JP2018088359A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2018088359A
JP2018088359A JP2016231311A JP2016231311A JP2018088359A JP 2018088359 A JP2018088359 A JP 2018088359A JP 2016231311 A JP2016231311 A JP 2016231311A JP 2016231311 A JP2016231311 A JP 2016231311A JP 2018088359 A JP2018088359 A JP 2018088359A
Authority
JP
Japan
Prior art keywords
fuel cell
flow rate
fuel
fuel gas
adjusting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231311A
Other languages
Japanese (ja)
Other versions
JP6368762B2 (en
Inventor
遥平 三浦
Yohei Miura
遥平 三浦
梨沙子 伊藤
Risako Ito
梨沙子 伊藤
誠 大森
Makoto Omori
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016231311A priority Critical patent/JP6368762B2/en
Publication of JP2018088359A publication Critical patent/JP2018088359A/en
Application granted granted Critical
Publication of JP6368762B2 publication Critical patent/JP6368762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell stack that can hold fuel cells at an appropriate operation temperature.SOLUTION: A fuel cell stack 100 comprises: a plurality of fuel cells 1; a plurality of flow rate adjustment members 2; and a manifold 3. The fuel cells 1 are arranged in an arrangement direction and have fuel gas passages 11. The flow rate adjustment members 2 are attached to the leading end parts 5 of the fuel cells 1. The flow rate adjustment members 2 have fuel gas exhaust paths 21 following the fuel gas passages 11. The manifold 3 supports the base end parts 4 of the fuel cells 1. The plurality of flow rate adjustment members 2 include central part flow rate adjustment members 2a attached to central part fuel cells 1a located at the central part in the arrangement direction, and end part flow rate adjustment members 2b attached to end part fuel cells 1b located at the end parts in the arrangement direction. The inner diameter Rb of the fuel gas exhaust paths 21 of the end part flow rate adjustment members 2b is smaller than the inner diameter Ra of the fuel gas exhaust paths 21 of the central part flow rate adjustment members 2a.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池スタックに関する。   The present invention relates to a fuel cell stack.

従来、燃料電池スタックの一種として、一列に並べられた複数の燃料電池と、各燃料電池の基端部を支持するマニホールドとを備える燃料電池スタックが知られている(例えば、特許文献1参照)。   Conventionally, as a kind of fuel cell stack, a fuel cell stack including a plurality of fuel cells arranged in a row and a manifold that supports a base end portion of each fuel cell is known (for example, see Patent Document 1). .

各燃料電池の内部には燃料ガス流路が形成されており、燃料電池スタックの作動時、マニホールドの内部から各燃料電池の燃料ガス流路に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池の外側に酸素含有ガス(例えば、空気)が供給される。燃料ガス流路を流れる燃料ガスのうち発電に使用されなかった余剰燃料ガスは、燃料ガス流路から外部に排出される。燃料ガス流路から排出される余剰燃料ガスは、酸素含有ガスと反応して燃焼する。余剰燃料ガスの燃焼熱によって各燃料電池が適切な作動温度に保持される。   A fuel gas flow path is formed inside each fuel cell, and when the fuel cell stack is operated, fuel gas (for example, hydrogen) is supplied from the inside of the manifold to the fuel gas flow path of each fuel cell, An oxygen-containing gas (for example, air) is supplied to the outside of each fuel cell. Of the fuel gas flowing through the fuel gas passage, surplus fuel gas that has not been used for power generation is discharged to the outside from the fuel gas passage. Excess fuel gas discharged from the fuel gas passage reacts with the oxygen-containing gas and burns. Each fuel cell is maintained at an appropriate operating temperature by the combustion heat of the surplus fuel gas.

特開2015−187995号公報Japanese Patent Laying-Open No. 2015-187995

しかしながら、燃料ガス流路から排出される余剰燃料ガスが失火する場合がある。余剰燃料ガスが失火すると、燃料電池を適切な作動温度に保持できなくなってしまう。   However, the surplus fuel gas discharged from the fuel gas flow path may misfire. If the surplus fuel gas is misfired, the fuel cell cannot be maintained at an appropriate operating temperature.

本発明は、上述の状況に鑑みてなされたものであり、各燃料電池を適切な作動温度に保持可能な燃料電池スタックを提供することを目的とする。   The present invention has been made in view of the above-described situation, and an object thereof is to provide a fuel cell stack capable of holding each fuel cell at an appropriate operating temperature.

燃料電池スタックは、複数の燃料電池と、複数の流速調整部材と、マニホールドとを備える。複数の燃料電池は、配列方向に配列され、燃料ガス流路を有する。複数の流速調整部材は、複数の燃料電池それぞれの先端部に取り付けられ、燃料ガス流路に連なる燃料ガス排出路を有する。マニホールドは、複数の燃料電池それぞれの基端部を支持する。複数の流速調整部材は、配列方向の中央部に位置する中央部燃料電池に取り付けられる中央部流速調整部材と、配列方向の端部に位置する端部燃料電池に取り付けられる端部流速調整部材とを含む。中央部流速調整部材が有する燃料ガス排出路の第1内径は、端部流速調整部材が有する燃料ガス排出路の第2内径と異なる。   The fuel cell stack includes a plurality of fuel cells, a plurality of flow rate adjusting members, and a manifold. The plurality of fuel cells are arranged in the arrangement direction and have fuel gas flow paths. The plurality of flow velocity adjusting members are attached to the tip portions of the plurality of fuel cells, and have fuel gas discharge passages connected to the fuel gas passages. The manifold supports the base end portion of each of the plurality of fuel cells. The plurality of flow velocity adjusting members are a central flow velocity adjusting member attached to the central fuel cell located in the central portion in the arrangement direction, and an end flow velocity adjusting member attached to the end fuel cell located in the end portion in the arrangement direction. including. The first inner diameter of the fuel gas discharge passage of the central flow velocity adjusting member is different from the second inner diameter of the fuel gas discharge passage of the end flow velocity adjusting member.

本発明によれば、各燃料電池を適切な作動温度に保持可能な燃料電池スタックを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell stack which can hold | maintain each fuel cell to a suitable operating temperature can be provided.

第1実施形態に係る燃料電池スタックの側面図Side view of the fuel cell stack according to the first embodiment 流速調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached 流速調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached 第2実施形態に係る燃料電池スタックの側面図Side view of fuel cell stack according to second embodiment

1.第1実施形態
(燃料電池スタック100)
図1は、第1実施形態に係る燃料電池スタック100の側面図である。燃料電池スタック100は、複数の燃料電池1と、複数の流速調整部材2と、マニホールド3とを備える。
1. First Embodiment (Fuel Cell Stack 100)
FIG. 1 is a side view of a fuel cell stack 100 according to the first embodiment. The fuel cell stack 100 includes a plurality of fuel cells 1, a plurality of flow rate adjusting members 2, and a manifold 3.

複数の燃料電池1は、配列方向に配列される。各燃料電池1は、平板状に形成される。各燃料電池1は、略等間隔で略平行に配置される。本実施形態では、15枚の燃料電池1が設けられているが、燃料電池1の枚数は適宜変更可能である。   The plurality of fuel cells 1 are arranged in the arrangement direction. Each fuel cell 1 is formed in a flat plate shape. The fuel cells 1 are arranged substantially in parallel at substantially equal intervals. In the present embodiment, 15 fuel cells 1 are provided, but the number of fuel cells 1 can be changed as appropriate.

各燃料電池1は、内部に燃料ガス流路11を有する。燃料ガス流路11は、燃料電池1の長手方向に延びる。燃料電池スタック100の作動時、マニホールド3の内部から各燃料電池1の燃料ガス流路11に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池1の外側に酸素含有ガス(例えば、空気)が供給される。   Each fuel cell 1 has a fuel gas flow path 11 therein. The fuel gas channel 11 extends in the longitudinal direction of the fuel cell 1. During operation of the fuel cell stack 100, fuel gas (for example, hydrogen) is supplied from the inside of the manifold 3 to the fuel gas passage 11 of each fuel cell 1, and an oxygen-containing gas (for example, for example, outside the fuel cell 1). Air).

各燃料電池1の基端部4は、マニホールド3に固定される。各燃料電池1の先端部5は、自由端である。このように、各燃料電池1は、マニホールド3によって片持ち状態で支持される。   The base end portion 4 of each fuel cell 1 is fixed to the manifold 3. The tip 5 of each fuel cell 1 is a free end. Thus, each fuel cell 1 is supported by the manifold 3 in a cantilever state.

複数の燃料電池1の配列方向外側には、一対の導電部材6が配置される。各導電部材6の基端部は、マニホールド3に支持される。本実施形態において、各導電部材6は板状に形成されているが、これに限られるものではない。各導電部材6には、電流を引き出すための電流引き出し線6aが接続されている。   A pair of conductive members 6 are arranged on the outer side in the arrangement direction of the plurality of fuel cells 1. The base end portion of each conductive member 6 is supported by the manifold 3. In the present embodiment, each conductive member 6 is formed in a plate shape, but is not limited thereto. Each conductive member 6 is connected to a current drawing line 6a for drawing current.

各燃料電池1の間、及び、燃料電池1と導電部材6との間には、集電部材7が配置される。集電部材7は、各燃料電池1同士、及び、燃料電池1と導電部材6とを電気的に接続する。集電部材7は、隣接する2つの燃料電池1の間を基端部4側から先端部5側に向かって流れる酸素含有ガスの流れを妨げないように構成されていればよく、集電部材7の形状は特に制限されない。   A current collecting member 7 is disposed between each fuel cell 1 and between the fuel cell 1 and the conductive member 6. The current collecting member 7 electrically connects the fuel cells 1 to each other and the fuel cell 1 and the conductive member 6. The current collecting member 7 only needs to be configured so as not to hinder the flow of the oxygen-containing gas flowing between the two adjacent fuel cells 1 from the base end portion 4 side toward the tip end portion 5 side. The shape of 7 is not particularly limited.

