びAlの溶出量が少なくなっているが、Ca溶出量が11000mg/L以下であり、被処理水中のリンを回収するには不十分な溶出量であることが分かる。これより、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.0未満であると、Caを十分に溶出させることができないことが分かる。   No. 11-No. No. 13, since the molar ratio of CaO to hydrochloric acid in steelmaking slag (HCl / CaO) was 0.70, the elution amount of Si and Al was reduced, but the Ca elution amount was 11000 mg / L or less. It can be seen that the amount of elution is insufficient to recover phosphorus in the water to be treated. From this, it can be seen that when the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) is less than 1.0, Ca cannot be sufficiently eluted.

No.16−1は、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70となる量の塩酸を添加した直後の、スラグスラリーの一部を採取して得た測定結果であるが、Si及びAlの溶出量が少なくなっているのが分かる。しかし、この段階では、Caが十分に溶出していないことが分かる。
その後、pHを5.0に維持しながら、塩酸の残量を添加して得たリン回収用スラグスラリーについての測定結果であるNo.16−2を見ると、Si及びAlの溶出量を抑制したまま、Caの溶出量が多くなっているのが分かる。
なお、No.16−2の残渣回収率は85%であり、図3に示した本発明例と同様の高い数値を示した。
No. 16-1 is a measurement result obtained by sampling a part of the slag slurry immediately after adding an amount of hydrochloric acid in which the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) is 0.70. However, it can be seen that the elution amount of Si and Al is reduced. However, it can be seen that Ca is not sufficiently eluted at this stage.
Then, while maintaining pH at 5.0, it is a measurement result about the slag slurry for phosphorus collection | recovery obtained by adding the residual amount of hydrochloric acid. When 16-2 is seen, it turns out that the elution amount of Ca is increasing, suppressing the elution amount of Si and Al.
In addition, No. The residue recovery rate of 16-2 was 85%, which was as high as the example of the present invention shown in FIG.

[実験例5]
塩酸の添加方法を2段階にしてスラグスラリーを製造するときの、スラグスラリーのpHの経時変化を確認するために以下に示す実験を行った。この実験について、表4に示すNo.18〜No.20及び図10を用いて説明する。
図10は、水に製鋼スラグを投入し10分間撹拌混合した後に、塩酸を投入しながらリン回収用スラグスラリーを得る段階における経過時間と、スラグスラリーのpHとの関係を示す図である。
[Experimental Example 5]
In order to confirm the change with time of pH of the slag slurry when the hydrochloric acid was added in two stages to produce the slag slurry, the following experiment was conducted. For this experiment, No. 18-No. 20 and FIG.
FIG. 10 is a diagram showing the relationship between the elapsed time and the pH of the slag slurry in the stage of obtaining the phosphorus recovery slag slurry while adding hydrochloric acid after the steelmaking slag is added to water and stirred for 10 minutes.

図10と対応する表4のNo.18〜No.20では、水26mLと製鋼スラグ4gとを5分間撹拌混合して製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70となる、2mol/Lの塩酸を15mL添加した。塩酸を添加して5分間撹拌した後、2mol/Lの塩酸4mLを15分かけて1分間ごとに添加した。製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)がトータルで1.00となるまで塩酸を添加して、その後15分間撹拌混合してリン回収用スラグスラリーを得た。なお、No.21では、製鋼スラグに必要量の塩酸を一度に添加して撹拌混合することにより、リン回収用スラグスラリーを得た。
図10を見ると、製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が0.70となる量の塩酸を添加した際には、図9と同様に、pHが4.5〜6程度になるのが分かる。
さらに、残りの塩酸を添加する際はスラグスラリーのpHが4.5以上に調整されつつ、塩酸が添加されていることが分かる。
In Table 4 corresponding to FIG. 18-No. In No. 20, 26 mL of water and 4 g of steelmaking slag were stirred and mixed for 5 minutes, and 15 mL of 2 mol / L hydrochloric acid was added so that the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) was 0.70. After adding hydrochloric acid and stirring for 5 minutes, 4 mL of 2 mol / L hydrochloric acid was added every 1 minute over 15 minutes. Hydrochloric acid was added until the molar ratio of CaO to hydrochloric acid in the steelmaking slag (HCl / CaO) reached 1.00 in total, and then stirred and mixed for 15 minutes to obtain a slag slurry for phosphorus recovery. In addition, No. In No. 21, a phosphorus recovery slag slurry was obtained by adding a necessary amount of hydrochloric acid to steelmaking slag at a time and stirring and mixing.
When FIG. 10 is seen, when adding hydrochloric acid in such an amount that the molar ratio of CaO to hydrochloric acid (HCl / CaO) in steelmaking slag becomes 0.70, the pH is 4.5 to You can see that it is about 6.
Furthermore, when adding the remaining hydrochloric acid, it turns out that hydrochloric acid is added, adjusting the pH of a slag slurry to 4.5 or more.

