JP2018091494A - Controller of cooling box, cooling box and control method of cooling box - Google Patents

Controller of cooling box, cooling box and control method of cooling box Download PDF

Info

Publication number
JP2018091494A
JP2018091494A JP2016232463A JP2016232463A JP2018091494A JP 2018091494 A JP2018091494 A JP 2018091494A JP 2016232463 A JP2016232463 A JP 2016232463A JP 2016232463 A JP2016232463 A JP 2016232463A JP 2018091494 A JP2018091494 A JP 2018091494A
Authority
JP
Japan
Prior art keywords
internal temperature
superheat degree
degree
superheat
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016232463A
Other languages
Japanese (ja)
Other versions
JP6781025B2 (en
Inventor
信行 木内
Nobuyuki Kiuchi
信行 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2016232463A priority Critical patent/JP6781025B2/en
Publication of JP2018091494A publication Critical patent/JP2018091494A/en
Application granted granted Critical
Publication of JP6781025B2 publication Critical patent/JP6781025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller of a cooling box capable of preventing liquid from backflowing, with change of an in-box temperature suppressed, and also provide a cooling box and a control method of a cooling box.SOLUTION: By executing overheating degree control based on an overheating degree SH detected by overheating degree detection means 7, change of the overheating degree SH can be quickly sensed, thereby preventing liquid from backflowing. In the overheating degree control, using an in-box temperature Tr detected during execution of in-box temperature control and a target overheating degree SH1 acquired based on the overheating degree SH, the in-box temperature Tr can be kept close to a target temperature Ts even in control based on the overheating degree SH, thereby suppressing change of the in-box temperature Tr.SELECTED DRAWING: Figure 2

Description

本発明は、冷却庫の制御装置、冷却庫、及び冷却庫の制御方法に関する。尚、冷却庫は、例えばショーケース等が挙げられる。   The present invention relates to a refrigerator control device, a refrigerator, and a refrigerator control method. An example of the refrigerator is a showcase.

一般に、冷凍ショーケースや冷蔵ショーケース等の冷却庫は、凝縮器で凝縮された冷媒を低圧化する膨張弁と、冷媒を液体から気体に状態変化させる蒸発器と、を備え、庫内温度が設定温度となるように、膨張弁の弁開度が制御される。   Generally, a refrigerator such as a refrigerated showcase or a refrigerated showcase includes an expansion valve that lowers the pressure of the refrigerant condensed in the condenser, and an evaporator that changes the state of the refrigerant from a liquid to a gas. The opening degree of the expansion valve is controlled so that the set temperature is reached.

このように膨張弁の弁開度を制御する方法として、蒸発器の過熱度および冷却庫の庫内温度を検出するとともに、プルダウン冷却時(除霜後の冷却時や室温からの冷却時)には過熱度に基づいて弁開度を制御し、定温冷却時には庫内温度に基づいて弁開度を制御する方法が提案されている(例えば、特許文献1参照)。特許文献1に記載された方法では、プルダウン冷却時には過熱度に基づく制御によって迅速に冷却し、その後、庫内温度に基づく制御によって庫内温度を一定に保つようにしている。   As a method for controlling the opening degree of the expansion valve in this way, the degree of superheat of the evaporator and the temperature inside the refrigerator are detected, and at the time of pull-down cooling (cooling after defrosting or cooling from room temperature) Has proposed a method of controlling the valve opening based on the degree of superheat and controlling the valve opening based on the internal temperature during constant temperature cooling (see, for example, Patent Document 1). In the method described in Patent Document 1, cooling is quickly performed by control based on the degree of superheat during pull-down cooling, and then the interior temperature is kept constant by control based on the interior temperature.

特開2016−80304号公報Japanese Patent Laid-Open No. 2006-80304

しかしながら、特許文献1に記載された制御方法では、定温冷却時に過熱度が変動した場合に適切に対応できないことがあった。即ち、過熱度が変化してから庫内温度が変化するまでにはタイムラグがあり、庫内温度に基づいて弁開度を制御していると、過熱度が変化してから庫内温度が変化した場合に、庫内温度に応じて弁開度を調節するまでに過熱度が大きく変化してしまう可能性があった。過熱度が小さすぎる状態では、蒸発器に過剰な冷媒が供給されており、液バックが発生するおそれがある。   However, the control method described in Patent Document 1 may not be able to appropriately cope with the case where the degree of superheat varies during constant temperature cooling. In other words, there is a time lag from when the degree of superheat changes until the inside temperature changes, and if the valve opening is controlled based on the inside temperature, the inside temperature changes after the degree of superheat changes. In such a case, there is a possibility that the degree of superheat changes greatly before the valve opening is adjusted according to the internal temperature. In a state where the degree of superheat is too small, excessive refrigerant is supplied to the evaporator, which may cause liquid back.

そこで、液バックを抑制するために、庫内温度一定制御を実施しつつ過熱度を監視し、過熱度が小さくなりすぎた場合には弁開度を小さくすることにより、液バックを抑制する方法が考えられる。しかしながら、このような方法では、液バックを抑制するために弁開度を小さくした際に、庫内温度が一時的に高くなってしまう。   Therefore, in order to suppress the liquid back, a method of suppressing the liquid back by monitoring the degree of superheat while carrying out constant temperature control of the interior, and reducing the valve opening when the degree of superheat becomes too small. Can be considered. However, in such a method, when the valve opening is reduced in order to suppress the liquid back, the inside temperature temporarily increases.

本発明の目的は、庫内温度の変化を抑制してより安定して制御しつつ液バックを発生しにくくすることができる冷却庫の制御装置、冷却庫、及び冷却庫の制御方法を提供することにある。   An object of the present invention is to provide a cooler control device, a cooler, and a cooler control method capable of making liquid back difficult to occur while suppressing a change in the internal temperature and controlling more stably. There is.

本発明の冷却庫の制御装置は、凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、を備えた冷却庫において、前記膨張弁の弁開度を制御する冷却庫の制御装置であって、前記弁開度の制御方法を切り換える切換手段と、前記蒸発器の目標過熱度を取得する取得手段と、を備え、前記庫内温度検出手段によって検出した庫内温度に基づいて、前記庫内温度が所定の目標温度となるように前記弁開度を制御する庫内温度制御を実施し、前記庫内温度制御の実施中に、前記庫内温度検出手段によって検出した庫内温度と、前記過熱度検出手段によって検出した過熱度と、の関係に基づいて前記取得手段によって目標過熱度を取得し、その後、前記切換手段によって、前記過熱度が前記目標過熱度となるように前記弁開度を制御する過熱度制御の実施に切り換えることを特徴とする。   The control apparatus for the refrigerator of the present invention includes an expansion valve that reduces the pressure of the refrigerant condensed in the condenser, an evaporator that changes the state of the refrigerant from a liquid to a gas, and a superheat degree that detects the superheat degree of the evaporator. In the refrigerator provided with the detection means and the internal temperature detection means for detecting the internal temperature, it is a control device for the cooler that controls the valve opening degree of the expansion valve, and the valve opening control method Switching means for switching between, and acquisition means for acquiring the target superheat degree of the evaporator, the internal temperature becomes a predetermined target temperature based on the internal temperature detected by the internal temperature detection means In this way, the internal temperature control for controlling the valve opening is performed, and the internal temperature detected by the internal temperature detection means during the execution of the internal temperature control, and the superheat detected by the superheat degree detection means Based on the relationship between the degree and the acquisition means. Gets the target degree of superheat Te, then by the switching means, the degree of superheat, characterized in that the switching in the practice of the superheat degree control for controlling the valve opening so that the target degree of superheat.