各流速調整部材2は、各燃料電池1の先端部5に取り付けられる。各流速調整部材2は、燃料ガス流路11を流れる燃料ガスのうち発電に使用されずに燃料ガス流路11から排出される余剰燃料ガスの流速を調整するための部材である。本実施形態では、15個の流速調整部材2が設けられているが、流速調整部材2の個数は燃料電池1の枚数に応じて適宜変更可能である。   Each flow rate adjusting member 2 is attached to the tip 5 of each fuel cell 1. Each flow rate adjusting member 2 is a member for adjusting the flow rate of surplus fuel gas discharged from the fuel gas channel 11 without being used for power generation among the fuel gas flowing through the fuel gas channel 11. In the present embodiment, 15 flow rate adjusting members 2 are provided, but the number of flow rate adjusting members 2 can be appropriately changed according to the number of fuel cells 1.

各流速調整部材2は、内部に燃料ガス排出路21を有する。燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。燃料ガス流路11から燃料ガス排出路21に流入した余剰燃料ガスは、燃料ガス排出路21から外部に排出される。燃料ガス排出路21から外部に排出された余剰燃料ガスは、酸素含有ガスと反応して燃焼する。   Each flow velocity adjusting member 2 has a fuel gas discharge passage 21 therein. The fuel gas discharge path 21 is connected to the fuel gas flow path 11 of the fuel cell 1. Excess fuel gas that has flowed from the fuel gas passage 11 into the fuel gas discharge passage 21 is discharged from the fuel gas discharge passage 21 to the outside. Excess fuel gas discharged from the fuel gas discharge passage 21 reacts with the oxygen-containing gas and burns.

マニホールド3は、各燃料電池1の基端部4を支持する。マニホールド3は、各燃料電池1の燃料ガス流路11に燃料ガスを分配するように構成される。マニホールド3は、中空状の箱体であり、内部空間を有する。マニホールド3の内部空間には、図示しない燃料ガス供給源から燃料ガスが供給される。   The manifold 3 supports the base end portion 4 of each fuel cell 1. The manifold 3 is configured to distribute the fuel gas to the fuel gas channel 11 of each fuel cell 1. The manifold 3 is a hollow box and has an internal space. Fuel gas is supplied to the internal space of the manifold 3 from a fuel gas supply source (not shown).

(燃料ガス排出路21の内径)
図1に示すように、複数の燃料電池1は、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cとを含む。
(Inner diameter of fuel gas discharge passage 21)
As shown in FIG. 1, the plurality of fuel cells 1 includes a central fuel cell 1a, an end fuel cell 1b, and an intermediate fuel cell 1c.

中央部燃料電池1aは、複数の燃料電池1のうち配列方向の中央部に配置された燃料電池1である。配列方向の中央部には、配列方向の中央とその近傍とが含まれる。具体的には、配列方向の中央を中心として、配列方向における複数の燃料電池1の全長の1/5程度の領域に配置された燃料電池1を、中央部燃料電池1aとすることができる。図1に示すように、本実施形態では、3枚の中央部燃料電池1aが設けられているが、中央部燃料電池1aの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The center part fuel cell 1a is the fuel cell 1 arranged in the center part in the arrangement direction among the plurality of fuel cells 1. The central portion in the arrangement direction includes the center in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region about 1/5 of the total length of the plurality of fuel cells 1 in the arrangement direction around the center in the arrangement direction can be used as the central fuel cell 1a. As shown in FIG. 1, in the present embodiment, three central fuel cells 1a are provided. The number of central fuel cells 1a depends on the total length of the plurality of fuel cells 1 and the size of each fuel cell 1. It can be changed appropriately according to the situation.

端部燃料電池1bは、複数の燃料電池1のうち配列方向の端部に配置された燃料電池1である。配列方向の端部には、配列方向の両端とその近傍とが含まれる。具体的には、配列方向の両端から複数の燃料電池1の全長の1/5程度までの領域に配置された燃料電池1を、端部燃料電池1bとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に端部燃料電池1bが3枚ずつ設けられているが、端部燃料電池1bの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The end fuel cell 1b is a fuel cell 1 arranged at an end in the arrangement direction among the plurality of fuel cells 1. The ends in the arrangement direction include both ends in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region from both ends in the arrangement direction to about 1/5 of the total length of the plurality of fuel cells 1 can be used as the end fuel cell 1b. As shown in FIG. 1, in the present embodiment, three end fuel cells 1b are provided on both sides of the central fuel cell 1a. However, the number of end fuel cells 1b is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

中間部燃料電池1cは、複数の燃料電池1のうち、配列方向の中央部と端部の間の中間部に配置された燃料電池1である。具体的には、配列方向の中央部と端部との間における複数の燃料電池1の全長の1/5程度の領域に配置された燃料電池1を、中間部燃料電池1cとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に中間部燃料電池1cが3枚ずつ設けられているが、中間部燃料電池1cの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The intermediate part fuel cell 1c is the fuel cell 1 arranged in an intermediate part between the center part and the end part in the arrangement direction among the plurality of fuel cells 1. Specifically, the fuel cell 1 arranged in an area of about 1/5 of the total length of the plurality of fuel cells 1 between the central portion and the end portion in the arrangement direction can be used as the intermediate fuel cell 1c. . As shown in FIG. 1, in the present embodiment, three intermediate fuel cells 1c are provided on both sides of the central fuel cell 1a, but the number of intermediate fuel cells 1c is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

本実施形態において、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cそれぞれの構成及び外形は略同じである。また、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cそれぞれに形成された燃料ガス流路11の内径は略同じである。   In the present embodiment, the configuration and the outer shape of each of the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c are substantially the same. Further, the inner diameters of the fuel gas passages 11 formed in the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c are substantially the same.

図1に示すように、複数の流速調整部材2は、中央部流速調整部材2aと、端部流速調整部材2bと、中間部流速調整部材2cとを含む。   As shown in FIG. 1, the plurality of flow rate adjusting members 2 include a central flow rate adjusting member 2a, an end flow rate adjusting member 2b, and an intermediate flow rate adjusting member 2c.

中央部流速調整部材2aは、複数の流速調整部材2のうち中央部燃料電池1aに取り付けられた流速調整部材2である。端部流速調整部材2bは、複数の流速調整部材2のうち端部燃料電池1bに取り付けられた流速調整部材2である。中間部流速調整部材2cは、複数の流速調整部材2のうち中間部燃料電池1cに取り付けられた流速調整部材2である。本実施形態において、中央部流速調整部材2aと、端部流速調整部材2bと、中間部流速調整部材2cそれぞれの外形は略同じであるが、異なっていてもよい。   The central flow rate adjusting member 2 a is a flow rate adjusting member 2 attached to the central fuel cell 1 a among the plurality of flow rate adjusting members 2. The end flow rate adjusting member 2 b is a flow rate adjusting member 2 attached to the end fuel cell 1 b among the plurality of flow rate adjusting members 2. The intermediate part flow rate adjusting member 2 c is a flow rate adjusting member 2 attached to the intermediate part fuel cell 1 c among the plurality of flow rate adjusting members 2. In the present embodiment, the outer shapes of the central flow velocity adjusting member 2a, the end flow velocity adjusting member 2b, and the intermediate flow velocity adjusting member 2c are substantially the same, but may be different.

図1に示すように、中央部流速調整部材2aが有する燃料ガス排出路21の内径Ra(第1内径の一例)は、端部流速調整部材2bが有する燃料ガス排出路21の内径Rb(第2内径の一例)よりも小さい。すなわち、内径Rbは内径Raよりも大きく、Rb>Raが成立している。   As shown in FIG. 1, the inner diameter Ra (an example of the first inner diameter) of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2 a is equal to the inner diameter Rb (the first inner diameter Rb) of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2 b. It is smaller than one example of 2 inner diameters. That is, the inner diameter Rb is larger than the inner diameter Ra, and Rb> Ra is established.

ここで、燃料電池スタック100の作動時、各燃料電池1は、燃料電池1自身のジュール熱や反応熱による熱エネルギーを放出する。この際、中央部燃料電池1aの両側には多数の燃料電池1が配置されているため、中央部燃料電池1aからの熱エネルギーは端部燃料電池1bに比べて外部に放散されにくいのに対して、端部燃料電池1bは隣接する燃料電池1が少ないため、端部燃料電池1bからの熱エネルギーは外部に放散されやすい。そのため、中央部燃料電池1aは、端部燃料電池1bに比べて高温になるため、中央部燃料電池1aの燃料ガス流路11を流れる燃料ガスの粘性が高くなりやすい。その結果、中央部燃料電池1aの燃料ガス流路11を流れる燃料ガスの流速が、端部燃料電池1bの燃料ガス流路11を流れる燃料ガスの流速よりも遅くなり、中央部流速調整部材2aから排出される余剰燃料ガスが失火するおそれがある。   Here, when the fuel cell stack 100 is operated, each fuel cell 1 releases thermal energy due to Joule heat or reaction heat of the fuel cell 1 itself. At this time, since a large number of fuel cells 1 are arranged on both sides of the central fuel cell 1a, the heat energy from the central fuel cell 1a is less likely to be dissipated to the outside than the end fuel cell 1b. Since the end fuel cell 1b has few adjacent fuel cells 1, the thermal energy from the end fuel cell 1b is easily dissipated to the outside. Therefore, since the center part fuel cell 1a becomes high temperature compared with the edge part fuel cell 1b, the viscosity of the fuel gas which flows through the fuel gas flow path 11 of the center part fuel cell 1a tends to become high. As a result, the flow rate of the fuel gas flowing through the fuel gas channel 11 of the central fuel cell 1a becomes slower than the flow rate of the fuel gas flowing through the fuel gas channel 11 of the end fuel cell 1b, and the central flow rate adjusting member 2a. There is a risk of surplus fuel gas discharged from the fire.