使用するNaOH量、回収リン中のク溶性リン含有率、ク溶性リン含有量との関係を調べるため、以下に示す実験例を行った。
上記で製造したリン回収用スラグスラリーとリン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、表4に示すpHとなるように調整し、20分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。凝集沈降した固形物を回収し、回収した固形物の量、沈降後の含水固形物中のク溶製リン含有率及びク溶性リン量を測定した沈降後の含水固形物中のリン量はモリブデンブルー法により測定した。ク溶性リン量は、2%クエン酸水溶液によって固形物から抽出した抽出物の質量を測定し、この抽出物中に含まれるク溶性リン量を算出した。なお、ク溶性リン量の測定にあたっては「肥料等試験法(2013)独立行政法人農林水産消費安全技術センター(http://www.famic.go.jp/ffis/fert/bunseki/sub9_shiken2013.html)」に準じて行った。
また、NaOH削減率(wt%)、ク溶性リン含有率(wt%)、ク溶性リン含有量(gC−P/kgスラグ)はそれぞれ、下記式(5)〜(7)により求めた。
In order to investigate the relationship between the amount of NaOH to be used, the content of soluble phosphorus in the recovered phosphorus, and the content of soluble phosphorus, the following experimental examples were conducted.
The phosphorus recovery slag slurry produced above and the phosphorus amount in the model liquid having a phosphorus concentration of 150 mg / L are mixed so that the Ca / P ratio is 3.0, so that the pH shown in Table 4 is obtained. After adjusting and stirring and mixing for 20 minutes, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. Coagulated and settled solids were collected, the amount of collected solids, the phosphorus content in the hydrated solids after sedimentation, and the amount of solute phosphorus measured, and the phosphorus content in the hydrated solids after sedimentation was molybdenum. It was measured by the blue method. The amount of ku-soluble phosphorus was determined by measuring the mass of the extract extracted from the solid with a 2% aqueous citric acid solution and calculating the amount of ku-soluble phosphorus contained in the extract. In addition, in the measurement of the amount of soluble phosphorus, “Fertilizer test method (2013) National Agriculture, Forestry and Fisheries Consumption Safety Technology Center (http://www.famic.go.jp/ffis/fert/bunseki/sub9_shiken2013.html) It went according to.
Further, the NaOH reduction rate (wt%), the soluble phosphorus content (wt%), and the soluble phosphorus content (gC—P 2 O 5 / kg slag) are obtained by the following formulas (5) to (7), respectively. It was.

NaOH削減率(wt%)=(比較例No.21のNaOH使用量(mL)−発明例No.18〜20のNaOH使用量(mL))
÷比較例23のNaOH使用量(mL) … (5)
NaOH reduction rate (wt%) = (NaOH usage amount (mL) of Comparative Example No. 21−NaOH usage amount (mL) of Invention Examples No. 18 to 20)
÷ Amount of NaOH used in Comparative Example 23 (mL) (5)

ク溶性リン含有率(wt%)=ク溶性リン量(g)÷回収した固形物の量(g)×100 … (6)   Cu-soluble phosphorus content (wt%) = Cu-soluble phosphorus amount (g) ÷ recovered solid amount (g) × 100 (6)

ク溶性リン含有量(gC−P/kgスラグ)=ク溶性リン量(g)÷スラグ使用量(kg) … (7) Cu-soluble phosphorus content (gC—P 2 O 5 / kg slag) = Cu-soluble phosphorus amount (g) ÷ Slag usage (kg) (7)

