JP2018090835A - Abrasion resistant surface structure of aluminum alloy and method of producing the same - Google Patents

Abrasion resistant surface structure of aluminum alloy and method of producing the same Download PDF

Info

Publication number
JP2018090835A
JP2018090835A JP2016232506A JP2016232506A JP2018090835A JP 2018090835 A JP2018090835 A JP 2018090835A JP 2016232506 A JP2016232506 A JP 2016232506A JP 2016232506 A JP2016232506 A JP 2016232506A JP 2018090835 A JP2018090835 A JP 2018090835A
Authority
JP
Japan
Prior art keywords
aluminum alloy
silicon
aluminum
alloy
surface structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016232506A
Other languages
Japanese (ja)
Inventor
建興 飯塚
Takeoki Iizuka
建興 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016232506A priority Critical patent/JP2018090835A/en
Publication of JP2018090835A publication Critical patent/JP2018090835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasion resistant surface structure of an aluminum alloy capable of making the surface of an aluminum alloy more abrasion resistant than a conventional one and a method of producing the same.SOLUTION: There is provided an abrasion resistant surface structure 100 of an aluminum alloy comprising an anodic oxidation film 102 formed on the surface of an aluminum alloy 101 to include countless pores 103 with molybdenum disulfide crystal grains 104 precipitated therein, which is characterized in that the aluminum alloy 101 contains silicon, the anodic oxidation film 102 includes countless cracks 105 made to start from primary crystal grains of silicon and eutectic crystal grains of silicon, and molybdenum disulfide crystal grains 104 are precipitated in the countless cracks 105 as in the case of the countless pores 103.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金の耐摩耗表面構造及びその製造方法に関する。   The present invention relates to a wear-resistant surface structure of an aluminum alloy and a manufacturing method thereof.

従来は、アルミニウム合金によって形成される内燃機関のピストンを高耐久化する為、アルミニウム合金の表面に一次電解を施して陽極酸化皮膜を形成し、しかる後、陽極酸化皮膜の表面に二次電解を施して陽極酸化皮膜に含まれる無数の孔に二硫化モリブデン結晶を析出させる事によって、アルミニウム合金の表面を耐摩耗層によって被覆する事が行われている(例えば、特許文献1乃至3を参照)。   Conventionally, in order to make the piston of an internal combustion engine formed of an aluminum alloy highly durable, primary electrolysis is performed on the surface of the aluminum alloy to form an anodized film, and then secondary electrolysis is performed on the surface of the anodized film. The surface of an aluminum alloy is covered with a wear-resistant layer by depositing molybdenum disulfide crystals in innumerable holes included in the anodized film (see, for example, Patent Documents 1 to 3). .

特開昭63−170546号公報JP-A 63-170546 特開2012−122445号公報JP2012-122445A 特開2014−077194号公報JP, 2014-077194, A

然し乍ら、従来の構造には限界が有り、ピストンを今まで以上に高耐久化する為、アルミニウム合金の表面を従来よりも耐摩耗化する事が要求されている。   However, there is a limit to the conventional structure, and in order to make the piston more durable than before, it is required to make the surface of the aluminum alloy more wear-resistant than before.

従って、本発明の目的は、アルミニウム合金の表面を従来よりも耐摩耗化する事が出来るアルミニウム合金の耐摩耗表面構造及びその製造方法を提供する事に有る。   Accordingly, an object of the present invention is to provide a wear-resistant surface structure of an aluminum alloy that can make the surface of the aluminum alloy more wear-resistant than before, and a method for producing the same.