そこで、本実施形態では、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raが、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも小さくされている。これにより、端部燃料電池1bに比べて燃料ガスの流速が遅くなりやすい中央部燃料電池1aに取り付けられた中央部流速調整部材2aの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中央部流速調整部材2aから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Therefore, in the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a is smaller than the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2b. As a result, the flow rate of the fuel gas can be increased in the fuel gas discharge passage 21 of the central flow rate adjusting member 2a attached to the central fuel cell 1a, where the flow rate of the fuel gas tends to be slower than that of the end fuel cell 1b. Therefore, it can suppress that the surplus fuel gas discharged | emitted from the center part flow rate adjustment member 2a will misfire.

中央部流速調整部材2aの燃料ガス排出路21は、略均一な太さに形成されている。すなわち、内径Raは、全体的に略均一である。内径Raは、燃料ガス排出路21の流入口の口径と、排出口の口径と、長手方向中央の直径との算術平均値である。流入口の口径、排出口の口径、及び長手方向中央の直径は、2次元光学透過式の寸法測定器を用いて測定するものとする。   The fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is formed to have a substantially uniform thickness. That is, the inner diameter Ra is substantially uniform as a whole. The inner diameter Ra is an arithmetic average value of the diameter of the inlet of the fuel gas discharge passage 21, the diameter of the outlet, and the diameter at the center in the longitudinal direction. The diameter of the inlet, the diameter of the outlet, and the diameter at the center in the longitudinal direction are measured using a two-dimensional optical transmission type size measuring instrument.

本実施形態において、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中央部燃料電池1aの燃料ガス流路11の内径と略同じであるが、燃料ガス流路11の内径より大きくても小さくてもよい。   In the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is substantially the same as the inner diameter of the fuel gas passage 11 of the central fuel cell 1a. It can be larger or smaller.

本実施形態において、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中央部燃料電池1aの燃料ガス流路11の内径と略同じであるが、燃料ガス流路11の内径より大きくてもよいし、小さくてもよい。   In the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is substantially the same as the inner diameter of the fuel gas passage 11 of the central fuel cell 1a. It may be larger or smaller.

また、図1に示すように、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcは、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも小さい。すなわち、内径Rcは内径Rbよりも小さく、Rc<Rbが成立している。これにより、端部燃料電池1bに比べて燃料ガスの流速が遅くなりやすい中間部燃料電池1cに取り付けられた中間部流速調整部材2cの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中間部流速調整部材2cから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Moreover, as shown in FIG. 1, the inner diameter Rc of the fuel gas discharge passage 21 included in the intermediate flow velocity adjusting member 2c is smaller than the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2b. That is, the inner diameter Rc is smaller than the inner diameter Rb, and Rc <Rb is established. Accordingly, the flow rate of the fuel gas can be increased in the fuel gas discharge path 21 of the intermediate portion flow rate adjusting member 2c attached to the intermediate portion fuel cell 1c, in which the flow rate of the fuel gas tends to be slower than that of the end portion fuel cell 1b. Therefore, it is possible to suppress the surplus fuel gas discharged from the intermediate flow rate adjusting member 2c from being misfired.

さらに、図1に示すように、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcよりも小さい。すなわち、Ra<Rcが成立している。これにより、中間部燃料電池1cに比べて燃料ガスの流速が遅くなりやすい中央部燃料電池1aに取り付けられた中央部流速調整部材2aの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中央部流速調整部材2aから排出される余剰燃料ガスが失火してしまうことをより抑制することができる。   Further, as shown in FIG. 1, the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a is smaller than the inner diameter Rc of the fuel gas discharge passage 21 included in the intermediate flow velocity adjusting member 2c. That is, Ra <Rc is established. Thus, the flow rate of the fuel gas can be increased in the fuel gas discharge path 21 of the central flow rate adjusting member 2a attached to the central fuel cell 1a, which is likely to be slow in comparison with the intermediate fuel cell 1c. Since it can do, it can suppress more that the surplus fuel gas discharged | emitted from the center part flow rate adjustment member 2a will misfire.

(燃料電池1及び流速調整部材2の構成)
図2及び図3は、流速調整部材2が取り付けられた燃料電池1の斜視図である。
(Configuration of fuel cell 1 and flow rate adjusting member 2)
2 and 3 are perspective views of the fuel cell 1 to which the flow rate adjusting member 2 is attached.

図2及び図3では、燃料電池1の一例として、いわゆる横縞型の固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)が図示されている。   2 and 3, as an example of the fuel cell 1, a so-called horizontal stripe type solid oxide fuel cell (SOFC) is illustrated.

燃料電池1は、多孔支持基板10、複数の発電部20、及び緻密シール膜30を備える。   The fuel cell 1 includes a porous support substrate 10, a plurality of power generation units 20, and a dense seal film 30.

多孔支持基板10は、長手方向に延びる扁平な平板状に形成される。多孔支持基板10の内部には、6本の燃料ガス流路11が形成される。   The porous support substrate 10 is formed in a flat plate shape extending in the longitudinal direction. Six fuel gas passages 11 are formed inside the porous support substrate 10.

多孔支持基板10は、電子伝導性の低い多孔質材料によって構成される。多孔支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)、MgO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)の複合材料、MgO(酸化ニッケル)とY(イットリア)の複合材料、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)の複合材料などによって構成することができる。多孔支持基板10は、遷移金属を含有していてもよい。多孔支持基板10の気孔率は特に制限されないが、20%〜60%とすることができる。多孔支持基板10の厚さは特に制限されないが、1mm〜10mmとすることができる。 The porous support substrate 10 is made of a porous material having low electron conductivity. The porous support substrate 10 includes, for example, CSZ (calcia stabilized zirconia), a composite material of MgO (nickel oxide) and YSZ (yttria stabilized zirconia), a composite material of MgO (nickel oxide) and Y 2 O 3 (yttria), A composite material of MgO (magnesium oxide) and MgAl 2 O 4 (magnesia alumina spinel) can be used. The porous support substrate 10 may contain a transition metal. The porosity of the porous support substrate 10 is not particularly limited, but can be 20% to 60%. The thickness of the porous support substrate 10 is not particularly limited, but can be 1 mm to 10 mm.

複数の発電部20は、多孔支持基板10の主面上において長手方向に並べられる。複数の発電部20は、多孔支持基板10の両主面上に配置されていてもよい。発電部20の個数は適宜変更することができる。   The plurality of power generation units 20 are arranged in the longitudinal direction on the main surface of the porous support substrate 10. The plurality of power generation units 20 may be disposed on both main surfaces of the porous support substrate 10. The number of the power generation units 20 can be changed as appropriate.

各発電部20は、燃料極と、固体電解質層と、空気極と、インターコネクタとを有する。燃料極は、多孔支持基板10上に配置される。固体電解質層は、燃料極と空気極の間に配置される。インターコネクタは、当該発電部20の燃料極と隣接する他の発電部20の空気極とを電気的に接続する。各発電部20は、固体電解質層と空気極との間に配置されるバリア層を有していてもよい。各発電部20は、空気極上に配置される空気極集電層を有していてもよい。   Each power generation unit 20 includes a fuel electrode, a solid electrolyte layer, an air electrode, and an interconnector. The fuel electrode is disposed on the porous support substrate 10. The solid electrolyte layer is disposed between the fuel electrode and the air electrode. The interconnector electrically connects the fuel electrode of the power generation unit 20 and the air electrode of another power generation unit 20 adjacent thereto. Each power generation unit 20 may have a barrier layer disposed between the solid electrolyte layer and the air electrode. Each power generation unit 20 may have an air electrode current collecting layer disposed on the air electrode.

緻密シール膜30は、多孔支持基板10の外表面を覆う。緻密シール膜30は、各発電部20の固体電解質層と一体的に形成されていてもよい。緻密シール膜30は、緻密質材料によって構成される。緻密質材料としては、例えば、YSZ、ScSZ、ガラス、スピネル酸化物などが挙げられる。   The dense seal film 30 covers the outer surface of the porous support substrate 10. The dense seal film 30 may be formed integrally with the solid electrolyte layer of each power generation unit 20. The dense seal film 30 is made of a dense material. Examples of the dense material include YSZ, ScSZ, glass, and spinel oxide.

流速調整部材2は、燃料電池1の先端部5に取り付けられる。流速調整部材2は、接合材によって、燃料電池1の先端部5に固定されていてもよい。接合材としては、例えば、結晶化ガラスを用いることができる。結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、又はSiO−MgO系のガラスを用いることができる。 The flow rate adjusting member 2 is attached to the tip portion 5 of the fuel cell 1. The flow rate adjusting member 2 may be fixed to the tip portion 5 of the fuel cell 1 with a bonding material. For example, crystallized glass can be used as the bonding material. As the crystallized glass, for example, SiO 2 —B 2 O 3 based, SiO 2 —CaO based, or SiO 2 —MgO based glass can be used.

本実施形態において、流速調整部材2は、平板状の緻密体である。流速調整部材2は、緻密質材料によって構成される。緻密質材料としては、MgO、ZrO、MgAlなどのスピネル酸化物や、フェライト系ステンレス、SiO−MgO系などのガラス材料が挙げられるが、これに限られるものではない。流速調整部材2の気孔率は、20%以下が好ましく、5%以下がより好ましい。 In the present embodiment, the flow rate adjusting member 2 is a flat dense body. The flow rate adjusting member 2 is made of a dense material. Examples of the dense material include spinel oxides such as MgO, ZrO 2 , and MgAl 2 O 4 , and glass materials such as ferrite-based stainless steel and SiO 2 —MgO-based materials, but are not limited thereto. The porosity of the flow rate adjusting member 2 is preferably 20% or less, and more preferably 5% or less.

流速調整部材2は、内部に6本の燃料ガス排出路21を有する。各燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。各燃料ガス排出路21は、燃料電池1の長手方向に延びる。燃料ガス排出路21の本数は、燃料電池1が有する燃料ガス流路11の本数に合わせて適宜変更可能である。   The flow rate adjusting member 2 has six fuel gas discharge paths 21 inside. Each fuel gas discharge passage 21 is connected to the fuel gas passage 11 of the fuel cell 1. Each fuel gas discharge path 21 extends in the longitudinal direction of the fuel cell 1. The number of the fuel gas discharge passages 21 can be appropriately changed according to the number of the fuel gas passages 11 included in the fuel cell 1.