Figure 2018094514
Figure 2018094514

表4によると、いずれの試験例においても、回収物はそのまま肥料用途に向けるための、ク溶性リン含有率の規格値である15質量%以上を示しており、そのまま肥料として用いることができる。回収物中のク溶性リン含有量は、比較例No.21に比べて本発明例(No.18〜No.20)はク溶性リン含有量が多くなっていることがわかる。
また、本発明例(No.18〜No.20)は比較例No.21に比べて、被処理水のpH調整に用いるNaOH水溶液の使用量は、大幅に削減できることがわかる。
実用化する場合は、回収したリンの価値、製鋼スラグや塩酸、NaOH(苛性ソーダ)の調達費等を総合的に勘案して最適な値を決めることになる。
According to Table 4, in any of the test examples, the recovered material shows 15% by mass or more which is a standard value of the content of soluble phosphorus for direct application to fertilizer, and can be used as it is as a fertilizer. The soluble phosphorus content in the recovered product was compared with that in Comparative Example No. It can be seen that the present invention examples (No. 18 to No. 20) have a higher content of soluble phosphorus than 21.
In addition, the inventive examples (No. 18 to No. 20) are comparative example Nos. It can be seen that the amount of NaOH aqueous solution used for adjusting the pH of the water to be treated can be greatly reduced compared to 21.
In practical use, the optimum value is determined by comprehensively taking into account the value of the collected phosphorus, the cost of procurement of steelmaking slag, hydrochloric acid, NaOH (caustic soda), and the like.

本発明の要旨は、以下の通りである。
(1) 製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸添加中の前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸を添加することを特徴とする被処理水中のリンの回収方法。
(2) 製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸の全量のうち、前記製鋼スラグ中のCaOと前記塩酸とのモル比率(HCl/CaO)が1.00未満となる量の前記塩酸を前記スラグスラリーに添加した後、前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸の残量を添加することを特徴とする被処理水中のリンの回収方法。
(3) 沈降させた前記固形物を乾燥させる(1)または(2)に記載の被処理水中のリンの回収方法。
(4) 前記製鋼スラグの塩基度が1〜7の範囲である(1)乃至(3)の何れか一項に記載の被処理水中のリンの回収方法。
(5) 前記製鋼スラグのカルシウム含有率が15〜55質量%の範囲である(1)乃至(4)の何れか一項に記載の被処理水中のリンの回収方法。
(6) 前記製鋼スラグの平均粒径が0.3mm以下である(1)乃至(5)の何れか一項に記載の被処理水中のリンの回収方法。
(7) 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、混合液のpHを7.2〜8.5に調整する(1)乃至(6)の何れか一項に記載の被処理水中のリンの回収方法。
(8) 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、前記製鋼スラグ中のカルシウム量と前記被処理水中のリン量のモル比率(Ca/P)が2以上4以下になるように調整する(1)乃至(7)の何れか一項に記載の被処理水中のリンの回収方法。
(9) 前記製鋼スラグと前記水及び前記塩酸との固液比が1:5以上である(1)乃至(8)の何れか一項に記載の被処理水中のリンの回収方法。
(10) 前記スラグスラリーに前記塩酸の全量を添加した後の撹拌時間を15分以上とする(1)乃至(9)の何れか一項に記載の被処理水中のリンの回収方法。
(11) 前記被処理水と前記リン回収用スラグスラリーとの撹拌時間を5分以上とする(1)乃至(10)の何れか一項に記載の被処理水中のリンの回収方法。
(12) 前記リンを含む被処理水が生活排水または産業排水のうちの何れか一方または両方を含む(1)乃至(11)の何れか一項に記載の被処理水中のリンの回収方法。
(13) 前記固形物を肥料とすることを特徴とする(1)乃至(12)の何れか一項に記載の被処理水中のリンの回収方法。
(14) 前記固形物を肥料原料とすることを特徴とする(1)乃至(12)の何れか一項に記載の被処理水中のリンの回収方法。
(15) 前記固形物を黄リン原料とすることを特徴とする(1)乃至(12)の何れか一項に記載の被処理水中のリンの回収方法。
The gist of the present invention is as follows.
(1) To a slag slurry composed of steelmaking slag and water, stir and mix the hydrochloric acid in such an amount that the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the steelmaking slag is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, the hydrochloric acid is added while maintaining the pH of the slag slurry during the addition of hydrochloric acid in the range of 4.5 to 7.0. Recovery method.