このような本発明によれば、検出した過熱度に基づく過熱度制御を実施することで、過熱度の変化に迅速に対応することができ、液バックを発生しにくくすることができる。このような過熱度制御において、目標過熱度として、庫内温度制御の実施中に検出した庫内温度と過熱度との関係に基づいて取得した値を用いることで、過熱度に基づく制御であっても、庫内温度を目標温度付近に保ちやすくすることができ、庫内温度の変化を抑制してより安定して制御することができる。尚、目標過熱度は、庫内温度制御における適宜なタイミングで取得すればよい。例えば、後述するように庫内温度が安定状態となった後に目標過熱度を取得してもよいし、庫内温度が安定する前に、庫内温度制御における庫内温度および過熱度の変化パターンに基づき、庫内温度が目標温度付近で安定するような過熱度を推定し、この過熱度を目標過熱度として取得してもよい。   According to the present invention as described above, by performing superheat degree control based on the detected superheat degree, it is possible to quickly cope with a change in the superheat degree, and to make it difficult for liquid back to occur. In such superheat control, the value obtained based on the relationship between the internal temperature detected during the execution of the internal temperature control and the superheat degree is used as the target superheat degree. However, the internal temperature can be easily maintained in the vicinity of the target temperature, and the change in the internal temperature can be suppressed and more stable control can be performed. In addition, what is necessary is just to acquire target superheat degree at the appropriate timing in internal temperature control. For example, as will be described later, the target superheat degree may be acquired after the internal temperature becomes stable, or the internal temperature and superheat degree change pattern in the internal temperature control before the internal temperature is stabilized. Based on the above, it is possible to estimate the degree of superheat such that the internal temperature stabilizes near the target temperature, and obtain this degree of superheat as the target degree of superheat.

この際、本発明の冷却庫の制御装置では、前記庫内温度が安定状態となったか否かを判断する判断手段をさらに備え、前記判断手段によって前記庫内温度が安定状態となったことを判断した後に、前記取得手段によって前記目標過熱度を取得することが好ましい。   At this time, the control device for the refrigerator of the present invention further includes a determination unit that determines whether or not the internal temperature is in a stable state, and that the internal temperature has been stabilized by the determination unit. After the determination, it is preferable to acquire the target superheat degree by the acquisition means.

このような構成によれば、庫内温度が安定状態となったことを判断した後に目標過熱度を取得する。即ち、庫内温度が目標温度付近で安定した後に目標過熱度を取得することで、適切な目標過熱度とすることができる。従って、過熱度制御時に庫内温度を目標温度付近に保ちやすくすることができる。尚、庫内温度が安定状態となったか否かは、例えば所定時間範囲における庫内温度と目標温度との差の最大値が、所定の値よりも小さいか否かに基づいて判定してもよいし、庫内温度制御を開始してからの経過時間に基づいて判定してもよいし、温度差の最大値の評価と経過時間の評価とを組み合わせて判定してもよい。   According to such a configuration, the target superheat degree is acquired after determining that the internal temperature is in a stable state. That is, an appropriate target superheat degree can be obtained by acquiring the target superheat degree after the inside temperature is stabilized near the target temperature. Therefore, it is possible to easily keep the internal temperature near the target temperature during superheat control. Note that whether or not the internal temperature has become stable may be determined based on, for example, whether the maximum value of the difference between the internal temperature and the target temperature in a predetermined time range is smaller than a predetermined value. Alternatively, the determination may be made based on the elapsed time from the start of the internal temperature control, or may be determined by combining the evaluation of the maximum value of the temperature difference and the evaluation of the elapsed time.

また、本発明の冷却庫の制御装置では、前記取得手段は、前記目標過熱度として、前記判断手段によって前記庫内温度が安定状態となったと判断した時点以前の所定の時間範囲における過熱度に基づく庫内温度安定過熱度を取得することが好ましい。このような構成によれば、所定の時間範囲における過熱度に基づく庫内温度安定過熱度(例えばこの時間範囲における過熱度の平均値)を目標過熱度とすることで、一時点において検出した過熱度を目標過熱度とする構成と比較して、検出誤差の影響を少なくしてより適切な目標過熱度とすることができる。   Moreover, in the control apparatus for the refrigerator of the present invention, the acquisition unit sets the degree of superheat in a predetermined time range before the time when the determination unit determines that the internal temperature has become stable as the target degree of superheat. It is preferable to acquire the internal temperature stable superheat degree based on. According to such a configuration, the internal temperature stable superheat degree based on the superheat degree in a predetermined time range (for example, the average value of the superheat degree in this time range) is set as the target superheat degree, and the overheat detected at a temporary point is detected. Compared with the configuration in which the degree is the target superheat degree, the influence of the detection error can be reduced and the target superheat degree can be made more appropriate.

また、本発明の冷却庫の制御装置では、前記取得手段は、前記目標過熱度として、前記判断手段によって前記庫内温度が安定状態となったと判断した時点の過熱度である庫内温度安定過熱度を取得してもよい。このような構成によれば、上記のように所定の時間範囲における過熱度に基づいて目標過熱度を取得する構成と比較して、平均値等を算出する必要がなく、目標過熱度を容易に取得することができる。   Moreover, in the control apparatus for a refrigerator according to the present invention, the acquisition unit is an internal temperature stable overheat that is a degree of superheat when the determination unit determines that the internal temperature is in a stable state as the target superheat degree. You may get the degree. According to such a configuration, it is not necessary to calculate an average value or the like as compared with the configuration in which the target superheat degree is acquired based on the superheat degree in a predetermined time range as described above, and the target superheat degree can be easily obtained. Can be acquired.

また、本発明の冷却庫は、凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、上記に記載された冷却庫の制御装置と、を備えることを特徴とする。   Further, the refrigerator of the present invention includes an expansion valve that reduces the pressure of the refrigerant condensed in the condenser, an evaporator that changes the state of the refrigerant from liquid to gas, and superheat detection that detects the superheat of the evaporator. It is characterized by comprising a means, an internal temperature detecting means for detecting the internal temperature, and the control device for the cooling compartment described above.

このような本発明によれば、上記のように庫内温度の変化を抑制してより安定して制御しつつ液バックを発生しにくくすることができる。   According to the present invention as described above, it is possible to prevent the occurrence of liquid back while suppressing the change in the internal temperature as described above and performing more stable control.

また、本発明の冷却庫の制御方法は、凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、を備えた冷却庫において、前記膨張弁の弁開度を制御する冷却庫の制御方法であって、前記庫内温度検出手段によって検出した庫内温度に基づいて、前記庫内温度が所定の目標温度となるように前記弁開度を制御する庫内温度制御を実施し、前記庫内温度制御の実施中に、前記庫内温度検出手段によって検出した庫内温度と、前記過熱度検出手段によって検出した過熱度と、の関係に基づいて目標過熱度を取得し、その後、前記過熱度が前記目標過熱度となるように前記弁開度を制御する過熱度制御の実施に切り換えることを特徴とする。   Further, the control method of the refrigerator of the present invention includes an expansion valve for reducing the pressure of the refrigerant condensed in the condenser, an evaporator for changing the state of the refrigerant from a liquid to a gas, and detecting the degree of superheat of the evaporator. In a refrigerator having a superheat degree detection means and an internal temperature detection means for detecting an internal temperature, a control method of the refrigerator for controlling the valve opening degree of the expansion valve, the internal temperature detection Based on the internal temperature detected by the means, the internal temperature control is performed to control the valve opening degree so that the internal temperature becomes a predetermined target temperature, and during the execution of the internal temperature control, The target superheat degree is acquired based on the relationship between the internal temperature detected by the internal temperature detection means and the superheat degree detected by the superheat degree detection means, and then the superheat degree becomes the target superheat degree. In order to control the degree of valve opening, And wherein the frog.

このような本発明によれば、上記のように庫内温度の変化を抑制してより安定して制御しつつ液バックを発生しにくくすることができる。   According to the present invention as described above, it is possible to prevent the occurrence of liquid back while suppressing the change in the internal temperature as described above and performing more stable control.

本発明の冷却庫の制御装置によれば、庫内温度制御の実施中に検出した庫内温度と過熱度との関係に基づいて目標過熱度を取得した後に、過熱度制御の実施に切り換えることで、庫内温度の変化を抑制してより安定して制御しつつ液バックを発生しにくくすることができる。   According to the cooler control device of the present invention, after acquiring the target superheat degree based on the relationship between the internal temperature detected during the execution of the internal temperature control and the superheat degree, switching to the superheat degree control is performed. Thus, it is possible to make it difficult for the liquid back to occur while suppressing the change in the internal temperature and performing more stable control.

本発明の実施形態に係る冷却庫を示す断面図である。It is sectional drawing which shows the refrigerator which concerns on embodiment of this invention. 前記冷却庫の制御装置が実行する冷却処理の一例を示すフローチャートである。It is a flowchart which shows an example of the cooling process which the control apparatus of the said cooler performs. 前記制御装置が前記冷却処理を実行した際の庫内温度の変化の一例を示すグラフである。It is a graph which shows an example of the change of the internal temperature when the said control apparatus performs the said cooling process.

以下、本発明の実施形態を図面に基づいて説明する。本実施形態の冷却庫1は、スーパーマーケットやコンビニエンスストア等の店舗に設置されて生鮮食品等の商品を収容しつつ冷蔵又は冷凍するショーケースであって、図1に示すように、ケース本体2と、除霜ヒータ3と、冷凍サイクルの庫内ユニット4と、ファン5と、制御装置6と、過熱度検出手段7と、庫内温度検出手段8と、を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The refrigerator 1 according to the present embodiment is a showcase that is installed in a store such as a supermarket or a convenience store and that stores refrigerated or frozen foods such as fresh foods. As shown in FIG. , A defrosting heater 3, a refrigeration cycle internal unit 4, a fan 5, a control device 6, a superheat degree detection means 7, and an internal temperature detection means 8.

ケース本体2は、商品を収容するための収容空間2Aを形成する。ケース本体2は、収容空間2A内に設けられて商品が載置される陳列棚21と、制御装置6を収容する電装ボックス22と、を有する。本実施形態では、電装ボックス22が収容空間2Aの下方側に設けられるものとするが、電装ボックスが収容空間の上方側に設けられてもよい。陳列棚21の下面には、収容空間2Aを照明するための庫内灯が設けられている。   The case main body 2 forms an accommodation space 2A for accommodating a product. The case body 2 includes a display shelf 21 provided in the accommodation space 2 </ b> A on which products are placed, and an electrical box 22 that accommodates the control device 6. In the present embodiment, the electrical box 22 is provided on the lower side of the accommodation space 2A, but the electrical box may be provided on the upper side of the accommodation space. An interior lamp for illuminating the accommodation space 2 </ b> A is provided on the lower surface of the display shelf 21.

庫内ユニット4は、冷媒が流れる配管41と、配管41に設けられる膨張弁42と、蒸発器43と、を有するとともに、屋外の冷凍機に接続される。屋外の冷凍機の凝縮器で凝縮されて液体となった冷媒が、膨張弁42によって低圧化されることで低温となり、このような低温且つ液体の冷媒を、蒸発器43によって気体に状態変化させる。ファン5によって収容空間2Aの空気を蒸発器43に向けて送り込むことにより、この空気が蒸発器43によって冷却される。この空気が再び収容空間2Aに戻ることにより、収容空間2Aが冷却される。蒸発器43を通過した冷媒は、屋外の冷凍機に流れ込み、再び凝縮されて庫内ユニット4に送り込まれる。   The internal unit 4 includes a pipe 41 through which a refrigerant flows, an expansion valve 42 provided in the pipe 41, and an evaporator 43, and is connected to an outdoor refrigerator. The refrigerant that has been condensed into a liquid by the condenser of the outdoor refrigerator is reduced in pressure by being reduced in pressure by the expansion valve 42, and the state of the low-temperature and liquid refrigerant is changed to a gas by the evaporator 43. . By sending the air in the accommodation space 2 </ b> A toward the evaporator 43 by the fan 5, the air is cooled by the evaporator 43. The air returns to the accommodation space 2A again, whereby the accommodation space 2A is cooled. The refrigerant that has passed through the evaporator 43 flows into the outdoor refrigerator, is condensed again, and is sent to the internal unit 4.

このような庫内ユニット4において、膨張弁42の弁開度を調節することにより、蒸発器43に流れ込む冷媒の量が増減し、冷却能力が変化する。即ち、弁開度を大きくすることで収容空間2Aがより冷却されて庫内温度が低下し、弁開度を小さくすることで収容空間2Aが冷却されにくくなり庫内温度が上昇する。   In such an in-compartment unit 4, by adjusting the valve opening degree of the expansion valve 42, the amount of refrigerant flowing into the evaporator 43 increases or decreases, and the cooling capacity changes. That is, by increasing the valve opening, the storage space 2A is further cooled and the internal temperature is lowered, and by reducing the valve opening, the storage space 2A is hardly cooled and the internal temperature is increased.

尚、本実施形態のショーケース1は、冷凍サイクルの圧縮機および凝縮器が外部(屋外等)に設置されたいわゆる別置型ショーケースであるものとしたが、圧縮機および凝縮器が内蔵されたいわゆる内蔵型ショーケースとしてもよい。   The showcase 1 of the present embodiment is a so-called separate type showcase in which the compressor and the condenser of the refrigeration cycle are installed outside (outdoors etc.), but the compressor and the condenser are built in. A so-called built-in showcase may be used.

制御装置6は、過熱度検出手段7および庫内温度検出手段8から信号を受信するとともに、後述するように膨張弁42の弁開度を制御するものであって、取得手段と、切換手段と、判断手段と、を備える。尚、制御装置6は例えばCPU(中央演算処理装置)等の制御部と記憶部とを有し、制御部が取得手段、切換手段、及び判断手段として機能すればよい。また、制御手段6は、膨張弁42だけでなく、例えば除霜ヒータ3やファン5、庫内灯等の他の制御対象も制御するものであってもよい。   The control device 6 receives signals from the superheat degree detection means 7 and the internal temperature detection means 8 and controls the valve opening of the expansion valve 42 as will be described later, and includes an acquisition means, a switching means, And determination means. The control device 6 includes a control unit such as a CPU (Central Processing Unit) and a storage unit, and the control unit may function as an acquisition unit, a switching unit, and a determination unit. Further, the control means 6 may control not only the expansion valve 42 but also other control objects such as the defrost heater 3, the fan 5, and the interior lamp.

過熱度検出手段7は、蒸発器43の過熱度を検出するものであって、蒸発器43の入口側における冷媒の温度(蒸発温度)を検出する入口配管温度センサ71と、蒸発器43の出口側における冷媒の温度(戻り配管温度)を検出する出口配管温度センサ72と、によって構成されている。戻り配管温度から蒸発温度を減じることにより、蒸発器43の過熱度が算出される。尚、過熱度検出手段は、冷媒の圧力に基づいて過熱度を検出してもよい。即ち、入口配管温度センサ71に代えて冷媒の圧力を検出する圧力センサを設け、検出した低圧圧力を飽和温度換算した値を蒸発温度として、蒸発器43の過熱度を算出してもよい。過熱度検出手段7は、検出した過熱度を信号として制御装置6に伝える。   The superheat degree detection means 7 detects the superheat degree of the evaporator 43, and includes an inlet pipe temperature sensor 71 that detects the refrigerant temperature (evaporation temperature) on the inlet side of the evaporator 43, and an outlet of the evaporator 43. And an outlet pipe temperature sensor 72 for detecting the refrigerant temperature (return pipe temperature) on the side. By subtracting the evaporation temperature from the return pipe temperature, the degree of superheat of the evaporator 43 is calculated. The superheat degree detecting means may detect the superheat degree based on the pressure of the refrigerant. That is, instead of the inlet pipe temperature sensor 71, a pressure sensor that detects the pressure of the refrigerant may be provided, and the degree of superheat of the evaporator 43 may be calculated using the value obtained by converting the detected low-pressure pressure as a saturation temperature as the evaporation temperature. The superheat degree detection means 7 transmits the detected superheat degree to the control device 6 as a signal.

庫内温度検出手段8は、庫内温度(収容空間2Aの温度)を検出するものであって、ケース本体2における収容空間2Aへの吹き出し口23に設けられて吹き出し温度を検出する吹き出し口温度センサ81と、ケース本体2における収容空間2Aから蒸発器43側への吸い込み口24に設けられて吸い込み温度を検出する吸い込み口温度センサ82と、によって構成される。例えば吹き出し温度と吸い込み温度との平均温度を庫内温度とすればよい。尚、収容空間2Aの形状や大きさに応じて、吹き出し温度と吸い込み温度との一方にオフセットを加えて庫内温度を算出してもよい。また、庫内温度検出手段は、吹き出し口温度センサと吸い込み口温度センサとのいずれか一方のみによって構成されていてもよい。庫内温度検出手段8は、検出した庫内温度を信号として制御装置6に伝える。   The internal temperature detection means 8 detects the internal temperature (temperature of the accommodating space 2A), and is provided at the outlet 23 to the accommodating space 2A in the case body 2 to detect the outlet temperature. The sensor 81 and the suction port temperature sensor 82 that is provided in the suction port 24 from the accommodation space 2A to the evaporator 43 side in the case body 2 and detects the suction temperature are configured. For example, the average temperature of the blowing temperature and the suction temperature may be set as the internal temperature. Note that the internal temperature may be calculated by adding an offset to one of the blowing temperature and the suction temperature according to the shape and size of the accommodation space 2A. Moreover, the inside temperature detection means may be configured by only one of the outlet temperature sensor and the inlet temperature sensor. The internal temperature detection means 8 transmits the detected internal temperature to the control device 6 as a signal.

ここで、制御装置6の制御部によって膨張弁42の弁開度を制御して庫内温度を調節する方法の一例について説明する。尚、以下では制御装置6の制御部が所定のパラメータについてフィードバック制御を行うが、この際、例えばPID制御等の適宜な制御を行えばよい。   Here, an example of a method for adjusting the internal temperature by controlling the valve opening degree of the expansion valve 42 by the control unit of the control device 6 will be described. In the following, the control unit of the control device 6 performs feedback control for a predetermined parameter, but at this time, for example, appropriate control such as PID control may be performed.

除霜ヒータ3による除霜後や、庫内温度が室温となっている状態から冷却を開始する場合、制御装置6の制御部は、図2のフローチャートに示すような冷却処理を開始する。冷却処理において、制御装置6の制御部は、まず、所定の時間だけ所定の弁開度で膨張弁42を開放する(ステップS1)。このときの弁開度は、所定値以上であればよく、100%であってもよいし、100%未満であってもよい。所定の時間が経過したら、制御装置6の制御部は、過熱度検出手段7によって検出した過熱度SHに基づいて弁開度を制御する(ステップS2)。即ち、過熱度SHがプルダウン過熱度SH0となるように弁開度を制御する。これにより、蒸発器43を効率よく冷やすようにして庫内温度を急速に低下させる。   When the cooling is started after the defrosting by the defrosting heater 3 or when the inside temperature is at room temperature, the control unit of the control device 6 starts the cooling process as shown in the flowchart of FIG. In the cooling process, the control unit of the control device 6 first opens the expansion valve 42 at a predetermined valve opening for a predetermined time (step S1). The valve opening degree at this time should just be more than predetermined value, and may be 100% and may be less than 100%. When the predetermined time has elapsed, the control unit of the control device 6 controls the valve opening based on the superheat degree SH detected by the superheat degree detection means 7 (step S2). That is, the valve opening degree is controlled so that the superheat degree SH becomes the pull-down superheat degree SH0. As a result, the internal temperature is rapidly lowered so that the evaporator 43 is efficiently cooled.

制御装置6の制御部は、庫内温度検出手段8によって検出した庫内温度Trが目標温度Ts以下となったか否かを判定する(ステップS3)。尚、目標温度Tsは、庫内温度の設定温度であって、予め定められた数値が制御装置6に記憶されていてもよいし、ユーザーが入力してもよい。制御装置6の制御部は、このようなステップS1〜S3においてプルダウン冷却を行う。   The control unit of the control device 6 determines whether or not the internal temperature Tr detected by the internal temperature detection means 8 has become equal to or lower than the target temperature Ts (step S3). The target temperature Ts is a set temperature of the internal temperature, and a predetermined numerical value may be stored in the control device 6 or may be input by the user. The control unit of the control device 6 performs pull-down cooling in such steps S1 to S3.

庫内温度Trが目標温度Ts以下になった場合(ステップS3でY)、制御装置6の制御部は、庫内温度検出手段8によって検出した庫内温度Trに基づいて庫内温度Trが目標温度Tsとなるように弁開度を制御する庫内温度制御を実施する(ステップS4)。一方、庫内温度Trが目標温度Tsよりも高い場合(ステップS3でN)、制御装置6の制御部はステップS2に戻って過熱度に基づく制御を継続し、ステップS3にて再び庫内温度Trについて判定する。   When the internal temperature Tr becomes equal to or lower than the target temperature Ts (Y in step S3), the control unit of the control device 6 sets the internal temperature Tr to the target based on the internal temperature Tr detected by the internal temperature detection means 8. The internal temperature control for controlling the valve opening so as to be the temperature Ts is performed (step S4). On the other hand, when the internal temperature Tr is higher than the target temperature Ts (N in step S3), the control unit of the control device 6 returns to step S2 and continues the control based on the degree of superheat, and the internal temperature again in step S3. Judge about Tr.

制御装置6の制御部は、ステップS4の後、庫内温度Trが安定状態となったか否かを判定する(ステップS5)。即ち、制御装置6の制御部が判断手段として機能する。具体的には、所定時間範囲における庫内温度と目標温度との差の最大値を記憶部に記憶するとともに、この最大値が所定の値よりも小さい場合には庫内温度Trが安定状態となったと判断し、所定の値以下の場合には安定状態となっていないと判断する。尚、庫内温度制御を開始してから所定の時間が経過した場合に庫内温度Trが安定状態となったと判断してもよい。また、所定時間範囲における庫内温度と目標温度との差の最大値が所定の値よりも小さく、且つ、庫内温度制御を開始してから所定の時間が経過した場合に、庫内温度Trが安定状態となったと判断してもよい。   After step S4, the control unit of the control device 6 determines whether or not the internal temperature Tr is in a stable state (step S5). That is, the control unit of the control device 6 functions as a determination unit. Specifically, the maximum value of the difference between the internal temperature and the target temperature in the predetermined time range is stored in the storage unit, and when the maximum value is smaller than the predetermined value, the internal temperature Tr is in a stable state. If it is less than a predetermined value, it is determined that the stable state has not been reached. It should be noted that the internal temperature Tr may be determined to be stable when a predetermined time has elapsed since the internal temperature control was started. Further, when the maximum value of the difference between the internal temperature and the target temperature in the predetermined time range is smaller than the predetermined value and the predetermined time has elapsed since the internal temperature control was started, the internal temperature Tr May be determined to be in a stable state.

庫内温度Trが安定状態となった場合(ステップS5でY)、制御装置6の制御部は、目標過熱度SH1を取得する(ステップS6)。即ち、制御装置6の制御部が取得手段として機能する。このとき、庫内温度Trが安定状態となったと判断した時点以前の所定の時間範囲における過熱度SHの平均値を庫内安定過熱度とし、この庫内安定過熱度を目標過熱度SH1として取得する。尚、庫内温度Trが安定状態となったと判断した時点の過熱度SHを庫内安定過熱度とし、この庫内安定過熱度を目標過熱度SH1として取得してもよい。一方、庫内温度Trが安定状態とならない場合、制御装置6はステップS4に戻って庫内温度制御を継続し、ステップS5にて再び庫内温度Trについて判定する。   When the internal temperature Tr is in a stable state (Y in Step S5), the control unit of the control device 6 acquires the target superheat degree SH1 (Step S6). That is, the control unit of the control device 6 functions as an acquisition unit. At this time, the average value of the superheat degree SH in a predetermined time range before the time when it is determined that the internal temperature Tr is in a stable state is set as the internal stable superheat degree, and the internal stable superheat degree is acquired as the target superheat degree SH1. To do. Note that the degree of superheat SH at the time when it is determined that the internal temperature Tr is in a stable state may be used as the internal stable superheat degree, and this internal stable superheat degree may be acquired as the target superheat degree SH1. On the other hand, when the internal temperature Tr is not in a stable state, the control device 6 returns to step S4 and continues the internal temperature control, and again determines the internal temperature Tr in step S5.

制御装置6の制御部は、ステップS6の後、過熱度検出手段7によって検出した過熱度SHに基づいて過熱度SHが目標過熱度SH1となるように弁開度を制御する過熱度制御を実施する(ステップS7)。即ち、制御装置6の制御部は弁開度の制御方法を庫内温度制御から過熱度制御に切り換え、切換手段として機能する。   After step S6, the control unit of the control device 6 performs superheat degree control for controlling the valve opening degree so that the superheat degree SH becomes the target superheat degree SH1 based on the superheat degree SH detected by the superheat degree detection means 7. (Step S7). That is, the control unit of the control device 6 switches the valve opening control method from the internal temperature control to the superheat degree control, and functions as a switching means.

制御装置6は、ステップS7の後、目標過熱度SH1の再設定の要否を判定する(ステップS8)。例えば、過熱度制御を開始してから所定の時間が経過した場合や、庫内温度Trと目標温度Tsとの差が所定値以上となった場合に、目標過熱度SH1の再設定が必要であると判定すればよい。目標過熱度SH1の再設定が必要な場合(ステップS8でY)、制御装置6は、ステップS4に戻って庫内温度制御を実施する。一方、目標過熱度SH1の再設定が不要な場合(ステップS8でN)、制御装置6は、ステップS7に戻って過熱度制御を継続し、ステップS8にて再び目標過熱度SH1の再設定について判定する。制御装置6の制御部は、このようなステップS4〜S8において定温冷却を行う。   After step S7, the control device 6 determines whether or not it is necessary to reset the target superheat degree SH1 (step S8). For example, when a predetermined time has elapsed since the start of superheat control, or when the difference between the internal temperature Tr and the target temperature Ts exceeds a predetermined value, the target superheat SH1 needs to be reset. What is necessary is just to determine that there exists. When it is necessary to reset the target superheat degree SH1 (Y in step S8), the control device 6 returns to step S4 and performs the internal temperature control. On the other hand, when the resetting of the target superheat degree SH1 is unnecessary (N in step S8), the control device 6 returns to step S7 and continues the superheat degree control, and the resetting of the target superheat degree SH1 again in step S8. judge. The controller of the control device 6 performs constant temperature cooling in such steps S4 to S8.

尚、上記の冷却処理では、目標過熱度SH1の再設定のために庫内温度制御を実施するものとしたが、過熱度制御を継続しつつ目標過熱度SH1を補正してもよい。即ち、庫内温度Trが目標温度Tsよりも高い場合には、これらの温度差に応じて目標過熱度SH1を小さくし、庫内温度Trが目標温度Tsよりも低い場合には、これらの温度差に応じて目標過熱度SH1を大きくすればよい。また、庫内温度Trと目標温度Tsとの温度差が第1の閾値よりも大きく、且つ、第2の閾値よりも小さい場合には、過熱度制御を継続しつつ目標過熱度SH1を補正し、庫内温度Trと目標温度Tsとの温度差が第2の閾値よりも大きい場合には、庫内温度制御を実施して目標過熱度SH1を再設定する制御としてもよい。   In the above cooling process, the internal temperature control is performed to reset the target superheat degree SH1, but the target superheat degree SH1 may be corrected while continuing the superheat degree control. That is, when the internal temperature Tr is higher than the target temperature Ts, the target superheat degree SH1 is reduced according to the temperature difference, and when the internal temperature Tr is lower than the target temperature Ts, these temperatures are set. What is necessary is just to enlarge target superheat degree SH1 according to a difference. Further, when the temperature difference between the internal temperature Tr and the target temperature Ts is larger than the first threshold value and smaller than the second threshold value, the target superheat degree SH1 is corrected while continuing the superheat degree control. When the temperature difference between the internal temperature Tr and the target temperature Ts is larger than the second threshold, the internal temperature control may be performed to reset the target superheat degree SH1.

制御装置6が上記のような冷却処理を実行した場合の庫内温度、過熱度および弁開度の時間変化の一例について、図3に基づいて説明する。図3では、本実施形態の制御を実施した場合の各パラメータの変化を実線で示し、従来技術の制御を実施した場合(プルダウン冷却時に過熱度に基づく制御を行った後、庫内温度制御を行った場合)の各パラメータの変化を破線で示す。   An example of the temporal change of the internal temperature, the degree of superheat, and the valve opening when the control device 6 performs the cooling process as described above will be described with reference to FIG. In FIG. 3, the change of each parameter when the control of the present embodiment is performed is shown by a solid line, and when the control of the prior art is performed (after the control based on the degree of superheat during pull-down cooling, the internal temperature control is performed). The change of each parameter in the case of (when performed) is indicated by a broken line.

本実施形態の冷却処理の開始時点(即ちプルダウン冷却開始時)をt0とする。まずは弁開度を100%とし、所定時間が経過したら過熱度制御を開始する。過熱度が下降し始めたら、これに応じて弁開度を小さくしていき、庫内温度Trが目標温度Tsになるまで冷却していく。庫内温度Trが目標温度Tsに等しくなった時点をt1とする。期間t0〜t1がステップS2の制御に対応する。尚、冷却開始時の弁開度は100%でなくてもよく、所定の弁開度以上で弁開させればよい。   The start time of the cooling process of the present embodiment (that is, when pull-down cooling starts) is set to t0. First, the valve opening is set to 100%, and the superheat control is started when a predetermined time has elapsed. When the degree of superheat begins to decrease, the valve opening is reduced accordingly, and cooling is performed until the internal temperature Tr reaches the target temperature Ts. A time point when the internal temperature Tr becomes equal to the target temperature Ts is defined as t1. The period t0 to t1 corresponds to the control in step S2. The valve opening at the start of cooling does not have to be 100%, and may be opened at a predetermined valve opening or more.

次に、庫内温度制御を実施し、庫内温度Trが安定状態となるまで待つ。庫内温度Trが安定状態となった時点をt2とする。期間t1〜t2がステップS4の制御に対応する。時点t2以前の所定の時間範囲における過熱度SHの平均値を目標過熱度SH1とする。   Next, the inside temperature control is performed, and it waits until the inside temperature Tr becomes a stable state. A time point when the internal temperature Tr is in a stable state is defined as t2. The period t1 to t2 corresponds to the control in step S4. An average value of the superheat degree SH in a predetermined time range before the time point t2 is set as the target superheat degree SH1.

次に、過熱度制御を実施する。時点t2以降がステップS7に対応する。尚、図3のグラフではステップS8については省略している。   Next, superheat degree control is implemented. The time after time t2 corresponds to step S7. Note that step S8 is omitted in the graph of FIG.

本実施形態の制御では、時点t2以降において過熱度制御を実施していることから、何らかの要因によって過熱度SHが変化しようとしても、弁開度を調節することによって過熱度SHが略一定に保たれる。また、目標過熱度SH1は目標温度Tsに対応したものであることから、過熱度SHが目標過熱度SH1となるように弁開度を制御することにより、庫内温度Trが目標温度Ts付近に保たれる。   In the control of this embodiment, since the superheat control is performed after time t2, even if the superheat SH is about to change due to some factor, the superheat SH is kept substantially constant by adjusting the valve opening. Be drunk. Further, since the target superheat degree SH1 corresponds to the target temperature Ts, by controlling the valve opening so that the superheat degree SH becomes the target superheat degree SH1, the internal temperature Tr becomes close to the target temperature Ts. Kept.

従来技術の制御では、本実施形態の制御と同様に、期間t0〜t1において過熱度SHに基づく制御を実施するとともに、期間t1〜t2において庫内温度制御を実施するが、時点t2以降においては、本実施形態の制御と異なり、庫内温度制御を継続する。   In the control of the prior art, as in the control of the present embodiment, the control based on the superheat degree SH is performed in the period t0 to t1, and the internal temperature control is performed in the period t1 to t2, but after the time t2 Unlike the control of this embodiment, the internal temperature control is continued.

このような従来技術の制御において、時点t3から過熱度SHが低下し始めたとする。過熱度SHが低下し始めてから庫内温度Trが低下を始めようとする(時点t4)までにはタイムラグがある。庫内温度制御を実施していることから、庫内温度Trを一定に保つために、時点t4から弁開度を小さくしていく。このように弁開度を小さくしていくと、過熱度SHが上昇していき、目標過熱度SH1に対応した値を超える(時点t5)。時点t5から遅れて庫内温度Trが上昇しようとし、これを防ぐために弁開度を大きくしていくものの、庫内温度Trの上昇を防ぎきれないことがある。   In such conventional control, it is assumed that the degree of superheat SH starts to decrease from time t3. There is a time lag from when the superheat degree SH starts to decrease until the internal temperature Tr starts to decrease (time point t4). Since the internal temperature control is performed, the valve opening is decreased from time t4 in order to keep the internal temperature Tr constant. As the valve opening is reduced in this way, the superheat degree SH increases and exceeds the value corresponding to the target superheat degree SH1 (time point t5). Although the internal temperature Tr tends to increase after the time t5 and the valve opening degree is increased to prevent this, the internal temperature Tr may not be prevented from increasing.

過熱度SHの変化に遅れて庫内温度Trが変化するため、庫内温度に基づく制御を実施すると、庫内温度Trが安定するまで弁開度の増減を繰り返す必要がある。また、庫内温度に基づく制御では、庫内温度Trよりも先に変化する過熱度を一定に保つことが困難である。   Since the internal temperature Tr changes after the change in the degree of superheat SH, when the control based on the internal temperature is performed, it is necessary to repeatedly increase and decrease the valve opening until the internal temperature Tr becomes stable. Further, in the control based on the internal temperature, it is difficult to keep the degree of superheat that changes before the internal temperature Tr constant.

このような本実施形態によれば、以下のような効果がある。即ち、過熱度検出手段7によって検出した過熱度SHに基づく過熱度制御を実施することで、過熱度SHの変化に迅速に対応することができ、液バックを発生しにくくすることができる。このような過熱度制御において、庫内温度制御の実施中に検出した庫内温度Trおよび過熱度SHに基づいて取得した目標過熱度SH1を用いることで、過熱度SHに基づく制御であっても、庫内温度Trを目標温度Ts付近に保ちやすくすることができ、庫内温度Trの変化を抑制することができる。   According to this embodiment, there are the following effects. That is, by performing the superheat degree control based on the superheat degree SH detected by the superheat degree detection means 7, it is possible to quickly cope with a change in the superheat degree SH and to prevent the occurrence of liquid back. In such superheat degree control, even when the control is based on the superheat degree SH by using the target superheat degree SH1 acquired based on the internal temperature Tr and the superheat degree SH detected during the execution of the internal temperature control. The inside temperature Tr can be easily maintained in the vicinity of the target temperature Ts, and the change in the inside temperature Tr can be suppressed.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。   In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.

例えば、前記実施形態では、庫内温度Trが安定状態となった後に目標過熱度SH1を取得するものとしたが、目標過熱度SH1は検出した庫内温度Trと過熱度SHとの関係に基づいて取得すればよく、庫内温度Trが安定状態となる前に目標過熱度SH1を取得してもよい。例えば、庫内温度制御の実施中における庫内温度Trおよび過熱度SHの時間変化パターンに基づき、庫内温度Trが目標温度Ts付近で安定するような過熱度SHを推定し、この過熱度SHを目標過熱度SH1として取得してもよい。   For example, in the above-described embodiment, the target superheat degree SH1 is acquired after the internal temperature Tr becomes stable, but the target superheat degree SH1 is based on the relationship between the detected internal temperature Tr and the superheat degree SH. The target superheat degree SH1 may be acquired before the internal temperature Tr becomes stable. For example, based on the temporal change pattern of the internal temperature Tr and the superheat degree SH during the execution of the internal temperature control, the superheat degree SH is estimated such that the internal temperature Tr is stabilized near the target temperature Ts. May be acquired as the target superheat degree SH1.

また、前記実施形態では、目標過熱度SH1の再設定が必要か否かについて、過熱度制御を開始してからの経過時間や、庫内温度Trと目標温度Tsとの差に基づいて判断することを例示したが、冷却庫の設定が変更された場合に目標過熱度SH1を再設定するようにしてもよい。冷却庫は、例えば季節設定やデマンドコントロール、省エネ等の各種の目的に応じて冷媒の低圧圧力の設定値が変更される場合があり、このとき、蒸発温度が変化し、庫内温度Trが安定状態となる過熱度(庫内安定過熱度)が変化する。   Moreover, in the said embodiment, it is judged whether the reset of target superheat degree SH1 is required based on the elapsed time after starting superheat degree control, and the difference of internal temperature Tr and target temperature Ts. However, the target superheat degree SH1 may be reset when the setting of the refrigerator is changed. In the refrigerator, for example, the set value of the low pressure of the refrigerant may be changed according to various purposes such as seasonal setting, demand control, energy saving, etc. At this time, the evaporation temperature changes and the internal temperature Tr becomes stable The degree of superheat (stable superheat degree in the cabinet) that changes to the state changes.

このような場合、入口配管温度センサ71や圧力センサを用いて蒸発温度を検出することにより、冷却庫の設定が変更されたか否かを判定することができる。過熱度制御を開始してからの経過時間や、庫内温度Trと目標温度Tsとの差に関わらず、冷却庫の設定が変更されたと判断した場合に目標過熱度SH1を再設定すれば、冷却庫の設定の変更に迅速に対応することができ、応答性を向上させることができる。   In such a case, it is possible to determine whether or not the setting of the refrigerator has been changed by detecting the evaporation temperature using the inlet pipe temperature sensor 71 or the pressure sensor. Regardless of the elapsed time from the start of superheat control or the difference between the internal temperature Tr and the target temperature Ts, if it is determined that the setting of the cooling chamber has been changed, the target superheat SH1 is reset. A change in the setting of the refrigerator can be quickly handled, and the responsiveness can be improved.

また、冷却庫の設定が変更されて目標過熱度SH1を再設定する際、実際に庫内温度Trが安定状態となるのを待たずに、過去の履歴に基づいて再設定してもよい。即ち、実際に庫内温度Trが安定状態となった際の庫内安定過熱度と、そのときの蒸発温度と、の関係を記憶しておき、冷却庫の設定が変更されて蒸発温度が変化した場合に、変化後の蒸発温度に対応した庫内安定過熱度を読み出してこれを目標過熱度SH1としてもよい。このように、実際に庫内温度Trが安定状態となるのを待たずに目標過熱度SH1を再設定すれば、冷却庫の設定の変更に速やかに対応することができる。   Further, when the setting of the refrigerator is changed and the target superheat degree SH1 is reset, it may be reset based on the past history without waiting for the in-chamber temperature Tr to be in a stable state. In other words, the relationship between the degree of stable superheat in the storage when the storage temperature Tr actually becomes stable and the evaporation temperature at that time is stored, and the setting of the cooling store is changed to change the evaporation temperature. In this case, the internal stable superheat degree corresponding to the changed evaporation temperature may be read out and used as the target superheat degree SH1. In this way, if the target superheat degree SH1 is reset without waiting for the in-chamber temperature Tr to be in a stable state, a change in the setting of the cooler can be handled promptly.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、制御方法及び手順、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した制御方法及び手順などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの制御方法及び手順などの限定の一部、もしくは全部の限定を外した記載は、本発明に含まれるものである。   In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, although the present invention has been illustrated and described primarily with respect to particular embodiments, control over the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in the methods and procedures, quantities, and other detailed configurations. Therefore, the description limiting the control method and procedure disclosed above is exemplary for easy understanding of the present invention, and does not limit the present invention. Descriptions excluding some or all of the limitations of the procedure and the like are included in the present invention.

1 ショーケース(冷却庫)
42 膨張弁
43 蒸発器
6 制御装置
7 過熱度検出手段
8 庫内温度検出手段
1 Showcase (cooling room)
42 Expansion valve 43 Evaporator 6 Control device 7 Superheat degree detection means 8 Internal temperature detection means

Claims (6)

凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、を備えた冷却庫において、前記膨張弁の弁開度を制御する冷却庫の制御装置であって、
前記弁開度の制御方法を切り換える切換手段と、
前記蒸発器の目標過熱度を取得する取得手段と、を備え、
前記庫内温度検出手段によって検出した庫内温度に基づいて、前記庫内温度が所定の目標温度となるように前記弁開度を制御する庫内温度制御を実施し、
前記庫内温度制御の実施中に、前記庫内温度検出手段によって検出した庫内温度と、前記過熱度検出手段によって検出した過熱度と、の関係に基づいて前記取得手段によって目標過熱度を取得し、その後、
前記切換手段によって、前記過熱度が前記目標過熱度となるように前記弁開度を制御する過熱度制御の実施に切り換えることを特徴とする冷却庫の制御装置。
An expansion valve that lowers the pressure of the refrigerant condensed in the condenser, an evaporator that changes the state of the refrigerant from a liquid to a gas, a superheat detection means that detects the degree of superheat of the evaporator, and an internal temperature In a refrigerator having a chamber temperature detection means, a control device for the refrigerator that controls the valve opening degree of the expansion valve,
Switching means for switching the valve opening control method;
Obtaining means for obtaining a target superheat degree of the evaporator,
Based on the internal temperature detected by the internal temperature detection means, the internal temperature control for controlling the valve opening so that the internal temperature becomes a predetermined target temperature,
During the execution of the internal temperature control, the acquisition means acquires the target superheat degree based on the relationship between the internal temperature detected by the internal temperature detection means and the superheat degree detected by the superheat degree detection means. And then
A control device for a refrigerator, wherein the switching means switches to performing superheat degree control for controlling the valve opening so that the superheat degree becomes the target superheat degree.
前記庫内温度が安定状態となったか否かを判断する判断手段をさらに備え、
前記判断手段によって前記庫内温度が安定状態となったことを判断した後に、前記取得手段によって前記目標過熱度を取得することを特徴とする請求項1に記載の冷却庫の制御装置。
A judgment means for judging whether or not the internal temperature is in a stable state;
The controller for a refrigerator according to claim 1, wherein the target superheat degree is acquired by the acquisition unit after the determination unit determines that the internal temperature is in a stable state.
前記取得手段は、前記目標過熱度として、前記判断手段によって前記庫内温度が安定状態となったと判断した時点以前の所定の時間範囲における過熱度に基づく庫内温度安定過熱度を取得することを特徴とする請求項2に記載の冷却庫の制御装置。   The acquisition means acquires, as the target superheat degree, an internal temperature stable superheat degree based on the superheat degree in a predetermined time range before the time point when the determination means determines that the internal temperature has become stable. The control apparatus of the refrigerator of Claim 2 characterized by the above-mentioned. 前記取得手段は、前記目標過熱度として、前記判断手段によって前記庫内温度が安定状態となったと判断した時点の過熱度である庫内温度安定過熱度を取得することを特徴とする請求項2に記載の冷却庫の制御装置。   The said acquisition means acquires the internal temperature stable superheat degree which is a superheat degree at the time of judging that the said internal temperature became the stable state by the said judgment means as the said target superheat degree. Control device for the refrigerator as described in 1. 凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、請求項1〜4のいずれか1項に記載された冷却庫の制御装置と、を備えることを特徴とする冷却庫。   An expansion valve that lowers the pressure of the refrigerant condensed in the condenser, an evaporator that changes the state of the refrigerant from a liquid to a gas, a superheat detection means that detects the degree of superheat of the evaporator, and an internal temperature A refrigerator comprising: the internal temperature detection means; and the refrigerator control device according to any one of claims 1 to 4. 凝縮器で凝縮された冷媒を低圧化する膨張弁と、前記冷媒を液体から気体に状態変化させる蒸発器と、該蒸発器の過熱度を検出する過熱度検出手段と、庫内温度を検出する庫内温度検出手段と、を備えた冷却庫において、前記膨張弁の弁開度を制御する冷却庫の制御方法であって、
前記庫内温度検出手段によって検出した庫内温度に基づいて、前記庫内温度が所定の目標温度となるように前記弁開度を制御する庫内温度制御を実施し、
前記庫内温度制御の実施中に、前記庫内温度検出手段によって検出した庫内温度と、前記過熱度検出手段によって検出した過熱度と、の関係に基づいて目標過熱度を取得し、その後、
前記過熱度が前記目標過熱度となるように前記弁開度を制御する過熱度制御の実施に切り換えることを特徴とする冷却庫の制御方法。
An expansion valve that lowers the pressure of the refrigerant condensed in the condenser, an evaporator that changes the state of the refrigerant from a liquid to a gas, a superheat detection means that detects the degree of superheat of the evaporator, and an internal temperature In the refrigerator having the internal temperature detection means, a control method of the refrigerator for controlling the valve opening degree of the expansion valve,
Based on the internal temperature detected by the internal temperature detection means, the internal temperature control for controlling the valve opening so that the internal temperature becomes a predetermined target temperature,
During the execution of the internal temperature control, a target superheat degree is acquired based on the relationship between the internal temperature detected by the internal temperature detection means and the superheat degree detected by the superheat degree detection means, and then
Switching to superheat degree control for controlling the valve opening degree so that the superheat degree becomes the target superheat degree.
JP2016232463A 2016-11-30 2016-11-30 Coolant control device, cooler, and cooler control method Active JP6781025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016232463A JP6781025B2 (en) 2016-11-30 2016-11-30 Coolant control device, cooler, and cooler control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232463A JP6781025B2 (en) 2016-11-30 2016-11-30 Coolant control device, cooler, and cooler control method

Publications (2)

Publication Number Publication Date
JP2018091494A true JP2018091494A (en) 2018-06-14
JP6781025B2 JP6781025B2 (en) 2020-11-04

Family

ID=62565831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232463A Active JP6781025B2 (en) 2016-11-30 2016-11-30 Coolant control device, cooler, and cooler control method

Country Status (1)

Country Link
JP (1) JP6781025B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094955A (en) * 1995-06-20 1997-01-10 Saginomiya Seisakusho Inc Method and apparatus for controlling reversible proportional type expansion valve
JP2016080306A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Control device and control method of cooling box
JP2016080304A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Control device and control method of cooling box
WO2016080275A1 (en) * 2014-11-18 2016-05-26 サンデンホールディングス株式会社 Refrigeration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094955A (en) * 1995-06-20 1997-01-10 Saginomiya Seisakusho Inc Method and apparatus for controlling reversible proportional type expansion valve
JP2016080306A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Control device and control method of cooling box
JP2016080304A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Control device and control method of cooling box
WO2016080275A1 (en) * 2014-11-18 2016-05-26 サンデンホールディングス株式会社 Refrigeration device

Also Published As

Publication number Publication date
JP6781025B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP4289427B2 (en) Refrigeration equipment
JP6334146B2 (en) refrigerator
US11067324B2 (en) Refrigerator and control method therefor
US10753675B2 (en) Refrigerator and method of controlling the same
TWI379985B (en)
KR20190005032A (en) Refrigerator and method for controlling the same
US11732948B2 (en) Method for controlling refrigerator to alternately cool two storage compartments
JP2008138915A (en) Refrigerating device
JP4867503B2 (en) Cooling system
JP6781025B2 (en) Coolant control device, cooler, and cooler control method
JPWO2017056212A1 (en) refrigerator
JP6254065B2 (en) Control device and control method for refrigerator
JP2016080304A (en) Control device and control method of cooling box
JP7267828B2 (en) refrigerator
JP2008164201A (en) Refrigerating device
JP6180396B2 (en) Control device and control method for refrigerator
JP5384124B2 (en) Refrigeration system, control device and control method thereof
KR100424071B1 (en) A method for operating kimchi-refrigerators
CN112833604A (en) Refrigeration device and method for a refrigeration device
JP2008070021A (en) Refrigerator
JP2002195668A (en) Refrigerator
WO2023050886A1 (en) Freezing parameter adjustment method and device for dual-system refrigerator
JP5572995B2 (en) Cooling system
KR102126876B1 (en) Method of controlling a refrigerator
US11879681B2 (en) Method for controlling refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6781025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150