2.第2実施形態
(燃料電池スタック101)
図4は、第2実施形態に係る燃料電池スタック101の側面図である。第1実施形態に係る燃料電池スタック100との相違点は、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raが、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも大きい点である。以下においては、当該相違点について主に説明する。
2. Second Embodiment (Fuel Cell Stack 101)
FIG. 4 is a side view of the fuel cell stack 101 according to the second embodiment. The difference from the fuel cell stack 100 according to the first embodiment is that the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjustment member 2a is different from the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjustment member 2b. Is a bigger point. In the following, the difference will be mainly described.

図4に示すように、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも大きい。すなわち、Ra>Rbが成立している。   As shown in FIG. 4, the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjustment member 2 a is larger than the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjustment member 2 b. That is, Ra> Rb is established.

ここで、燃料電池スタック100の作動時、各燃料電池1は、発電に使用されなかった余剰燃料ガスが流路外部で燃焼する。外部への放熱の影響で端部燃料電池の方が中央部燃料電池より燃焼の火炎温度が下がる。火炎温度が下がると失火するおそれがある。   Here, during the operation of the fuel cell stack 100, in each fuel cell 1, surplus fuel gas that has not been used for power generation burns outside the flow path. Due to the influence of heat radiation to the outside, the end fuel cell has a lower combustion flame temperature than the central fuel cell. There is a risk of misfire if the flame temperature falls.

そこで、本実施形態では、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbが、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raよりも小さくされている。これにより。中央部燃料電池1aに比べて低温になりやすい端部燃料電池1bに取り付けられた端部流速調整部材2bの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、端部流速調整部材2bから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Therefore, in the present embodiment, the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2b is smaller than the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a. By this. Since the flow rate of the fuel gas can be increased in the fuel gas discharge passage 21 of the end flow rate adjusting member 2b attached to the end fuel cell 1b, which tends to be lower in temperature than the center fuel cell 1a, the end flow rate adjustment It can suppress that the surplus fuel gas discharged | emitted from the member 2b will misfire.

また、図4に示すように、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcは、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raよりも小さい。すなわち、Rc<Raが成立している。これにより、中央部燃料電池1aに比べて低温になりやすい中間部燃料電池1cに取り付けられた中間部流速調整部材2cの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中間部流速調整部材2cから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Further, as shown in FIG. 4, the inner diameter Rc of the fuel gas discharge passage 21 included in the intermediate flow velocity adjusting member 2c is smaller than the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a. That is, Rc <Ra is established. As a result, the flow rate of the fuel gas can be increased in the fuel gas discharge passage 21 of the intermediate portion flow rate adjusting member 2c attached to the intermediate portion fuel cell 1c, which is likely to be lower in temperature than the central portion fuel cell 1a. The surplus fuel gas discharged from the partial flow rate adjusting member 2c can be prevented from being misfired.

さらに、図4に示すように、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcは、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも大きい。すなわち、内径Rbは内径Rcよりも小さく、Rb<Rcが成立している。これにより、中間部燃料電池1cに比べて低温になりやすい端部燃料電池1bに取り付けられた端部流速調整部材2bの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、端部流速調整部材2bから排出する余剰燃料ガスが失火してしまうことを抑制することができる。   Further, as shown in FIG. 4, the inner diameter Rc of the fuel gas discharge path 21 included in the intermediate flow rate adjusting member 2 c is larger than the inner diameter Rb of the fuel gas discharge path 21 included in the end flow rate adjusting member 2 b. That is, the inner diameter Rb is smaller than the inner diameter Rc, and Rb <Rc is established. As a result, the flow rate of the fuel gas can be increased in the fuel gas discharge path 21 of the end portion flow rate adjusting member 2b attached to the end portion fuel cell 1b that is likely to be lower in temperature than the intermediate portion fuel cell 1c. The surplus fuel gas discharged from the partial flow rate adjusting member 2b can be prevented from being misfired.

(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made without departing from the scope of the present invention.

上記実施形態では、本発明にかかる流速調整部材を横縞型の燃料電池1に適用した場合について説明したが、本発明にかかる流速調整部材は、いわゆる縦縞型の燃料電池などにも適用することができる。縦縞型の燃料電池は、導電性の支持基板と、支持基板の一主面上に配置される発電部(燃料極、固体電解質層及び空気極)と、支持基板の他主面上に配置されるインターコネクタとを備える。   In the above embodiment, the case where the flow rate adjusting member according to the present invention is applied to the horizontal stripe type fuel cell 1 has been described. However, the flow rate adjusting member according to the present invention can also be applied to a so-called vertical stripe type fuel cell. it can. The vertically striped fuel cell is disposed on a conductive support substrate, a power generation unit (a fuel electrode, a solid electrolyte layer, and an air electrode) disposed on one main surface of the support substrate, and on the other main surface of the support substrate. Interconnector.

上記実施形態では、流速調整部材2は、平板状の緻密体であることとしたが、これに限られるものではない。流速調整部材2は、燃料電池1の先端部5の側面上に形成された緻密膜であってもよい。このような緻密膜は、ZrO、SiO−MgO系の結晶化ガラスなどの緻密質材料を先端部5の側面上にディップ成膜することによって形成することができる。 In the embodiment described above, the flow rate adjusting member 2 is a flat dense body, but is not limited thereto. The flow rate adjusting member 2 may be a dense film formed on the side surface of the tip portion 5 of the fuel cell 1. Such a dense film can be formed by dip-filming a dense material such as ZrO 2 , SiO 2 —MgO-based crystallized glass on the side surface of the tip portion 5.

上記実施形態では、図1及び図4に示したように、複数の流速調整部材2は、中間部流速調整部材2cを含むこととしたが、中間部流速調整部材2cを含んでいなくてもよい。この場合、中間部燃料電池1cには、中間部流速調整部材2cの代わりに、中央部流速調整部材2aを取り付けてもよいし、端部流速調整部材2bを取り付けてもよい。   In the said embodiment, as shown in FIG.1 and FIG.4, although the several flow velocity adjustment member 2 decided to contain the intermediate part flow velocity adjustment member 2c, even if it does not contain the intermediate part flow velocity adjustment member 2c. Good. In this case, instead of the intermediate flow rate adjusting member 2c, the middle flow rate adjusting member 2a or the end flow rate adjusting member 2b may be attached to the intermediate fuel cell 1c.

上記実施形態では、図1及び図4に示したように、複数の流速調整部材2には、中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2cが含まれることとしたが、中央部流速調整部材2aと中間部流速調整部材2cとの間、又は/及び、端部流速調整部材2bと中間部流速調整部材2cとの間に、中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2cそれぞれと異なる内径を有する1以上の補充流速調整部材を含んでいてもよい。   In the above embodiment, as shown in FIGS. 1 and 4, the plurality of flow rate adjusting members 2 include a central flow rate adjusting member 2 a, an end flow rate adjusting member 2 b, and an intermediate flow rate adjusting member 2 c. However, between the central flow rate adjusting member 2a and the intermediate flow rate adjusting member 2c and / or between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, the central flow rate adjusting member 2a, the end One or more replenishment flow rate adjustment members having different inner diameters from the partial flow rate adjustment member 2b and the intermediate flow rate adjustment member 2c may be included.

補充流速調整部材は、中央部流速調整部材2aと中間部流速調整部材2cとの間に配置される場合、中央部燃料電池1aと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流速調整部材が有する燃料ガス排出路21の内径は、中央部流速調整部材2aの内径Raと中間部流速調整部材2cの内径Rcの間であることが好ましい。   When the replenishment flow rate adjusting member is disposed between the central flow rate adjusting member 2a and the intermediate flow rate adjusting member 2c, it may be attached to either the central fuel cell 1a or the intermediate fuel cell 1c. In this case, the inner diameter of the fuel gas discharge passage 21 included in the replenishment flow rate adjusting member is preferably between the inner diameter Ra of the central flow rate adjusting member 2a and the inner diameter Rc of the intermediate flow rate adjusting member 2c.

補充流速調整部材は、端部流速調整部材2bと中間部流速調整部材2cとの間に配置される場合、端部燃料電池1bと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流速調整部材の内径は、端部流速調整部材2bの内径Rbと中間部流速調整部材2cの内径Rcの間であることがより好ましい。   When the replenishment flow rate adjusting member is disposed between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, it may be attached to either the end fuel cell 1b or the intermediate fuel cell 1c. In this case, the inner diameter of the replenishing flow rate adjusting member is more preferably between the inner diameter Rb of the end flow rate adjusting member 2b and the inner diameter Rc of the intermediate flow rate adjusting member 2c.

上記実施形態では、図1及び図4に示したように、複数の流速調整部材2には、3種類の流速調整部材(中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2c)だけが含まれることとしたが、これに限られるものではない。例えば、複数の流速調整部材2それぞれの内径が異なっており、配列方向の端部から中央部に向かって順番に内径が小さくなるように、又は、配列方向の端部から中央部に向かって順番に内径が大きくなるように並べられていてもよい。   In the above embodiment, as shown in FIGS. 1 and 4, the plurality of flow rate adjustment members 2 include three types of flow rate adjustment members (a central flow rate adjustment member 2 a, an end flow rate adjustment member 2 b, and an intermediate flow rate adjustment member). Although only the member 2c) is included, it is not limited to this. For example, each of the plurality of flow rate adjusting members 2 has a different inner diameter, and the inner diameter decreases in order from the end in the arrangement direction toward the center, or in order from the end in the arrangement direction toward the center. It may be arranged so that the inner diameter becomes larger.