(2) To the slag slurry composed of steelmaking slag and water, stir and mix the hydrochloric acid in such an amount that the molar ratio (HCl / CaO) of CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the steelmaking slag is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, an amount of the hydrochloric acid in which the molar ratio (HCl / CaO) of CaO to the hydrochloric acid in the steelmaking slag is less than 1.00 out of the total amount of the hydrochloric acid is added to the slag. After adding to a slurry, the residual amount of the said hydrochloric acid is added, maintaining the pH of the said slag slurry in the range of 4.5-7.0, The collection | recovery method of the phosphorus in to-be-processed water characterized by the above-mentioned.
(3) The method for recovering phosphorus in the water to be treated according to (1) or (2), wherein the solid matter that has been precipitated is dried.
(4) The method for recovering phosphorus in the water to be treated according to any one of (1) to (3), wherein the basicity of the steelmaking slag is in a range of 1 to 7.
(5) The method for recovering phosphorus in the water to be treated according to any one of (1) to (4), wherein a calcium content of the steelmaking slag is in a range of 15 to 55 mass%.
(6) The method for recovering phosphorus in the water to be treated according to any one of (1) to (5), wherein the steelmaking slag has an average particle size of 0.3 mm or less.
(7) When mixing the water to be treated and the slag slurry for phosphorus recovery, the pH of the mixed solution is adjusted to 7.2 to 8.5. (1) to (6) To recover phosphorus in water to be treated.
(8) When the treated water and the phosphorus recovery slag slurry are mixed, the molar ratio (Ca / P) of the amount of calcium in the steelmaking slag and the amount of phosphorus in the treated water is 2 or more and 4 or less. The method for recovering phosphorus in the water to be treated according to any one of (1) to (7).
(9) The method for recovering phosphorus in the water to be treated according to any one of (1) to (8), wherein a solid-liquid ratio of the steelmaking slag, the water, and the hydrochloric acid is 1: 5 or more.
(10) The method for recovering phosphorus in the water to be treated according to any one of (1) to (9), wherein a stirring time after the total amount of the hydrochloric acid is added to the slag slurry is 15 minutes or more.
(11) The method for recovering phosphorus in the water to be treated according to any one of (1) to (10), wherein the stirring time of the water to be treated and the slag slurry for phosphorus recovery is 5 minutes or more.
(12) The method for recovering phosphorus in the water to be treated according to any one of (1) to (11), wherein the water to be treated containing phosphorus includes one or both of domestic wastewater and industrial wastewater.
(13) The method for recovering phosphorus in water to be treated according to any one of (1) to (12), wherein the solid matter is used as a fertilizer.
(14) The method for recovering phosphorus in water to be treated according to any one of (1) to ( 12 ), wherein the solid matter is used as a fertilizer raw material.
(15) The method for recovering phosphorus in the water to be treated according to any one of (1) to ( 12 ), wherein the solid is used as a raw material for yellow phosphorus.