本発明は、アルミニウム合金の表面に形成される陽極酸化皮膜に含まれる無数の孔に二硫化モリブデン結晶が析出されているアルミニウム合金の耐摩耗表面構造において、前記アルミニウム合金は、珪素を含有しており、前記陽極酸化皮膜は、初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂を含んでおり、前記無数の亀裂には、前記無数の孔と同様に二硫化モリブデン結晶が析出されているアルミニウム合金の耐摩耗表面構造を提供する。   The present invention relates to a wear-resistant surface structure of an aluminum alloy in which molybdenum disulfide crystals are precipitated in innumerable holes included in an anodized film formed on the surface of the aluminum alloy, wherein the aluminum alloy contains silicon. The anodic oxide film includes innumerable cracks formed from primary silicon particles and eutectic silicon particles, and the innumerable cracks include molybdenum disulfide crystals as in the innumerable holes. A wear-resistant surface structure of an aluminum alloy on which is deposited.

前記アルミニウム合金は、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は燐を含有する亜共晶アルミニウム珪素系合金の何れか一種類である事が望ましい。   The aluminum alloy is preferably any one of a eutectic aluminum silicon alloy, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy containing phosphorus.

更に、本発明は、アルミニウム合金の表面に一次電解を施して陽極酸化皮膜を形成する一次電解工程と、前記陽極酸化皮膜の表面に二次電解を施して前記陽極酸化皮膜に含まれる無数の孔に二硫化モリブデン結晶を析出させる二次電解工程と、を含んでいるアルミニウム合金の耐摩耗表面処理方法において、前記一次電解工程においては、珪素を含有する前記アルミニウム合金の表面に一次電解を施して前記無数の孔と初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂とを含む前記陽極酸化皮膜を形成し、前記二次電解工程においては、前記陽極酸化皮膜の表面に二次電解を施して前記陽極酸化皮膜に含まれる前記無数の孔と前記無数の亀裂とに二硫化モリブデン結晶を析出させるアルミニウム合金の耐摩耗表面構造の製造方法を提供する。   Furthermore, the present invention provides a primary electrolysis step of forming an anodic oxide film by subjecting the surface of the aluminum alloy to primary electrolysis, and an infinite number of pores contained in the anodic oxide film by subjecting the surface of the anodic oxide film to secondary electrolysis. And a secondary electrolysis step for precipitating molybdenum disulfide crystals on the surface of the aluminum alloy. The primary electrolysis step includes subjecting the surface of the aluminum alloy containing silicon to primary electrolysis. Forming the anodic oxide film including innumerable cracks formed from the innumerable pores, primary silicon particles and eutectic silicon particles, and in the secondary electrolysis step, on the surface of the anodic oxide film Method for producing wear-resistant surface structure of aluminum alloy by subjecting secondary electrolysis to deposit molybdenum disulfide crystal in innumerable holes and innumerable cracks contained in said anodic oxide film To provide.

前記アルミニウム合金は、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は燐を含有する亜共晶アルミニウム珪素系合金の何れか一種類である事が望ましい。   The aluminum alloy is preferably any one of a eutectic aluminum silicon alloy, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy containing phosphorus.

本発明によってアルミニウム合金の表面を従来よりも耐摩耗化する事が出来るアルミニウム合金の耐摩耗表面構造及びその製造方法を提供する事が出来る。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a wear-resistant surface structure of an aluminum alloy that can make the surface of an aluminum alloy more wear-resistant than before and a method for manufacturing the same.

本発明の実施の形態に係るアルミニウム合金の耐摩耗表面構造を説明する概略図である。It is the schematic explaining the wear-resistant surface structure of the aluminum alloy which concerns on embodiment of this invention. 本発明の実施の形態に係るアルミニウム合金の耐摩耗表面構造の製造方法を説明する概略図である。It is the schematic explaining the manufacturing method of the abrasion-resistant surface structure of the aluminum alloy which concerns on embodiment of this invention.

以下、本発明の実施の形態を添付図面に順って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

先ず、アルミニウム合金の耐摩耗表面構造に関して説明する。   First, the wear resistant surface structure of the aluminum alloy will be described.