1 燃料電池
1a 中央部燃料電池
1b 端部燃料電池
1c 中間部燃料電池
2 流速調整部材
2a 中央部流速調整部材
2b 端部流速調整部材
2c 中間部流速調整部材
100 燃料電池スタック
DESCRIPTION OF SYMBOLS 1 Fuel cell 1a Center part fuel cell 1b End part fuel cell 1c Intermediate part fuel cell 2 Flow rate adjustment member 2a Center part flow rate adjustment member 2b End part flow rate adjustment member 2c Intermediate part flow rate adjustment member 100 Fuel cell stack

本発明は、燃料電池スタックに関する。   The present invention relates to a fuel cell stack.

従来、燃料電池スタックの一種として、一列に並べられた複数の燃料電池と、各燃料電池の基端部を支持するマニホールドとを備える燃料電池スタックが知られている(例えば、特許文献1参照)。   Conventionally, as a kind of fuel cell stack, a fuel cell stack including a plurality of fuel cells arranged in a row and a manifold that supports a base end portion of each fuel cell is known (for example, see Patent Document 1). .

各燃料電池の内部には燃料ガス流路が形成されており、燃料電池スタックの作動時、マニホールドの内部から各燃料電池の燃料ガス流路に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池の外側に酸素含有ガス(例えば、空気)が供給される。燃料ガス流路を流れる燃料ガスのうち発電に使用されなかった余剰燃料ガスは、燃料ガス流路から外部に排出される。燃料ガス流路から排出される余剰燃料ガスは、酸素含有ガスと反応して燃焼する。余剰燃料ガスの燃焼熱によって各燃料電池が適切な作動温度に保持される。   A fuel gas flow path is formed inside each fuel cell, and when the fuel cell stack is operated, fuel gas (for example, hydrogen) is supplied from the inside of the manifold to the fuel gas flow path of each fuel cell, An oxygen-containing gas (for example, air) is supplied to the outside of each fuel cell. Of the fuel gas flowing through the fuel gas passage, surplus fuel gas that has not been used for power generation is discharged to the outside from the fuel gas passage. Excess fuel gas discharged from the fuel gas passage reacts with the oxygen-containing gas and burns. Each fuel cell is maintained at an appropriate operating temperature by the combustion heat of the surplus fuel gas.

特開2015−187995号公報Japanese Patent Laying-Open No. 2015-187995

しかしながら、燃料ガス流路から排出される余剰燃料ガスが失火する場合がある。余剰燃料ガスが失火すると、燃料電池を適切な作動温度に保持できなくなってしまう。   However, the surplus fuel gas discharged from the fuel gas flow path may misfire. If the surplus fuel gas is misfired, the fuel cell cannot be maintained at an appropriate operating temperature.

本発明は、上述の状況に鑑みてなされたものであり、各燃料電池を適切な作動温度に保持可能な燃料電池スタックを提供することを目的とする。   The present invention has been made in view of the above-described situation, and an object thereof is to provide a fuel cell stack capable of holding each fuel cell at an appropriate operating temperature.

燃料電池スタックは、複数の燃料電池と、複数の流速調整部材と、マニホールドとを備える。複数の燃料電池は、配列方向に配列され、燃料ガス流路を有する。複数の流速調整部材は、複数の燃料電池それぞれの先端部に取り付けられ、燃料ガス流路に連なる燃料ガス排出路を有する。マニホールドは、複数の燃料電池それぞれの基端部を支持する。複数の流速調整部材は、配列方向の中央部に位置する中央部燃料電池に取り付けられる中央部流速調整部材と、配列方向の端部に位置する端部燃料電池に取り付けられる端部流速調整部材とを含む。中央部流速調整部材が有する燃料ガス排出路の第1内径は、端部流速調整部材が有する燃料ガス排出路の第2内径と異なる。   The fuel cell stack includes a plurality of fuel cells, a plurality of flow rate adjusting members, and a manifold. The plurality of fuel cells are arranged in the arrangement direction and have fuel gas flow paths. The plurality of flow velocity adjusting members are attached to the tip portions of the plurality of fuel cells, and have fuel gas discharge passages connected to the fuel gas passages. The manifold supports the base end portion of each of the plurality of fuel cells. The plurality of flow velocity adjusting members are a central flow velocity adjusting member attached to the central fuel cell located in the central portion in the arrangement direction, and an end flow velocity adjusting member attached to the end fuel cell located in the end portion in the arrangement direction. including. The first inner diameter of the fuel gas discharge passage of the central flow velocity adjusting member is different from the second inner diameter of the fuel gas discharge passage of the end flow velocity adjusting member.

本発明によれば、各燃料電池を適切な作動温度に保持可能な燃料電池スタックを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell stack which can hold | maintain each fuel cell to a suitable operating temperature can be provided.

実施形態に係る燃料電池スタックの側面図Side view of a fuel cell stack according to the embodiment 流速調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached 流速調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached

(燃料電池スタック100)
図1は、実施形態に係る燃料電池スタック100の側面図である。燃料電池スタック100は、複数の燃料電池1と、複数の流速調整部材2と、マニホールド3とを備える。
(Fuel cell stack 100)
FIG. 1 is a side view of a fuel cell stack 100 according to an embodiment . The fuel cell stack 100 includes a plurality of fuel cells 1, a plurality of flow rate adjusting members 2, and a manifold 3.

複数の燃料電池1は、配列方向に配列される。各燃料電池1は、平板状に形成される。各燃料電池1は、略等間隔で略平行に配置される。本実施形態では、15枚の燃料電池1が設けられているが、燃料電池1の枚数は適宜変更可能である。   The plurality of fuel cells 1 are arranged in the arrangement direction. Each fuel cell 1 is formed in a flat plate shape. The fuel cells 1 are arranged substantially in parallel at substantially equal intervals. In the present embodiment, 15 fuel cells 1 are provided, but the number of fuel cells 1 can be changed as appropriate.

各燃料電池1は、内部に燃料ガス流路11を有する。燃料ガス流路11は、燃料電池1の長手方向に延びる。燃料電池スタック100の作動時、マニホールド3の内部から各燃料電池1の燃料ガス流路11に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池1の外側に酸素含有ガス(例えば、空気)が供給される。   Each fuel cell 1 has a fuel gas flow path 11 therein. The fuel gas channel 11 extends in the longitudinal direction of the fuel cell 1. During operation of the fuel cell stack 100, fuel gas (for example, hydrogen) is supplied from the inside of the manifold 3 to the fuel gas passage 11 of each fuel cell 1, and an oxygen-containing gas (for example, for example, outside the fuel cell 1). Air).

各燃料電池1の基端部4は、マニホールド3に固定される。各燃料電池1の先端部5は、自由端である。このように、各燃料電池1は、マニホールド3によって片持ち状態で支持される。   The base end portion 4 of each fuel cell 1 is fixed to the manifold 3. The tip 5 of each fuel cell 1 is a free end. Thus, each fuel cell 1 is supported by the manifold 3 in a cantilever state.

複数の燃料電池1の配列方向外側には、一対の導電部材6が配置される。各導電部材6の基端部は、マニホールド3に支持される。本実施形態において、各導電部材6は板状に形成されているが、これに限られるものではない。各導電部材6には、電流を引き出すための電流引き出し線6aが接続されている。   A pair of conductive members 6 are arranged on the outer side in the arrangement direction of the plurality of fuel cells 1. The base end portion of each conductive member 6 is supported by the manifold 3. In the present embodiment, each conductive member 6 is formed in a plate shape, but is not limited thereto. Each conductive member 6 is connected to a current drawing line 6a for drawing current.

各燃料電池1の間、及び、燃料電池1と導電部材6との間には、集電部材7が配置される。集電部材7は、各燃料電池1同士、及び、燃料電池1と導電部材6とを電気的に接続する。集電部材7は、隣接する2つの燃料電池1の間を基端部4側から先端部5側に向かって流れる酸素含有ガスの流れを妨げないように構成されていればよく、集電部材7の形状は特に制限されない。   A current collecting member 7 is disposed between each fuel cell 1 and between the fuel cell 1 and the conductive member 6. The current collecting member 7 electrically connects the fuel cells 1 to each other and the fuel cell 1 and the conductive member 6. The current collecting member 7 only needs to be configured so as not to hinder the flow of the oxygen-containing gas flowing between the two adjacent fuel cells 1 from the base end portion 4 side toward the tip end portion 5 side. The shape of 7 is not particularly limited.

各流速調整部材2は、各燃料電池1の先端部5に取り付けられる。各流速調整部材2は、燃料ガス流路11を流れる燃料ガスのうち発電に使用されずに燃料ガス流路11から排出される余剰燃料ガスの流速を調整するための部材である。本実施形態では、15個の流速調整部材2が設けられているが、流速調整部材2の個数は燃料電池1の枚数に応じて適宜変更可能である。   Each flow rate adjusting member 2 is attached to the tip 5 of each fuel cell 1. Each flow rate adjusting member 2 is a member for adjusting the flow rate of surplus fuel gas discharged from the fuel gas channel 11 without being used for power generation among the fuel gas flowing through the fuel gas channel 11. In the present embodiment, 15 flow rate adjusting members 2 are provided, but the number of flow rate adjusting members 2 can be appropriately changed according to the number of fuel cells 1.

各流速調整部材2は、内部に燃料ガス排出路21を有する。燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。燃料ガス流路11から燃料ガス排出路21に流入した余剰燃料ガスは、燃料ガス排出路21から外部に排出される。燃料ガス排出路21から外部に排出された余剰燃料ガスは、酸素含有ガスと反応して燃焼する。   Each flow velocity adjusting member 2 has a fuel gas discharge passage 21 therein. The fuel gas discharge path 21 is connected to the fuel gas flow path 11 of the fuel cell 1. Excess fuel gas that has flowed from the fuel gas passage 11 into the fuel gas discharge passage 21 is discharged from the fuel gas discharge passage 21 to the outside. Excess fuel gas discharged from the fuel gas discharge passage 21 reacts with the oxygen-containing gas and burns.

