JP2018093826A - Method for producing fermented organic matter - Google Patents

Method for producing fermented organic matter Download PDF

Info

Publication number
JP2018093826A
JP2018093826A JP2016243939A JP2016243939A JP2018093826A JP 2018093826 A JP2018093826 A JP 2018093826A JP 2016243939 A JP2016243939 A JP 2016243939A JP 2016243939 A JP2016243939 A JP 2016243939A JP 2018093826 A JP2018093826 A JP 2018093826A
Authority
JP
Japan
Prior art keywords
water
fermentation
fermented
nanobubble water
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016243939A
Other languages
Japanese (ja)
Inventor
久美子 川名
Kumiko Kawana
久美子 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Shubyo Kk
Original Assignee
Taiyo Shubyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Shubyo Kk filed Critical Taiyo Shubyo Kk
Priority to JP2016243939A priority Critical patent/JP2018093826A/en
Publication of JP2018093826A publication Critical patent/JP2018093826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Fertilizers (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Soy Sauces And Products Related Thereto (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing fermented organic matter such as fermented manure, soy sauce, miso, Japanese sake, beer, and bread.SOLUTION: A method for producing fermented organic matter includes fermenting organic matter to serve as a raw material for the fermented organic matter, in the presence of nanobubble water.SELECTED DRAWING: None

Description

本発明は、籾殻堆肥などの発酵堆肥や、醤油、日本酒、ビール、パンなどの発酵食品などの発酵有機物の製造方法に関する。   The present invention relates to a method for producing fermented organic matter such as fermented compost such as rice husk compost and fermented food such as soy sauce, sake, beer and bread.

例えば、脱穀過程で排出される籾殻は、優良な有機質素材でありながら、珪酸分に富んだ構造を持つため微生物分解が難しく、屋外に堆積・放置しても分解のためには3年以上を要する。
このため、特許文献1(特開2010−285333号公報)では、籾殻にヌカなどの補助資材を混合しながら、特定の種菌を順次または同時に投与することにより、50℃から60℃での中温発酵を維持させて籾殻の急速な分解を可能にすることが提案されている。
しかしながら、この場合でも、分解速度には限界があり、少なくとも堆肥となるまでに1か月を要する。しかも、この先行技術では、特殊な種菌を使用しなければならず、経済的ではない。
For example, rice husk discharged during the threshing process is a good organic material, but it has a structure rich in silicic acid, so it is difficult to break down microorganisms. Cost.
For this reason, in patent document 1 (Unexamined-Japanese-Patent No. 2010-285333), medium temperature fermentation at 50 to 60 degreeC is carried out by administering a specific inoculum sequentially or simultaneously, mixing auxiliary materials, such as nuka, in rice husk. It has been proposed to allow for rapid degradation of rice husks.
However, even in this case, the decomposition rate is limited, and at least one month is required for composting. Moreover, in this prior art, a special inoculum must be used, which is not economical.

特開2010−285333号公報JP 2010-285333 A

本発明者は、籾殻堆肥の製造に際し、従来、籾殻発酵に用いられていた水に代えてナノバブル水を用いると、例えば、籾殻だけを屋外に堆積・放置させると、籾殻だけでも、当該籾殻の分解が3年から1年程度に短縮されること、さらにこの発酵技術を他の発酵に応用することが可能であることを見出して本発明を完成させた。
すなわち、本発明は、以下の(1)〜(4)により構成される。
(1)発酵有機物の原料となる有機物を、ナノバブル水の存在下に発酵させることを特徴とする、発酵有機物の製造方法。
(2)発酵有機物が、発酵堆肥、醤油、味噌、日本酒、ビールまたはパンである(1)に記載の発酵有機物の製造方法。
(3)発酵有機物の原料となる有機物が、発酵堆肥の場合は籾殻、落ち葉、稲わら、バーク、木材チップ、油粕、鶏糞、牛糞、野菜屑の群から選ばれた少なくとも1種を主成分とし、醤油の場合は麦、大豆、塩および麹を主成分とし、味噌の場合は米、大豆、塩および麹を主成分とし、日本酒の場合は米および麹を主成分とし、ビールの場合は麦芽、ビール酵母およびホップを主成分とし、パンの場合は小麦粉およびイーストを主成分とする、(1)または(2)に記載の発酵有機物の製造方法。
(4)ナノバブル水が、空気ナノバブル水および/または酸素ナノバブル水である、(1)〜(3)いずれかに記載の発酵有機物の製造方法。
In the production of rice husk compost, the present inventor uses nanobubble water instead of the water conventionally used for rice husk fermentation.For example, when only rice husk is deposited and allowed to stand outdoors, The present invention was completed by finding out that the degradation was shortened from 3 years to about 1 year and that this fermentation technique could be applied to other fermentations.
That is, this invention is comprised by the following (1)-(4).
(1) A method for producing a fermented organic material, comprising fermenting an organic material as a raw material of the fermented organic material in the presence of nanobubble water.
(2) The method for producing a fermented organic material according to (1), wherein the fermented organic material is fermented compost, soy sauce, miso, sake, beer or bread.
(3) In the case of fermented compost, the organic material that is the raw material of fermented organic matter is mainly composed of at least one selected from the group consisting of rice husk, fallen leaves, rice straw, bark, wood chips, oil cake, chicken manure, cow manure and vegetable waste. In the case of soy sauce, wheat, soy, salt and koji are the main ingredients; in the case of miso, rice, soy, salt and koji are the main ingredients; for sake, rice and koji are the main ingredients; for beer, malt The method for producing a fermented organic material according to (1) or (2), wherein beer yeast and hops are the main components, and in the case of bread, flour and yeast are the main components.
(4) The method for producing a fermented organic material according to any one of (1) to (3), wherein the nanobubble water is air nanobubble water and / or oxygen nanobubble water.

本発明によれば、有機物の発酵の際に、仕込み水を通常の水からナノバブル水に代えることにより、発酵が一段と進む一方、品質の劣化がなく、産業上、有為な技術である。
例えば、本発明を籾殻の発酵に適用すると、屋根のついた堆積場のみで、ヌカ、種菌などの補助材料を用いなくても、容易に珪酸分に富んだ良質な籾殻堆肥を生産することができる。
また、本発明のナノバブル水を用いた発酵有機物の製造方法によれば、ナノバブル水を醤油,味噌,清酒、ビール等の発酵食品の醸造に使用することにより、発酵作用が促進されるとともに窒素利用率が向上し、これに伴って旨味のある醤油,味噌と、雑味が少なくて香気豊かな高品質の清酒、ビール、パンなどを短期間で得ることができる。
特に、ナノバブル水を清酒醸造の仕込水に添加することによって醪の溶解が進むとともに上槽後の粕歩合が少なくなって純アルコール収得量を増加することができる上、酸度、アミノ酸度、紫外部吸収等の酒の雑味成分は少ないので、酒質が向上するという効果が得られる。
According to the present invention, when organic matter is fermented, the feed water is changed from normal water to nanobubble water, so that the fermentation proceeds further, while the quality is not deteriorated, which is an industrially useful technique.
For example, when the present invention is applied to fermentation of rice husk, it is possible to easily produce high-quality rice husk compost rich in silicic acid without using auxiliary materials such as nuka and inoculum only in a sedimentation place with a roof. it can.
In addition, according to the method for producing fermented organic matter using nanobubble water of the present invention, the use of nanobubble water for brewing fermented foods such as soy sauce, miso, sake, and beer promotes the fermentation action and uses nitrogen. The rate is improved, and as a result, savory soy sauce and miso, and high quality sake, beer, bread, etc. with little miscellaneous taste and aroma can be obtained in a short period of time.
In particular, by adding nano bubble water to the sake brewing water, the dissolution of koji progresses and the koji ratio after the upper tank decreases, so that the yield of pure alcohol can be increased. Since there are few miscellaneous components of liquor, such as absorption, the effect that liquor quality improves is acquired.

以下、本発明の発酵有機物の製造方法を、使用水としてのナノバブル水、籾殻堆肥、醤油、味噌、日本酒、ビール、パンに分けて説明するが、本発明の対象とする発酵有機物はこれらに限定されるものではない。   Hereinafter, the method for producing a fermented organic material of the present invention will be described by dividing it into nano-bubble water, rice husk compost, soy sauce, miso, sake, beer, and bread as water used, but the fermented organic material of the present invention is limited to these. Is not to be done.

<ナノバブル水>
本発明において、空気ナノバブル水は粒径がナノメートルオーダーの空気の気泡を含む水を意味し、酸素ナノバブル水は粒径がナノメートルオーダーの酸素の気泡を含む水を意味する。空気ナノバブル水は、例えば特開2005−245817号公報に記載の方法に従って、粒径がマイクロメートルオーダーの空気の気泡を含む水(空気マイクロバブル水)に物理的刺激(放電発生装置を用いた放電、超音波発信装置を用いた超音波照射、水を流動させた際に生じる圧縮や膨張や渦流の利用など)を与え、気泡を急激に縮小させることで調製することができる。特開2005−245817号公報に記載の方法に従えば、粒径が50〜500nmの空気ナノバブル水を調製することができる。酸素ナノバブル水も、例えば特開2005−245817号公報に記載の方法に従って、空気ナノバブル水と同様にして調製することができる。また、電気伝導度が100μS/cm以上の水を用いて空気マイクロバブル水や酸素マイクロバブル水を調製すれば、気泡が自然縮小する過程において水中の電解質イオンが気泡界面に濃縮されることで、気泡内部の空気や酸素の周囲の水中への溶解が抑制されるので、特開2005−245817号公報に記載の方法のように空気マイクロバブル水や酸素マイクロバブル水に物理的刺激を与えなくても、空気ナノバブル水や酸素ナノバブル水を調製することができる。
<Nano bubble water>
In the present invention, air nanobubble water means water containing air bubbles having a particle size of the order of nanometers, and oxygen nanobubble water means water containing bubbles of oxygen having a particle size of the order of nanometers. For example, air nanobubble water is physically stimulated by water (air microbubble water) containing air bubbles having a particle size of the order of micrometers in accordance with the method described in JP-A-2005-245817. It can be prepared by applying ultrasonic irradiation using an ultrasonic transmission device, compression or expansion generated when water is flowed, use of eddy current, etc.) and rapidly reducing bubbles. According to the method described in JP-A-2005-245817, air nanobubble water having a particle size of 50 to 500 nm can be prepared. Oxygen nanobubble water can also be prepared in the same manner as air nanobubble water, for example, according to the method described in JP-A-2005-245817. In addition, if air microbubble water or oxygen microbubble water is prepared using water having an electrical conductivity of 100 μS / cm or more, electrolyte ions in water are concentrated at the bubble interface in the process of the bubble naturally shrinking, Since the dissolution of air inside the bubbles and oxygen in the surrounding water is suppressed, there is no physical irritation to the air microbubble water or oxygen microbubble water as in the method described in JP-A-2005-245817. Also, air nanobubble water or oxygen nanobubble water can be prepared.

<籾殻堆肥>
籾殻堆肥の場合、屋根付きの堆肥製造設備で籾殻単品に対し、通常の水に代えてナノバブル水を撒いて切り返しを行うと、通常の水ではほば3年で堆肥となるのに対し、ナノバブル水ではほぼ1年で籾殻堆肥となることが確認された。
また、本発明によれば、籾殻にヌカおよび種菌を混合し、これに通常に水に代えてナノバブル水を添加すると、発酵が大幅に短縮されることも確認されている。
<Rice husk compost>
In the case of rice husk compost, a single-sided rice husk with a roofed compost production facility is turned into a compost in about 3 years with nanobubble water instead of ordinary water. It was confirmed that water would become rice husk compost in almost one year.
In addition, according to the present invention, it has also been confirmed that fermentation is greatly shortened when nuka and inoculum are mixed in rice husk, and nanobubble water is usually added thereto instead of water.

籾殻堆肥製造の具体例;
例えば、籾殻 100kgに対し、米ぬか 10kgと鶏糞 15kg、それに発酵を促すための種菌として、米ぬかボカシ肥(http://ymmfarm.com/412参照)を少し入れる。ここで、米ぬかと鶏糞をよく混ぜ合わせておき、種菌もここで入れておく。
次に、籾殻と米ぬか・鶏糞をサンドイッチ状に積み込んでいく。ここで、最初に籾殻を積み込み、その上に混ぜておいた米ぬか・鶏糞を振りかける。また籾殻を積み込み。その上に米ぬか・鶏糞を振りかける。途中途中で全面に水をたっぷりかけ、足で踏み固めていく。これをこの繰り返し、最後にたっぷりと水をかけて(下から流れ出るくらい)、ブルーシート等で覆う
3&#12316;4日すると、発酵によって内部の温度が70度前後になるが、この状態では、内部では発酵が進んでいるが、表面では進んでいないため、切り返しを行い(スコップで全体を混ぜて中と外を入れ替える)、この切り返しを月に1回程度行いながら数ヶ月経過し、黒っぽくなれば、完熟籾殻堆肥として利用することができる。
本発明では、この従来の籾殻堆肥の製造に際し、使用水をこれまでの水道水から、ナノバブル水を用いて、同様にして発酵した籾殻堆肥を製造した。
ナノバブル水を用いた籾殻堆肥の場合、通常の水道水では数か月かかったものが、約1か月程度で肥料として使用可能な籾殻堆肥となった。
Specific examples of rice husk compost production;
For example, for 100 kg of rice husk, 10 kg of rice bran, 15 kg of chicken manure, and a little rice bran fertilizer (see http://ymmfarm.com/412) are used as inoculums to promote fermentation. Here, rice bran and chicken manure are mixed well, and inoculum is also added here.
Next, the rice husk, rice bran and chicken manure are loaded in a sandwich. Here, first load rice husk and sprinkle rice bran and chicken manure mixed on it. Also loaded with rice husk. Sprinkle rice bran and chicken dung on it. Along the way, pour plenty of water on the entire surface and step on your feet to solidify. Repeat this process, add plenty of water at the end (so that it flows from the bottom), and cover it with a blue sheet.
3 &#12316; 4 days, the internal temperature is about 70 degrees due to the fermentation, but in this state, the fermentation is progressing inside, but it is not progressing on the surface. The inside and outside are swapped), and when this is done about once a month, several months have passed, and if it turns black, it can be used as fully ripe rice husk compost.
In the present invention, in the production of this conventional rice husk compost, the rice husk compost fermented in the same manner was produced from the tap water used so far using nanobubble water.
In the case of rice husk compost using nano-bubble water, ordinary tap water took several months to become rice husk compost that can be used as fertilizer in about one month.

ここで、使用されたナノバブル水は、 市販のシャフトタイプの二相流旋回方式のマイクロバブル発生装置を、容量が約100Lの円筒状の水槽の中に設置し、堆肥に供給される用水を連続的に水槽の中に約100L/分の速度で送り込み、装置に空気を供給することで、粒径が10〜50μmの空気マイクロバブル水(気泡個数:約300個/L)を調製し、水槽の中で気泡を自然浮遊させることによって自然縮小させることによりその粒径をナノメートルオーダーとした後、輸送用パイプを通じて堆肥に供給した。なお、水槽の中に送り込んだ用水は電気伝導度が約120μS/cmの天然水であり、陽イオンとしてKとMg2+を約2ppm、Ca2+が約8ppm含み、陰イオンとしてNO を約2ppm、SO 2−を約15ppm含むものであった。また、pHは約7.5であった。なお、上記のようにして供給した空気ナノバブル水を電子スピン共鳴法(ESR法)により定量的に評価した。この定量的な評価は、天然水の中には浮遊固相粒子が大量に存在しており(SS=約0.05ppm)、動的光散乱光度計などを用いた方法ではナノバブルを正確に定量的に評価することができないことから、ナノバブルが消滅する際に発生するフリーラジカルを指標にして行った。具体的には、空気ナノバブル水にスピントラップ剤であるDMPO(5,5−ジメチル−1−ピロリン−N−オキシド)を添加した後、ナノバブルを不安定化させるために塩酸を添加し、発生したスピンアダクトを電子スピン共鳴装置を用いて測定することで行った。なお、天然水の中には微量のFe3+が含まれており、塩酸やDMPOと反応してスピンアダクトを発生することがあるため、空気ナノバブル水を調製するために用いた天然水についても同様にして測定した後、その測定結果を空気ナノバブル水の測定結果から差し引くことで、ナノバブル由来のフリーラジカルを定量化した。その結果、空気ナノバブル水を調製した直後〜1日経過後にはナノバブル由来の大きなスペクトルが観測されたが、1週間経過後のスペクトルは天然水とさほど変わらないレベルであった。なお、空気ナノバブル水を調製してから1日経過後のラジカル量は、水酸基ラジカルとして約28×1016個/Lであった。ラジカル量からナノバブル量を換算することはできないが、これらの結果を総合的に勘案すると、上記のようにして供給した空気ナノバブル水は、ある程度の期間、例えば少なくとも3日程度は安定に存在することがわかった。以下のナノバブル水も、このナノバブル水を用いた。 The nanobubble water used here is a commercially available shaft-type two-phase flow swirl microbubble generator installed in a cylindrical water tank with a capacity of about 100 L, and the water supplied to the compost is continuously supplied. The air microbubble water (the number of bubbles: about 300 / L) having a particle size of 10 to 50 μm is prepared by supplying air into the water tank at a rate of about 100 L / min and supplying air to the apparatus. The particle size was reduced to the nanometer order by naturally reducing the bubbles by floating in the air, and then supplied to the compost through the transport pipe. The water supplied into the aquarium is natural water having an electric conductivity of about 120 μS / cm, contains about 2 ppm of K + and Mg 2+ as cations, about 8 ppm of Ca 2+ , and contains NO 3 as anions. About 2 ppm and SO 4 2- contained about 15 ppm. The pH was about 7.5. In addition, the air nanobubble water supplied as mentioned above was evaluated quantitatively by the electron spin resonance method (ESR method). In this quantitative evaluation, there are a large amount of suspended solid phase particles in natural water (SS = approx. 0.05 ppm), and nanobubbles are accurately quantified by a method using a dynamic light scattering photometer. Therefore, the evaluation was performed using as an index free radicals generated when nanobubbles disappear. Specifically, after adding DMPO (5,5-dimethyl-1-pyrroline-N-oxide), which is a spin trap agent, to air nanobubble water, hydrochloric acid was added to destabilize nanobubbles. The spin adduct was measured by using an electron spin resonance apparatus. Since natural water contains a small amount of Fe 3+ and may react with hydrochloric acid or DMPO to generate a spin adduct, the same applies to natural water used to prepare air nanobubble water. Then, the measurement result was subtracted from the measurement result of the air nanobubble water to quantify the free radicals derived from the nanobubbles. As a result, a large spectrum derived from nanobubbles was observed immediately after the preparation of the air nanobubble water to 1 day later, but the spectrum after 1 week was not so different from that of natural water. In addition, the radical amount 1 day after preparing air nano bubble water was about 28 * 10 < 16 > piece / L as a hydroxyl radical. Although the amount of nanobubbles cannot be converted from the amount of radicals, considering these results comprehensively, the air nanobubble water supplied as described above should be stable for a certain period, for example, at least about 3 days. I understood. The following nano bubble water was also used.

<その他の発酵堆肥>
以上は、籾殻堆肥の例について詳述したが、野菜以外のその他の堆肥としては、落ち葉、稲わら、バーク、木材チップ、油粕、鶏糞、牛糞などについても、籾殻と同様にして、発酵堆肥を作製することができる。
すなわち、これらの堆肥原料を、通常の水、例えば井戸水、水道水などの代わりに本発明のナノバブル水を用いて発酵を促進させると、従来よりも、1/2〜1/3程度の時間で発酵堆肥を作製することができる。以下、これらの堆肥について詳述する。
<Other fermented compost>
The above has described in detail examples of rice husk compost, but other composts other than vegetables include fallen leaves, rice straw, bark, wood chips, oil lees, chicken manure, cow manure, etc. Can be produced.
That is, when these compost raw materials are promoted for fermentation using the nanobubble water of the present invention instead of normal water, for example, well water, tap water, etc., the time is about 1/2 to 1/3 of the conventional time. Fermented compost can be made. Hereinafter, these composts will be described in detail.

落ち葉堆肥(腐葉土)
落ち葉で作る堆肥は、腐葉土とも呼ばれ、栄養価が低いため肥料としての効果はほとんど期待できないが、土に混ぜ合わせることで土壌の微生物を増やし、通気性と水はけをよくし、痩せた土を蘇らせる効果があり、ま、防寒のためのマルチングを行う際にも用いられる。落ち葉堆肥の作り方としては、落ち葉を積み重ねて、本発明のナノバブル水を撒いて、良く混合し、ビニールシートを穴全体に被せておくと、1〜2か月で堆肥が完成する。
Fallen leaf compost (humus)
Compost made from fallen leaves, also called humus, has little nutritional value and can hardly be expected to be effective as a fertilizer, but when mixed with soil, it increases microorganisms in the soil, improves air permeability and drainage, and reduces thin soil. It has a rejuvenating effect and is also used for mulching for cold protection. As a method of making fallen leaf compost, when fallen leaves are stacked, the nanobubble water of the present invention is sprinkled and mixed well, and the vinyl sheet is placed over the entire hole, the compost is completed in 1 to 2 months.

バーク堆肥、木材チップ堆肥
バーク堆肥は、樹皮(バーク)やおがくずを野積みして発酵させたもので、すき込むと栄養豊富で成分バランスのいい土壌を作ることができる。また、土壌改良効果が長続きするので、栽培期間の長い農作物を育てるときによく施される。木材チップも同様である。ただ、材料が手に入れづらいことと、発酵するまでに時間がかかることから、本発明のナノバブル水を用いる。
まず、屋外で材料を2〜3年放置して乾燥させ、その後、樹皮や間伐材を細かく粉砕する。そして、牛糞や豚糞、尿素を混ぜ合わせ、本発明のナノバブル水を用いて、水分含有量を50〜60%に調節して積み込むと、7〜10日で発酵による温度上昇が起こるので、30日おきに1度切り返しを行うと、従来の1/2〜1/3程度、すなわち2〜3か月程度で、発酵が完了する。
Bark compost and wood chip compost Bark compost is fermented by bark and sawdust, which can be used to create a nutrient-rich and well-balanced soil. Moreover, since the soil improvement effect lasts long, it is often applied when growing crops with a long cultivation period. The same applies to wood chips. However, since it is difficult to obtain the material and it takes time to ferment, the nanobubble water of the present invention is used.
First, the material is left outdoors for 2-3 years to dry, and then the bark and thinned wood are finely crushed. And when cow dung, pig dung, urea are mixed and the nanobubble water of the present invention is used to adjust the water content to 50-60% and load, the temperature rise due to fermentation occurs in 7-10 days, so 30 When it is turned once every other day, fermentation is completed in about 1/2 to 1/3 of the conventional method, that is, in about 2 to 3 months.

牛糞・鶏糞、油粕を使った堆肥:
牛糞、鶏糞などの動物性の堆肥は、栄養価が豊富である。油粕は、菜種油を搾った残りかすであり、同様に栄養が豊富である。
例えば、牛糞8:鶏糞2の割合で混ぜ合わせたものに、グリーンタイキなどの土壌活性剤をナノバブル水で薄めたものを散布し湿らせ、そこへ米ぬかや籾殻、魚粉、油かす、わらなどを加えてよく混ぜ合わせ、小高く山状に積み上げ、ビニールシートで覆う。1週間ほどで発酵し、熱を発するので、温度が少し下がったタイミングで切り返しを数回行います。そのうち、アンモニア臭が消えてきたら完成である。ただ、乾燥してアンモニア臭がしないだけという場合もあるので、混ぜ合わせるときに水分が不足しないよう、本発明のナノバブル水をまく。牛糞、鶏糞、油粕の発酵も、従来の井戸水や水道水を水分として用いる場合に比べて、通常、1/2〜1/3程度に発酵時間を短縮することができる。
油粕や鶏糞を主体とする堆肥も、同様にして作成することができる。
Compost using cow dung, chicken dung and oil cake:
Animal compost such as cow dung and chicken dung is rich in nutritional value. Oil cake is a residue of squeezed rapeseed oil and is also rich in nutrients.
For example, a mixture of cow dung 8: chicken dung 2 is sprinkled with a soil activator such as green taiki diluted with nanobubble water and moistened. Rice bran, rice husk, fish meal, oil cake, straw, etc. In addition, mix well, stack up in a small and mountain shape, and cover with a plastic sheet. Fermentation takes place in about a week, and heat is generated, so when the temperature drops a little, it is turned over several times. When the ammonia odor disappears, it is completed. However, since it may only dry and does not smell of ammonia, the nanobubble water of the present invention is sowed so as not to run out of water when mixed. The fermentation time for cow dung, chicken dung, and oil can also be reduced to about 1/2 to 1/3 of the fermentation time as compared with the case where conventional well water or tap water is used as moisture.
Compost mainly composed of oil cake and chicken manure can be prepared in the same manner.

<野菜屑などを用いたメタン発酵>
一方、野菜屑などを用いた発酵では、以上の発酵方法とはやや趣がことなり、野菜屑などを用いて、通常の水道水や井戸水の代わりにナノバブル水を用いて、野菜屑などのバイオマスの発酵を促進し、野菜屑などからの発酵堆肥を作るとともに、メタン発酵を促進させることができ、一石二鳥である。
例えば、原料となる野菜屑などのバイオマス資源をメタン発酵槽の内部に充填し、反応液を外部から循環させてバイオマス資源の充填層の上部から流下させる外部循環型のメタン発酵槽反応設備を用い、メタン発酵を行わせる。この際に、反応液を構成する水分として、ナノバブル水を用いる。
<Methane fermentation using vegetable scraps>
On the other hand, fermentation using vegetable scraps is somewhat different from the fermentation method described above. Using vegetable scraps, using nanobubble water instead of normal tap water or well water, biomass such as vegetable scraps. It is possible to promote fermentation of potato, make fermented compost from vegetable scraps, etc., and promote methane fermentation.
For example, using an external circulation type methane fermenter reaction facility that fills biomass resources such as vegetable scrap as raw materials into the inside of the methane fermentation tank, circulates the reaction liquid from the outside, and flows down from the top of the packed bed of biomass resources Execute methane fermentation. At this time, nanobubble water is used as the water constituting the reaction solution.

なお、このメタン発酵の場合には、野菜屑だけではなく、稲わら、麦わら、落花生の葉や茎、ススキ、マコモ、葛若しくは雑草類などの一年生植物や広葉樹の葉、例えば、くぬぎ、かし、なら、かえで、欅、銀杏、ぶな、椿、サザンカ、桜、柳、桐、栃の木、こぶし、ハナミズキなどの広葉樹の葉、桑の葉、果樹の葉などの樹木の伐採や剪定などにより発生するものなども利用できる。   In the case of this methane fermentation, not only vegetable waste, but also annual leaves such as rice straw, straw, peanut leaves and stems, Japanese pampas grass, macomo, kudzu or weeds, leaves of broad-leaved trees, such as, , Nara, Maple, Bamboo, Ginkgo, Buna, Salmon, Sakura, Willow, Tungs, Tochigi, Fist, Dogwood and other broad-leaved leaves, Mulberry leaves, Fruit tree leaves, etc. Things can also be used.

ここで、メタン発酵槽は、その底部に循環水(すなわち、本発明のナノバブル水を用いる)を集めて排出するための排水装置を有する。
野菜屑などのバイオマス原料を、メタン発酵槽の中に充填し、その中を流下してきたナノバブル水を用いた循環水は、その底部で排水装置によって集められて、再び循環ポンプから反応液の循環ラインを経由してメタン発酵槽内のバイオマス原料充填層の上部に運ばれ、スプレーノズルから噴霧して散布される。
Here, the methane fermentation tank has a drainage device for collecting and discharging circulating water (that is, using the nanobubble water of the present invention) at the bottom thereof.
Biomass raw materials such as vegetable scraps are filled into the methane fermentation tank, and the circulating water using nanobubble water that has flowed down is collected by the drainage device at the bottom, and the reaction liquid is circulated again from the circulation pump. It is carried to the upper part of the biomass raw material packed bed in the methane fermenter via the line, and sprayed from the spray nozzle and dispersed.

メタン発酵槽は、上部に反応液の噴霧設備を、下部に反応液を集める排水装置を有するもので、気密性の構造のものであればよく、その材質は鋼鉄製などの金属製のもの、合成樹脂製のもの、コンクリート製のもののいずれでもよい。
原料のバイオマス資源と接触させてメタン発酵槽反応を行う反応液は、別途バイオマス資源を用いてメタン発酵を行い、ここから得られたメタン発酵菌を含む発酵液を使用するか、あるいは上記のプロセスをもちいて、バイオマス資源のメタン発酵反応を行えば、ここで得られた発酵液や発酵堆肥を再度原料のバイオマス資源に添加して使用すればよい。
本発明の方法に使用するメタン発酵菌は、種々の通性嫌気性細菌や絶対嫌気性細菌が用いられる。
The methane fermentation tank has a reaction solution spraying facility at the top and a drainage device that collects the reaction solution at the bottom, as long as it has an airtight structure, and its material is made of metal such as steel, Any of synthetic resin and concrete may be used.
The reaction liquid for contacting the raw material biomass resource to perform the methane fermentation tank reaction is to separately perform the methane fermentation using the biomass resource and use the fermentation liquid containing methane fermentation bacteria obtained from this, or the above process If the methane fermentation reaction of biomass resources is performed, the fermented liquor and fermented compost obtained here may be added to the raw material biomass resources and used again.
Various facultative anaerobic bacteria and absolute anaerobic bacteria are used for the methane fermentation bacteria used in the method of the present invention.

本発明に用いられるメタン発酵設備では、反応液の循環と散布を繰り返して続けることによって、当該設備の内部でバイオマス原料の発酵反応が徐々に進行する。反応の初期には、メタン発酵槽の内部に酸素が存在するため好気性発酵と通性嫌気性発酵が起こり、分解反応と炭酸ガスが発生する。そのまま循環水の循環と発酵反応を継続することによって、メタン発酵槽の内部の酸素が消費し尽くされて、自然に絶対嫌気性発酵に切り替わる。この嫌気発酵によって、メタンガスと炭酸ガスが発生し、メタン発酵槽の上部にたまる。発酵反応が進むに従い、まだ酸素が存在する状態では好気性発酵が進み温度が上昇するが、酸素が消費され嫌気性発酵へ進むにつれて発熱はほとんどなくなり、外気温度に支配される程のわずかな発熱となる。   In the methane fermentation facility used in the present invention, the fermentation reaction of the biomass raw material gradually proceeds inside the facility by continuously repeating the circulation and dispersion of the reaction liquid. At the beginning of the reaction, oxygen is present inside the methane fermenter, so aerobic fermentation and facultative anaerobic fermentation occur, and a decomposition reaction and carbon dioxide gas are generated. By continuing the circulation and fermentation reaction of the circulating water as it is, the oxygen inside the methane fermenter is consumed, and it switches to absolute anaerobic fermentation naturally. By this anaerobic fermentation, methane gas and carbon dioxide gas are generated and accumulate in the upper part of the methane fermentation tank. As the fermentation reaction proceeds, aerobic fermentation proceeds and the temperature rises in the presence of oxygen, but as the oxygen is consumed and proceeds to anaerobic fermentation, there is almost no exotherm and a slight exotherm that is governed by the outside air temperature. It becomes.

嫌気性メタン発酵は、22℃以上の温度でメタンガスを発生させ、35〜40℃と50〜55℃の領域に発酵速度の極大値が存在する。従って、この温度範囲になるように外部循環ラインに熱交換器を設置して温度制御すれば、メタンガスの発生速度をコントロールすることが可能である。また、この発酵反応の進行している間、メタン発酵槽は気密状態に保たれ、わずかに加圧された状態になるように調節しつつ、発生したメタンガス、炭酸ガス、アンモニア等をメタン発酵槽の上部空間のガス出口から抜き出して捕集する。
発酵反応が終了したところで反応液の循環を停止し、メタン発酵を終了させる。内部に残留するメタンガス等を除いたのち、メタン発酵槽の上部を開いてバイオマス資源を取り出す。この反応残渣はバイオマス資源のメタン発酵が進行して得られたものであって、そのまま発酵堆肥として有機肥料として使用することができる。
以上のようにして、野菜屑などのバイオマスをメタン発酵させるに際し、本発明のナノバブル水を用いることにより、メタン発酵を例えば1/2〜1/3に短縮することができる。
Anaerobic methane fermentation generates methane gas at a temperature of 22 ° C. or higher, and maximum fermentation rates exist in the region of 35-40 ° C. and 50-55 ° C. Therefore, if the temperature is controlled by installing a heat exchanger in the external circulation line so as to be in this temperature range, the generation rate of methane gas can be controlled. Also, while this fermentation reaction is in progress, the methane fermenter is kept airtight and adjusted so that it is slightly pressurized, while the generated methane gas, carbon dioxide, ammonia, etc. are removed from the methane fermenter. It is extracted from the gas outlet in the upper space of and collected.
When the fermentation reaction is completed, the circulation of the reaction solution is stopped and methane fermentation is terminated. After removing the methane gas remaining inside, open the upper part of the methane fermentation tank and take out the biomass resources. This reaction residue is obtained by the progress of methane fermentation of biomass resources, and can be used as fermented compost as an organic fertilizer.
As described above, when methane fermentation of biomass such as vegetable waste is performed, methane fermentation can be shortened to, for example, 1/2 to 1/3 by using the nanobubble water of the present invention.

<醤油>
次に、醤油の製造方法としては、大豆を精選、洗浄、浸漬、蒸煮するとともに小麦を精選、炒り、割砕して前記大豆の蒸煮物と混合し、この混合物に種麹を加えて製麹する一方、食塩と本発明のナノバブル水を適宜割合で混合して調整塩水を得て、この調整塩水を前記麹に仕込んで諸味を作り、これを発酵して糖化、大豆蛋白質の分解、アミノ酸の生成と熟成を行い、得られた諸味を圧搾し、火入れを行って製造する。
<Soy sauce>
Next, as a method for producing soy sauce, soybeans are carefully selected, washed, soaked and steamed, and wheat is carefully selected, roasted, cracked and mixed with the above-mentioned steamed soybeans, and the seeds are added to the mixture to make the koji. On the other hand, salt and nanobubble water of the present invention are mixed at an appropriate ratio to obtain adjusted salt water, and this adjusted salt water is added to the koji to make moromi, which is fermented to saccharify, decompose soybean protein, It is produced and matured, and the resulting moromi is squeezed and fired to produce.

例えば、丸大豆を用意し、この丸大豆を精選、洗浄、浸漬、蒸煮する。これと並行して小麦を用意して、この小麦を精選、炒り、割砕して前記大豆の蒸煮物と混合する。次いで、上記混合物に種麹を加え、製麹して麹を得る。
一方、食塩とナノバブル水を適宜割合で混合して濃厚な調整塩水を得て、この調整塩水を前記麹に仕込んで諸味を作り、これを発酵させて糖化と大豆蛋白質の分解を行い、アミノ酸を生成して熟成した諸味を得る。この諸味を圧搾して粕を取り、得られる生揚醤油を火入れ、瓶詰を行って製品を得る。
For example, a whole soybean is prepared, and this whole soybean is carefully selected, washed, soaked and steamed. In parallel with this, wheat is prepared, this wheat is carefully selected, roasted, cracked and mixed with the steamed soybean. Next, seed pods are added to the above mixture and koji is obtained to obtain cocoons.
On the other hand, salt and nanobubble water are mixed at an appropriate ratio to obtain concentrated adjusted salt water. The adjusted salt water is added to the koji to make moromi, fermented to perform saccharification and decomposition of soybean protein, Produces and matures moromi. Squeeze the moromi to remove the koji, heat the resulting soy sauce and bottling to obtain the product.

以下に、本発明のナノバブル水を用いて醤油を製造する場合の具体例を示す。
まず、醤油の仕込に用いた通常の仕込塩水は、水道水が1,360リットル、精製塩が283kg、ボーメ16.2、総塩水量1470リットルであり、本発明では、この水道水に代えて、上記と同様の空気ナノバブル水を用いた。
Below, the specific example in the case of manufacturing soy sauce using the nano bubble water of this invention is shown.
First, the normal salt water used for soy sauce is 1,360 liters of tap water, 283 kg of purified salt, 16.2 Baume, and a total amount of salt water of 1470 liters. The same air nanobubble water as described above was used.

ここで、通常塩水仕込とナノバブル水仕込による醤油諸味発酵中の水素イオン濃度(pH)に大きな差異はみられなかったが、酸度の変化には若干の相違がみられた。それによると、仕込み50日で、通常水仕込みは酸度1.5%、ナノバブル水仕込みは1,7%程度、仕込み100日で、通常水仕込みは酸度1.6%、ナノバブル水仕込みは酸度1.8%程度であった。これより、通常水仕込に比べてナノバブル水仕込の方が酸度が常に高く推移している。これは醸造開始段階では乳酸発酵が主として進行するが、海洋深層水仕込の醤油諸味において発酵が充分に達成されたものといえる。
醤油に含まれる有機酸は種々存在するが、その主体は乳酸である。酸度にみられる差異は有機酸の成分値により確認することができる。通常塩水仕込と空気ナノバブル水仕込による醤油諸味の発酵5ヵ月後の一般成分と3有機酸成分値(乳酸,酢酸,ピログルタミン酸)を測定した結果、いずれも、一般成分では諸味1.5TN%、諸味液1.3TN%、有機酸が乳酸1.75%、酢酸0.15%、ピログルタミン酸0.3%であり、両者にあまり差異はみられなかった。
一方、醤油諸味中のホルモール窒素(FN)、即ち遊離アミノ酸の変化を分析したところ、乳酸の生成%は、一般水が熟成40日で約0.5%、熟成100日で約0.7%になるのに対し、ナノバブル水では熟成40日で約0.7%、熟成100日で約0.7%に達しており、これからも、ナノバブル水の方が醤油の熟成期間を通常水に比べて短縮することができることが分かった。
Here, although a big difference was not seen in the hydrogen ion concentration (pH) in soy sauce moromi fermentation by normal salt water charge and nano bubble water charge, some difference was seen in the change of acidity. According to it, in 50 days, normal water feed is 1.5% acidity, nanobubble water feed is about 1.7%, 100 days feed, normal water feed is 1.6% acidity, nanobubble water feed is 1.8% acidity %. Thus, the acidity of the nanobubble water feed is always higher than that of the normal water feed. This is because lactic acid fermentation mainly proceeds at the brewing start stage, but it can be said that fermentation was sufficiently achieved in soy sauce moromi with deep sea water.
There are various organic acids contained in soy sauce, but the main component is lactic acid. The difference seen in the acidity can be confirmed by the component value of the organic acid. As a result of measuring the general components and three organic acid component values (lactic acid, acetic acid, pyroglutamic acid) after 5 months of fermentation of soy sauce moromi with normal salt water charging and air nano bubble water charging, the moromi is 1.5TN% in general components, The moromi liquid 1.3TN%, the organic acid was 1.75% lactic acid, 0.15% acetic acid, and 0.3% pyroglutamic acid, and there was little difference between the two.
On the other hand, when analyzing the change of formol nitrogen (FN) in soy sauce moromi, that is, free amino acids, the production rate of lactic acid was about 0.5% for general water at 40 days, and about 0.7% at 100 days for aging. In contrast, nanobubble water has reached about 0.7% after 40 days of aging and about 0.7% after 100 days of aging. Nanobubble water will continue to ripen soy sauce compared to normal water. It was found that it can be shortened.

<味噌>
味噌の場合も、大豆と米または麦を原料として麹菌と酵母による糖化作用と大豆蛋白質の分解作用によってアミノ酸を生成させる方法であるため、醤油の場合と同様に発酵期間が1年以上かかり、製造期間を短縮することが要望されている。
<Miso>
In the case of miso, as it is a method of producing amino acids from soybeans and rice or wheat as raw materials by saccharification by koji mold and yeast and decomposition of soybean protein, the fermentation period takes more than one year as in the case of soy sauce. There is a demand for shortening the period.

味噌の製造方法は、精米を精選、洗浄、浸漬、蒸し、冷却してから種麹と炭酸カルシウムとともに混合し、この混合物に精米の冷却物を加えて種付、製麹して出麹を得て食塩と混合する一方、精選、浸漬、蒸煮、冷却した大豆に、ナノバブル水と前記食塩と出麹の混合物、乳酸菌、酵母を仕込混合し、発酵、切返しを行って糖化、大豆蛋白質の分解、アミノ酸の生成を行い、調整、味噌漉し、加熱、冷却を行って製造する。   The method for producing miso consists of carefully selecting, washing, dipping, steaming, and cooling the milled rice, then mixing it with seed koji and calcium carbonate, adding the milled rice to this mixture, seeding and kneading to obtain koji. While mixing with salt, carefully selected, soaked, steamed, and cooled soy beans are mixed with nanobubble water and the salt and fermented mixture, lactic acid bacteria, yeast, fermented, turned over, saccharified, soy protein decomposed, Amino acids are produced, prepared, taste-boiled, heated and cooled to produce.

以下、本発明を適用した味噌の製造方法の一例を説明する。まず、精米を用意し、この精米を精選、洗浄、浸漬、蒸し、冷却する。これと並行して種麹と炭酸カルシウムを用意し、両者を混合し、上記混合物に精米の冷却物を加えて種付を行い、これを製麹して出麹を得る。
一方、食塩、大豆、乳酸菌、酵母を用意し、食塩を前記出麹と混合する。大豆は精選、浸漬、蒸煮、冷却し、乳酸菌と酵母は培養する。次いで、ナノバブル水を用意する。そして、食塩と出麹の混合物と大豆、乳酸菌、酵母及びナノバブル水を仕込混合する。
上記仕込混合物を発酵、切返しを行って糖化と大豆蛋白質の分解、アミノ酸の生成を行い、以下調整、味噌漉し、加熱、冷却、包装して製品を得る。
Hereinafter, an example of the manufacturing method of the miso to which this invention is applied is demonstrated. First, a milled rice is prepared, and this milled rice is carefully selected, washed, dipped, steamed and cooled. In parallel with this, seed meal and calcium carbonate are prepared, both are mixed, and the rice mixture is added to the above mixture and seeded, and this is kneaded to obtain the koji.
On the other hand, salt, soybeans, lactic acid bacteria, and yeast are prepared, and salt is mixed with the koji. Soybeans are carefully selected, immersed, steamed and cooled, and lactic acid bacteria and yeast are cultured. Next, nanobubble water is prepared. Then, a mixture of salt and tuna and soybean, lactic acid bacteria, yeast and nanobubble water are charged and mixed.
The above mixture is fermented and turned over to perform saccharification, soy protein decomposition and amino acid production, and then adjusted, miso, heated, cooled and packaged to obtain a product.

次に、ナノバブル水仕込と通常水仕込によって得られた味噌の分析結果を説明する。
すなわち、上記のようにして得られた味噌の一般成分を分析した。それによると、味噌の一般成分は、酸度(%)はいずれも1%程度、全窒素がいずれも1.6%程度、直糖がいずれも20%程度、塩分がいずれも11%程度であったが、ホルモール窒素はナノバブル水仕込みが約0.4%、通常水仕込みが約0.3%程度であった。このように、ホルモール窒素の値はナノバブル水仕込の方が高くなっていて、通常水仕込の味噌に比べて遊離のアミノ酸が多く、旨味のある味噌が得られた。このことからも、ナノバブル水仕込みでは、旨味のある味噌が得られ、その結果、熟成期間が短縮されることも分かった。
Next, the analysis result of the miso obtained by the nanobubble water preparation and the normal water preparation will be described.
That is, the general components of miso obtained as described above were analyzed. According to it, the general components of miso are about 1% acidity (%), about 1.6% total nitrogen, about 20% straight sugar, and about 11% salt. However, formol nitrogen was charged with about 0.4% of nanobubble water and about 0.3% of normal water. In this way, the value of formol nitrogen was higher in the nanobubble water feed, and there were more free amino acids than in the normal water feed miso, and a delicious miso was obtained. From this, it was also found that tasting miso with nanobubble water was obtained, and as a result, the aging period was shortened.

<日本酒>
清酒の製造方法としては、玄米を精米して白米を得てから洗米、浸漬、蒸して蒸米とする一方、ナノバブル水と酵母を混合して酒母を得るとともに種麹から麹を得て、上記酒母と麹を前記蒸米に加え、これら混合物にナノバブル水を加えて初添、おどり、仲添、留添の各過程を経て、糖化とアルコール発酵を並行して行うと共に芳醇な香気を生成する醪を作り、これを圧搾してから火入れを行って清酒を製造する。
<Sake>
As a method for producing sake, the brown rice is polished to obtain white rice, and then washed, soaked and steamed to make steamed rice. On the other hand, nanobubble water and yeast are mixed to obtain a brewer's mother and rice cake from the rice bran. And steamed rice, and nanobubble water is added to the mixture, followed by the initial addition, dance, intermediate addition, and distillation processes to perform saccharification and alcohol fermentation in parallel and produce a rich aroma. Make it, squeeze it, and fire it to make sake.

すなわち、ナノバブル水を清酒醸造の仕込水に添加した場合には、醪の溶解が進むとともに上槽後の粕歩合が少なくなり、純アルコール収得量が増加する。また、酸度、アミノ酸度、紫外部吸収等の酒の雑味成分は少なく、酒質が向上する。更に、ナノバブル水によって酵母が活発になり、醪末期まで十分な活性が保たれることによってアミノ酸度や紫外部吸収が低くなり、清酒の仕上りは良好となる。   That is, when nanobubble water is added to the brewing water for sake brewing, the dissolution of koji progresses and the koji ratio after the upper tank decreases, resulting in an increase in the yield of pure alcohol. Moreover, there are few miscellaneous taste components of liquor, such as acidity, an amino acid degree, and ultraviolet region absorption, and liquor quality improves. In addition, the yeast is activated by the nanobubble water, and sufficient activity is maintained until the end of the period, so that the amino acid content and ultraviolet absorption are lowered, and the finish of sake is improved.

以下に、日本酒の製造方法の一例を示す。すなわち、まず玄米を用意し、この玄米を精米してぬかを取り、白米を得る。この白米を洗米、浸漬、蒸して蒸米を得る。
これと並行して、ナノバブル水と用意した酵母を混合して酒母を得るとともに、用意した種麹から麹を得て、上記酒母と麹を蒸米に加え、これら混合物にナノバブル水を加えて初添を得る。
この初添から、おどり、仲添、留添を経て糖化とアルコール発酵を並行して行うと共に芳醇な香気を生成して熟成した醪を作り、これを圧搾して酒粕を取り、新酒を得る。この新酒をおり引きしておりを取り、更に火入れ、瓶詰を行って日本酒の製品を得る。
Below, an example of the manufacturing method of sake is shown. That is, brown rice is first prepared, and this brown rice is polished to remove bran to obtain white rice. This white rice is washed, dipped and steamed to obtain steamed rice.
In parallel with this, the nanobubble water and the prepared yeast are mixed to obtain a liquor mother, and the koji is obtained from the prepared seed koji, and the above liquor and koji are added to the steamed rice. Get.
From this initial addition, saccharification and alcohol fermentation are performed in parallel through dance, Nakazoe, and Rousen, and a mellow aroma is generated to produce an aged koji, which is squeezed to obtain a sake lees and obtain a new liquor. Take this new liquor and take it out, and then put it on fire and bottle it to get a sake product.

次に、本発明の日本酒の製造方法の具体例を示す。
すなわち、ナノバブル水を日本酒醸造の仕込水に用いた場合の試験結果を分析した。分析は、普通酒の上槽後の成分値であり、使用原料米は70%精白α米、乾燥麹使用、使用酵母は協会7号、発酵最高温度は15℃、諸味日数は15日、総米150g、汲み水歩合135%、麹歩合21%、培養酵母仕込とした。その結果、アルコール分は通常水では17.6%、ナノバブル水では17.5%、純アルコレート取得は、通常が328(t/ton),
ナノバブル水が約335(t/ton)、固形分率は通常水で約23%、ナノバブル水で19%、酸度は通常水で約3.35、ナノバブル水で約3.2、アミノ酸度は通常水で約1.95、ナノバブル水で約1.7であった。
これらのことから、ナノバブル水を仕込み水として用いると、醪の溶解が進み、上槽後の粕歩合が少なくなり、純アルコール収得量が増加した。酸度、アミノ酸度は酒の雑味成分であり、これらは少ない方が酒質は向上する。また、一般に醪がよく溶解していればこれらの成分が多くなるものであるが、ナノバブル水を用いたものでは、醪の溶解の割にはアミノ酸度が低く、仕上りは極めて良好であった。
Next, the specific example of the manufacturing method of the sake of this invention is shown.
That is, the test results in the case where nanobubble water was used as the brewing water for sake brewing were analyzed. The analysis is the component value after the top tank of ordinary sake, the raw material rice is 70% refined α rice, dry koji is used, the yeast used is Association No. 7, the maximum fermentation temperature is 15 ° C, the moromi days are 15 days, total 150g of rice, 135% pumped water ratio, 21% koji ratio, and culture yeast were used. As a result, the alcohol content is 17.6% for normal water, 17.5% for nanobubble water, and pure alcoholate acquisition is usually 328 (t / ton),
Nanobubble water is about 335 (t / ton), solid content is about 23% for normal water, 19% for nanobubble water, acidity is about 3.35 for normal water, about 3.2 for nanobubble water, and amino acidity is usually About 1.95 for water and about 1.7 for nanobubble water.
From these facts, when nanobubble water was used as the feed water, dissolution of the soot progressed, the soot ratio after the upper tank decreased, and the yield of pure alcohol increased. Acidity and amino acid content are miscellaneous taste components of sake, and the lower the content, the better the quality of sake. In general, if the soot is well dissolved, these components increase. However, in the case of using nanobubble water, the amino acid content is low for the dissolution of soot, and the finish is very good.

<ビール>
本発明者は、ナノバブル水が酵母の活動の活発化に役立ち、発酵に悪影響を与える雑菌や汚染物の混入が厳しく制限されるビールの製造にきわめて好適なものであることを見出した。
すなわち、本発明を用いたビールの製造は、麦芽を含む原料と仕込用水とを混合し、加温して糖化させることにより麦汁を得る糖化工程と、前記麦汁に酵母を添加して発酵させる発酵工程とを経るビールの製造方法であって、前記糖化工程において、前記仕込用水にナノバブル水を用いるというものである。
本発明によれば、仕込用水にナノバブル水を用いてビールの製造を行う。ナノバブル水が、糖化酵素であるα−アミラーゼおよびβ−アミラーゼの活性化等に役立ち、ビールの醸造のために好適である。このため、ナノバブル水を用いてビールの製造を行うことにより、糖化および発酵が促進され、風味の豊かなビールを製造することができる。
以下に、ナノバブル水を用いたビール製造の具体例を示す。
<Beer>
The present inventor has found that nanobubble water is very suitable for the production of beer in which the activity of yeast is activated and the contamination of bacteria and contaminants that adversely affect fermentation is severely restricted.
That is, in the production of beer using the present invention, a raw material containing malt and water for charging are mixed, heated and saccharified to obtain wort, and yeast is added to the wort for fermentation. A method for producing beer that undergoes a fermentation step, wherein nanobubble water is used as the feed water in the saccharification step.
According to the present invention, beer is produced using nanobubble water as water for charging. Nanobubble water is useful for brewing beer because it helps to activate α-amylase and β-amylase, which are saccharifying enzymes. For this reason, saccharification and fermentation are accelerated | stimulated by manufacturing beer using nano bubble water, and beer with rich flavor can be manufactured.
Below, the specific example of beer manufacture using nano bubble water is shown.

(1)原料麦芽としては、ピルスナーモルト(色度2(EBC))、およびローストモルト(色度130(EBC))を用いた。また、仕込用水としては、先に使用したと同様のナノバブル水を用いた。
(2)糖化工程
麦芽として、ピルスナーモルトにローストモルトを1重量%配合したものを用いた。この麦芽をミルにより粉砕した。仕込用水に、この仕込用水に対してナノバブル水を醸造水とした。この醸造水をあらかじめ50℃に加温し、粉砕された麦芽を投入した。
麦芽と醸造水との混合液を撹拌しつつ、65℃で一定時間保持して、糖化を行わせた。次に、この糖化液の温度を72℃まで上昇させ、一定時間保持して糖化を行わせた。次いで、糖化液の温度をさらに76℃に上昇させ、一定時間保持してさらに糖化を行わせた。最後に、糖化液の温度を77度に上昇させて、糖化を終了させた。終了後の糖化液をろ過した後、ろ液を煮沸釜に送り、ホップを加えて60分間煮沸した。煮沸後、沈殿物を分取し、上清を冷却して麦汁を得た。
(1) As raw material malt, Pilsner malt (chromaticity 2 (EBC)) and roasted malt (chromaticity 130 (EBC)) were used. Moreover, the same nanobubble water as used previously was used as the feed water.
(2) Saccharification process As malt, 1% by weight of roasted malt was added to Pilsner malt. The malt was pulverized by a mill. For the feed water, nanobubble water was used as the brewing water. The brewed water was preheated to 50 ° C. and crushed malt was added.
While stirring the mixed solution of malt and brewing water, the mixture was held at 65 ° C. for a certain period of time for saccharification. Next, the temperature of this saccharified solution was raised to 72 ° C. and held for a certain period of time for saccharification. Next, the temperature of the saccharified solution was further raised to 76 ° C., and held for a certain period of time for further saccharification. Finally, the temperature of the saccharified solution was raised to 77 degrees to complete the saccharification. After the completion, the saccharified solution was filtered, and the filtrate was sent to a boiling kettle, and hops were added to boil for 60 minutes. After boiling, the precipitate was collected and the supernatant was cooled to obtain wort.

(3)発酵工程
上記(2)で得られた麦汁に酵母を添加し、10℃前後の一定温度で発酵を行った。発酵開始後1日毎に、8日目までの発酵液の糖度を測定した。なお、主発酵が終了したと判定した時点で、温度を0℃に低下させた。
(4)後発酵工程およびろ過工程
上記(3)で得られた発酵液を貯酒タンクに移し、0℃で21日間貯留して後発酵を行わせ、ビールを完成させた。このビールについて、EBC標準分析法により色度を測定した。
(3) Fermentation process Yeast was added to the wort obtained in the above (2), and fermentation was performed at a constant temperature of about 10 ° C. Every day after the start of fermentation, the sugar content of the fermentation broth up to the 8th day was measured. In addition, when it determined with main fermentation having been complete | finished, temperature was reduced to 0 degreeC.
(4) Post-fermentation step and filtration step The fermentation broth obtained in (3) above was transferred to a storage tank and stored at 0 ° C. for 21 days for post-fermentation to complete beer. About this beer, chromaticity was measured by the EBC standard analysis method.

その結果、糖度は、麦汁で12.3%、1日目で12.1%、9日目で3%であり、普通仕込み水とほぼ変わらなかった。
一方、得られたビールの官能検査では、ナノバブル水では、コクが5、フルーティが約2、甘味が約4、香りが約5、麦芽風味が約6、苦みが約5であった。これに対し、通常水仕込みでは、コクが約8、フルーティが約3、甘味が約4、香りが約5、麦芽風味が約5、苦みが約4であった。
これより、通常水仕込みのビールについては、コクが非常に強く、甘味がやや強いものの、苦味、麦芽風味および香りが弱いビールとなっていた。一方、ナノバブル水仕込みで製造されたビールについては、コク、甘味、香り、麦芽風味および苦味のバランスがとれた、風味のよいビールとなっていることがわかった。
以上の結果から明らかなように、ナノバブル水仕込みでビール製造を行うことにより、糖化および発酵が促進され、風味の豊かなビールを製造することができる。
As a result, the sugar content was 12.3% for wort, 12.1% on the first day, and 3% on the ninth day, which was almost the same as that of ordinary charged water.
On the other hand, in the sensory test of the obtained beer, the nanobubble water was 5 for richness, about 2 for fruity, about 4 for sweetness, about 5 for aroma, about 6 for malt flavor, and about 5 for bitterness. On the other hand, in the normal water preparation, the body was about 8, the fruity was about 3, the sweetness was about 4, the aroma was about 5, the malt flavor was about 5, and the bitterness was about 4.
As a result, the beer prepared with normal water had a very strong body and a slightly strong sweetness, but had a weak bitterness, malt flavor and aroma. On the other hand, it was found that the beer produced with nanobubble water was a savory beer that had a good balance of richness, sweetness, aroma, malt flavor and bitterness.
As can be seen from the above results, saccharification and fermentation are promoted and beer rich in flavor can be produced by producing beer by adding nanobubble water.

<パン>
本発明によるパンの製造方法は、小麦粉とイースト菌、塩等の副材料を使用し水もしくは水分を含有する液体を加えあるいは塩分を含有する液体を加えて捏ねる生地仕込み工程と、イースト菌により発酵させる発酵工程と、発酵により生じたガスを抜くガス抜き工程と、天火、パン焼がま等のパン焼装置で焼成する焼成工程の各工程を少なくとも含むパンの製造方法において、生地仕込み工程で使用する水に代えて、本発明のナノバブル水を用いるものである。
<Bread>
The method for producing bread according to the present invention includes a dough preparation process in which a liquid containing water or moisture is added using a flour and yeast or salt and other ingredients, or a liquid containing salt is added and kneaded, and fermentation is performed using yeast. Water used in the dough preparation step in the bread manufacturing method including at least each step of a step, a degassing step of removing gas generated by fermentation, and a baking step of baking with a baking apparatus such as natural heat and bread baking Instead, the nanobubble water of the present invention is used.

本発明のパンの製造方法によれば、ナノバブル水を用いているので、発酵が早く進み、パン製造の作業能率を向上し得る利点がある。また、小麦粉を捏ねる際にべとつかずミキサーやボール等につきにくいので、生地の仕込みが容易となり、作業能率を向上させ得る利点がある。さらに、パン生地仕込み工程におけるグルテンの網目構造の形成がよく、良質のパンを得られ、かつ梅雨時の硬水気味の水道水を小麦粉を捏ねるのに使用しなくてもよいので、グルテンの網目構造の形成が阻害されて生地がべとつき、練り上がりが悪くなったり、焼成時の窯伸びが悪くなったりすること等がなく、年間を通じて安定した状態で良質のパンを製造できる利点がある。
以下に、ナノバブル水を用いた食パン製造の一例を示す。
According to the bread manufacturing method of the present invention, since nano-bubble water is used, there is an advantage that fermentation proceeds quickly and the work efficiency of bread manufacturing can be improved. In addition, since kneading flour is not sticky and difficult to get into a mixer or a ball, the dough can be easily prepared, and there is an advantage that work efficiency can be improved. Furthermore, the formation of a gluten network structure in the bread dough preparation process is good, and good quality bread can be obtained, and it is not necessary to use hard water-like tap water during the rainy season to knead the flour. There is an advantage that good quality bread can be produced in a stable state throughout the year without the formation being sticky and the dough becoming sticky, the kneading not getting worse or the kiln elongation at the time of baking being worsened.
Below, an example of bread manufacture using nanobubble water is shown.

従来はパン生地の仕込み段階で小麦粉に食塩を溶かした水(塩水)を加えて捏ねるが、本発明ではこのような水に用いられる通常の水道水に代えて上記のようなナノバブル水を用い、それ以外はこれまでと同じである。すなわち、先ず小麦粉と所定量の副材料としての糖類(例えば砂糖等)、油脂類(例えばバター等)、イースト菌等を使用し、一定量のナノバブル水を加えて混ぜ合わせ、捏ね上げて生地を仕込む。その際、バターや砂糖を溶かしたり、イースト菌を温湯と合わせたり等一定の手順で行われるが、これらは従来例に準ずるものである。次に、この生地を発酵保温器に入れ、適温に保ち発酵させる。一次発酵後にガス抜きし、さらに二次発酵させる。ついで、型に入れパン焼かまで焼成するとパン焼き作業が終了する。   Conventionally, water in which salt is dissolved in salt (brine) is added and kneaded in the dough preparation stage, but in the present invention, the above-described nanobubble water is used instead of the normal tap water used for such water. The rest is the same as before. That is, first, using wheat flour and a predetermined amount of saccharides (such as sugar), fats and oils (such as butter), yeast, etc. as a secondary material, add a certain amount of nanobubble water, mix and knead, and prepare the dough. . At that time, it is carried out in a certain procedure such as dissolving butter and sugar, or combining yeast with hot water, but these are similar to conventional examples. Next, this dough is placed in a fermentation incubator and kept at an appropriate temperature for fermentation. After primary fermentation, the gas is degassed and further subjected to secondary fermentation. Next, the baking process is completed when the mold is baked until baking.

本発明によれば、発酵がよく発酵工程を早く終わらせることができ、パン焼作業の能率を高めることができる。発酵に要する時間は生地仕込みの要領やガス抜きの時期や要領等によっても異なるが、比較した例では、従来の方法で4時間掛かるところが、本発明による場合はこれより10〜15分短縮することができた。発酵がよくなる理由について、まだ十分究明できていないが、ナノバブル水中の空気あるいは酸素の気泡が関係するのではないかとも考えられる。また、本実施例では仕込み段階で小麦粉をミキサーで捏ねる際べとつかなくて巻き上げがよく、またボール等を使用して捏ねる場合にはボールにひっつきにくいので、生地の仕込み作業が容易である。その理由は、ナノバブル水中の空気あるいは酸素の気泡によるものと考えられる。また、収穫後十分熟成が進んでいない新麦(小麦)を製粉した小麦粉を使用する場合においても、ナノバブル水で捏ねることにより、パン生地仕込み工程におけるグルテンの網目構造の形成がよく、生地の膨張も十分で焼成時の窯伸びもよい良質のパンが得られる。従って、年間を通じて良質のパンを安定して製造できる。   According to the present invention, fermentation is good and the fermentation process can be completed quickly, and the efficiency of the baking process can be increased. The time required for fermentation varies depending on the dough preparation procedure and the timing and procedure of degassing, but in the comparative example, the conventional method takes 4 hours, but in the case of the present invention, it takes 10 to 15 minutes shorter than this. I was able to. The reason why the fermentation is improved has not been fully clarified, but it is thought that air or oxygen bubbles in nanobubble water may be involved. Further, in this embodiment, when the flour is kneaded with a mixer at the preparation stage, it is easy to wind up, and when kneading using a ball or the like, it is difficult to stick to the ball, so the dough preparation work is easy. The reason is considered to be due to air or oxygen bubbles in nanobubble water. In addition, even when using wheat flour that has not been fully ripened after harvesting, kneading with nanobubble water allows the formation of a gluten network structure in the bread dough preparation process, and the expansion of the dough A good quality bread that is sufficient and has good kiln elongation during baking is obtained. Therefore, high-quality bread can be stably produced throughout the year.

本発明によれば、籾殻堆肥などの発酵有機肥料のほか、醤油、味噌、日本酒、ビール、パンなどの発酵食品など、発酵有機物の製造に有用である。   According to the present invention, in addition to fermented organic fertilizers such as rice husk compost, it is useful for producing fermented organic materials such as fermented foods such as soy sauce, miso, sake, beer and bread.

Claims (4)

発酵有機物の原料となる有機物を、ナノバブル水の存在下に発酵させることを特徴とする、発酵有機物の製造方法。   A method for producing a fermented organic material, comprising fermenting an organic material as a raw material of the fermented organic material in the presence of nanobubble water. 発酵有機物が、発酵堆肥、醤油、味噌、日本酒、ビール、またはパンである、請求項1記載の発酵有機物の製造方法。   2. The method for producing a fermented organic material according to claim 1, wherein the fermented organic material is fermented compost, soy sauce, miso, sake, beer, or bread. 発酵有機物の原料となる有機物が、発酵堆肥の場合は籾殻、落ち葉、稲わら、バーク、木材チップ、油粕、鶏糞、牛糞、野菜屑の群から選ばれた少なくとも1種を主成分とし、醤油の場合は麦、大豆、塩および麹を主成分とし、味噌の場合は米、大豆、塩および麹を主成分とし、日本酒の場合は米および麹を主成分とし、ビールの場合は麦芽、ビール酵母およびホップを主成分とし、パンの場合は小麦粉とイーストを主成分とする、請求項1または2記載の発酵有機物の製造方法。   In the case of fermented compost, the organic material that is the raw material of fermented organic matter is mainly composed of at least one selected from the group consisting of rice husk, fallen leaves, rice straw, bark, wood chips, oil cake, chicken dung, cow dung, and vegetable waste. The main ingredients are wheat, soybeans, salt and koji, the main ingredients are rice, soybeans, salt and koji for miso, the main ingredients are rice and koji for sake, and malt and beer yeast for beer. And the manufacturing method of the fermented organic substance of Claim 1 or 2 which has a hop as a main component and, in the case of bread, a flour and yeast as a main component. ナノバブル水が、空気ナノバブル水および/または酸素ナノバブル水である請求項1〜3いずれかに記載の発酵有機物の製造方法。

The method for producing fermented organic matter according to any one of claims 1 to 3, wherein the nanobubble water is air nanobubble water and / or oxygen nanobubble water.

JP2016243939A 2016-12-16 2016-12-16 Method for producing fermented organic matter Pending JP2018093826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243939A JP2018093826A (en) 2016-12-16 2016-12-16 Method for producing fermented organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243939A JP2018093826A (en) 2016-12-16 2016-12-16 Method for producing fermented organic matter

Publications (1)

Publication Number Publication Date
JP2018093826A true JP2018093826A (en) 2018-06-21

Family

ID=62632002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243939A Pending JP2018093826A (en) 2016-12-16 2016-12-16 Method for producing fermented organic matter

Country Status (1)

Country Link
JP (1) JP2018093826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078769A (en) * 2018-11-12 2020-05-28 株式会社フジタ Methane fermentation tank, methane fermentation system, and methane fermentation treatment method
CN116536370A (en) * 2023-06-09 2023-08-04 天津大学 Method for improving biomass anaerobic fermentation methane production based on oxygen nanobubble disturbance
CN117305380A (en) * 2023-10-08 2023-12-29 江苏省农业科学院 Method for producing medium-chain carboxylic acid by utilizing nano bubble water with high curvature interface to enhance anaerobic fermentation of organic waste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761692A (en) * 1980-09-26 1982-04-14 Keisuke Nakano Manufacture of fermented manure with husk as water content adjuster
JP2008296096A (en) * 2007-05-29 2008-12-11 Sharp Corp Nanobubble-containing water production apparatus and method
JP2009226386A (en) * 2008-03-21 2009-10-08 Makoto Yafuji Ultrafine-bubble water
KR101056224B1 (en) * 2010-12-29 2011-08-11 이기몽 Manufacture device of liquid-fertilizer
WO2015048904A1 (en) * 2013-10-03 2015-04-09 Ebed Holdings Inc. Nanobubble-containing liquid solutions
KR20150143903A (en) * 2014-06-13 2015-12-24 주식회사 그린피아 Method for manufacturing liquefied fertilizer using butchery blood
JP2016036316A (en) * 2014-08-09 2016-03-22 株式会社テックコーポレーション Bacterial cell culture apparatus, bacterial cell culture medium, and bacterial cell culture method
JP2016136935A (en) * 2015-01-26 2016-08-04 有限会社情報科学研究所 Reductive fermentation method, reductive fermentation apparatus, oxidoreductive fermentation method and oxidoreductive fermentation apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761692A (en) * 1980-09-26 1982-04-14 Keisuke Nakano Manufacture of fermented manure with husk as water content adjuster
JP2008296096A (en) * 2007-05-29 2008-12-11 Sharp Corp Nanobubble-containing water production apparatus and method
JP2009226386A (en) * 2008-03-21 2009-10-08 Makoto Yafuji Ultrafine-bubble water
KR101056224B1 (en) * 2010-12-29 2011-08-11 이기몽 Manufacture device of liquid-fertilizer
WO2015048904A1 (en) * 2013-10-03 2015-04-09 Ebed Holdings Inc. Nanobubble-containing liquid solutions
KR20150143903A (en) * 2014-06-13 2015-12-24 주식회사 그린피아 Method for manufacturing liquefied fertilizer using butchery blood
JP2016036316A (en) * 2014-08-09 2016-03-22 株式会社テックコーポレーション Bacterial cell culture apparatus, bacterial cell culture medium, and bacterial cell culture method
JP2016136935A (en) * 2015-01-26 2016-08-04 有限会社情報科学研究所 Reductive fermentation method, reductive fermentation apparatus, oxidoreductive fermentation method and oxidoreductive fermentation apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS, vol. 361, JPN6018043157, 2010, pages 31 - 37, ISSN: 0004028055 *
ソノケミストリー討論会講演論文集, vol. 18, JPN6018043159, 2009, pages 95 - 96, ISSN: 0004028056 *
日本混相流学会年会講演会2008(会津)講演論文集, JPN6018043162, 2008, pages 68 - 69, ISSN: 0004028057 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078769A (en) * 2018-11-12 2020-05-28 株式会社フジタ Methane fermentation tank, methane fermentation system, and methane fermentation treatment method
JP7213484B2 (en) 2018-11-12 2023-01-27 株式会社フジタ Methane fermentation tank, methane fermentation system and methane fermentation treatment method
CN116536370A (en) * 2023-06-09 2023-08-04 天津大学 Method for improving biomass anaerobic fermentation methane production based on oxygen nanobubble disturbance
CN117305380A (en) * 2023-10-08 2023-12-29 江苏省农业科学院 Method for producing medium-chain carboxylic acid by utilizing nano bubble water with high curvature interface to enhance anaerobic fermentation of organic waste

Similar Documents

Publication Publication Date Title
CN104651199B (en) Bamboo class is carried out the method for liquor-making by solid fermentation as puff
CN105154311B (en) The production technology of potato vinegar
CN105132243B (en) A kind of method of solid dilute technique productions traditional liquor
CN1733889A (en) Method of producing white spirit using multiple yeast for fermentation ,wheat as material, enzyme method for producing undecanted wine
CN102746962A (en) Formula and production method of five-cereal beer
CN103966068A (en) Production technology for low-drunkenness-degree liquor
JP2018093826A (en) Method for producing fermented organic matter
CN104789411A (en) Production method of lotus seed liquor
CN109609318A (en) Yangtse-huaihe region aroma daqu liquor brewing method
CN101831374A (en) Preparation method of harmonious aromatic white spirit
CN104694367B (en) A kind of potato wine and its production technology
CN112195076A (en) Brewing process of strong aromatic Chinese spirits
CN101831371A (en) Process for producing lotus seed spirit
CN106883969A (en) A kind of method that utilization Jujun grasses brewage Juncao white wine
CN109232116A (en) A kind of oil tea plantation organic fertilizer and preparation method thereof
CN103351980B (en) Brewing method of red glutinous yellow wine
CN105002055B (en) A kind of Maotai-flavor liquor cellar for storing things bed mud and preparation method thereof
KR20160016297A (en) Hybrid fermented vinegar and preparation method thereof
CN104099211A (en) Brewing process for fruit white spirit
CN110564568A (en) Preparation method of dandelion fermented wine
CN103897935B (en) Brewing technology for asparagus wine
CN115926910A (en) Method for preparing marine ecological pit mud, pit pool and method for brewing marine ecological strong aromatic white spirit
JP2837386B2 (en) Miso or Sake Using Deep Ocean Water and Production Method Thereof
CN103589623A (en) Preparation method of fruity zinc-rich vinegar
CN108203650A (en) A kind of nutrition distiller&#39;s yeast feedstock composition and nutrition distiller&#39;s yeast

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190508