JP2018091513A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2018091513A
JP2018091513A JP2016233155A JP2016233155A JP2018091513A JP 2018091513 A JP2018091513 A JP 2018091513A JP 2016233155 A JP2016233155 A JP 2016233155A JP 2016233155 A JP2016233155 A JP 2016233155A JP 2018091513 A JP2018091513 A JP 2018091513A
Authority
JP
Japan
Prior art keywords
hot water
pipe
circuit
boiling
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016233155A
Other languages
Japanese (ja)
Other versions
JP7133286B2 (en
JP2018091513A5 (en
Inventor
幸雄 松坂
Yukio Matsuzaka
幸雄 松坂
耕平 小川
Kohei Ogawa
耕平 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016233155A priority Critical patent/JP7133286B2/en
Publication of JP2018091513A publication Critical patent/JP2018091513A/en
Publication of JP2018091513A5 publication Critical patent/JP2018091513A5/ja
Application granted granted Critical
Publication of JP7133286B2 publication Critical patent/JP7133286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater capable of executing air venting from each pipeline of a boiling circuit and a reheating circuit surely and quickly.SOLUTION: A water heater includes: a hot water storage tank 10; a boiling circuit C1 connected to the upper part of the hot water storage tank 10 from the lower part of the hot water storage tank 10 via a boiling heat exchanger 2a; a reheating circuit C3 connected to the lower part of the hot water storage tank 10 from the upper part of the hot water storage tank 10 via a bath heat exchanger 20; a circulation pump P1 disposed at a shared pipeline part L2 in which the boiling circuit C1 and the reheating circuit C3 are partially shared; a flow passage switching valve V1 disposed on an upstream side of the shared pipeline part L2; and a control part 100 for controlling the flow passage switching valve. The control part 100 controls so as to switch the flow passage switching valve V1 between the boiling circuit C1 side and the reheating circuit C3 side during an air venting operation.SELECTED DRAWING: Figure 8

Description

この発明は、貯湯式の給湯装置に関する。   The present invention relates to a hot water storage type hot water supply apparatus.

従来、貯湯式の給湯装置としては、貯湯タンクと、貯湯タンク内の水を沸き上げるためのヒートポンプユニットと、貯湯タンクとヒートポンプユニットとの間での循環を実行する沸き上げ回路と、沸き上げ回路に配設された沸き上げ用循環ポンプと、貯湯タンクと風呂熱交換器との間での循環を実行する追い焚き回路と、追い焚き回路に配設された追い焚き用循環ポンプとを備えたものがある(例えば、特許文献1を参照)。   Conventionally, as a hot water storage type hot water supply device, a hot water storage tank, a heat pump unit for boiling water in the hot water storage tank, a boiling circuit for performing circulation between the hot water storage tank and the heat pump unit, and a boiling circuit A recirculation pump for heating, a reheating circuit for performing circulation between the hot water storage tank and the bath heat exchanger, and a recirculation pump for reheating disposed in the reheating circuit. There are some (see, for example, Patent Document 1).

特開2013−87998号公報JP 2013-87798 A

特許文献1の給湯装置では、沸き上げ回路と追い焚き回路とが別回路として構成されているとともに2台の循環ポンプが使用されているので、沸き上げ用循環ポンプが沸き上げ運転時に作動し、追い焚き用循環ポンプが追い焚き運転時に作動する。   In the hot water supply apparatus of Patent Document 1, since the boiling circuit and the reheating circuit are configured as separate circuits and two circulation pumps are used, the boiling circulation pump operates during the boiling operation, The recirculation pump is operated during reheating operation.

給湯装置の据付時には各種の試運転が実行される。試運転時には、沸き上げ用循環ポンプ及び追い焚き用循環ポンプをそれぞれ作動させることにより、対応する回路の配管内の空気抜きを行っている。沸き上げ回路と追い焚き回路とが別回路である場合には、対応する循環ポンプがそれぞれ作動することによって、各回路での各配管内の空気抜きを行っている。   Various trial runs are performed when the water heater is installed. During the test operation, each of the boiling circulation pump and the recirculation circulation pump is operated to vent the air in the piping of the corresponding circuit. When the boiling circuit and the reheating circuit are separate circuits, the corresponding circulation pumps are operated to release air from each pipe in each circuit.

ところで、給湯装置の小型化・低コスト化のために、沸き上げ用循環ポンプと追い焚き用循環ポンプとを共通化して1台の循環ポンプによって沸き上げ回路の循環と追い焚き回路の循環とを行わせる取り組みが行われている。1つの循環ポンプによって両回路の循環を実行する場合、両回路が部分的に共通する共通配管部に1台の循環ポンプが配設され、沸き上げ回路と追い焚き回路とを切り替える切り替え弁が、共通配管部の上流側に配設される。   By the way, in order to reduce the size and cost of the hot water supply device, the boiling circulation pump and the recirculation pump are made common, and the circulation of the reheating circuit and the recirculation circuit are performed by one circulation pump. Efforts to make it happen. When the circulation of both circuits is performed by one circulation pump, one circulation pump is arranged in a common piping part in which both circuits are partially common, and a switching valve for switching between the boiling circuit and the reheating circuit is provided. It arrange | positions in the upstream of a common piping part.

1台の循環ポンプによって沸き上げ回路の循環と追い焚き回路の循環とを実行する場合、流路切り替え弁が沸き上げ回路又は追い焚き回路のいずれか一方を接続した状態で空気抜き動作が実行される。流路切り替え弁が接続された一方の回路ではその配管内から空気が抜けるものの、流路切り替え弁が接続されなかった他方の回路ではその配管内に空気が残留してしまう。   When the circulation of the boiling circuit and the circulation of the reheating circuit are executed by one circulation pump, the air venting operation is executed in a state where the flow path switching valve is connected to either the boiling circuit or the reheating circuit. . In one circuit to which the flow path switching valve is connected, air escapes from the inside of the pipe, but in the other circuit to which the flow path switching valve is not connected, air remains in the pipe.

したがって、この発明の解決すべき技術的課題は、沸き上げ回路及び追い焚き回路の各配管から確実に且つ素早く空気抜きを実行することのできる給湯装置を提供することである。   Therefore, the technical problem to be solved by the present invention is to provide a hot water supply apparatus that can perform air venting reliably and quickly from each piping of the boiling circuit and the reheating circuit.

上記技術的課題を解決するために、この発明によれば、以下の給湯装置が提供される。   In order to solve the above technical problem, the present invention provides the following hot water supply apparatus.

すなわち、この発明に係る給湯装置は、
貯湯タンクと、
前記貯湯タンクの下部から沸き上げ熱交換器を介して前記貯湯タンクの上部に接続される沸き上げ回路と、
前記貯湯タンクの上部から風呂熱交換器を介して前記貯湯タンクの下部に接続される追い焚き回路と、
前記沸き上げ回路と前記追い焚き回路とが部分的に共通する共通配管部に配設される循環ポンプと、
前記共通配管部の上流側に配設される流路切り替え弁と、
前記流路切り替え弁を制御する制御部とを備え、
前記制御部は、空気抜き動作中に、前記流路切り替え弁を前記沸き上げ回路側と前記追い焚き回路側とに切り替えるように制御することを特徴とする。
That is, the hot water supply apparatus according to the present invention is
A hot water storage tank,
A boiling circuit connected to the upper part of the hot water storage tank through the boiling heat exchanger from the lower part of the hot water storage tank;
A reheating circuit connected from the upper part of the hot water storage tank to the lower part of the hot water storage tank via a bath heat exchanger;
A circulation pump disposed in a common piping part in which the boiling circuit and the reheating circuit are partially common;
A flow path switching valve disposed on the upstream side of the common pipe section;
A control unit for controlling the flow path switching valve,
The control unit controls the flow path switching valve to switch between the boiling circuit side and the reheating circuit side during the air venting operation.

この発明の給湯装置によれば、制御部によって、空気抜き動作中に、流路切り替え弁が沸き上げ回路側と追い焚き回路側とに切り替えられるので、沸き上げ回路及び追い焚き回路での各配管内の空気抜きを、確実に且つ素早く実行できる。   According to the hot water supply apparatus of the present invention, the flow path switching valve is switched between the heating circuit side and the reheating circuit side by the control unit during the air venting operation. The air can be vented reliably and quickly.

また、一実施形態の給湯装置では、前記制御部は、前記空気抜き動作中に、前記流路切り替え弁を、前記追い焚き回路側に切り替えた後に、前記沸き上げ回路側に切り替えるように制御する。   Further, in the hot water supply apparatus according to an embodiment, the control unit controls the flow path switching valve to be switched to the boiling circuit side after being switched to the reheating circuit side during the air venting operation.

配管長が長くなって残留空気量が多くなる傾向にある沸き上げ回路側を先に空気抜き動作を実行すると、後に実行される追い焚き回路側での空気抜き動作への影響が大きくなる。上記実施形態の給湯装置によれば、追い焚き回路側での空気抜き動作がスムーズに実行される。   If the air venting operation is executed first on the side of the heating circuit that tends to increase the residual air amount due to the length of the pipe, the effect on the air venting operation on the reheating circuit side to be executed later will increase. According to the hot water supply apparatus of the above embodiment, the air venting operation on the reheating circuit side is smoothly executed.

また、一実施形態の給湯装置では、前記制御部は、前記空気抜き動作中に、前記循環ポンプが最大の回転数で回転するように制御する。   Moreover, in the hot water supply apparatus of one Embodiment, the said control part is controlled so that the said circulation pump may rotate with the largest rotation speed during the said air venting operation | movement.

上記実施形態の給湯装置によれば、空気抜き動作に要する作業時間を短くできる。   According to the hot water supply apparatus of the above embodiment, the work time required for the air venting operation can be shortened.

また、一実施形態の給湯装置では、前記制御部は、前記空気抜き動作中に、前記循環ポンプのポンプ負荷が増加に転じたときに前記流路切り替え弁が作動するように制御する。   Further, in the hot water supply apparatus according to an embodiment, the control unit controls the flow path switching valve to operate when the pump load of the circulation pump starts to increase during the air venting operation.

現場での設置条件によって沸き上げ回路側の配管長が変動して残留空気量が相違するため、流路切り替え弁の切り替えのタイミングが個々の現場で異なる。上記実施形態の給湯装置によれば、最適なタイミングで流路切り替え弁を切り替えて短時間で空気抜き動作を完了できる。   Since the piping length on the boiling circuit side varies depending on the installation conditions at the site and the residual air amount is different, the switching timing of the flow path switching valve is different at each site. According to the hot water supply apparatus of the above embodiment, the air venting operation can be completed in a short time by switching the flow path switching valve at an optimal timing.