マニホールド3は、各燃料電池1の基端部4を支持する。マニホールド3は、各燃料電池1の燃料ガス流路11に燃料ガスを分配するように構成される。マニホールド3は、中空状の箱体であり、内部空間を有する。マニホールド3の内部空間には、図示しない燃料ガス供給源から燃料ガスが供給される。   The manifold 3 supports the base end portion 4 of each fuel cell 1. The manifold 3 is configured to distribute the fuel gas to the fuel gas channel 11 of each fuel cell 1. The manifold 3 is a hollow box and has an internal space. Fuel gas is supplied to the internal space of the manifold 3 from a fuel gas supply source (not shown).

(燃料ガス排出路21の内径)
図1に示すように、複数の燃料電池1は、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cとを含む。
(Inner diameter of fuel gas discharge passage 21)
As shown in FIG. 1, the plurality of fuel cells 1 includes a central fuel cell 1a, an end fuel cell 1b, and an intermediate fuel cell 1c.

中央部燃料電池1aは、複数の燃料電池1のうち配列方向の中央部に配置された燃料電池1である。配列方向の中央部には、配列方向の中央とその近傍とが含まれる。具体的には、配列方向の中央を中心として、配列方向における複数の燃料電池1の全長の1/5程度の領域に配置された燃料電池1を、中央部燃料電池1aとすることができる。図1に示すように、本実施形態では、3枚の中央部燃料電池1aが設けられているが、中央部燃料電池1aの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The center part fuel cell 1a is the fuel cell 1 arranged in the center part in the arrangement direction among the plurality of fuel cells 1. The central portion in the arrangement direction includes the center in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region about 1/5 of the total length of the plurality of fuel cells 1 in the arrangement direction around the center in the arrangement direction can be used as the central fuel cell 1a. As shown in FIG. 1, in the present embodiment, three central fuel cells 1a are provided. The number of central fuel cells 1a depends on the total length of the plurality of fuel cells 1 and the size of each fuel cell 1. It can be changed appropriately according to the situation.

端部燃料電池1bは、複数の燃料電池1のうち配列方向の端部に配置された燃料電池1である。配列方向の端部には、配列方向の両端とその近傍とが含まれる。具体的には、配列方向の両端から複数の燃料電池1の全長の1/5程度までの領域に配置された燃料電池1を、端部燃料電池1bとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に端部燃料電池1bが3枚ずつ設けられているが、端部燃料電池1bの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The end fuel cell 1b is a fuel cell 1 arranged at an end in the arrangement direction among the plurality of fuel cells 1. The ends in the arrangement direction include both ends in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region from both ends in the arrangement direction to about 1/5 of the total length of the plurality of fuel cells 1 can be used as the end fuel cell 1b. As shown in FIG. 1, in the present embodiment, three end fuel cells 1b are provided on both sides of the central fuel cell 1a. However, the number of end fuel cells 1b is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

中間部燃料電池1cは、複数の燃料電池1のうち、配列方向の中央部と端部の間の中間部に配置された燃料電池1である。具体的には、配列方向の中央部と端部との間における複数の燃料電池1の全長の1/5程度の領域に配置された燃料電池1を、中間部燃料電池1cとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に中間部燃料電池1cが3枚ずつ設けられているが、中間部燃料電池1cの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The intermediate part fuel cell 1c is the fuel cell 1 arranged in an intermediate part between the center part and the end part in the arrangement direction among the plurality of fuel cells 1. Specifically, the fuel cell 1 arranged in an area of about 1/5 of the total length of the plurality of fuel cells 1 between the central portion and the end portion in the arrangement direction can be used as the intermediate fuel cell 1c. . As shown in FIG. 1, in the present embodiment, three intermediate fuel cells 1c are provided on both sides of the central fuel cell 1a, but the number of intermediate fuel cells 1c is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

本実施形態において、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cそれぞれの構成及び外形は略同じである。また、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cそれぞれに形成された燃料ガス流路11の内径は略同じである。   In the present embodiment, the configuration and the outer shape of each of the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c are substantially the same. Further, the inner diameters of the fuel gas passages 11 formed in the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c are substantially the same.

図1に示すように、複数の流速調整部材2は、中央部流速調整部材2aと、端部流速調整部材2bと、中間部流速調整部材2cとを含む。   As shown in FIG. 1, the plurality of flow rate adjusting members 2 include a central flow rate adjusting member 2a, an end flow rate adjusting member 2b, and an intermediate flow rate adjusting member 2c.

中央部流速調整部材2aは、複数の流速調整部材2のうち中央部燃料電池1aに取り付けられた流速調整部材2である。端部流速調整部材2bは、複数の流速調整部材2のうち端部燃料電池1bに取り付けられた流速調整部材2である。中間部流速調整部材2cは、複数の流速調整部材2のうち中間部燃料電池1cに取り付けられた流速調整部材2である。本実施形態において、中央部流速調整部材2aと、端部流速調整部材2bと、中間部流速調整部材2cそれぞれの外形は略同じであるが、異なっていてもよい。   The central flow rate adjusting member 2 a is a flow rate adjusting member 2 attached to the central fuel cell 1 a among the plurality of flow rate adjusting members 2. The end flow rate adjusting member 2 b is a flow rate adjusting member 2 attached to the end fuel cell 1 b among the plurality of flow rate adjusting members 2. The intermediate part flow rate adjusting member 2 c is a flow rate adjusting member 2 attached to the intermediate part fuel cell 1 c among the plurality of flow rate adjusting members 2. In the present embodiment, the outer shapes of the central flow velocity adjusting member 2a, the end flow velocity adjusting member 2b, and the intermediate flow velocity adjusting member 2c are substantially the same, but may be different.

図1に示すように、中央部流速調整部材2aが有する燃料ガス排出路21の内径Ra(第1内径の一例)は、端部流速調整部材2bが有する燃料ガス排出路21の内径Rb(第2内径の一例)よりも小さい。すなわち、内径Rbは内径Raよりも大きく、Rb>Raが成立している。   As shown in FIG. 1, the inner diameter Ra (an example of the first inner diameter) of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2 a is equal to the inner diameter Rb (the first inner diameter Rb) of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2 b. It is smaller than one example of 2 inner diameters. That is, the inner diameter Rb is larger than the inner diameter Ra, and Rb> Ra is established.

ここで、燃料電池スタック100の作動時、各燃料電池1は、燃料電池1自身のジュール熱や反応熱による熱エネルギーを放出する。この際、中央部燃料電池1aの両側には多数の燃料電池1が配置されているため、中央部燃料電池1aからの熱エネルギーは端部燃料電池1bに比べて外部に放散されにくいのに対して、端部燃料電池1bは隣接する燃料電池1が少ないため、端部燃料電池1bからの熱エネルギーは外部に放散されやすい。そのため、中央部燃料電池1aは、端部燃料電池1bに比べて高温になるため、中央部燃料電池1aの燃料ガス流路11を流れる燃料ガスの粘性が高くなりやすい。その結果、中央部燃料電池1aの燃料ガス流路11を流れる燃料ガスの流速が、端部燃料電池1bの燃料ガス流路11を流れる燃料ガスの流速よりも遅くなり、中央部流速調整部材2aから排出される余剰燃料ガスが失火するおそれがある。   Here, when the fuel cell stack 100 is operated, each fuel cell 1 releases thermal energy due to Joule heat or reaction heat of the fuel cell 1 itself. At this time, since a large number of fuel cells 1 are arranged on both sides of the central fuel cell 1a, the heat energy from the central fuel cell 1a is less likely to be dissipated to the outside than the end fuel cell 1b. Since the end fuel cell 1b has few adjacent fuel cells 1, the thermal energy from the end fuel cell 1b is easily dissipated to the outside. Therefore, since the center part fuel cell 1a becomes high temperature compared with the edge part fuel cell 1b, the viscosity of the fuel gas which flows through the fuel gas flow path 11 of the center part fuel cell 1a tends to become high. As a result, the flow rate of the fuel gas flowing through the fuel gas channel 11 of the central fuel cell 1a becomes slower than the flow rate of the fuel gas flowing through the fuel gas channel 11 of the end fuel cell 1b, and the central flow rate adjusting member 2a. There is a risk of surplus fuel gas discharged from the fire.

そこで、本実施形態では、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raが、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも小さくされている。これにより、端部燃料電池1bに比べて燃料ガスの流速が遅くなりやすい中央部燃料電池1aに取り付けられた中央部流速調整部材2aの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中央部流速調整部材2aから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Therefore, in the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a is smaller than the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2b. As a result, the flow rate of the fuel gas can be increased in the fuel gas discharge passage 21 of the central flow rate adjusting member 2a attached to the central fuel cell 1a, where the flow rate of the fuel gas tends to be slower than that of the end fuel cell 1b. Therefore, it can suppress that the surplus fuel gas discharged | emitted from the center part flow rate adjustment member 2a will misfire.

中央部流速調整部材2aの燃料ガス排出路21は、略均一な太さに形成されている。すなわち、内径Raは、全体的に略均一である。内径Raは、燃料ガス排出路21の流入口の口径と、排出口の口径と、長手方向中央の直径との算術平均値である。流入口の口径、排出口の口径、及び長手方向中央の直径は、2次元光学透過式の寸法測定器を用いて測定するものとする。   The fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is formed to have a substantially uniform thickness. That is, the inner diameter Ra is substantially uniform as a whole. The inner diameter Ra is an arithmetic average value of the diameter of the inlet of the fuel gas discharge passage 21, the diameter of the outlet, and the diameter at the center in the longitudinal direction. The diameter of the inlet, the diameter of the outlet, and the diameter at the center in the longitudinal direction are measured using a two-dimensional optical transmission type size measuring instrument.

本実施形態において、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中央部燃料電池1aの燃料ガス流路11の内径と略同じであるが、燃料ガス流路11の内径より大きくても小さくてもよい。   In the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is substantially the same as the inner diameter of the fuel gas passage 11 of the central fuel cell 1a. It can be larger or smaller.