Claims (15)

製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸添加中の前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸を添加することを特徴とする被処理水中のリンの回収方法。
The steelmaking slag is prepared by stirring and mixing the hydrochloric acid in an amount such that the molar ratio (HCl / CaO) between CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the solution is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, the hydrochloric acid is added while maintaining the pH of the slag slurry during the addition of hydrochloric acid in the range of 4.5 to 7.0. Recovery method.
製鋼スラグと水とからなるスラグスラリーに、前記製鋼スラグ中のCaOと塩酸とのモル比率(HCl/CaO)が1.00〜1.50となる量の前記塩酸を撹拌混合して前記製鋼スラグ中のカルシウムを溶出させたリン回収用スラグスラリーを得る段階と、
リンを含む被処理水に前記リン回収用スラグスラリーを撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記製鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
沈降させた前記固形物を回収する段階と、を備え、
前記リン回収用スラグスラリーを得る段階において、前記塩酸の全量のうち、前記製鋼スラグ中のCaOと前記塩酸とのモル比率(HCl/CaO)が1.00未満となる量の前記塩酸を前記スラグスラリーに添加した後、前記スラグスラリーのpHを4.5〜7.0の範囲に維持しながら前記塩酸の残量を添加することを特徴とする被処理水中のリンの回収方法。
The steelmaking slag is prepared by stirring and mixing the hydrochloric acid in an amount such that the molar ratio (HCl / CaO) between CaO and hydrochloric acid in the steelmaking slag is 1.00 to 1.50. Obtaining a phosphorus recovery slag slurry from which calcium in the solution is eluted;
The compound containing phosphorus and calcium is formed by stirring and mixing the phosphorus recovery slag slurry in the water to be treated containing phosphorus, and then allowing the compound to coagulate and settle as a solid with the steelmaking slag residue. Stages,
Recovering the settled solid matter, and
In the step of obtaining the phosphorus recovery slag slurry, an amount of the hydrochloric acid in which the molar ratio (HCl / CaO) of CaO to the hydrochloric acid in the steelmaking slag is less than 1.00 out of the total amount of the hydrochloric acid is added to the slag. After adding to a slurry, the residual amount of the said hydrochloric acid is added, maintaining the pH of the said slag slurry in the range of 4.5-7.0, The collection | recovery method of the phosphorus in to-be-processed water characterized by the above-mentioned.
沈降させた前記固形物を乾燥させる請求項1または請求項2に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to claim 1 or 2, wherein the solid matter that has been precipitated is dried. 前記製鋼スラグの塩基度が1〜7の範囲である請求項1乃至請求項3の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 3, wherein the steelmaking slag has a basicity in the range of 1 to 7. 前記製鋼スラグのカルシウム含有率が15〜55質量%の範囲である請求項1乃至請求項4の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 4, wherein a calcium content of the steelmaking slag is in a range of 15 to 55 mass%. 前記製鋼スラグの平均粒径が0.3mm以下である請求項1乃至請求項5の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 5, wherein an average particle diameter of the steelmaking slag is 0.3 mm or less. 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、混合液のpHを7.2〜8.5に調整する請求項1乃至請求項6の何れか一項に記載の被処理水中のリンの回収方法。   The to-be-processed method as described in any one of Claims 1 thru | or 6 which adjusts pH of a liquid mixture to 7.2-8.5 when mixing the said to-be-processed water and the said slag slurry for phosphorus collection | recovery. How to recover phosphorus in water. 前記被処理水と前記リン回収用スラグスラリーとを混合する際に、前記製鋼スラグ中のカルシウム量と前記被処理水中のリン量のモル比率(Ca/P)が2以上4以下になるように調整する請求項1乃至請求項7の何れか一項に記載の被処理水中のリンの回収方法。   When the treated water and the phosphorus recovery slag slurry are mixed, the molar ratio (Ca / P) of the calcium amount in the steelmaking slag and the phosphorus amount in the treated water is 2 or more and 4 or less. The method for recovering phosphorus in the water to be treated according to any one of claims 1 to 7 to be adjusted. 前記製鋼スラグと前記水及び前記塩酸との固液比が1:5以上である請求項1乃至請求項8の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 8, wherein a solid-liquid ratio of the steelmaking slag, the water, and the hydrochloric acid is 1: 5 or more. 前記スラグスラリーに前記塩酸の全量を添加した後の撹拌時間を15分以上とする請求項1乃至請求項9の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in the water to be treated according to any one of claims 1 to 9, wherein a stirring time after the total amount of the hydrochloric acid is added to the slag slurry is 15 minutes or more. 前記被処理水と前記リン回収用スラグスラリーとの撹拌時間を5分以上とする請求項1乃至請求項10の何れか一項に記載の被処理水中のリンの回収方法。   The recovery method of phosphorus in to-be-processed water as described in any one of Claims 1 thru | or 10 which makes stirring time of the said to-be-processed water and the said phosphorus collection | recovery slag slurry 5 minutes or more. 前記リンを含む被処理水が生活排水または産業排水のうちの何れか一方または両方を含む請求項1乃至請求項11の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 11, wherein the water to be treated containing phosphorus includes one or both of domestic wastewater and industrial wastewater. 前記固形物を肥料とすることを特徴とする請求項1乃至請求項12の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 12, wherein the solid matter is fertilizer. 前記固形物を肥料原料とすることを特徴とする請求項1乃至請求項13の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 13, wherein the solid material is used as a fertilizer raw material. 前記固形物を黄リン原料とすることを特徴とする請求項1乃至請求項14の何れか一項に記載の被処理水中のリンの回収方法。   The method for recovering phosphorus in water to be treated according to any one of claims 1 to 14, wherein the solid material is a yellow phosphorus raw material.
JP2016242688A 2016-12-14 2016-12-14 Method for recovering phosphorus in treated water Active JP6197095B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016242688A JP6197095B1 (en) 2016-12-14 2016-12-14 Method for recovering phosphorus in treated water
PCT/JP2017/043732 WO2018110375A1 (en) 2016-12-14 2017-12-06 Method for recovering phosphorus in water being treated
CN201780076694.9A CN110267920A (en) 2016-12-14 2017-12-06 The recovery method of phosphorus in treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242688A JP6197095B1 (en) 2016-12-14 2016-12-14 Method for recovering phosphorus in treated water

Publications (2)

Publication Number Publication Date
JP6197095B1 JP6197095B1 (en) 2017-09-13
JP2018094514A true JP2018094514A (en) 2018-06-21

Family

ID=59854953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242688A Active JP6197095B1 (en) 2016-12-14 2016-12-14 Method for recovering phosphorus in treated water

Country Status (3)

Country Link
JP (1) JP6197095B1 (en)
CN (1) CN110267920A (en)
WO (1) WO2018110375A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560545B (en) * 2022-03-08 2023-10-03 贵州开阳青利天盟化工有限公司 Wastewater recycling system for yellow phosphorus storage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271087A (en) * 1985-05-27 1986-12-01 Nippon Kokan Kk <Nkk> Treatment of waste water containing phosphate
EP2586525A1 (en) * 2010-06-23 2013-05-01 Universidad Pública De Navarra Modification of saline slags from the processes of second smelting of aluminium and the use thereof as adsorbents of the products obtained
JP2013081896A (en) * 2011-10-07 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method for separating component from iron and steel slag by using hydrochloric acid solution
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
JP2016020296A (en) * 2014-06-20 2016-02-04 新日鐵住金株式会社 Iron and steel slag treatment method
JP6060320B1 (en) * 2015-06-11 2017-01-11 久夫 大竹 System for recovering phosphorus in treated water and method for collecting phosphorus in treated water
JP2017075065A (en) * 2015-10-13 2017-04-20 新日鐵住金株式会社 Method for recovering phosphate from steel slag

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125483A (en) * 1984-11-20 1986-06-13 Ebara Infilco Co Ltd Method for removing phosphoric acid in liquid
JP2004008865A (en) * 2002-06-04 2004-01-15 Jfe Engineering Kk Dephosphorization method and method of manufacturing melted and solidified product
CN101580334B (en) * 2008-05-13 2011-06-22 中国科学院生态环境研究中心 Method for recovering sludge phosphorus from urban sewage treatment plant
CN101659463A (en) * 2009-09-10 2010-03-03 重庆大学 Method for treatment of industrial phosphorus-containing wastewater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271087A (en) * 1985-05-27 1986-12-01 Nippon Kokan Kk <Nkk> Treatment of waste water containing phosphate
EP2586525A1 (en) * 2010-06-23 2013-05-01 Universidad Pública De Navarra Modification of saline slags from the processes of second smelting of aluminium and the use thereof as adsorbents of the products obtained
JP2013081896A (en) * 2011-10-07 2013-05-09 Nippon Steel & Sumitomo Metal Corp Method for separating component from iron and steel slag by using hydrochloric acid solution
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water
JP2016020296A (en) * 2014-06-20 2016-02-04 新日鐵住金株式会社 Iron and steel slag treatment method
JP6060320B1 (en) * 2015-06-11 2017-01-11 久夫 大竹 System for recovering phosphorus in treated water and method for collecting phosphorus in treated water
JP2017075065A (en) * 2015-10-13 2017-04-20 新日鐵住金株式会社 Method for recovering phosphate from steel slag

Also Published As

Publication number Publication date
CN110267920A (en) 2019-09-20
JP6197095B1 (en) 2017-09-13
WO2018110375A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6060320B1 (en) System for recovering phosphorus in treated water and method for collecting phosphorus in treated water
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2018079439A (en) Method and device for treating waste water containing sulfuric acid, fluorine and heavy metal ion
JP2019217423A (en) System of treating effluent or sludge containing high-concentration suspended matter
JP6197095B1 (en) Method for recovering phosphorus in treated water
JP2001347104A (en) Powdery decontaminant and method of decontaminating clean water and waste water
JPWO2012176753A1 (en) Method and apparatus for treating organic wastewater and organic sludge
JP3339352B2 (en) Sludge treatment method
JP6406981B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP3277832B2 (en) Method for treating phosphorus recovered from sewage treatment water
JP2005040739A (en) Phosphate-containing wastewater treatment method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP5875259B2 (en) Method and apparatus for treating organic wastewater and sludge
JP7275618B2 (en) Method for treating slurry containing heavy metals
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
JPH0557292A (en) Treatment of waste water containing heavy metal
JP6162375B2 (en) Method for recovering phosphoric acid from waste
JP4894139B2 (en) Method and apparatus for treating phosphoric acid-containing liquid
JP2003245630A (en) Anaerobic treatment method for organic waste
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
JP2018061922A (en) Water treatment system and water treatment method
JPS6329599B2 (en)
JPH057879A (en) Treatment of waste water containing heavy metal
JP2005028246A (en) Treatment method for heavy metal-containing wastewater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6197095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250