図1に示す通り、本発明の実施の形態に係るアルミニウム合金の耐摩耗表面構造100は、アルミニウム合金101の表面に形成される陽極酸化皮膜102に含まれる無数の孔(アルミニウム合金101の表面と略垂直に成長される縦微細孔)103に二硫化モリブデン結晶104が析出されている。   As shown in FIG. 1, the wear-resistant surface structure 100 of an aluminum alloy according to an embodiment of the present invention includes countless holes (the surface of the aluminum alloy 101 Molybdenum disulfide crystal 104 is deposited in (longitudinal fine holes 103) grown substantially vertically.

アルミニウム合金101は、珪素を含有する、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は燐を含有する亜共晶アルミニウム珪素系合金の何れか一種類である。   The aluminum alloy 101 is any one of a eutectic aluminum silicon alloy containing silicon, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy containing phosphorus.

珪素の含有量を調整する事によって、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は亜共晶アルミニウム珪素系合金を得る事が出来る。   By adjusting the silicon content, a eutectic aluminum silicon alloy, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy can be obtained.

珪素の含有量は、例えば、10質量%以上20質量%以下程度の範囲とする事が望ましい。   The silicon content is desirably in the range of, for example, about 10% by mass to 20% by mass.

尚、アルミニウム合金101は、銅、ニッケル、マグネシウム、鉄、マンガン、及び/又はチタン等の珪素以外の他成分を含有していても構わない。   The aluminum alloy 101 may contain components other than silicon such as copper, nickel, magnesium, iron, manganese, and / or titanium.

陽極酸化皮膜102は、初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂(アルミニウム合金101の表面と略水平に延在される割れ目)105を含んでいる。   The anodized film 102 includes innumerable cracks (cracks extending substantially horizontally with the surface of the aluminum alloy 101) 105 formed from the primary crystal particles and the eutectic silicon particles.

無数の亀裂105には、無数の孔103と同様に二硫化モリブデン結晶104が析出されている。   Like innumerable holes 103, molybdenum disulfide crystals 104 are precipitated in innumerable cracks 105.

亀裂105は、珪素の含有量を増量したり初晶珪素粒子の粒子径と共晶珪素粒子とを大きくしたりする事によって数を増加させる事が出来る。   The number of the cracks 105 can be increased by increasing the silicon content or increasing the particle diameter of the primary silicon particles and the eutectic silicon particles.

次に、アルミニウム合金の耐摩耗表面構造の製造方法に関して説明する。   Next, a method for manufacturing the wear-resistant surface structure of an aluminum alloy will be described.

図2に示す通り、本発明の実施の形態に係るアルミニウム合金の耐摩耗表面構造の製造方法M100は、アルミニウム合金101の表面に一次電解(陽極酸化処理)を施して陽極酸化皮膜102を形成する一次電解工程S101と、陽極酸化皮膜102の表面に二次電解を施して陽極酸化皮膜102に含まれる無数の孔103に二硫化モリブデン結晶104を析出させる二次電解工程S102と、を含んでいる。   As shown in FIG. 2, manufacturing method M100 of an aluminum alloy wear-resistant surface structure according to an embodiment of the present invention forms primary anodization (anodization treatment) on the surface of aluminum alloy 101 to form an anodized film 102. A primary electrolysis step S101, and a secondary electrolysis step S102 in which secondary electrolysis is performed on the surface of the anodized film 102 to deposit molybdenum disulfide crystals 104 in countless holes 103 included in the anodized film 102. .

一次電解工程S101においては、珪素を含有するアルミニウム合金101の表面に一次電解を施して無数の孔103と初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂105とを含む陽極酸化皮膜102を形成する。   In the primary electrolysis step S101, the surface of the aluminum alloy 101 containing silicon is subjected to primary electrolysis and includes innumerable holes 103, and innumerable cracks 105 that are formed starting from primary silicon particles and eutectic silicon particles. An anodized film 102 is formed.

アルミニウム合金101に含有されている珪素以外の他成分は、一次電解工程S101によって溶解される為、珪素を含有する陽極酸化皮膜102が形成される事に成る。   Since other components other than silicon contained in the aluminum alloy 101 are dissolved in the primary electrolysis step S101, the anodic oxide film 102 containing silicon is formed.

尚、本来は、亜共晶アルミニウム珪素系合金の表面に一次電解を施しても初晶珪素粒子を析出させる事は出来ないが、無数の孔103と共晶珪素粒子を起点に形成される無数の亀裂105とを含む陽極酸化皮膜102を形成する事は出来る。   Originally, even if primary electrolysis is performed on the surface of a hypoeutectic aluminum silicon-based alloy, primary crystal silicon particles cannot be deposited, but countless holes 103 and innumerable grains formed from eutectic silicon particles are the starting points. The anodic oxide film 102 including the crack 105 can be formed.

然し乍ら、亜共晶アルミニウム珪素系合金に燐を添加する事によって亜共晶アルミニウム珪素系合金を共晶アルミニウム珪素系合金又は過共晶アルミニウム珪素系合金に合金組成を遷移させる事が出来る為、共晶珪素粒子のみならず初晶珪素粒子が生成されて初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂105を含む陽極酸化皮膜102を形成する事が出来る。   However, by adding phosphorus to the hypoeutectic aluminum silicon alloy, the alloy composition can be changed from a eutectic aluminum silicon alloy to a eutectic aluminum silicon alloy or a hypereutectic aluminum silicon alloy. An anodic oxide film 102 including innumerable cracks 105 formed from primary silicon particles and eutectic silicon particles can be formed by generating primary silicon particles as well as crystal silicon particles.

二次電解工程S102においては、陽極酸化皮膜102の表面に二次電解を施して陽極酸化皮膜102に含まれる無数の孔103と無数の亀裂105とに二硫化モリブデン結晶104を析出させる。   In the secondary electrolysis step S <b> 102, secondary electrolysis is performed on the surface of the anodic oxide film 102 to deposit molybdenum disulfide crystals 104 in innumerable holes 103 and innumerable cracks 105 included in the anodic oxide film 102.

無数の孔103と無数の亀裂105とに二硫化モリブデン結晶104を析出させる事によって陽極酸化皮膜102に高い自己潤滑性を付与する事が出来る為、アルミニウム合金101の表面を従来よりも耐摩耗化する事が出来る様に成る。   By depositing molybdenum disulfide crystal 104 in innumerable holes 103 and innumerable cracks 105, it is possible to impart high self-lubricating properties to the anodized film 102, so that the surface of the aluminum alloy 101 is made more wear resistant than before. To be able to do.

従って、本発明によってアルミニウム合金101の表面を従来よりも耐摩耗化する事が出来るアルミニウム合金の耐摩耗表面構造100及びその製造方法M100を提供する事が出来る。   Therefore, according to the present invention, it is possible to provide an aluminum alloy wear-resistant surface structure 100 and its manufacturing method M100 that can make the surface of the aluminum alloy 101 more wear-resistant than before.

例えば、内燃機関のピストンのリング溝、スカート部、及び/又はピンボス部に本発明を適用する事によって、ピストンを高強度化及び低摩擦化する事が出来る為、耐久性の向上及び燃費の向上を実現する事が可能と成る。   For example, by applying the present invention to the ring groove, skirt portion, and / or pin boss portion of a piston of an internal combustion engine, the piston can be made to have high strength and low friction, thereby improving durability and improving fuel consumption. Can be realized.

100 耐摩耗表面構造
101 アルミニウム合金
102 陽極酸化皮膜
103 孔
104 二硫化モリブデン結晶
105 亀裂
M100 製造方法
S101 一次電解工程
S102 二次電解工程
DESCRIPTION OF SYMBOLS 100 Wear-resistant surface structure 101 Aluminum alloy 102 Anodized film 103 Hole 104 Molybdenum disulfide crystal 105 Crack M100 Manufacturing method S101 Primary electrolysis process S102 Secondary electrolysis process

Claims (4)

アルミニウム合金の表面に形成される陽極酸化皮膜に含まれる無数の孔に二硫化モリブデン結晶が析出されているアルミニウム合金の耐摩耗表面構造において、
前記アルミニウム合金は、珪素を含有しており、
前記陽極酸化皮膜は、初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂を含んでおり、
前記無数の亀裂には、前記無数の孔と同様に二硫化モリブデン結晶が析出されている
事を特徴とするアルミニウム合金の耐摩耗表面構造。
In the wear-resistant surface structure of an aluminum alloy in which molybdenum disulfide crystals are precipitated in countless holes included in the anodized film formed on the surface of the aluminum alloy,
The aluminum alloy contains silicon,
The anodic oxide film includes innumerable cracks formed starting from primary silicon particles and eutectic silicon particles,
A wear resistant surface structure of an aluminum alloy, characterized in that molybdenum disulfide crystals are precipitated in the infinite number of cracks as in the infinite number of holes.
前記アルミニウム合金は、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は燐を含有する亜共晶アルミニウム珪素系合金の何れか一種類である
請求項1に記載のアルミニウム合金の耐摩耗表面構造。
The wear resistance of the aluminum alloy according to claim 1, wherein the aluminum alloy is any one of a eutectic aluminum silicon alloy, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy containing phosphorus. Surface structure.
アルミニウム合金の表面に一次電解を施して陽極酸化皮膜を形成する一次電解工程と、
前記陽極酸化皮膜の表面に二次電解を施して前記陽極酸化皮膜に含まれる無数の孔に二硫化モリブデン結晶を析出させる二次電解工程と、
を含んでいるアルミニウム合金の耐摩耗表面構造の製造方法において、
前記一次電解工程においては、珪素を含有する前記アルミニウム合金の表面に一次電解を施して前記無数の孔と初晶珪素粒子と共晶珪素粒子とを起点に形成される無数の亀裂とを含む前記陽極酸化皮膜を形成し、
前記二次電解工程においては、前記陽極酸化皮膜の表面に二次電解を施して前記陽極酸化皮膜に含まれる前記無数の孔と前記無数の亀裂とに二硫化モリブデン結晶を析出させる
事を特徴とするアルミニウム合金の耐摩耗表面構造の製造方法。
A primary electrolysis step of forming an anodized film by subjecting the surface of the aluminum alloy to primary electrolysis;
A secondary electrolysis step of subjecting the surface of the anodized film to secondary electrolysis to deposit molybdenum disulfide crystals in countless holes contained in the anodized film;
In a method for producing a wear-resistant surface structure of an aluminum alloy containing
In the primary electrolysis step, the surface of the aluminum alloy containing silicon is subjected to primary electrolysis, and includes innumerable cracks formed from the innumerable holes, primary silicon particles, and eutectic silicon particles. Forming an anodized film,
In the secondary electrolysis step, the surface of the anodized film is subjected to secondary electrolysis to deposit molybdenum disulfide crystals in the innumerable holes and innumerable cracks included in the anodized film. A method for producing a wear-resistant surface structure of an aluminum alloy.
前記アルミニウム合金は、共晶アルミニウム珪素系合金、過共晶アルミニウム珪素系合金、又は燐を含有する亜共晶アルミニウム珪素系合金の何れか一種類である
請求項3に記載のアルミニウム合金の耐摩耗表面構造の製造方法。
The wear resistance of the aluminum alloy according to claim 3, wherein the aluminum alloy is any one of a eutectic aluminum silicon alloy, a hypereutectic aluminum silicon alloy, or a hypoeutectic aluminum silicon alloy containing phosphorus. Manufacturing method of surface structure.
JP2016232506A 2016-11-30 2016-11-30 Abrasion resistant surface structure of aluminum alloy and method of producing the same Pending JP2018090835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016232506A JP2018090835A (en) 2016-11-30 2016-11-30 Abrasion resistant surface structure of aluminum alloy and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232506A JP2018090835A (en) 2016-11-30 2016-11-30 Abrasion resistant surface structure of aluminum alloy and method of producing the same

Publications (1)

Publication Number Publication Date
JP2018090835A true JP2018090835A (en) 2018-06-14

Family

ID=62563734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232506A Pending JP2018090835A (en) 2016-11-30 2016-11-30 Abrasion resistant surface structure of aluminum alloy and method of producing the same

Country Status (1)

Country Link
JP (1) JP2018090835A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877593A (en) * 1982-10-18 1983-05-10 Fujikura Ltd Surface treatment of anodic oxide film of aluminum or aluminum alloy
JPS63170546A (en) * 1987-01-05 1988-07-14 Fujikura Ltd Piston of internal combustion engine
JPH02101181A (en) * 1988-10-07 1990-04-12 Mazda Motor Corp Production of wear resistant aluminum alloy member
JPH0339499A (en) * 1989-07-05 1991-02-20 Yamaha Motor Co Ltd Formation of surface of bearing part
JP2016125082A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Method for forming thermal barrier film and internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877593A (en) * 1982-10-18 1983-05-10 Fujikura Ltd Surface treatment of anodic oxide film of aluminum or aluminum alloy
JPS63170546A (en) * 1987-01-05 1988-07-14 Fujikura Ltd Piston of internal combustion engine
JPH02101181A (en) * 1988-10-07 1990-04-12 Mazda Motor Corp Production of wear resistant aluminum alloy member
JPH0339499A (en) * 1989-07-05 1991-02-20 Yamaha Motor Co Ltd Formation of surface of bearing part
JP2016125082A (en) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 Method for forming thermal barrier film and internal combustion engine

Similar Documents

Publication Publication Date Title
CN100338253C (en) Surface layer of working surface of IC engine cylinder and method for applying said surface layer
JP2010037607A (en) Aluminum alloy member and method of manufacturing the same
JP2007284706A (en) Sliding material
JP6526564B2 (en) METHOD OF MANUFACTURING ENGINE COMPONENTS, ENGINE COMPONENTS, AND USE OF ALUMINUM ALLOYS
JP2019529690A (en) Lead-free aluminum slide bearing material with functional surface
JP6490491B2 (en) Covering member and manufacturing method thereof
JP6096996B1 (en) Flake graphite cast iron cylindrical member
US10371085B2 (en) Cylinder liner and method of forming the same
CN105051388B (en) Sliding member and slide bearing
JP2018090835A (en) Abrasion resistant surface structure of aluminum alloy and method of producing the same
CN107164662A (en) The surface texture of aluminium system component
JP2017160533A (en) Surface structure of aluminum member and manufacturing method therefor
JP2017214603A (en) Piston for internal combustion engine and manufacturing method therefor
JP4757685B2 (en) piston ring
TWI403594B (en) Multi element alloy base piston ring
JP2005240180A (en) Sliding member having composite chrome plating film and method for manufacturing the same
CN110382747B (en) Composite chromium plating coating film and piston ring with same
JP2015160960A (en) Abrasion resistant copper-based sinter alloy
JP6967209B2 (en) Piston ring on which a low friction coating film is formed and its manufacturing method
US11434552B2 (en) Vermicular cast iron alloy for internal combustion engine block and head
JP6391761B2 (en) Piston ring with wear-resistant cobalt coating and method for producing the same
JP2012520935A (en) Sliding member coating method and sliding member, especially piston ring
JP2016514240A (en) Wear-resistant piston ring coating
KR101583887B1 (en) Aluminum alloy and vehicle part using the same
CN104726752B (en) Aluminium alloy and the vehicle part using the aluminium alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202