本実施形態において、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中央部燃料電池1aの燃料ガス流路11の内径と略同じであるが、燃料ガス流路11の内径より大きくてもよいし、小さくてもよい。   In the present embodiment, the inner diameter Ra of the fuel gas discharge passage 21 of the central flow velocity adjusting member 2a is substantially the same as the inner diameter of the fuel gas passage 11 of the central fuel cell 1a. It may be larger or smaller.

また、図1に示すように、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcは、端部流速調整部材2bが有する燃料ガス排出路21の内径Rbよりも小さい。すなわち、内径Rcは内径Rbよりも小さく、Rc<Rbが成立している。これにより、端部燃料電池1bに比べて燃料ガスの流速が遅くなりやすい中間部燃料電池1cに取り付けられた中間部流速調整部材2cの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中間部流速調整部材2cから排出される余剰燃料ガスが失火してしまうことを抑制することができる。   Moreover, as shown in FIG. 1, the inner diameter Rc of the fuel gas discharge passage 21 included in the intermediate flow velocity adjusting member 2c is smaller than the inner diameter Rb of the fuel gas discharge passage 21 included in the end flow velocity adjusting member 2b. That is, the inner diameter Rc is smaller than the inner diameter Rb, and Rc <Rb is established. Accordingly, the flow rate of the fuel gas can be increased in the fuel gas discharge path 21 of the intermediate portion flow rate adjusting member 2c attached to the intermediate portion fuel cell 1c, in which the flow rate of the fuel gas tends to be slower than that of the end portion fuel cell 1b. Therefore, it is possible to suppress the surplus fuel gas discharged from the intermediate flow rate adjusting member 2c from being misfired.

さらに、図1に示すように、中央部流速調整部材2aが有する燃料ガス排出路21の内径Raは、中間部流速調整部材2cが有する燃料ガス排出路21の内径Rcよりも小さい。すなわち、Ra<Rcが成立している。これにより、中間部燃料電池1cに比べて燃料ガスの流速が遅くなりやすい中央部燃料電池1aに取り付けられた中央部流速調整部材2aの燃料ガス排出路21において、燃料ガスの流速を速めることができるため、中央部流速調整部材2aから排出される余剰燃料ガスが失火してしまうことをより抑制することができる。   Further, as shown in FIG. 1, the inner diameter Ra of the fuel gas discharge passage 21 included in the central flow velocity adjusting member 2a is smaller than the inner diameter Rc of the fuel gas discharge passage 21 included in the intermediate flow velocity adjusting member 2c. That is, Ra <Rc is established. Thus, the flow rate of the fuel gas can be increased in the fuel gas discharge path 21 of the central flow rate adjusting member 2a attached to the central fuel cell 1a, which is likely to be slow in comparison with the intermediate fuel cell 1c. Since it can do, it can suppress more that the surplus fuel gas discharged | emitted from the center part flow rate adjustment member 2a will misfire.

(燃料電池1及び流速調整部材2の構成)
図2及び図3は、流速調整部材2が取り付けられた燃料電池1の斜視図である。
(Configuration of fuel cell 1 and flow rate adjusting member 2)
2 and 3 are perspective views of the fuel cell 1 to which the flow rate adjusting member 2 is attached.

図2及び図3では、燃料電池1の一例として、いわゆる横縞型の固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)が図示されている。   2 and 3, as an example of the fuel cell 1, a so-called horizontal stripe type solid oxide fuel cell (SOFC) is illustrated.

燃料電池1は、多孔支持基板10、複数の発電部20、及び緻密シール膜30を備える。   The fuel cell 1 includes a porous support substrate 10, a plurality of power generation units 20, and a dense seal film 30.

多孔支持基板10は、長手方向に延びる扁平な平板状に形成される。多孔支持基板10の内部には、6本の燃料ガス流路11が形成される。   The porous support substrate 10 is formed in a flat plate shape extending in the longitudinal direction. Six fuel gas passages 11 are formed inside the porous support substrate 10.

多孔支持基板10は、電子伝導性の低い多孔質材料によって構成される。多孔支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)、MgO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)の複合材料、MgO(酸化ニッケル)とY(イットリア)の複合材料、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)の複合材料などによって構成することができる。多孔支持基板10は、遷移金属を含有していてもよい。多孔支持基板10の気孔率は特に制限されないが、20%〜60%とすることができる。多孔支持基板10の厚さは特に制限されないが、1mm〜10mmとすることができる。 The porous support substrate 10 is made of a porous material having low electron conductivity. The porous support substrate 10 includes, for example, CSZ (calcia stabilized zirconia), a composite material of MgO (nickel oxide) and YSZ (yttria stabilized zirconia), a composite material of MgO (nickel oxide) and Y 2 O 3 (yttria), A composite material of MgO (magnesium oxide) and MgAl 2 O 4 (magnesia alumina spinel) can be used. The porous support substrate 10 may contain a transition metal. The porosity of the porous support substrate 10 is not particularly limited, but can be 20% to 60%. The thickness of the porous support substrate 10 is not particularly limited, but can be 1 mm to 10 mm.

複数の発電部20は、多孔支持基板10の主面上において長手方向に並べられる。複数の発電部20は、多孔支持基板10の両主面上に配置されていてもよい。発電部20の個数は適宜変更することができる。   The plurality of power generation units 20 are arranged in the longitudinal direction on the main surface of the porous support substrate 10. The plurality of power generation units 20 may be disposed on both main surfaces of the porous support substrate 10. The number of the power generation units 20 can be changed as appropriate.

各発電部20は、燃料極と、固体電解質層と、空気極と、インターコネクタとを有する。燃料極は、多孔支持基板10上に配置される。固体電解質層は、燃料極と空気極の間に配置される。インターコネクタは、当該発電部20の燃料極と隣接する他の発電部20の空気極とを電気的に接続する。各発電部20は、固体電解質層と空気極との間に配置されるバリア層を有していてもよい。各発電部20は、空気極上に配置される空気極集電層を有していてもよい。   Each power generation unit 20 includes a fuel electrode, a solid electrolyte layer, an air electrode, and an interconnector. The fuel electrode is disposed on the porous support substrate 10. The solid electrolyte layer is disposed between the fuel electrode and the air electrode. The interconnector electrically connects the fuel electrode of the power generation unit 20 and the air electrode of another power generation unit 20 adjacent thereto. Each power generation unit 20 may have a barrier layer disposed between the solid electrolyte layer and the air electrode. Each power generation unit 20 may have an air electrode current collecting layer disposed on the air electrode.

緻密シール膜30は、多孔支持基板10の外表面を覆う。緻密シール膜30は、各発電部20の固体電解質層と一体的に形成されていてもよい。緻密シール膜30は、緻密質材料によって構成される。緻密質材料としては、例えば、YSZ、ScSZ、ガラス、スピネル酸化物などが挙げられる。   The dense seal film 30 covers the outer surface of the porous support substrate 10. The dense seal film 30 may be formed integrally with the solid electrolyte layer of each power generation unit 20. The dense seal film 30 is made of a dense material. Examples of the dense material include YSZ, ScSZ, glass, and spinel oxide.

流速調整部材2は、燃料電池1の先端部5に取り付けられる。流速調整部材2は、接合材によって、燃料電池1の先端部5に固定されていてもよい。接合材としては、例えば、結晶化ガラスを用いることができる。結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、又はSiO−MgO系のガラスを用いることができる。 The flow rate adjusting member 2 is attached to the tip portion 5 of the fuel cell 1. The flow rate adjusting member 2 may be fixed to the tip portion 5 of the fuel cell 1 with a bonding material. For example, crystallized glass can be used as the bonding material. As the crystallized glass, for example, SiO 2 —B 2 O 3 based, SiO 2 —CaO based, or SiO 2 —MgO based glass can be used.

本実施形態において、流速調整部材2は、平板状の緻密体である。流速調整部材2は、緻密質材料によって構成される。緻密質材料としては、MgO、ZrO、MgAlなどのスピネル酸化物や、フェライト系ステンレス、SiO−MgO系などのガラス材料が挙げられるが、これに限られるものではない。流速調整部材2の気孔率は、20%以下が好ましく、5%以下がより好ましい。 In the present embodiment, the flow rate adjusting member 2 is a flat dense body. The flow rate adjusting member 2 is made of a dense material. Examples of the dense material include spinel oxides such as MgO, ZrO 2 , and MgAl 2 O 4 , and glass materials such as ferrite-based stainless steel and SiO 2 —MgO-based materials, but are not limited thereto. The porosity of the flow rate adjusting member 2 is preferably 20% or less, and more preferably 5% or less.

流速調整部材2は、内部に6本の燃料ガス排出路21を有する。各燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。各燃料ガス排出路21は、燃料電池1の長手方向に延びる。燃料ガス排出路21の本数は、燃料電池1が有する燃料ガス流路11の本数に合わせて適宜変更可能である。   The flow rate adjusting member 2 has six fuel gas discharge paths 21 inside. Each fuel gas discharge passage 21 is connected to the fuel gas passage 11 of the fuel cell 1. Each fuel gas discharge path 21 extends in the longitudinal direction of the fuel cell 1. The number of the fuel gas discharge passages 21 can be appropriately changed according to the number of the fuel gas passages 11 included in the fuel cell 1.

(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made without departing from the scope of the present invention.

上記実施形態では、本発明にかかる流速調整部材を横縞型の燃料電池1に適用した場合について説明したが、本発明にかかる流速調整部材は、いわゆる縦縞型の燃料電池などにも適用することができる。縦縞型の燃料電池は、導電性の支持基板と、支持基板の一主面上に配置される発電部(燃料極、固体電解質層及び空気極)と、支持基板の他主面上に配置されるインターコネクタとを備える。   In the above embodiment, the case where the flow rate adjusting member according to the present invention is applied to the horizontal stripe type fuel cell 1 has been described. However, the flow rate adjusting member according to the present invention can also be applied to a so-called vertical stripe type fuel cell. it can. The vertically striped fuel cell is disposed on a conductive support substrate, a power generation unit (a fuel electrode, a solid electrolyte layer, and an air electrode) disposed on one main surface of the support substrate, and on the other main surface of the support substrate. Interconnector.