この発明の給湯装置によれば、制御部によって、空気抜き動作中に、流路切り替え弁が沸き上げ回路側と追い焚き回路側とに切り替えられるので、沸き上げ回路側及び追い焚き回路での各配管内の空気抜きを、確実に且つ素早く実行できる。   According to the hot water supply device of the present invention, since the flow path switching valve is switched between the heating circuit side and the reheating circuit side by the control unit during the air venting operation, each pipe in the heating circuit side and the reheating circuit is provided. The air can be vented reliably and quickly.

この発明のヒートポンプ式の給湯装置の配管系統図。The piping system figure of the heat pump type hot-water supply apparatus of this invention. 図1に示した給湯装置のブロック図。The block diagram of the hot-water supply apparatus shown in FIG. 同給湯装置における沸き上げ回路を説明する図。The figure explaining the boiling circuit in the hot-water supply apparatus. 同給湯装置における風呂給湯回路を説明する図。The figure explaining the bath hot-water supply circuit in the hot-water supply apparatus. 同給湯装置における追い焚き回路を説明する図。The figure explaining the reheating circuit in the hot-water supply apparatus. 同給湯装置における風呂冷却回路を説明する図。The figure explaining the bath cooling circuit in the hot-water supply apparatus. 同給湯装置における給湯回路を説明する図。The figure explaining the hot-water supply circuit in the hot-water supply apparatus. 第1実施形態の空気抜き動作制御を説明するフローチャート。The flowchart explaining the air venting operation control of 1st Embodiment. 第2実施形態の空気抜き動作制御を説明するフローチャート。The flowchart explaining the air venting operation control of 2nd Embodiment.

図1から図7を参照して、この発明の給湯装置WHを図示の実施の形態により詳細に説明する。なお、図1,図3から図7において、矢印は水や湯が流れる方向を示し、図3から図7に示した太いラインは、配管内で水や湯が流れる回路を示している。   With reference to FIGS. 1 to 7, a hot water supply device WH of the present invention will be described in detail according to the illustrated embodiment. 1 to 3 to 7, arrows indicate directions in which water and hot water flow, and thick lines illustrated in FIGS. 3 to 7 indicate circuits in which water and hot water flow in the pipe.

図1は、この発明の一実施形態の給湯装置WHの配管系統図を示している。   FIG. 1 shows a piping system diagram of a hot water supply device WH according to an embodiment of the present invention.

図1に示す給湯装置WHは、貯湯タンク10を有する貯湯ユニット1と、上記貯湯ユニット1の貯湯タンク10内の水を沸き上げるためのヒートポンプユニット2とを備えている。   The hot water supply device WH shown in FIG. 1 includes a hot water storage unit 1 having a hot water storage tank 10 and a heat pump unit 2 for boiling water in the hot water storage tank 10 of the hot water storage unit 1.

<沸き上げ回路>
上記貯湯タンク10の下部に配管L1の一端を接続し、流路切り替え弁としてのポンプ入水三方弁V1の一方の入力側に配管L1の他端を接続している。また、ポンプ入水三方弁V1の出力側に配管L2の一端を接続し、バイパス弁V2の入力側に配管L2の他端を接続している。この配管L2に沸き上げ用循環ポンプP1を配設している。また、バイパス弁V2の一方の出力側に配管L3を介して沸き上げ熱交換器2aの一端を接続している。
<Boiling circuit>
One end of the pipe L1 is connected to the lower part of the hot water storage tank 10, and the other end of the pipe L1 is connected to one input side of the pump inlet three-way valve V1 as a flow path switching valve. Further, one end of the pipe L2 is connected to the output side of the pump inlet three-way valve V1, and the other end of the pipe L2 is connected to the input side of the bypass valve V2. A circulation pump P1 for boiling is disposed in the pipe L2. Further, one end of the boiling heat exchanger 2a is connected to one output side of the bypass valve V2 via a pipe L3.

上記沸き上げ熱交換器2aの他端を配管L4の一端に接続し、沸き上げ三方弁V3の入力側に配管L4の他端を接続している。また、バイパス弁V2の他方の出力側に配管L6の一端を接続し、配管L4の沸き上げ三方弁V3側に配管L6の他端を接続している。   The other end of the boiling heat exchanger 2a is connected to one end of the pipe L4, and the other end of the pipe L4 is connected to the input side of the boiling three-way valve V3. Further, one end of the pipe L6 is connected to the other output side of the bypass valve V2, and the other end of the pipe L6 is connected to the boiling three-way valve V3 side of the pipe L4.

また、上記沸き上げ三方弁V3の一方の出力側に配管L5の一端を接続し、貯湯タンク10の上部に配管L5の他端を接続している。一方、沸き上げ三方弁V3の他方の出力側に配管L7の一端を接続し、貯湯タンク10の下部に配管L7の他端を接続している。   One end of the pipe L5 is connected to one output side of the boiling three-way valve V3, and the other end of the pipe L5 is connected to the upper part of the hot water storage tank 10. On the other hand, one end of the pipe L7 is connected to the other output side of the boiling three-way valve V3, and the other end of the pipe L7 is connected to the lower part of the hot water storage tank 10.

図3において太いラインで示すように、上記配管L1〜L5,L7とポンプ入水三方弁V1と沸き上げ用循環ポンプP1とバイパス弁V2と沸き上げ三方弁V3とによって、貯湯タンク10とヒートポンプユニット2との間の沸き上げ回路C1が構成されている。   As indicated by the thick lines in FIG. 3, the hot water storage tank 10 and the heat pump unit 2 are constituted by the pipes L1 to L5, L7, the pump water three-way valve V1, the boiling circulation pump P1, the bypass valve V2, and the boiling three-way valve V3. A boiling circuit C1 between the two is configured.

なお、図1では、ポンプ入水三方弁V1は、配管L2と配管L26とが連通した状態にあり、バイパス弁V2は、配管L2と配管L3とが連通した状態にあり、沸き上げ三方弁V3は、配管L4と配管L7とが連通した状態にある。   In FIG. 1, the pump inlet three-way valve V1 is in a state where the pipe L2 and the pipe L26 are in communication, the bypass valve V2 is in a state where the pipe L2 and the pipe L3 are in communication, and the boiling three-way valve V3 is The pipe L4 and the pipe L7 are in communication with each other.

配管L1のポンプ入水三方弁V1よりも貯湯タンク10側の配管L27に排水用二方弁27を配設している。通常、排水用二方弁27が閉じられており、メンテナンスなどにより貯湯タンク10内の水を排水するとき、排水用二方弁27を開いて、貯湯タンク10の下部と排水口とを連通させる。   A drainage two-way valve 27 is disposed in a pipe L27 closer to the hot water storage tank 10 than the pump inlet three-way valve V1 of the pipe L1. Normally, the drainage two-way valve 27 is closed, and when draining the water in the hot water storage tank 10 for maintenance or the like, the drainage two-way valve 27 is opened to allow the lower part of the hot water storage tank 10 and the drain outlet to communicate with each other. .

上記沸き上げ用循環ポンプP1により、貯湯タンク10内の湯水を、配管L1,ポンプ入水三方弁V1,配管L2,バイパス弁V2,配管L3,沸き上げ熱交換器2a,配管L4,沸き上げ三方弁V3及び配管L5(又はL7)を介して循環させる。   With the above circulating pump P1 for boiling, the hot water in the hot water storage tank 10 is converted into a pipe L1, a pump water three-way valve V1, a pipe L2, a bypass valve V2, a pipe L3, a boiling heat exchanger 2a, a pipe L4 and a boiling three-way valve. Circulate through V3 and pipe L5 (or L7).

<風呂給湯回路>
次に、配管L11を介して上記貯湯タンク10の下部に外部の給水口を接続している。上流側から順に、ストレーナ11と、給水口側から貯湯タンク10側への流れのみを許容する逆止弁12と、減圧弁V10とを、配管L11に配設している。
<Bath hot water supply circuit>
Next, an external water supply port is connected to the lower part of the hot water storage tank 10 via the pipe L11. In order from the upstream side, a strainer 11, a check valve 12 that allows only a flow from the water supply port side to the hot water storage tank 10 side, and a pressure reducing valve V10 are disposed in the pipe L11.

また、上記貯湯タンク10の上部に配管L21の一端を接続し、湯張り混合弁V4の一方の入力側に配管L21の他端を接続している。上記配管L21の湯張り混合弁V4近傍に、貯湯タンク10側から湯張り混合弁V4側への流れのみを許容する逆止弁21を配設している。   Further, one end of the pipe L21 is connected to the upper part of the hot water storage tank 10, and the other end of the pipe L21 is connected to one input side of the hot water mixing valve V4. A check valve 21 that allows only a flow from the hot water storage tank 10 side to the hot water mixing valve V4 side is disposed near the hot water mixing valve V4 of the pipe L21.

上記湯張り混合弁V4の他方の入力側に分岐配管L12の一端を接続し、配管L11の減圧弁V10の下流側にその分岐配管L12の他端を接続している。この分岐配管L12の湯張り混合弁V4近傍に、給水口側から湯張り混合弁V4側への流れのみを許容する逆止弁22を配設している。   One end of the branch pipe L12 is connected to the other input side of the hot water mixing valve V4, and the other end of the branch pipe L12 is connected to the downstream side of the pressure reducing valve V10 of the pipe L11. A check valve 22 that allows only a flow from the water supply port side to the hot water mixing valve V4 side is disposed near the hot water mixing valve V4 of the branch pipe L12.

また、上記湯張り混合弁V4の出力側に配管L22の一端を接続し、浴槽3に設けられた接続アダプタ9の給湯口9aに配管L22の他端を接続している。湯張り混合弁V4側から順に、湯張り電磁弁V6と、湯張り混合弁V4側から浴槽3側への流れのみを許容する逆止弁5と、水量センサ6と、湯張り混合弁V4側から浴槽3側への流れのみを許容する逆止弁7とを配管L22に配設している。   One end of the pipe L22 is connected to the output side of the hot water mixing valve V4, and the other end of the pipe L22 is connected to the hot water supply port 9a of the connection adapter 9 provided in the bathtub 3. In order from the hot water mixing valve V4 side, the hot water electromagnetic valve V6, the check valve 5 that allows only the flow from the hot water mixing valve V4 side to the bathtub 3 side, the water amount sensor 6, and the hot water mixing valve V4 side And a check valve 7 that allows only the flow to the bathtub 3 side is provided in the pipe L22.

上記配管L22の逆止弁5と水量センサ6との間に、排水弁V7が配設された排水配管L42の一端を接続している。また、配管L21の貯湯タンク10近傍に、逃がし弁28が配設された排水配管41の一端を接続している。   Between the check valve 5 and the water amount sensor 6 of the pipe L22, one end of a drain pipe L42 provided with a drain valve V7 is connected. Further, one end of a drainage pipe 41 provided with a relief valve 28 is connected to the vicinity of the hot water storage tank 10 of the pipe L21.

上記湯張り電磁弁V6と逆止弁5と水量センサ6と逆止弁7とによって、複合水弁30が構成されている。   The water filling electromagnetic valve V6, the check valve 5, the water amount sensor 6 and the check valve 7 constitute a composite water valve 30.

図4において太いラインで示すように、上記配管L21と湯張り混合弁V4と配管L22と複合水弁30とによって、貯湯タンク10と浴槽3との間の風呂給湯回路C2が構成されている。   As shown by a thick line in FIG. 4, the pipe L21, the hot water mixing valve V4, the pipe L22, and the composite water valve 30 constitute a bath hot water supply circuit C2 between the hot water storage tank 10 and the bathtub 3.

<風呂循環回路>
上記接続アダプタ9の吸水口9bに配管L24の一端を接続し、風呂熱交換器20の2次側の入力に配管L24の他端を接続している。上記配管L24に風呂用循環ポンプP2を配設している。また、配管L22の複合水弁30よりも下流側に分岐配管L23の一端を接続し、風呂熱交換器20の2次側の出力に分岐配管L23の他端を接続している。
<Bath circulation circuit>
One end of the pipe L24 is connected to the water inlet 9b of the connection adapter 9, and the other end of the pipe L24 is connected to the secondary side input of the bath heat exchanger 20. A circulation pump P2 for bath is arranged in the pipe L24. Further, one end of the branch pipe L23 is connected to the downstream side of the composite water valve 30 of the pipe L22, and the other end of the branch pipe L23 is connected to the secondary side output of the bath heat exchanger 20.

上記風呂用循環ポンプP2により、浴槽3内の湯水を、配管L24,風呂熱交換器20(2次側),分岐配管L23及び配管L22の一部を介して循環させる。   The hot water in the bathtub 3 is circulated through the pipe L24, the bath heat exchanger 20 (secondary side), the branch pipe L23, and a part of the pipe L22 by the bath circulation pump P2.

図5及び図6の右下において太いラインで示すように、上記配管L24,風呂熱交換器20(2次側),分岐配管L23,配管L22及び風呂用循環ポンプP2によって、風呂循環回路C6が構成されている。   As shown by the thick line in the lower right of FIGS. 5 and 6, the bath circulation circuit C6 is constituted by the pipe L24, the bath heat exchanger 20 (secondary side), the branch pipe L23, the pipe L22, and the bath circulation pump P2. It is configured.

上記湯張り電磁弁V6は、風呂循環回路を介して貯湯タンク10内の温水を浴槽3内に流す流路を開閉する開閉弁である。   The hot water solenoid valve V6 is an open / close valve that opens and closes a flow path through which hot water in the hot water storage tank 10 flows into the bathtub 3 via a bath circulation circuit.

<追い焚き回路>
また、上記配管L22の複合水弁30よりも上流側に分岐配管L25の一端を接続し、風呂熱交換器20(1次側)の入力に分岐配管L25の他端を接続している。上記風呂熱交換器20(1次側)の出力に配管L26の一端を接続し、ポンプ入水三方弁V1の他方の入力側に配管L26の他端を接続している。
<Turning circuit>
Further, one end of the branch pipe L25 is connected upstream of the composite water valve 30 of the pipe L22, and the other end of the branch pipe L25 is connected to the input of the bath heat exchanger 20 (primary side). One end of the pipe L26 is connected to the output of the bath heat exchanger 20 (primary side), and the other end of the pipe L26 is connected to the other input side of the pump inlet three-way valve V1.

追い焚き回路C3は、貯湯タンク10と風呂熱交換器20(1次側)との間を循環して接続する風呂熱交換回路に対応し、貯湯タンク10の上部から風呂熱交換器20(1次側)を介して貯湯タンク10の下部に接続される。   The reheating circuit C3 corresponds to a bath heat exchange circuit that circulates and connects between the hot water storage tank 10 and the bath heat exchanger 20 (primary side), and the bath heat exchanger 20 (1 It is connected to the lower part of the hot water storage tank 10 via the next side.

図5において左上の太いラインで示すように、上記配管L21,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,バイパス弁V2,配管L6,配管L4の一部,沸き上げ三方弁V3,配管L7及び沸き上げ用循環ポンプP1によって、追い焚き回路C3が構成されている。   As shown by the thick line in the upper left in FIG. 5, the pipe L21, the hot water mixing valve V4, a part of the pipe L22, the branch pipe L25, the bath heat exchanger 20 (primary side), the pipe L26, and the pump water three-way valve A reheating circuit C3 is constituted by V1, a pipe L2, a bypass valve V2, a pipe L6, a part of the pipe L4, the boiling three-way valve V3, the pipe L7 and the boiling circulation pump P1.

<給湯回路>
また、上記貯湯タンク10の上部に配管L31の一端を接続し、給湯混合弁V5の一方の入力側に配管L31の他端を接続している。貯湯タンク10側から給湯混合弁V5側への流れのみを許容する逆止弁23を上記配管L31に配設している。
<Hot water supply circuit>
Further, one end of the pipe L31 is connected to the upper part of the hot water storage tank 10, and the other end of the pipe L31 is connected to one input side of the hot water supply mixing valve V5. A check valve 23 that allows only the flow from the hot water storage tank 10 side to the hot water supply mixing valve V5 side is disposed in the pipe L31.

また、分岐配管L12の逆止弁22近傍の給水口側に、分岐配管L13の一端を接続し、給湯混合弁V5の他方の入力側に分岐配管L13の他端を接続している。給水口側から給湯混合弁V5側への流れのみを許容する逆止弁24を、上記分岐配管L13の給湯混合弁V5近傍に配設している。   Further, one end of the branch pipe L13 is connected to the water supply port side of the branch pipe L12 in the vicinity of the check valve 22, and the other end of the branch pipe L13 is connected to the other input side of the hot water supply mixing valve V5. A check valve 24 that allows only the flow from the water supply port side to the hot water supply mixing valve V5 side is disposed in the vicinity of the hot water supply mixing valve V5 of the branch pipe L13.

上記給湯混合弁V5の出力側に配管L32の一端を接続し、給湯部26(この実施形態では蛇口)に配管L32の他端を接続している。上記配管L32に水量センサ25を設けている。   One end of the pipe L32 is connected to the output side of the hot water mixing valve V5, and the other end of the pipe L32 is connected to the hot water supply section 26 (a faucet in this embodiment). A water amount sensor 25 is provided in the pipe L32.

図7において太いラインで示すように、上記配管L31,給湯混合弁V5,配管L32,配管L11,分岐配管L12の一部及び分岐配管L13によって、給湯回路C5が構成されている。   As shown by a thick line in FIG. 7, a hot water supply circuit C5 is configured by the pipe L31, the hot water supply mixing valve V5, the pipe L32, the pipe L11, a part of the branch pipe L12, and the branch pipe L13.

<風呂冷却回路>
風呂冷却回路C4は、貯湯タンク10と風呂熱交換器20(1次側)との間を循環して接続する風呂熱交換回路に対応し、貯湯タンク10の下部から風呂熱交換器20(1次側)を介して貯湯タンク10の下部に接続される。
<Bath cooling circuit>
The bath cooling circuit C4 corresponds to a bath heat exchange circuit that circulates and connects between the hot water storage tank 10 and the bath heat exchanger 20 (primary side), and the bath heat exchanger 20 (1 It is connected to the lower part of the hot water storage tank 10 via the next side.

図6の左下から右上にかけて太いラインで示すように、配管L11,分岐配管L12,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,沸き上げ用循環ポンプP1,バイパス弁V2,配管L6,配管L4の一部,沸き上げ三方弁V3及び配管L7によって、風呂冷却回路C4が構成されている。   As shown by the thick lines from the lower left to the upper right of FIG. 6, the pipe L11, the branch pipe L12, the hot water mixing valve V4, a part of the pipe L22, the branch pipe L25, the bath heat exchanger 20 (primary side), the pipe L26 The bath cooling circuit C4 is constituted by the pump inlet three-way valve V1, the pipe L2, the circulating pump P1 for the boiling, the bypass valve V2, the pipe L6, a part of the pipe L4, the boiling three-way valve V3 and the pipe L7.

<温度センサ群>
また、上記貯湯タンク10には、下側から上側に向かって略等間隔に6つの温度センサT1〜T6を設けている。また、分岐配管L12と分岐配管L13との接続点近傍の上流側に、給水温度を検出する温度センサT11を設けている。また、給湯部26に接続された配管L32には、水量センサ25よりも下流側に給湯温度を検出する温度センサT12を設けている。
<Temperature sensor group>
The hot water storage tank 10 is provided with six temperature sensors T1 to T6 at substantially equal intervals from the lower side to the upper side. Further, a temperature sensor T11 for detecting the feed water temperature is provided on the upstream side in the vicinity of the connection point between the branch pipe L12 and the branch pipe L13. In addition, a temperature sensor T <b> 12 that detects a hot water supply temperature is provided downstream of the water amount sensor 25 in the pipe L <b> 32 connected to the hot water supply unit 26.

また、配管L24のうち浴槽3側の接続アダプタ9と風呂用循環ポンプP2との間の配管には、接続アダプタ9側から順に、水位センサLSと、水流センサの一例としての水流スイッチSWと、温度センサT13とを設けている。   Further, in the pipe L24, between the connection adapter 9 on the bathtub 3 side and the circulation pump P2 for the bath, in order from the connection adapter 9 side, a water level sensor LS, a water flow switch SW as an example of a water flow sensor, A temperature sensor T13 is provided.

さらに、配管L22と分岐配管L23との接続点に、浴槽3に供給される湯温を検出する温度センサT14を設けている。   Furthermore, a temperature sensor T14 for detecting the temperature of hot water supplied to the bathtub 3 is provided at a connection point between the pipe L22 and the branch pipe L23.

また、沸き上げ熱交換器2aへの往き水の入水温度を検出する入水温度センサT21を配管L3に設けている。   Moreover, the incoming water temperature sensor T21 which detects the incoming water temperature of the incoming water to the boiling heat exchanger 2a is provided in the pipe L3.

さらに、沸き上げ熱交換器2aからの戻り水の出湯温度を検出する出湯温度センサT22を配管L4に設けている。   Furthermore, a tapping temperature sensor T22 for detecting a tapping temperature of the return water from the boiling heat exchanger 2a is provided in the pipe L4.

ヒートポンプユニット2は、外気温度を検出する外気温度センサT23を有する。また、ヒートポンプユニット2は、冷媒として炭酸ガス(CO)を用いており、出湯温度を例えば65℃〜90℃の範囲で制御することが可能である。 The heat pump unit 2 includes an outside air temperature sensor T23 that detects the outside air temperature. In addition, the heat pump unit 2 uses carbon dioxide (CO 2 ) as a refrigerant, and can control the tapping temperature within a range of 65 ° C. to 90 ° C., for example.

配管L2は、沸き上げ回路C1と追い焚き回路C3とが部分的に共通する共通配管部であり、沸き上げ回路C1及び追い焚き回路C3を循環させる沸き上げ用循環ポンプP1が、当該配管L2に配設されている。ポンプ入水三方弁V1が配管L2の上流側に配設されている。そして、ポンプ入水三方弁V1は、沸き上げ回路C1での水又は湯の循環と追い焚き回路C3での水又は湯の循環とを切り替える。   The piping L2 is a common piping portion in which the boiling circuit C1 and the reheating circuit C3 are partially in common, and a heating circulation pump P1 for circulating the boiling circuit C1 and the reheating circuit C3 is connected to the piping L2. It is arranged. A pump inlet three-way valve V1 is disposed on the upstream side of the pipe L2. The pump incoming three-way valve V1 switches between the circulation of water or hot water in the boiling circuit C1 and the circulation of water or hot water in the reheating circuit C3.

<制御部>
図2に示すように、貯湯ユニット1は、マイクロコンピュータ(CPU)と入出力回路などからなる制御部100を備えている。制御部100は、リモートコントローラ200との間で送受信を行う。制御部100は、温度センサT1〜T6,T11〜T14と水位センサLSと水流スイッチSWと水量センサ6,25と入水温度センサT21と出湯温度センサT22と外気温度センサT23とリモートコントローラ200とからの信号を受けて、ヒートポンプユニット2と沸き上げ用循環ポンプP1と風呂用循環ポンプP2とポンプ入水三方弁V1とバイパス弁V2と沸き上げ三方弁V3と湯張り混合弁V4と給湯混合弁V5と湯張り電磁弁V6などを制御する。
<Control unit>
As shown in FIG. 2, the hot water storage unit 1 includes a control unit 100 including a microcomputer (CPU) and an input / output circuit. The control unit 100 performs transmission / reception with the remote controller 200. The control unit 100 includes temperature sensors T1 to T6, T11 to T14, a water level sensor LS, a water flow switch SW, water amount sensors 6 and 25, an incoming water temperature sensor T21, a hot water temperature sensor T22, an outside air temperature sensor T23, and a remote controller 200. In response to the signal, the heat pump unit 2, the boiling circulation pump P1, the bath circulation pump P2, the pump inlet three-way valve V1, the bypass valve V2, the boiling three-way valve V3, the hot water mixing valve V4, the hot water mixing valve V5 and hot water. The tension solenoid valve V6 and the like are controlled.

また、上記制御部100は、沸き上げ制御部100aと、風呂給湯制御部100bと、追い焚き制御部100cと、風呂冷却制御部100dと、給湯制御部100eとを有する。沸き上げ制御部100aは、沸き上げ回路C1の動作を制御する。風呂給湯制御部100bは、風呂給湯回路C2の動作を制御する。追い焚き制御部100cは、追い焚き回路C3の動作を制御する。風呂冷却制御部100dは、風呂冷却回路C4の動作を制御する。給湯制御部100eは、給湯回路C5の動作を制御する。   Moreover, the said control part 100 has the boiling-up control part 100a, the bath hot water supply control part 100b, the reheating control part 100c, the bath cooling control part 100d, and the hot water supply control part 100e. The boiling control unit 100a controls the operation of the boiling circuit C1. The bath water heater control unit 100b controls the operation of the bath water heater circuit C2. The chasing control unit 100c controls the operation of the chasing circuit C3. The bath cooling control unit 100d controls the operation of the bath cooling circuit C4. The hot water supply control unit 100e controls the operation of the hot water supply circuit C5.

また、上記制御部100は、メモリ(例えば、ROM、RAM、EEPROMなど)を有しており、当該メモリには、所定の制御プログラムと、過去の日々の各種運転履歴データや状態データなどが格納されるとともに、予め一日のうちの時間帯(昼間料金や深夜料金など)毎の電力料金設定情報が格納されている。   Further, the control unit 100 has a memory (for example, ROM, RAM, EEPROM, etc.), and a predetermined control program and various past operation history data and state data are stored in the memory. In addition, power charge setting information for each time zone (daytime charge, late-night charge, etc.) of the day is stored in advance.

<沸き上げ用循環ポンプ>
沸き上げ用循環ポンプP1は、例えば、直流モータにより駆動され、駆動信号のデューティ比や駆動周波数を変化させることで能力を調整可能なパルス幅変調(PWM:Pulse Width Modulation)制御型のDCポンプである。沸き上げ用循環ポンプP1のモータは、その回転数(回転速度)を検知する回転センサを内蔵する。沸き上げ用循環ポンプP1のモータは、回転速度を制御可能でポンプ負荷に応じて入力が変化する特性を有する。デューティ比が大きいか又は駆動周波数が高い場合、モータに供給される電力が大きくなりポンプ回転数が増加する。デューティ比が小さいか又は駆動周波数が低い場合、モータに供給される電力が小さくなりポンプ回転数が低下する。
<Circulating pump for boiling>
The boiling circulation pump P1 is, for example, a pulse width modulation (PWM) control type DC pump driven by a direct current motor and capable of adjusting the capacity by changing the duty ratio and drive frequency of the drive signal. is there. The motor of the circulating pump P1 for boiling includes a rotation sensor that detects the number of rotations (rotation speed). The motor of the circulating pump P1 for boiling has a characteristic that the rotational speed can be controlled and the input changes according to the pump load. When the duty ratio is large or the driving frequency is high, the electric power supplied to the motor is increased and the pump rotation speed is increased. When the duty ratio is small or the drive frequency is low, the electric power supplied to the motor becomes small and the pump rotation speed decreases.

沸き上げ用循環ポンプP1のモータは、制御部100によって、後述する空気抜き動作中に、最大の回転数で回転するように制御される。当該制御により、空気抜き動作に要する作業時間を短くできる。空気抜き運転時では、配管内に空気が残留すると沸き上げ用循環ポンプP1のポンプ負荷が小さくなり、配管内から空気が抜けて配管内が水だけになるので、沸き上げ用循環ポンプP1のポンプ負荷が大きくなる。なお、この発明における沸き上げ用循環ポンプP1及び風呂用循環ポンプP2のモータの種類及び制御方式は、上記のものに限定されるものではなく、各種の種類及び方式を適用可能である。また、風呂用循環ポンプP2も沸き上げ用循環ポンプP1と同様である。   The motor of the circulating pump P1 for boiling is controlled by the control unit 100 so as to rotate at the maximum rotational speed during the air venting operation described later. By this control, the work time required for the air venting operation can be shortened. During air venting operation, if air remains in the pipe, the pump load of the circulating pump P1 for boiling is reduced and the air is drained from the pipe to become only water in the pipe. Therefore, the pump load of the circulating pump P1 for boiling Becomes larger. In addition, the kind and control system of the motor of the circulating pump P1 for boiling and the circulating pump P2 for the bath in the present invention are not limited to the above, and various kinds and systems can be applied. The bath circulation pump P2 is the same as the boiling circulation pump P1.

〔沸き上げ運転〕
上記構成の給湯装置WHにおいて、ヒートポンプユニット2により貯湯タンク10内の湯を沸き上げる「沸き上げ運転」では、図3に示すように、ポンプ入水三方弁V1を配管L1と配管L2とを連通する一方の位置に切り換え、バイパス弁V2を配管L2と配管L3とが連通する一方の位置に切り換える。さらに、沸き上げ三方弁V3を配管L4と配管L5とが連通する一方の位置に切り換える。
[Boiling operation]
In the hot water supply device WH having the above-described configuration, in the “boiling operation” in which the hot water in the hot water storage tank 10 is boiled by the heat pump unit 2, as shown in FIG. 3, the pump water three-way valve V1 is connected to the pipe L1 and the pipe L2. Switching to one position, the bypass valve V2 is switched to one position where the pipe L2 and the pipe L3 communicate. Further, the boiling three-way valve V3 is switched to one position where the pipe L4 and the pipe L5 communicate with each other.

そして、沸き上げ用循環ポンプP1を作動して、沸き上げ回路C1を介して、すなわち配管L1,ポンプ入水三方弁V1,配管L2,バイパス弁V2,配管L3,沸き上げ熱交換器2a,配管L4,沸き上げ三方弁V3及び配管L5(又はL7)を介して、貯湯タンク10内の湯を循環させる。   Then, the boiling circulation pump P1 is operated, and via the boiling circuit C1, that is, the pipe L1, the pump water three-way valve V1, the pipe L2, the bypass valve V2, the pipe L3, the boiling heat exchanger 2a, the pipe L4. The hot water in the hot water storage tank 10 is circulated through the boiling three-way valve V3 and the pipe L5 (or L7).

制御部100の沸き上げ制御部100aは、沸き上げ運転時にヒートポンプユニット2の出湯温度が目標出湯温度TSになるように、ヒートポンプユニット2を制御する。ここで、目標出湯温度TSは、貯湯タンク10から給湯される湯量などに基づいて沸き上げ制御部100aで算出される。例えば、使用される湯量が多い場合、目標出湯温度TSは例えば85℃と高くなり、使用される湯量が少ない場合、目標出湯温度TSは例えば65℃と低くなる。   The boiling control unit 100a of the control unit 100 controls the heat pump unit 2 so that the tapping temperature of the heat pump unit 2 becomes the target tapping temperature TS during the boiling operation. Here, the target hot water temperature TS is calculated by the boiling control unit 100a based on the amount of hot water supplied from the hot water storage tank 10 or the like. For example, when the amount of hot water used is large, the target hot water temperature TS is as high as 85 ° C., for example, and when the amount of hot water used is small, the target hot water temperature TS is as low as 65 ° C., for example.

〔風呂給湯運転〕
貯湯タンク10から浴槽3内に給湯する「風呂給湯運転」を実行する場合、図4に示すように、制御部100の風呂給湯制御部100bによって湯張り電磁弁V6が開かれると、貯湯タンク10内の上部の高温の湯が、配管L21,湯張り混合弁V4及び配管L22を介して浴槽3内に供給される。このとき、風呂給湯制御部100bは、湯張り混合弁V4を制御して、目標設定温度に基づいて、貯湯タンク10からの高温の湯と給水口からの水とを混合する。そして、水位センサLSで検出された浴槽3内の水位が設定水位になると、風呂給湯制御部100bによって湯張り電磁弁V6が閉じられる。
[Bath hot water operation]
When performing a “bath hot water supply operation” in which hot water is supplied from the hot water storage tank 10 into the bathtub 3, as shown in FIG. 4, when the hot water solenoid valve V 6 is opened by the hot water supply control unit 100 b of the control unit 100, the hot water storage tank 10. The hot water in the upper part is supplied into the bathtub 3 through the pipe L21, the hot water mixing valve V4, and the pipe L22. At this time, the hot water supply controller 100b controls the hot water mixing valve V4 to mix hot hot water from the hot water storage tank 10 and water from the water supply port based on the target set temperature. When the water level in the bathtub 3 detected by the water level sensor LS reaches the set water level, the hot water solenoid valve V6 is closed by the bath hot water supply control unit 100b.

なお、「風呂給湯運転」において、リモートコントローラ200の操作により、設定水位と設定温度とを自動的に保つ風呂自動運転モードが選択されると、貯湯タンク10から風呂の浴槽3内に給湯する「風呂給湯運転」を実行した後、浴槽3内の湯面水位を設定水位に保つと共に湯温を設定温度に保つようにする「風呂監視運転」を実行する。   In the “bath hot water supply operation”, when the bath automatic operation mode in which the set water level and the set temperature are automatically maintained is selected by the operation of the remote controller 200, hot water is supplied from the hot water storage tank 10 into the bath tub 3. After executing the “bath hot water supply operation”, the “bath monitoring operation” is performed in which the hot water surface level in the bathtub 3 is maintained at the set water level and the hot water temperature is maintained at the set temperature.

〔追い焚き運転〕
次に、風呂の浴槽3内の湯水を加熱して追い焚きする「追い焚き運転」を実行する場合、図5に示すように、制御部100の追い焚き制御部100cは、ポンプ入水三方弁V1を配管L26と配管L2とを連通する他方の位置に切り換え、バイパス弁V2を配管L2と配管L6とが連通する他方の位置に切り換える。追い焚き制御部100cは、さらに、沸き上げ三方弁V3を配管L6と配管L7とが連通する他方の位置に切り換える。
[Casting driving]
Next, in the case of performing a “refreshing operation” in which hot water in the bath tub 3 is heated and repelled, as shown in FIG. 5, the replenishment control unit 100 c of the control unit 100 performs the pump water entry three-way valve V <b> 1. Is switched to the other position where the pipe L26 and the pipe L2 are communicated, and the bypass valve V2 is switched to the other position where the pipe L2 and the pipe L6 are communicated. The reheating controller 100c further switches the boiling three-way valve V3 to the other position where the pipe L6 and the pipe L7 communicate with each other.

そして、湯張り混合弁V4の開度を湯側に全開になるようにした状態で、沸き上げ用循環ポンプP1を作動して、追い焚き回路C3を介して、すなわち配管L21,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,配管L6,配管L4の一部及び配管L7を介して、貯湯タンク10内の上部の湯を循環させる。このとき、風呂用循環ポンプP2を運転して、浴槽3内の湯水を配管L24,風呂熱交換器20(2次側),分岐配管L23及び配管L22の一部を介して循環させる。これにより、風呂熱交換器20で浴槽3側の湯水が加熱されて追い焚きが実行される。   Then, with the opening degree of the hot water mixing valve V4 fully opened to the hot water side, the boiling circulation pump P1 is operated and the recirculation circuit C3, that is, the pipe L21, the hot water mixing valve. V4, a part of pipe L22, branch pipe L25, bath heat exchanger 20 (primary side), pipe L26, pump water three-way valve V1, pipe L2, pipe L6, part of pipe L4 and pipe L7 The upper hot water in the hot water storage tank 10 is circulated. At this time, the bath circulation pump P2 is operated to circulate hot water in the bathtub 3 through the pipe L24, the bath heat exchanger 20 (secondary side), the branch pipe L23, and a part of the pipe L22. Thereby, the hot water of the bathtub 3 side is heated by the bath heat exchanger 20, and a reheating is performed.

〔風呂冷却運転〕
次に、風呂の浴槽3内の湯水を冷却してぬるめの湯温にする「風呂冷却運転」を実行する場合、図6に示すように、制御部100の風呂冷却制御部100dは、ポンプ入水三方弁V1を配管L26と配管L2とが連通する他方の位置に切り換え、バイパス弁V2を配管L2と配管L6とが連通する他方の位置に切り換える。風呂冷却制御部100dは、さらに、沸き上げ三方弁V3を配管L6と配管L7とが連通する他方の位置に切り換える。
[Bath cooling operation]
Next, when performing a “bath cooling operation” in which the hot water in the bath tub 3 is cooled to make the temperature of the lukewarm water, as shown in FIG. The three-way valve V1 is switched to the other position where the pipe L26 and the pipe L2 communicate, and the bypass valve V2 is switched to the other position where the pipe L2 and the pipe L6 communicate. The bath cooling control unit 100d further switches the boiling three-way valve V3 to the other position where the pipe L6 and the pipe L7 communicate with each other.

そして、湯張り混合弁V4の開度を水側に全開になるようにした状態で、沸き上げ用循環ポンプP1を作動して、風呂冷却回路C4を介して、すなわち配管L11の一部,分岐配管L12,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,配管L6,配管L4の一部及び配管L7を介して、貯湯タンク10内の下部の水を循環させる。このとき、風呂用循環ポンプP2を運転して、浴槽3内の湯水を配管L24,風呂熱交換器20(2次側),分岐配管L23及び配管L22の一部を介して循環させる。これにより、風呂熱交換器20で浴槽3側の湯水が冷却されてぬるめの湯温になる。   Then, in a state where the opening degree of the hot water filling valve V4 is fully opened to the water side, the boiling circulation pump P1 is operated, and a part of the pipe L11 is branched via the bath cooling circuit C4. Pipe L12, hot water mixing valve V4, part of pipe L22, branch pipe L25, bath heat exchanger 20 (primary side), pipe L26, pump water three-way valve V1, pipe L2, pipe L6, part of pipe L4 And the water of the lower part in the hot water storage tank 10 is circulated through the piping L7. At this time, the bath circulation pump P2 is operated to circulate hot water in the bathtub 3 through the pipe L24, the bath heat exchanger 20 (secondary side), the branch pipe L23, and a part of the pipe L22. Thereby, the hot water on the bathtub 3 side is cooled by the bath heat exchanger 20, and the hot water temperature becomes lukewarm.

なお、この「風呂冷却運転」では、リモートコントローラ200の操作により、風呂設定温度を変更することなく、例えば湯温を2℃下げて所定時間(この実施の形態では10分間)保持した後、浴槽3側の湯水の温度を風呂設定温度に戻すようにしている。   In this “bath cooling operation”, the bath temperature is lowered by 2 ° C. and held for a predetermined time (in this embodiment, 10 minutes), for example, without changing the bath set temperature by operating the remote controller 200, and then the bath The temperature of the hot water on the 3 side is returned to the bath set temperature.

〔給湯運転〕
また、給湯部26から湯水を供給する「給湯運転」を実行する場合は、図7に示すように、給湯部26の蛇口を開くと、給水圧力により給水口からの水が配管L11を介して貯湯タンク10の下部から貯湯タンク10内に供給される。これにより、貯湯タンク10内の上部から高温の湯が配管L31を介して押し出される。
[Hot water operation]
Further, when performing a “hot water supply operation” in which hot water is supplied from the hot water supply unit 26, when the faucet of the hot water supply unit 26 is opened, water from the water supply port is supplied via the pipe L11 by the water supply pressure as shown in FIG. It is supplied into the hot water storage tank 10 from the lower part of the hot water storage tank 10. Thereby, high temperature hot water is extruded from the upper part in the hot water storage tank 10 through the pipe L31.

そして、貯湯タンク10内の上部から高温の湯が、配管L31を介して給湯混合弁V5の一方の入力側に供給されると共に、給水口からの水が配管L11の一部,分岐配管L12及び分岐配管L13の一部を介して給湯混合弁V5の他方の入力側(水側)に供給される。   Then, hot water is supplied from the upper part of the hot water storage tank 10 to one input side of the hot water supply mixing valve V5 through the pipe L31, and water from the water supply port is part of the pipe L11, the branch pipe L12, and It is supplied to the other input side (water side) of the hot water supply mixing valve V5 through a part of the branch pipe L13.

ここで、貯湯タンク10内の上部の高温の湯と給水口からの水とが給湯混合弁V5により混合された後、配管L32を介して給湯部26から出湯される。このとき、制御部100の給湯制御部100eは、「給湯運転」において、温度センサT12により検出された給湯温度が設定給湯温度になるように、給湯混合弁V5の湯と水との混合比を制御する。   Here, hot water in the upper part of the hot water storage tank 10 and water from the water supply port are mixed by the hot water supply mixing valve V5, and then discharged from the hot water supply unit 26 through the pipe L32. At this time, the hot water supply control unit 100e of the control unit 100 sets the mixing ratio of hot water and water in the hot water supply mixing valve V5 so that the hot water supply temperature detected by the temperature sensor T12 becomes the set hot water supply temperature in the “hot water supply operation”. Control.

(空気抜き動作)
図3,5,7及び8を参照しながら、上記構成の給湯装置WHにおける第1実施形態の空気抜き動作を説明する。
(Air venting operation)
With reference to FIGS. 3, 5, 7 and 8, the air venting operation of the first embodiment in the water heater WH having the above-described configuration will be described.

据付完了後の試運転では、空気抜き動作の開始として、貯湯タンク10内が給水口からの水で満たされる。すなわち、逃がし弁28を開放した状態で、給水口からストレーナ11と逆止弁12と減圧弁V10とを介して貯湯タンク10の下側に水を供給して貯湯タンク10内を水で満たす。貯湯タンク10内が満水になって溢れ出た水は、逃がし弁28から外部に流出する。   In the test operation after the installation is completed, the hot water storage tank 10 is filled with water from the water supply port as the start of the air venting operation. That is, with the relief valve 28 opened, water is supplied from the water supply port to the lower side of the hot water storage tank 10 through the strainer 11, the check valve 12, and the pressure reducing valve V10 to fill the hot water storage tank 10 with water. The water overflowing when the hot water storage tank 10 is full flows out from the relief valve 28 to the outside.

その後、逃がし弁28を閉じて、図5に示すように、制御部100は、ポンプ入水三方弁V1の入力側を追い焚き回路側(他方の位置の配管L2側)に切り換え(ステップS11)、沸き上げ用循環ポンプP1をオンにして(ステップS12)、第1の所定時間運転する。当該第1の所定時間は、例えば、1分である。貯湯タンク10内の水が追い焚き回路C3を介して循環することによって、追い焚き回路C3の空気抜き動作が実行される。この空気抜き動作では、水は、配管L21,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,バイパス弁V2,配管L6,配管L4の一部,沸き上げ三方弁V3及び配管L7を流れる。その結果、追い焚き回路C3の配管内にあった空気は、貯湯タンク10の上部に溜まる。   Thereafter, the relief valve 28 is closed, and as shown in FIG. 5, the control unit 100 switches the input side of the pump water inlet three-way valve V1 to the retreat circuit side (the pipe L2 side at the other position) (step S11). The boiling circulation pump P1 is turned on (step S12), and the system is operated for a first predetermined time. The first predetermined time is, for example, 1 minute. As the water in the hot water storage tank 10 circulates through the reheating circuit C3, the air removal operation of the reheating circuit C3 is executed. In this air venting operation, water is supplied from the pipe L21, the hot water mixing valve V4, a part of the pipe L22, the branch pipe L25, the bath heat exchanger 20 (primary side), the pipe L26, the pump inlet three-way valve V1, the pipe L2, and the like. It flows through a bypass valve V2, a pipe L6, a part of the pipe L4, a boiling three-way valve V3, and a pipe L7. As a result, the air that was in the piping of the reheating circuit C <b> 3 accumulates in the upper part of the hot water storage tank 10.

次に、図3に示すように、制御部100は、ポンプ入水三方弁V1の入力側を一方の位置の配管L1側に切り換え(ステップS13)、沸き上げ用循環ポンプP1を第2の所定時間運転して貯湯タンク10内の水を沸き上げ回路C1を介して循環させて沸き上げ回路C1の空気抜き動作を実行する。第2の所定時間が経過すると、制御部100は、沸き上げ用循環ポンプP1をオフにする(ステップS14)。当該第2の所定時間は、例えば、4分である。この空気抜き動作では、水は、配管L1,ポンプ入水三方弁V1,配管L2,配管L3,沸き上げ熱交換器2a,配管L4,ポンプ入水三方弁V1,配管L5及び貯湯タンク10を流れる。その結果、沸き上げ回路C1の配管内にあった空気は、貯湯タンク10の上部に溜まる。   Next, as shown in FIG. 3, the control unit 100 switches the input side of the pump inlet three-way valve V1 to the pipe L1 side at one position (step S13), and turns on the circulating pump P1 for boiling for a second predetermined time. It operates and circulates the water in the hot water storage tank 10 through the boiling circuit C1, and executes the air venting operation of the boiling circuit C1. When the second predetermined time has elapsed, the control unit 100 turns off the boiling circulation pump P1 (step S14). The second predetermined time is, for example, 4 minutes. In this air venting operation, the water flows through the pipe L1, the pump incoming three-way valve V1, the pipe L2, the pipe L3, the boiling heat exchanger 2a, the pipe L4, the pump incoming three-way valve V1, the pipe L5, and the hot water storage tank 10. As a result, the air that was in the piping of the boiling circuit C <b> 1 accumulates in the upper part of the hot water storage tank 10.

このように、追い焚き回路C3及び沸き上げ回路C1に対して空気抜き動作を実行することによって、追い焚き回路C3及び沸き上げ回路C1の各配管内に残留していた空気は、貯湯タンク10の上部に集められる。配管長が長くなって残留空気量が多くなる傾向にある沸き上げ回路C1側を先に空気抜き動作を実行すると、後に実行される追い焚き回路C3側での空気抜き動作への影響が大きくなる。これに対して、追い焚き回路C3での空気抜き動作を先に実行することにより、追い焚き回路C3側での空気抜き動作がスムーズに実行される。   As described above, by performing the air venting operation on the reheating circuit C3 and the boiling circuit C1, the air remaining in each pipe of the reheating circuit C3 and the boiling circuit C1 is transferred to the upper part of the hot water storage tank 10. To be collected. If the air venting operation is executed first on the heating circuit C1 side where the pipe length becomes longer and the residual air amount tends to increase, the influence on the air venting operation on the reheating circuit C3 side to be executed later will increase. On the other hand, by performing the air venting operation in the reheating circuit C3 first, the air venting operation on the retreating circuit C3 side is executed smoothly.

その後、図7に示す給湯回路C5に従って、貯湯タンク10の上部に溜まった空気を含む水が排出される。すなわち、給湯部26の蛇口を開くと、給水圧力により給水口からの水が配管L11を介して貯湯タンク10の下部から貯湯タンク10内に供給される。これにより、貯湯タンク10内の上部から空気を含む水が配管L31を介して押し出される。そして、制御部100は、給湯混合弁V5の開度を湯側全開として、配管L32を介して給湯部26から空気を含む水が排出される。これによって、空気抜き動作が終了する。   Thereafter, according to the hot water supply circuit C5 shown in FIG. 7, water containing air accumulated in the upper part of the hot water storage tank 10 is discharged. That is, when the faucet of the hot water supply unit 26 is opened, water from the water supply port is supplied into the hot water storage tank 10 from the lower part of the hot water storage tank 10 through the pipe L11 due to the water supply pressure. Thereby, the water containing air is extruded from the upper part in the hot water storage tank 10 through the piping L31. And the control part 100 makes the opening degree of the hot water supply mixing valve V5 fully open at the hot water side, and the water containing air is discharged | emitted from the hot water supply part 26 via the piping L32. This completes the air venting operation.

上記第1実施形態の空気抜き動作によれば、制御部100によって、空気抜き動作中に、ポンプ入水三方弁V1(流路切り替え弁)が、第1の所定時間経過後に、追い焚き回路C3側から沸き上げ回路C1側に切り替えられるので、沸き上げ回路C1及び追い焚き回路C3での各配管内の空気抜きを、確実に且つ素早く実行できる。   According to the air venting operation of the first embodiment, the control unit 100 causes the pump inlet three-way valve V1 (flow path switching valve) to boil from the reheating circuit C3 side after the first predetermined time has elapsed during the air venting operation. Since it is switched to the raising circuit C1 side, the air venting in each pipe in the boiling circuit C1 and the reheating circuit C3 can be executed reliably and quickly.

図3,5,7及び9を参照しながら、上記構成の給湯装置WHにおける第2実施形態の空気抜き動作を説明する。   With reference to FIGS. 3, 5, 7 and 9, the air venting operation of the second embodiment in the water heater WH having the above-described configuration will be described.

据付完了後の試運転では、空気抜き動作を開始として、まず、貯湯タンク10内が水で満たされる。すなわち、逃がし弁28を開放した状態で、給水口からストレーナ11と逆止弁12と減圧弁V10とを介して貯湯タンク10の下側に水を供給して貯湯タンク10内を水で満たす。貯湯タンク10内が満水になって溢れ出た水は、逃がし弁28から外部に流出する。   In the test run after the completion of installation, the hot air tank 10 is first filled with water, starting with the air venting operation. That is, with the relief valve 28 opened, water is supplied from the water supply port to the lower side of the hot water storage tank 10 through the strainer 11, the check valve 12, and the pressure reducing valve V10 to fill the hot water storage tank 10 with water. The water overflowing when the hot water storage tank 10 is full flows out from the relief valve 28 to the outside.

その後、逃がし弁28を閉じて、図5に示すように、制御部100は、ポンプ入水三方弁V1の入力側を追い焚き回路C3側(他方の位置の配管L2側)に切り換え(ステップS21)、沸き上げ用循環ポンプP1をオンにして(ステップS22)、沸き上げ用循環ポンプP1を作動させる。貯湯タンク10内の水が追い焚き回路C3を介して循環することによって、追い焚き回路C3の空気抜き動作が実行される。この空気抜き動作では、水は、配管L21,湯張り混合弁V4,配管L22の一部,分岐配管L25,風呂熱交換器20(1次側),配管L26,ポンプ入水三方弁V1,配管L2,バイパス弁V2,配管L6,配管L4の一部,沸き上げ三方弁V3及び配管L7を流れる。その結果、追い焚き回路C3の配管内にあった空気は、貯湯タンク10の上部に溜まる。   Thereafter, the relief valve 28 is closed, and the control unit 100 switches the input side of the pump water three-way valve V1 to the retreat circuit C3 side (the pipe L2 side at the other position) as shown in FIG. 5 (step S21). Then, the boiling circulation pump P1 is turned on (step S22), and the boiling circulation pump P1 is operated. As the water in the hot water storage tank 10 circulates through the reheating circuit C3, the air removal operation of the reheating circuit C3 is executed. In this air venting operation, water is supplied from the pipe L21, the hot water mixing valve V4, a part of the pipe L22, the branch pipe L25, the bath heat exchanger 20 (primary side), the pipe L26, the pump inlet three-way valve V1, the pipe L2, and the like. It flows through a bypass valve V2, a pipe L6, a part of the pipe L4, a boiling three-way valve V3, and a pipe L7. As a result, the air that was in the piping of the reheating circuit C <b> 3 accumulates in the upper part of the hot water storage tank 10.

空気が追い焚き回路C3の配管内に残留している間は、沸き上げ用循環ポンプP1のポンプ負荷が小さいが、追い焚き回路C3の配管内から空気が抜けると、追い焚き回路C3の配管内が水だけで満たされるので、沸き上げ用循環ポンプP1のポンプ負荷が増加する。したがって、沸き上げ用循環ポンプP1のポンプ負荷が増加に転じたときは、追い焚き回路C3の配管内から空気が抜けたとみなすことができる。したがって、制御部100は、沸き上げ用循環ポンプP1のポンプ負荷が増加に転じたか否かを判定する(ステップS23)。   While the air remains in the piping of the reheating circuit C3, the pump load of the circulating pump P1 for boiling is small, but if air is discharged from the piping of the reheating circuit C3, Is filled only with water, the pump load of the circulating pump P1 for boiling increases. Therefore, when the pump load of the boiling circulation pump P1 starts to increase, it can be considered that air has escaped from the piping of the reheating circuit C3. Therefore, the control unit 100 determines whether or not the pump load of the boiling circulation pump P1 has started to increase (step S23).

制御部100は、沸き上げ用循環ポンプP1のポンプ負荷が増加したと判定すると、図3に示すように、制御部100は、ポンプ入水三方弁V1の入力側を沸き上げ回路C1側(一方の位置の配管L1側)に切り換える(ステップS24)。沸き上げ用循環ポンプP1の作動により、貯湯タンク10内の水が沸き上げ回路C1を介して循環して、沸き上げ回路C1の空気抜き動作を実行する。   When the control unit 100 determines that the pump load of the circulating pump P1 for boiling has increased, as shown in FIG. 3, the control unit 100 sets the input side of the pump inlet three-way valve V1 to the boiling circuit C1 side (one side). The position is switched to the pipe L1 side (step S24). By the operation of the boiling circulation pump P1, the water in the hot water storage tank 10 circulates through the boiling circuit C1, and the air venting operation of the boiling circuit C1 is executed.

空気が沸き上げ回路C1の配管内に残留している間は、沸き上げ用循環ポンプP1のポンプ負荷が小さいが、沸き上げ回路C1の配管内から空気が抜けると、沸き上げ回路C1の配管内が水だけで満たされるので、沸き上げ用循環ポンプP1のポンプ負荷が増加する。したがって、沸き上げ用循環ポンプP1のポンプ負荷が増加に転じたときは、沸き上げ回路C1の配管内から空気が抜けたとみなすことができる。したがって、制御部100は、沸き上げ用循環ポンプP1のポンプ負荷が増加に転じたか否かを判定する(ステップS25)。   While the air remains in the piping of the boiling circuit C1, the pump load of the circulating pump P1 for boiling is small, but if air is released from the piping of the boiling circuit C1, the inside of the piping of the boiling circuit C1 Is filled only with water, the pump load of the circulating pump P1 for boiling increases. Therefore, when the pump load of the boiling circulation pump P1 starts to increase, it can be considered that air has escaped from the piping of the boiling circuit C1. Therefore, the control unit 100 determines whether or not the pump load of the boiling circulation pump P1 has started to increase (step S25).

制御部100は、沸き上げ用循環ポンプP1のポンプ負荷が増加したと判定すると、制御部100は、沸き上げ用循環ポンプP1をオフにする(ステップS26)。この空気抜き動作では、水は、配管L1,ポンプ入水三方弁V1,配管L2,配管L3,沸き上げ熱交換器2a,配管L4,沸き上げ三方弁V3,配管L5及び貯湯タンク10を流れる。その結果、沸き上げ回路C1の配管内にあった空気は、貯湯タンク10の上部に溜まる。   When the control unit 100 determines that the pump load of the boiling circulation pump P1 has increased, the control unit 100 turns off the boiling circulation pump P1 (step S26). In this air venting operation, water flows through the pipe L1, the pump inlet three-way valve V1, the pipe L2, the pipe L3, the boiling heat exchanger 2a, the pipe L4, the boiling three-way valve V3, the pipe L5, and the hot water storage tank 10. As a result, the air that was in the piping of the boiling circuit C <b> 1 accumulates in the upper part of the hot water storage tank 10.

このように、追い焚き回路C3及び沸き上げ回路C1に対して空気抜き動作を実行することによって、追い焚き回路C3及び沸き上げ回路C1の各配管内に残留していた空気は、貯湯タンク10の上部に集められる。   As described above, by performing the air venting operation on the reheating circuit C3 and the boiling circuit C1, the air remaining in each pipe of the reheating circuit C3 and the boiling circuit C1 is transferred to the upper part of the hot water storage tank 10. To be collected.

その後、図7に示す給湯回路C5に従って、貯湯タンク10の上部に溜まった空気を含む水が排出される。すなわち、給湯部26の蛇口を開くと、給水圧力により給水口からの水が配管L11を介して貯湯タンク10の下部から貯湯タンク10内に供給される。これにより、貯湯タンク10内の上部から空気を含む水が配管L31を介して押し出される。そして、制御部100は、給湯混合弁V5の開度を湯側全開として、配管L32を介して給湯部26から空気を含む水が排出される。これによって、空気抜き動作が終了する。   Thereafter, according to the hot water supply circuit C5 shown in FIG. 7, water containing air accumulated in the upper part of the hot water storage tank 10 is discharged. That is, when the faucet of the hot water supply unit 26 is opened, water from the water supply port is supplied into the hot water storage tank 10 from the lower part of the hot water storage tank 10 through the pipe L11 due to the water supply pressure. Thereby, the water containing air is extruded from the upper part in the hot water storage tank 10 through the piping L31. And the control part 100 makes the opening degree of the hot water supply mixing valve V5 fully open at the hot water side, and the water containing air is discharged | emitted from the hot water supply part 26 via the piping L32. This completes the air venting operation.

上記第2実施形態の空気抜き動作によれば、制御部100によって、空気抜き動作中に、ポンプ入水三方弁V1(流路切り替え弁)が、ポンプ負荷の増加判定により、沸き上げ回路C1側と追い焚き回路C3側とに切り替えられるので、沸き上げ回路C1側及び追い焚き回路C3での各配管内の空気抜きを、確実に且つ素早く実行できる。   According to the air venting operation of the second embodiment, the control unit 100 causes the pump inlet three-way valve V1 (flow path switching valve) to catch up with the boiling circuit C1 side by the pump load increase determination during the air venting operation. Since it is switched to the circuit C3 side, the air venting in each pipe on the boiling circuit C1 side and the reheating circuit C3 can be executed reliably and quickly.

現場での設置条件によって沸き上げ回路C1側の配管長が変動して残留空気量が相違するため、ポンプ入水三方弁V1(流路切り替え弁)の切り替えのタイミングが個々の現場で異なる。上記第2実施形態の空気抜き動作によれば、最適なタイミングでポンプ入水三方弁V1を切り替えて短時間で空気抜き動作を完了できる。   Since the piping length on the boiling circuit C1 side varies depending on the installation conditions at the site and the residual air amount is different, the timing of switching the pump inlet three-way valve V1 (flow path switching valve) is different at each site. According to the air venting operation of the second embodiment, the air venting operation can be completed in a short time by switching the pump water three-way valve V1 at an optimal timing.

この発明の具体的な実施の形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.

上記空気抜き動作において、貯湯タンク10の上部に溜まった空気を含む水が、図7に示す給湯回路C5に従って給湯部26から排出されるだけでなく、図4に示す風呂給湯回路C2に従って接続アダプタ9から浴槽3に排出されてもよい。このとき、風呂給湯回路C2において、制御部100によって、湯張り混合弁V4の開度が湯側全開にされる。   In the air venting operation, the water containing the air accumulated in the upper part of the hot water storage tank 10 is not only discharged from the hot water supply unit 26 according to the hot water supply circuit C5 shown in FIG. 7, but also connected according to the bath hot water supply circuit C2 shown in FIG. May be discharged to the bathtub 3. At this time, in the bath hot water supply circuit C2, the opening degree of the hot water mixing valve V4 is fully opened by the control unit 100.

上記第1実施形態の空気抜き動作では、第1の所定時間経過後にポンプ入水三方弁V1(流路切り替え弁)を追い焚き回路C3側から沸き上げ回路C1側に1回切り替えているが、ポンプ入水三方弁V1(流路切り替え弁)の切り替えを第1の所定時間及び第2の所定時間よりも短い時間で複数回行う態様とすることもできる。   In the air venting operation of the first embodiment, the pump water three-way valve V1 (flow path switching valve) is switched once from the reheating circuit C3 side to the boiling circuit C1 side after the first predetermined time has elapsed. The three-way valve V1 (flow path switching valve) can be switched a plurality of times in a time shorter than the first predetermined time and the second predetermined time.

また、制御部100によって、空気抜き動作中に、ポンプ入水三方弁V1(流路切り替え弁)が、先に沸き上げ回路C1側に切り替えられ、その後に追い焚き回路C3側に切り替えられるように制御される態様とすることもできる。   Further, the control unit 100 controls the pump inlet three-way valve V1 (flow path switching valve) to be switched first to the boiling circuit C1 side and then to the reheating circuit C3 side during the air venting operation. It can also be set as an aspect.

上記空気抜き動作は、給湯装置WHの据付による試運転時に限られない。例えば、給湯装置WHを長期間使用しないために、逃がし弁28を開放状態にした状態で排水用二方弁27を排水側にすることにより貯湯タンク10内の水を全て排出し、その後貯湯タンク10内を再び満水にするときにも上記空気抜き動作が適用される。   The air venting operation is not limited to a trial operation by installing the water heater WH. For example, in order not to use the hot water supply device WH for a long period of time, all the water in the hot water storage tank 10 is discharged by setting the two-way drain valve 27 to the drain side with the relief valve 28 open, and then the hot water storage tank The above-described air venting operation is also applied when the interior of 10 is filled again.

空気抜き動作中に、沸き上げ回路側と追い焚き回路側とに切り替える流路切り替え弁は、三方弁に限られず、2つの二方弁を組み合わせた構成、1つの四方弁などとすることができる。   The flow path switching valve that switches between the boiling circuit side and the reheating circuit side during the air venting operation is not limited to a three-way valve, and may be configured by combining two two-way valves, one four-way valve, or the like.

熱源としてヒートポンプユニット2を用いた構成を説明したが、熱源はこれに限らず、ヒータやボイラーなどの他の熱源により、貯湯ユニット1の貯湯タンク10内の湯水を沸き上げる構成でもよい。   Although the configuration using the heat pump unit 2 as the heat source has been described, the heat source is not limited to this, and the configuration may be such that the hot water in the hot water storage tank 10 of the hot water storage unit 1 is boiled by another heat source such as a heater or a boiler.

1…貯湯ユニット
2…ヒートポンプユニット
2a…沸き上げ熱交換器
3…浴槽
5,7,12,21,22,23,24…逆止弁
6,25…水量センサ
9…接続アダプタ
9a…給湯口
9b…吸水口
10…貯湯タンク
11…ストレーナ
20…風呂熱交換器
26…給湯部
27…排水用二方弁
28…逃がし弁
30…複合水弁
100…制御部
200…リモートコントローラ
C1…沸き上げ回路
C2…風呂給湯回路
C3…追い焚き回路
C4…風呂冷却回路
C5…給湯回路
C6…風呂循環回路
L1…配管
L2…配管(共通配管部)
L3〜L7,L11…配管
L12〜L13,L23,L25…分岐配管
L21〜L22,L24,L26〜L27…配管
L31,L32,L41…配管
L42…排水配管
LS…水位センサ
P1…沸き上げ用循環ポンプ(循環ポンプ)
P2…風呂用循環ポンプ
SW…水流スイッチ
T1〜T6,T11〜T14…温度センサ
T21…入水温度センサ
T22…出湯温度センサ
T23…外気温度センサ
V1…ポンプ入水三方弁(流路切り替え弁)
V2…バイパス弁
V3…沸き上げ三方弁
V4…湯張り混合弁
V5…給湯混合弁
V6…湯張り電磁弁
V10…減圧弁
WH…給湯装置
DESCRIPTION OF SYMBOLS 1 ... Hot water storage unit 2 ... Heat pump unit 2a ... Boiling heat exchanger 3 ... Bathtub 5, 7, 12, 21, 22, 23, 24 ... Check valve 6,25 ... Water quantity sensor 9 ... Connection adapter 9a ... Hot water supply port 9b DESCRIPTION OF SYMBOLS ... Water inlet 10 ... Hot water storage tank 11 ... Strainer 20 ... Bath heat exchanger 26 ... Hot water supply part 27 ... Two-way valve for drainage 28 ... Relief valve 30 ... Compound water valve 100 ... Control part 200 ... Remote controller C1 ... Boiling circuit C2 ... Bath hot water supply circuit C3 ... Reheating circuit C4 ... Bath cooling circuit C5 ... Hot water supply circuit C6 ... Bath circulation circuit L1 ... Piping L2 ... Piping (common piping)
L3 to L7, L11 ... piping L12 to L13, L23, L25 ... branch piping L21 to L22, L24, L26 to L27 ... piping L31, L32, L41 ... piping L42 ... drainage piping LS ... water level sensor P1 ... circulating pump for boiling (Circulation pump)
P2 ... Bath circulation pump SW ... Water flow switch T1-T6, T11-T14 ... Temperature sensor T21 ... Incoming water temperature sensor T22 ... Outlet water temperature sensor T23 ... Outside air temperature sensor V1 ... Pump inflow three-way valve (flow path switching valve)
V2 ... Bypass valve V3 ... Boiling three-way valve V4 ... Hot water mixing valve V5 ... Hot water mixing valve V6 ... Hot water solenoid valve V10 ... Pressure reducing valve WH ... Hot water supply device

Claims (4)

貯湯タンク(10)と、
前記貯湯タンク(10)の下部から沸き上げ熱交換器(2a)を介して前記貯湯タンク(10)の上部に接続される沸き上げ回路(C1)と、
前記貯湯タンク(10)の上部から風呂熱交換器(20)を介して前記貯湯タンク(10)の下部に接続される追い焚き回路(C3)と、
前記沸き上げ回路(C1)と前記追い焚き回路(C3)とが部分的に共通する共通配管部(L2)に配設される循環ポンプ(P1)と、
前記共通配管部(L2)の上流側に配設される流路切り替え弁(V1)と、
前記流路切り替え弁(V1)を制御する制御部(100)とを備え、
前記制御部(100)は、空気抜き動作中に、前記流路切り替え弁(V1)を前記沸き上げ回路(C1)側と前記追い焚き回路(C3)側とに切り替えるように制御することを特徴とする給湯装置。
A hot water storage tank (10),
A boiling circuit (C1) connected from the lower part of the hot water storage tank (10) to the upper part of the hot water storage tank (10) via a boiling heat exchanger (2a);
A reheating circuit (C3) connected from the upper part of the hot water storage tank (10) to the lower part of the hot water storage tank (10) via a bath heat exchanger (20);
A circulation pump (P1) disposed in a common piping part (L2) in which the boiling circuit (C1) and the reheating circuit (C3) are partially common;
A flow path switching valve (V1) disposed on the upstream side of the common pipe section (L2);
A control unit (100) for controlling the flow path switching valve (V1),
The control unit (100) controls to switch the flow path switching valve (V1) between the boiling circuit (C1) side and the reheating circuit (C3) side during the air venting operation. Hot water supply device.
請求項1において、
前記制御部(100)は、前記空気抜き動作中に、前記流路切り替え弁(V1)を、前記追い焚き回路(C3)側に切り替えた後に、前記沸き上げ回路(C1)側に切り替えるように制御することを特徴とする給湯装置。
In claim 1,
The controller (100) controls the flow path switching valve (V1) to be switched to the reheating circuit (C1) side after switching the flow path switching valve (V1) to the reheating circuit (C3) side during the air venting operation. A hot water supply apparatus characterized by the above.
請求項1又は請求項2において、
前記制御部(100)は、前記空気抜き動作中に、前記循環ポンプ(P1)が最大の回転数で回転するように制御することを特徴とする給湯装置。
In claim 1 or claim 2,
The controller (100) controls the circulating pump (P1) to rotate at a maximum rotational speed during the air venting operation.
請求項1から請求項3のいずれか1項において、
前記制御部(100)は、前記空気抜き動作中に、前記循環ポンプ(P1)のポンプ負荷が増加に転じたときに前記流路切り替え弁(V1)が作動するように制御することを特徴とする給湯装置。
In any one of Claims 1-3,
The controller (100) controls the flow path switching valve (V1) to operate when the pump load of the circulation pump (P1) starts to increase during the air venting operation. Hot water supply device.
JP2016233155A 2016-11-30 2016-11-30 water heater Active JP7133286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016233155A JP7133286B2 (en) 2016-11-30 2016-11-30 water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233155A JP7133286B2 (en) 2016-11-30 2016-11-30 water heater

Publications (3)

Publication Number Publication Date
JP2018091513A true JP2018091513A (en) 2018-06-14
JP2018091513A5 JP2018091513A5 (en) 2018-07-26
JP7133286B2 JP7133286B2 (en) 2022-09-08

Family

ID=62565351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233155A Active JP7133286B2 (en) 2016-11-30 2016-11-30 water heater

Country Status (1)

Country Link
JP (1) JP7133286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945290A (en) * 2019-04-12 2019-06-28 李钦池 A kind of intelligent bathroom heater temperature equipment with heat storage function
JP2020112287A (en) * 2019-01-09 2020-07-27 三菱電機株式会社 Storage water heater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276031A (en) * 2008-05-19 2009-11-26 Toshiba Electric Appliance Co Ltd Hot water supply apparatus
JP2010078277A (en) * 2008-09-29 2010-04-08 Panasonic Corp Storage type water heater
JP2011012817A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Heat pump type water heater
JP2012184857A (en) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp Hot water storage type water heater
JP2013194983A (en) * 2012-03-19 2013-09-30 Yazaki Energy System Corp Solar heat utilization system and method of controlling pump rotating speed of the same
JP2014016077A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Hot water storage type hot water supply apparatus
JP2014020760A (en) * 2012-07-23 2014-02-03 Mitsubishi Electric Corp Hot water storage type water heater
JP2014190625A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Heat pump water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276031A (en) * 2008-05-19 2009-11-26 Toshiba Electric Appliance Co Ltd Hot water supply apparatus
JP2010078277A (en) * 2008-09-29 2010-04-08 Panasonic Corp Storage type water heater
JP2011012817A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Heat pump type water heater
JP2012184857A (en) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp Hot water storage type water heater
JP2013194983A (en) * 2012-03-19 2013-09-30 Yazaki Energy System Corp Solar heat utilization system and method of controlling pump rotating speed of the same
JP2014016077A (en) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp Hot water storage type hot water supply apparatus
JP2014020760A (en) * 2012-07-23 2014-02-03 Mitsubishi Electric Corp Hot water storage type water heater
JP2014190625A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Heat pump water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112287A (en) * 2019-01-09 2020-07-27 三菱電機株式会社 Storage water heater
JP7188093B2 (en) 2019-01-09 2022-12-13 三菱電機株式会社 Storage hot water heater
CN109945290A (en) * 2019-04-12 2019-06-28 李钦池 A kind of intelligent bathroom heater temperature equipment with heat storage function

Also Published As

Publication number Publication date
JP7133286B2 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
EP2839222A1 (en) Water delivery system and method for making hot water available in a domestic hot water installation
JP2018091513A (en) Water heater
JP7125001B2 (en) Hot water storage water heater
JP6094566B2 (en) Heat pump equipment
JP4933177B2 (en) Water heater
JP4375095B2 (en) Heat pump water heater
JP2013087998A (en) Water heater
JP2015194274A (en) water heater
JP6451723B2 (en) Water heater
JP6263446B2 (en) Water heater
JP6555237B2 (en) Water heater
JP5920390B2 (en) Water heater
JP2006349283A (en) Water heater
JP6974690B2 (en) Water heater
JP2011027320A (en) Storage water heater
JP5901312B2 (en) Hot water storage system
JP4710436B2 (en) Hot water supply control method for hot water circulation heater
JP5790735B2 (en) Water heater
JP2006336938A (en) Hot water heating device
JP5706304B2 (en) Hot water storage bath system
JP2018091521A (en) Hot water supply device
JP2005315505A (en) Electric water heater with reheating function, and method of controlling temperature of water in bathtub
JP5581650B2 (en) Hot water storage water heater
US20140230922A1 (en) System for stopping water flow in water use installations
JP6493369B2 (en) Water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220224

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220726

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220823

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7133286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150