上記実施形態では、流速調整部材2は、平板状の緻密体であることとしたが、これに限られるものではない。流速調整部材2は、燃料電池1の先端部5の側面上に形成された緻密膜であってもよい。このような緻密膜は、ZrO、SiO−MgO系の結晶化ガラスなどの緻密質材料を先端部5の側面上にディップ成膜することによって形成することができる。 In the embodiment described above, the flow rate adjusting member 2 is a flat dense body, but is not limited thereto. The flow rate adjusting member 2 may be a dense film formed on the side surface of the tip portion 5 of the fuel cell 1. Such a dense film can be formed by dip-filming a dense material such as ZrO 2 , SiO 2 —MgO-based crystallized glass on the side surface of the tip portion 5.

上記実施形態では、図1に示したように、複数の流速調整部材2は、中間部流速調整部材2cを含むこととしたが、中間部流速調整部材2cを含んでいなくてもよい。この場合、中間部燃料電池1cには、中間部流速調整部材2cの代わりに、中央部流速調整部材2aを取り付けてもよいし、端部流速調整部材2bを取り付けてもよい。 In the above embodiment, as shown in FIG. 1 , the plurality of flow rate adjusting members 2 include the intermediate flow rate adjusting member 2c, but may not include the intermediate flow rate adjusting member 2c. In this case, instead of the intermediate flow rate adjusting member 2c, the middle flow rate adjusting member 2a or the end flow rate adjusting member 2b may be attached to the intermediate fuel cell 1c.

上記実施形態では、図1に示したように、複数の流速調整部材2には、中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2cが含まれることとしたが、中央部流速調整部材2aと中間部流速調整部材2cとの間、又は/及び、端部流速調整部材2bと中間部流速調整部材2cとの間に、中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2cそれぞれと異なる内径を有する1以上の補充流速調整部材を含んでいてもよい。 In the above embodiment, as shown in FIG. 1 , the plurality of flow rate adjusting members 2 include the central flow rate adjusting member 2a, the end flow rate adjusting member 2b, and the intermediate flow rate adjusting member 2c. Between the central flow rate adjusting member 2a and the intermediate flow rate adjusting member 2c and / or between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, the central flow rate adjusting member 2a and the end flow rate adjusting member are adjusted. One or more replenishment flow velocity adjusting members having different inner diameters from the member 2b and the intermediate flow velocity adjusting member 2c may be included.

補充流速調整部材は、中央部流速調整部材2aと中間部流速調整部材2cとの間に配置される場合、中央部燃料電池1aと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流速調整部材が有する燃料ガス排出路21の内径は、中央部流速調整部材2aの内径Raと中間部流速調整部材2cの内径Rcの間であることが好ましい。   When the replenishment flow rate adjusting member is disposed between the central flow rate adjusting member 2a and the intermediate flow rate adjusting member 2c, it may be attached to either the central fuel cell 1a or the intermediate fuel cell 1c. In this case, the inner diameter of the fuel gas discharge passage 21 included in the replenishment flow rate adjusting member is preferably between the inner diameter Ra of the central flow rate adjusting member 2a and the inner diameter Rc of the intermediate flow rate adjusting member 2c.

補充流速調整部材は、端部流速調整部材2bと中間部流速調整部材2cとの間に配置される場合、端部燃料電池1bと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流速調整部材の内径は、端部流速調整部材2bの内径Rbと中間部流速調整部材2cの内径Rcの間であることがより好ましい。   When the replenishment flow rate adjusting member is disposed between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, it may be attached to either the end fuel cell 1b or the intermediate fuel cell 1c. In this case, the inner diameter of the replenishing flow rate adjusting member is more preferably between the inner diameter Rb of the end flow rate adjusting member 2b and the inner diameter Rc of the intermediate flow rate adjusting member 2c.

上記実施形態では、図1に示したように、複数の流速調整部材2には、3種類の流速調整部材(中央部流速調整部材2a、端部流速調整部材2b及び中間部流速調整部材2c)だけが含まれることとしたが、これに限られるものではない。例えば、複数の流速調整部材2それぞれの内径が異なっており、配列方向の端部から中央部に向かって順番に内径が小さくなるように、又は、配列方向の端部から中央部に向かって順番に内径が大きくなるように並べられていてもよい。 In the above embodiment, as shown in FIG. 1 , the plurality of flow rate adjusting members 2 include three types of flow rate adjusting members (a central flow rate adjusting member 2a, an end flow rate adjusting member 2b, and an intermediate flow rate adjusting member 2c). However, it is not limited to this. For example, each of the plurality of flow rate adjusting members 2 has a different inner diameter, and the inner diameter decreases in order from the end in the arrangement direction toward the center, or in order from the end in the arrangement direction toward the center. It may be arranged so that the inner diameter becomes larger.

1 燃料電池
1a 中央部燃料電池
1b 端部燃料電池
1c 中間部燃料電池
2 流速調整部材
2a 中央部流速調整部材
2b 端部流速調整部材
2c 中間部流速調整部材
100 燃料電池スタック
DESCRIPTION OF SYMBOLS 1 Fuel cell 1a Center part fuel cell 1b End part fuel cell 1c Intermediate part fuel cell 2 Flow rate adjustment member 2a Center part flow rate adjustment member 2b End part flow rate adjustment member 2c Intermediate part flow rate adjustment member 100 Fuel cell stack

Claims (3)

配列方向に配列され、燃料ガス流路を有する複数の燃料電池と、
前記複数の燃料電池それぞれの先端部に取り付けられ、前記燃料ガス流路に連なる燃料ガス排出路を有する複数の流速調整部材と、
前記複数の燃料電池それぞれの基端部を支持するマニホールドと、
を備え、
前記複数の流速調整部材は、前記配列方向の中央部に位置する中央部燃料電池に取り付けられる中央部流速調整部材と、前記配列方向の端部に位置する端部燃料電池に取り付けられる端部流速調整部材とを含み、
前記中央部流速調整部材が有する前記燃料ガス排出路の第1内径は、前記端部流速調整部材が有する前記燃料ガス排出路の第2内径と異なる、
燃料電池スタック。
A plurality of fuel cells arranged in the arrangement direction and having fuel gas flow paths;
A plurality of flow rate adjusting members attached to the front end of each of the plurality of fuel cells and having a fuel gas discharge path connected to the fuel gas flow path;
A manifold that supports a base end portion of each of the plurality of fuel cells;
With
The plurality of flow velocity adjusting members are a central flow velocity adjusting member attached to a central fuel cell located in a central portion in the arrangement direction, and an end flow velocity attached to an end fuel cell located in an end portion in the arrangement direction. An adjustment member,
A first inner diameter of the fuel gas discharge passage of the central flow velocity adjustment member is different from a second inner diameter of the fuel gas discharge passage of the end flow velocity adjustment member;
Fuel cell stack.
前記第2内径は、前記第1内径よりも小さい、
請求項1に記載の燃料電池スタック。
The second inner diameter is smaller than the first inner diameter;
The fuel cell stack according to claim 1.
前記第1内径は、前記第2内径よりも小さい、
請求項1に記載の燃料電池スタック。
The first inner diameter is smaller than the second inner diameter;
The fuel cell stack according to claim 1.
JP2016231311A 2016-11-29 2016-11-29 Fuel cell stack Expired - Fee Related JP6368762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231311A JP6368762B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231311A JP6368762B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018073636A Division JP6483887B2 (en) 2018-04-06 2018-04-06 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2018088359A true JP2018088359A (en) 2018-06-07
JP6368762B2 JP6368762B2 (en) 2018-08-01

Family

ID=62494490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231311A Expired - Fee Related JP6368762B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP6368762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457688B1 (en) * 2018-06-22 2019-01-23 日本碍子株式会社 Fuel cell and cell stack device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346988A (en) * 2004-05-31 2005-12-15 Kyocera Corp Fuel battery assembly and fuel battery
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2013161574A (en) * 2012-02-02 2013-08-19 Kyocera Corp Solid oxide fuel cell, fuel cell module and fuel cell device
JP2014067669A (en) * 2012-09-27 2014-04-17 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2016115581A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346988A (en) * 2004-05-31 2005-12-15 Kyocera Corp Fuel battery assembly and fuel battery
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2013161574A (en) * 2012-02-02 2013-08-19 Kyocera Corp Solid oxide fuel cell, fuel cell module and fuel cell device
JP2014067669A (en) * 2012-09-27 2014-04-17 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2016115581A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457688B1 (en) * 2018-06-22 2019-01-23 日本碍子株式会社 Fuel cell and cell stack device

Also Published As

Publication number Publication date
JP6368762B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6030261B1 (en) Fuel cell stack
JP6586541B1 (en) Electrochemical cell and cell stack apparatus
JP6275224B1 (en) Fuel cell stack
JP6368762B2 (en) Fuel cell stack
JP6605084B1 (en) Cell stack device
JP6368761B2 (en) Fuel cell stack
JP6483887B2 (en) Fuel cell stack
JP2005346988A (en) Fuel battery assembly and fuel battery
JP6312912B2 (en) Fuel cell system
WO2020012699A1 (en) Cell stack device
JP6484383B1 (en) Fuel cell and cell stack device
JP6535802B1 (en) Fuel cell and cell stack device
JP6483908B1 (en) Cell stack device
JP6446583B1 (en) Manifold and cell stack device
JP6611393B1 (en) Cell stack device
WO2017006790A1 (en) Fuel cell stack
JP6586504B1 (en) Cell stack device
JP6467090B1 (en) Fuel cell and cell stack device
JP6483894B1 (en) Fuel cell and cell stack device
JP5451808B2 (en) Fuel cell assembly
JP6457688B1 (en) Fuel cell and cell stack device
JP2019220309A (en) Fuel cell and cell stack device
JP6275223B1 (en) Fuel cell stack
JP2019220427A (en) Fuel cell and cell stack device
JP2019220428A (en) Fuel cell and cell stack device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees