WO2017006790A1 - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
WO2017006790A1
WO2017006790A1 PCT/JP2016/068954 JP2016068954W WO2017006790A1 WO 2017006790 A1 WO2017006790 A1 WO 2017006790A1 JP 2016068954 W JP2016068954 W JP 2016068954W WO 2017006790 A1 WO2017006790 A1 WO 2017006790A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell stack
fuel cell
support substrate
flow path
stack according
Prior art date
Application number
PCT/JP2016/068954
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016124351A external-priority patent/JP6030260B1/en
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112016000108.8T priority Critical patent/DE112016000108B4/en
Priority to CN201680001904.3A priority patent/CN106507690A/en
Publication of WO2017006790A1 publication Critical patent/WO2017006790A1/en
Priority to US15/421,572 priority patent/US10741869B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell stack.
  • a fuel cell stack including a plurality of cells and a manifold that distributes gas to each cell is known.
  • Each cell includes a porous support substrate and a power generation element unit supported by each support substrate.
  • fuel gas is supplied from the manifold to the gas flow path of each support substrate.
  • unreacted gas is discharged from the distal end of the gas flow path to the outside.
  • the fuel cell stack described in Patent Document 1 is configured to collect unreacted gas discharged from the distal end portion to the outside in order to improve the use efficiency of fuel gas.
  • the support substrate has a gas flow path for the outward path and a gas flow path for the return path. Of the fuel gas supplied to the outward gas flow path, the unreacted gas is used again for power generation in the return gas flow path. Further, the fuel gas that has flowed through the return gas flow path is not discharged from the distal end portion to the outside, but is recovered from the proximal end portion to the manifold.
  • the fuel gas may flow to the gas path for the return path without flowing to the end for the gas path for the forward path. That is, the fuel gas may flow through the support substrate in the middle of the outward gas flow path to the return gas flow path.
  • a dense member is inserted between the outward gas passage and the backward gas passage.
  • an object of the present invention is to provide a fuel cell stack that can recover gas and can be easily manufactured.
  • a fuel cell stack includes a first power generation element portion, a first support substrate, a second power generation element portion, a second support substrate, and a communication member.
  • the first power generation element unit includes a first fuel electrode, a first electrolyte, and a first air electrode.
  • the first support substrate has a first substrate body, a first dense layer, and a first gas flow path.
  • the first substrate body portion supports the first power generation element portion.
  • the first dense layer covers the first substrate body.
  • the first gas flow path extends from the proximal end to the distal end.
  • the second power generation element unit includes a second fuel electrode, a second electrolyte, and a second air electrode.
  • the second support substrate has a second substrate body, a second dense layer, and a second gas flow path.
  • the second substrate body portion supports the second power generation element portion.
  • the second dense layer covers the second substrate body.
  • the second gas flow path extends from the proximal end to the distal end.
  • the communication member extends between the distal end portion of the first support substrate and the distal end portion of the second support substrate, and communicates the first gas channel and the second gas channel.
  • the unreacted gas out of the fuel gas flowing through the first gas flow path of the first support substrate is not discharged from the distal end portion of the first gas flow path to the outside, but communicated. It flows to a 2nd gas flow path through a member. For this reason, the use efficiency of fuel gas can be improved.
  • the first support substrate has a first dense layer that covers the first substrate body
  • the second support substrate has a second dense layer that covers the second substrate body. Since the first and second dense layers are denser than the first and second substrate body portions, the fuel gas flowing in the first gas flow path passes through the first and second substrate body portions to form the second gas. It can suppress flowing into the flow path.
  • the first dense layer may be formed so as to cover the first substrate body, and can be easily formed.
  • the first support substrate and the second support substrate are arranged such that the side surface of the first support substrate and the side surface of the second support substrate face each other.
  • the first support substrate and the second support substrate may be arranged with a space therebetween.
  • the temperature distribution in the stack can be made uniform by flowing air at this interval.
  • the first support substrate and the second support substrate may be arranged side by side in the width direction.
  • the space between the first support substrate and the second support substrate may be sealed. According to this configuration, the space between the first support substrate and the second support substrate is sealed in the width direction. For this reason, for example, when air flows along the main surfaces of the first support substrate and the second support substrate, it is possible to prevent the air from escaping from between the first support substrate and the second support substrate.
  • the first support substrate and the second support substrate may be arranged side by side so as to contact each other in the width direction.
  • the fuel cell stack may further include a filling member.
  • the filling member is disposed so as to fill a space between the first support substrate and the second support substrate that are disposed at a distance from each other.
  • the fuel cell stack includes a plurality of first support substrates and a plurality of second support substrates.
  • Each 1st support substrate is arrange
  • Each 2nd support substrate is arrange
  • Each first support substrate is arranged side by side with each second support substrate in the width direction. At least a pair of the first support substrate and the second support substrate is sealed.
  • the communication member has a flow path for communicating the first gas flow path and the second gas flow path.
  • the communicating member may be porous. In this case, it is preferable that the communication member has a third dense layer constituting the outer surface. Moreover, the flow path mentioned above can be comprised by the pore in a communicating member.
  • the communicating member may have a space extending from the first gas channel to the second gas channel as the channel.
  • the communicating member may be made of metal.
  • the fuel cell stack includes a plurality of first power generation element units and a plurality of second power generation element units.
  • Each first power generation element portion is arranged at an interval along the longitudinal direction of the first support substrate.
  • Each 2nd electric power generation element part is arrange
  • the fuel cell stack further includes a manifold that supports the first and second support substrates. With this manifold, fuel gas can be distributed to each gas flow path.
  • the manifold has a first chamber and a second chamber.
  • the first gas flow path is in communication with the first chamber.
  • the second gas flow path communicates with the second chamber. According to this configuration, by supplying the fuel gas to the first chamber, the fuel gas can smoothly flow in the order of the first gas flow path, the communication member, and the second gas flow path.
  • the manifold may have a manifold body and a partition plate.
  • the manifold main body has a space.
  • the partition plate partitions the space portion into the first chamber and the second chamber. According to this configuration, a manifold having the first and second chambers can be easily manufactured.
  • the manifold may have a first manifold body and a second manifold body.
  • the first manifold body has a first chamber.
  • the second manifold main body has a second chamber.
  • the manifold may further include a gas supply unit and a gas discharge unit.
  • the gas supply unit is connected to the first chamber.
  • the gas discharge part is connected to the second chamber.
  • the gas supply unit may be formed on the first side plate of the manifold, and the gas discharge unit may be formed on the second side plate of the manifold.
  • the first side plate and the second side plate of the manifold are disposed on opposite sides.
  • Both the gas supply part and the gas discharge part may be formed on the first side plate of the manifold.
  • the fuel cell stack may include a plurality of first support substrates and a plurality of second support substrates.
  • the first support substrates are arranged at intervals from each other in the direction in which the first side plate faces.
  • Each of the second support substrates is disposed at a distance from each other in the direction in which the first side plate faces.
  • the first dense layer includes a first electrolyte
  • the second dense layer includes a second electrolyte
  • the fuel cell stack according to the present invention can recover gas and can easily manufacture the fuel cell stack.
  • FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 5.
  • 10 is a perspective view of a fuel cell stack according to Modification 6.
  • FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 6.
  • FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 7.
  • FIG. 10 is a perspective view of a fuel cell stack according to Modification 8.
  • FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 9.
  • FIG. 1 is a perspective view showing a fuel cell stack.
  • the description of some first and second cells is omitted.
  • the fuel cell stack 100 includes a plurality of first cells 10 a, a plurality of second cells 10 b, a communication member 3, and a manifold 4.
  • “a” is added to the end of the reference numerals of the constituent members of the first cell 10a
  • “b” is attached to the end of the reference numerals of the constituent members of the second cell 10b. Since the first cell 10a and the second cell 10b have substantially the same configuration, only the components of the first cell 10a will be described below, and the components of the second cell 10b will be described in the configuration of the first cell 10a.
  • the reference numerals corresponding to the members are attached and detailed description is omitted.
  • the manifold 4 is configured to support the first and second cells 10a and 10b.
  • the manifold 4 has a first chamber 41 and a second chamber 42. Further, the manifold 4 includes a gas supply unit 101 connected to the first chamber 41 and a gas discharge unit 102 connected to the second chamber 42. Fuel gas is supplied to the first chamber 41 via the gas supply unit 101. Further, the fuel gas in the second chamber 42 is discharged from the manifold 4 through the gas discharge unit 102.
  • the manifold 4 has a manifold main body 43 and a partition plate 44.
  • the manifold main body 43 has a space inside.
  • the manifold main body 43 has a rectangular parallelepiped shape.
  • the manifold main body 43 includes an upper plate 431, a bottom plate 432, a first side plate 433, a second side plate 434, a third side plate 435, and a fourth side plate 436.
  • the first to fourth side plates 433 to 436 extend upward from the peripheral edge of the bottom plate 432.
  • the first side plate 433 and the second side plate 434 are arranged on opposite sides. Further, the third side plate 435 and the fourth side plate 436 are disposed on opposite sides.
  • the upper plate 431 is disposed so as to seal the upper surface of the manifold main body 43.
  • the upper plate 431, the bottom plate 432, the first side plate 433, the second side plate 434, the third side plate 435, and the fourth side plate 436 are integrally formed.
  • a plurality of first and second insertion holes are formed in the upper plate 431 of the manifold main body 43.
  • the first cell 10a is inserted into the first insertion hole, and the second cell 10b is inserted into the second insertion hole.
  • the first insertion hole communicates with the first chamber 41, and the second insertion hole communicates with the second chamber 42.
  • the first insertion holes are arranged at intervals in the longitudinal direction (z-axis direction) of the manifold main body 43. That is, the first insertion holes are formed at intervals in the direction in which the first side plate 433 faces.
  • the second insertion holes are also arranged at intervals in the longitudinal direction (z-axis direction) of the manifold main body 43. That is, the second insertion holes are formed at intervals from each other in the direction in which the first side plate 433 faces.
  • the first insertion hole and the second insertion hole are arranged at intervals in the width direction (y-axis direction) of the manifold main body 43.
  • the gas supply unit 101 is formed on the first side plate 433. Further, the gas discharge unit 102 is also formed on the first side plate 433. That is, the gas supply unit 101 and the gas discharge unit 102 are formed on the same first side plate 433.
  • the partition plate 44 partitions the space of the manifold main body 43 into a first chamber 41 and a second chamber 42. Specifically, the partition plate 44 extends in the longitudinal direction of the manifold main body 43 at a substantially central portion of the manifold main body 43. Although it is preferable that the partition plate 44 completely partitions the space of the manifold main body 43, a gap may be formed between the partition plate 44 and the manifold main body 43.
  • the first cell 10 a is disposed above the first chamber 41 of the manifold 4.
  • the first cell 10 a is inserted into the first insertion hole of the manifold 4.
  • the second cell 10 b is disposed above the second chamber 42 of the manifold 4.
  • the second cell 10 b is inserted into the second insertion hole of the manifold 4.
  • the first cells 10a are arranged so that the main surfaces face each other.
  • the first cells 10 a are arranged at intervals along the longitudinal direction of the manifold 4.
  • the second cells 10b are arranged so that the main surfaces face each other.
  • the second cells 10b are arranged at intervals along the longitudinal direction of the manifold 4.
  • the row of the first cells 10a and the row of the second cells 10b are arranged substantially in parallel.
  • the 1st cell 10a and the 2nd cell 10b are arrange
  • the first cell 10a includes a first support substrate 5a and a plurality of first power generation element portions 2a.
  • Each first power generation element portion 2a may be supported only on one main surface 503a of the first support substrate 5a, or may be supported on both main surfaces 503a of the first support substrate 5a. In the present embodiment, each first power generation element portion 2a is supported on both main surfaces 503a of the first support substrate 5a.
  • the first power generation element portions 2a are electrically connected to each other by a first electrical connection portion 9a (see FIG. 3).
  • the first support substrate 5a includes a first substrate body 51a, a first dense layer 52a, and a plurality of first gas flow paths 53a.
  • the first support substrate 5a has a proximal end 501a and a distal end 502a.
  • the proximal end portion 501a and the distal end portion 502a are both end portions in the longitudinal direction (x-axis direction) of the first support substrate 5a.
  • the proximal end portion 501 a of the first support substrate 5 a is inserted into the first insertion hole of the manifold 4.
  • the first support substrate 5a has two main surfaces 503a and two side surfaces 504a. Each main surface 503a supports each first power generation element portion 2a. Each main surface 503a faces the thickness direction (z-axis direction) of the first support substrate 5a. Each side surface 504a faces the width direction (y-axis direction) of the first support substrate 5a. Each side surface 504a may be curved. As shown in FIG. 1, each 1st support substrate 5a is arrange
  • the first substrate body 51a supports the first power generation element 2a.
  • the first substrate body 51a is made of a porous material that does not have electronic conductivity.
  • the first substrate body 51a is made of CSZ (calcia stabilized zirconia), for example.
  • the first substrate body 51a may be composed of NiO (nickel oxide) and YSZ (8YSZ) (yttria-stabilized zirconia), or from NiO (nickel oxide) and Y 2 O 3 (yttria).
  • MgO may be configured from (magnesium oxide) and MgAl 2 O 4 and (magnesia alumina spinel).
  • the porosity of the first substrate body 51a is, for example, about 20 to 60%. This porosity is measured, for example, by Archimedes method or microstructure observation.
  • the first dense layer 52a covers the first substrate body 51a.
  • the first dense layer 52a only needs to be able to prevent the fuel gas flowing through the first gas flow path 53a from flowing through the first substrate body 51a to the second gas flow path 53b. It is not necessary to cover the entire surface of 51a.
  • the first dense layer 52a covers each main surface and each side surface of the first substrate body 51a. That is, the first dense layer 52a constitutes each main surface 503a of the first support substrate 5a and constitutes each side surface 504a of the first support substrate 5a.
  • the first dense layer 52a includes a first electrolyte 7a described later and a first interconnector 91a.
  • the first dense layer 52a is denser than the first substrate body 51a. For example, the porosity of the first dense layer 52a is about 0 to 7%.
  • the first gas channel 53a extends from the proximal end 501a to the distal end 502a of the first support substrate 5a.
  • the first gas channel 53a extends along the longitudinal direction (x-axis direction) of the first support substrate 5a.
  • the first gas channel 53a extends through the first substrate body 51a.
  • a proximal end portion 531 a of the first gas flow path 53 a communicates with the first chamber 41.
  • the distal end portion 532a of the first gas flow path 53a communicates with the flow path 30 of the communication member 3 described later.
  • the 1st electric power generation element part 2a has the 1st fuel electrode 6a, the 1st electrolyte 7a, and the 1st air electrode 8a.
  • the first power generation element portion 2a further includes a first reaction preventing film 11a.
  • the first fuel electrode 6a is a fired body made of a porous material having electron conductivity.
  • the first fuel electrode 6a includes a first fuel electrode current collector 61a and a fuel electrode active part 62a.
  • the first fuel electrode current collector 61a is disposed in the recess 513a.
  • the recesses 513a are formed on both surfaces of the first substrate body 51a. Specifically, the first fuel electrode current collector 61a is filled in the recess 513a and has the same outer shape as the recess 513a.
  • Each first fuel electrode current collector 61a has a recess 611a and a recess 612a.
  • the anode active part 62a is disposed in the recess 611a. Specifically, the fuel electrode active part 62a is filled in the recess 611a.
  • the first fuel electrode current collector 61a can be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia).
  • the first fuel electrode current collector 61a may be composed of NiO (nickel oxide) and Y 2 O 3 (yttria), or composed of NiO (nickel oxide) and CSZ (calcia stabilized zirconia). May be.
  • the thickness of the first fuel electrode current collector 61a and the depth of the recess 513a are about 50 to 500 ⁇ m.
  • the fuel electrode active part 62a may be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia).
  • the fuel electrode active part 62a may be composed of NiO (nickel oxide) and GDC (gadolinium-doped ceria).
  • the thickness of the anode active portion 62a is 5 to 30 ⁇ m.
  • the first electrolyte 7a is disposed so as to cover the first fuel electrode 6a. Specifically, the first electrolyte 7a extends in the longitudinal direction from one first interconnector 91a to the other first interconnector 91a. That is, the first electrolyte 7a and the first interconnector 91a are alternately arranged in the longitudinal direction. The first electrolyte 7a covers each main surface and each side surface of the first substrate body 51a.
  • the first electrolyte 7a is denser than the first substrate body 51a.
  • the porosity of the first electrolyte 7a is about 0 to 7%.
  • the first electrolyte 7a is a fired body made of a dense material having ion conductivity and not electron conductivity.
  • the first electrolyte 7a can be composed of, for example, YSZ (8YSZ) (yttria stabilized zirconia). Or you may comprise from LSGM (lantern gallate).
  • the thickness of the first electrolyte 7a is, for example, about 3 to 50 ⁇ m.
  • the first reaction preventing film 11a is a fired body made of a dense material and has substantially the same shape as the fuel electrode active part 62a in plan view.
  • the first reaction preventing film 11a is disposed at a position corresponding to the fuel electrode active part 62a via the first electrolyte 7a.
  • the first reaction preventing film 11a has a reaction layer having a large electric resistance at the interface between the first electrolyte 7a and the first air electrode 8a due to a reaction between YSZ in the first electrolyte 7a and Sr in the first air electrode 8a. It is provided to suppress the occurrence of the phenomenon that is formed.
  • the thickness of the first reaction preventing film 11a is, for example, about 3 to 50 ⁇ m.
  • the first air electrode 8a is disposed on the first reaction preventing film 11a.
  • the first air electrode 8a is a fired body made of a porous material having electron conductivity.
  • LSF (La, Sr) FeO 3 (lanthanum strontium ferrite)
  • LNF La (Ni, Fe) O 3 (lanthanum nickel ferrite)
  • LSC (La, Sr) CoO 3 (lanthanum strontium cobaltite), etc. It may be configured.
  • the first air electrode 8a may be composed of two layers of a first layer (inner layer) made of LSCF and a second layer (outer layer) made of LSC.
  • the thickness of the first air electrode 8a is, for example, 10 to 100 ⁇ m.
  • the first electrical connection portion 9a is configured to electrically connect the adjacent first power generation element portions 2a.
  • the first electrical connection portion 9a includes a first interconnector 91a and a first air electrode current collector film 92a.
  • the first interconnector 91a is disposed in the recess 612a. Specifically, the first interconnector 91a is embedded (filled) in the recess 612a.
  • the first interconnector 91a is a fired body made of a dense material having electronic conductivity.
  • the first interconnector 91a is denser than the first substrate body 51a. For example, the porosity of the first interconnector 91a is about 0 to 7%.
  • the first interconnector 91a can be composed of, for example, LaCrO 3 (lanthanum chromite). Alternatively, it may be composed of (Sr, La) TiO 3 (strontium titanate). The thickness of the first interconnector 91a is, for example, 10 to 100 ⁇ m.
  • the first air electrode current collector film 92a is disposed so as to extend between the first interconnector 91a and the first air electrode 8a of the adjacent first power generation element portion 2a.
  • the first air electrode 8a of the first power generation element portion 2a disposed on the left side in FIG. 3 and the first interconnector 91a of the first power generation element portion 2a disposed on the right side in FIG. 3 are electrically connected.
  • the first air electrode current collector film 92a is disposed.
  • the first air electrode current collector film 92a is a fired body made of a porous material having electron conductivity.
  • LSC (La, Sr) CoO 3 (lanthanum strontium cobaltite) may be used.
  • it may be made of Ag (silver) or Ag—Pd (silver palladium alloy).
  • the thickness of the first air electrode current collector film 92a is, for example, about 50 to 500 ⁇ m.
  • the 2nd cell 10b has the 2nd support substrate 5b and the 2nd electric power generation element part 2b.
  • the second support substrates 5b are arranged so that the main surfaces 503b face each other.
  • the respective second support substrates 5b are arranged at intervals from each other in the direction (z-axis direction) in which the first side plate 433 faces.
  • the second support substrate 5b has a second substrate body 51b, a second dense layer 52b, and a second gas channel 53b.
  • the second support substrate 5b has a proximal end portion 501b and a distal end portion 502b.
  • the proximal end portion 501 b of the second support substrate 5 b is inserted into the second insertion hole of the manifold 4.
  • the second substrate body 51b supports a plurality of second power generation element portions 2b.
  • the second dense layer 52b covers the second substrate body 51b.
  • the second gas channel 53b extends from the proximal end 501b to the distal end 502b of the second support substrate 5b.
  • the second power generation element portion 2b has a second fuel electrode 6b, a second electrolyte 7b, and a second air electrode 8b.
  • each second cell 10b has substantially the same configuration as the first cell 10a, and thus detailed description thereof is omitted.
  • the second power generation element portion 2b may have a larger area in contact with the fuel gas than the first power generation element portion 2a. That is, the area of the second fuel electrode 6b may be larger than the area of the first fuel electrode 6a.
  • the area of the second air electrode 8b may be larger than the area of the first air electrode 8a.
  • the area of the second fuel electrode 6b may be the same as the area of the first fuel electrode 6a or may be smaller than the area of the first fuel electrode 6a.
  • the area of the second air electrode 8b may be the same as the area of the first air electrode 8a or may be smaller than the area of the first air electrode 8a.
  • the first support substrates 5 a are arranged at intervals so that the main surfaces 503 a face each other.
  • the second support substrates 5b are arranged at intervals so that the main surfaces 503b face each other.
  • the first support substrate 5a and the second support substrate 5b are arranged side by side in the width direction (y-axis direction).
  • the first and second support substrates 5a and 5b are arranged so that the side surface 504a of the first support substrate 5a faces the side surface 504b of the second support substrate 5b.
  • a gap is formed between the first support substrate 5a and the second support substrate 5b.
  • the gap can be about 0.5 to 10 mm.
  • the communication member 3 extends over the distal end portion 502a of the first support substrate 5a and the distal end portion 502b of the second support substrate 5b. And the communication member 3 has the flow path 30 which connects the 1st gas flow path 53a and the 2nd gas flow path 53b. Specifically, the channel 30 communicates the distal end 532a of each first gas channel 53a and the distal end 532b of each second gas channel 53b.
  • the flow path 30 is comprised by the space extended from each 1st gas flow path to each 2nd gas flow path.
  • the communication member 3 is preferably bonded to the first support substrate 5a and the second support substrate 5b.
  • the communicating member 3 is porous. Further, the communication member 3 has a third dense layer 31 that constitutes the outer surface thereof.
  • the third dense layer 31 is formed more densely than the main body of the communication member 3. For example, the porosity of the third dense layer 31 is about 0 to 7%.
  • the third dense layer 31 can be formed of the same material as the communication member, an electrolyte material, crystallized glass, or the like.
  • the fuel gas supplied to the first chamber 41 flows in the first gas flow path 53a of each first cell 10a, and the above (2) in the first fuel electrode 6a of each first power generation element portion 2a.
  • the chemical reaction shown in the formula occurs.
  • the unreacted fuel gas in each first fuel electrode 6a exits the first gas channel 53a and is supplied to the second gas channel 53b through the channel 30 of the communication member 3.
  • the fuel gas supplied to the second gas passage 53b undergoes a chemical reaction represented by the above formula (2) at the second fuel electrode 6b of the second cell 10b.
  • the unreacted fuel gas in the second fuel electrode 6 b is collected in the second chamber 42 of the manifold 4.
  • the fuel gas is supplied to the first chamber 41 and the fuel gas is discharged from the second chamber 42, but the flow of the fuel gas is not particularly limited to this.
  • fuel gas may be supplied to the second chamber 42 and discharged from the first chamber 41. That is, the fuel gas may flow in the order of the second gas flow path, the communication member 3, and the first gas flow path.
  • the first support substrate 5a includes the plurality of first gas flow paths 53a, but the number of the first gas flow paths 53a may be one.
  • the first gas flow path 53a is preferably flat.
  • the first cells 10a and the second cells 10b are arranged in the longitudinal direction (z-axis direction) of the manifold 4, but may be arranged in the width direction (y-axis direction) of the manifold 4.
  • the communication member 3 may be comprised with the metal.
  • the communication member 3 can be made of an Fe—Cr alloy, a Ni-based alloy, or an MgO-based ceramic material (may be the same as the support substrate material).
  • the structure of the flow path 30 of the communication member 3 is not limited to this.
  • the flow path 30 of the communication member 3 can be configured by a plurality of pores formed in the communication member 3.
  • the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are spaced apart from each other, but are not limited thereto.
  • the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b may be sealed.
  • the first support substrate 5a and the second support substrate 5b may be disposed so as to contact each other in the width direction (y-axis direction). That is, the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are in contact with each other.
  • the first insertion hole and the second insertion hole may be connected to each other. That is, one insertion hole may be constituted by the first insertion hole and the second insertion hole.
  • the first cell 10 a is inserted into the insertion hole, and the lower end surface of the first cell 10 a is exposed to the first chamber 41.
  • the second cell 10 b is inserted into the insertion hole, and the lower end surface of the second cell 10 b is exposed to the second chamber 42.
  • Each insertion hole may extend over the first chamber 41 and the second chamber 42, or may be formed in each of the first chamber 41 and the second chamber 42.
  • Modification 7 the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are in contact with each other.
  • the first support substrate 5a and the second support substrate 5b May be arranged at intervals in the width direction (y-axis direction).
  • the filling member 54 may be arrange
  • the space between each of the first support substrates 5a and each of the second support substrates 5b is sealed, but between some of the first support substrates 5a and the second support substrates 5b. May not be blocked.
  • the gas supply unit 101 and the gas discharge unit 102 of the manifold 4 are formed on the same first side plate 433, but are not particularly limited thereto.
  • the gas supply unit 101 may be formed on the first side plate 433 and the gas discharge unit may be formed on the second side plate 434.
  • the manifold 4 is configured by one manifold body 43, but the configuration of the manifold 4 is not limited to this.
  • the manifold 4 may have a first manifold main body 43a and a second manifold main body 43b.
  • the first manifold body 43 a has a first chamber 41
  • the second manifold body 43 b has a second chamber 42.

Abstract

This fuel cell stack (100) is provided with: a first power generation element part; a first supporting substrate (5a); a second power generation element part; a second supporting substrate (5b); and a communication member (3). The first supporting substrate (5a) comprises: a first substrate main body part; a first dense layer; and a first gas channel. The first dense layer covers the first substrate main body part. The first gas channel extends from a proximal end part (501a) to a distal end part (502a). The second supporting substrate (5b) comprises: a second substrate main body part; a second dense layer; and a second gas channel. The second dense layer covers the second substrate main body part. The second gas channel extends from a proximal end part (501b) to a distal end part (502b). The communication member (3) extends between the distal end part (502a) of the first supporting substrate (5a) and the distal end part (502b) of the second supporting substrate (5b), and has the first gas channel and the second gas channel be in communication with each other.

Description

燃料電池スタックFuel cell stack
 本発明は、燃料電池スタックに関するものである。 The present invention relates to a fuel cell stack.
 複数のセルと、各セルにガスを分配するマニホールドと、を備えた燃料電池スタックが知られている。各セルは、多孔質の支持基板と、各支持基板に支持される発電素子部とを備えている。各支持基板の近位端部がマニホールドに挿入されることによって、各支持基板のガス流路にマニホールドから燃料ガスが供給される。各支持基板のガス流路の近位端部から供給された燃料ガスのうち未反応のガスは、ガス流路の遠位端部から外部へと排出される。 A fuel cell stack including a plurality of cells and a manifold that distributes gas to each cell is known. Each cell includes a porous support substrate and a power generation element unit supported by each support substrate. By inserting the proximal end portion of each support substrate into the manifold, fuel gas is supplied from the manifold to the gas flow path of each support substrate. Of the fuel gas supplied from the proximal end of the gas flow path of each support substrate, unreacted gas is discharged from the distal end of the gas flow path to the outside.
 特許文献1に記載の燃料電池スタックは、燃料ガスの使用効率を向上させるため、遠位端部から外部へと排出される未反応ガスを回収するように構成されている。具体的には、支持基板は、往路用のガス流路と復路用のガス流路とを有している。往路用のガス流路に供給された燃料ガスのうち未反応のガスは、復路用のガス流路で再度発電に利用される。また、復路用のガス流路を流れた燃料ガスは、遠位端部から外部へ排出されるのではなく、近位端部からマニホールドへと回収される。 The fuel cell stack described in Patent Document 1 is configured to collect unreacted gas discharged from the distal end portion to the outside in order to improve the use efficiency of fuel gas. Specifically, the support substrate has a gas flow path for the outward path and a gas flow path for the return path. Of the fuel gas supplied to the outward gas flow path, the unreacted gas is used again for power generation in the return gas flow path. Further, the fuel gas that has flowed through the return gas flow path is not discharged from the distal end portion to the outside, but is recovered from the proximal end portion to the manifold.
 支持基板は多孔質であるため、燃料ガスは、往路用のガス流路を最後まで流れることなく復路用のガス流路へ流れてしまうことがある。すなわち、燃料ガスが、往路用のガス流路の途中で支持基板内を通って復路用のガス流路へと流れてしまうことがある。このようなショートカットを防止するために、往路用のガス流路と復路用のガス流路との間に緻密質部材が挿入されている。 Since the support substrate is porous, the fuel gas may flow to the gas path for the return path without flowing to the end for the gas path for the forward path. That is, the fuel gas may flow through the support substrate in the middle of the outward gas flow path to the return gas flow path. In order to prevent such a shortcut, a dense member is inserted between the outward gas passage and the backward gas passage.
特開2015-53186号公報Japanese Patent Laying-Open No. 2015-53186
 上述したような燃料電池スタックは、多孔質の支持基板の内部に緻密質部材を挿入する必要があるため、製造することが困難であるという問題がある。そこで本発明の課題は、ガスを回収可能であり、且つ容易に製造することのできる燃料電池スタックを提供することにある。 The above-described fuel cell stack has a problem that it is difficult to manufacture the fuel cell stack because a dense member needs to be inserted into the porous support substrate. Therefore, an object of the present invention is to provide a fuel cell stack that can recover gas and can be easily manufactured.
 本発明のある側面に係る燃料電池スタックは、第1発電素子部、第1支持基板、第2発電素子部、第2支持基板、及び連通部材を備えている。第1発電素子部は、第1燃料極、第1電解質、及び第1空気極を有する。第1支持基板は、第1基板本体部、第1緻密層、及び第1ガス流路を有する。第1基板本体部は、第1発電素子部を支持する。第1緻密層は、第1基板本体部を覆う。第1ガス流路は、近位端部から遠位端部まで延びる。第2発電素子部は、第2燃料極、第2電解質、及び第2空気極を有する。第2支持基板は、第2基板本体部、第2緻密層、及び第2ガス流路を有する。第2基板本体部は、第2発電素子部を支持する。第2緻密層は、第2基板本体部を覆う。第2ガス流路は、近位端部から遠位端部まで延びる。連通部材は、前記第1支持基板の遠位端部と前記第2支持基板の遠位端部との間を延び第1ガス流路と第2ガス流路とを連通させる。 A fuel cell stack according to an aspect of the present invention includes a first power generation element portion, a first support substrate, a second power generation element portion, a second support substrate, and a communication member. The first power generation element unit includes a first fuel electrode, a first electrolyte, and a first air electrode. The first support substrate has a first substrate body, a first dense layer, and a first gas flow path. The first substrate body portion supports the first power generation element portion. The first dense layer covers the first substrate body. The first gas flow path extends from the proximal end to the distal end. The second power generation element unit includes a second fuel electrode, a second electrolyte, and a second air electrode. The second support substrate has a second substrate body, a second dense layer, and a second gas flow path. The second substrate body portion supports the second power generation element portion. The second dense layer covers the second substrate body. The second gas flow path extends from the proximal end to the distal end. The communication member extends between the distal end portion of the first support substrate and the distal end portion of the second support substrate, and communicates the first gas channel and the second gas channel.
 この構成によれば、第1支持基板の第1ガス流路を流れた燃料ガスのうち未反応ガスは、第1ガス流路の遠位端部から外部へと排出されるのではなく、連通部材を介して第2ガス流路へと流れる。このため、燃料ガスの使用効率を向上させることができる。また、第1支持基板は、第1基板本体部を覆う第1緻密層を有しており、第2支持基板は、第2基板本体部を覆う第2緻密層を有している。第1及び第2緻密層は、第1及び第2基板本体部よりも緻密であるため、第1ガス流路内を流れる燃料ガスが、第1及び第2基板本体部内を通って第2ガス流路へ流れることを抑制することができる。また、この第1緻密層は、第1基板本体部を覆うように形成すればよく、容易に形成することができる。 According to this configuration, the unreacted gas out of the fuel gas flowing through the first gas flow path of the first support substrate is not discharged from the distal end portion of the first gas flow path to the outside, but communicated. It flows to a 2nd gas flow path through a member. For this reason, the use efficiency of fuel gas can be improved. The first support substrate has a first dense layer that covers the first substrate body, and the second support substrate has a second dense layer that covers the second substrate body. Since the first and second dense layers are denser than the first and second substrate body portions, the fuel gas flowing in the first gas flow path passes through the first and second substrate body portions to form the second gas. It can suppress flowing into the flow path. In addition, the first dense layer may be formed so as to cover the first substrate body, and can be easily formed.
 好ましくは、第1支持基板及び第2支持基板は、第1支持基板の側面と第2支持基板の側面とが対向するように配置される。 Preferably, the first support substrate and the second support substrate are arranged such that the side surface of the first support substrate and the side surface of the second support substrate face each other.
 第1支持基板と第2支持基板とは、互いに間隔をあけて配置されていてもよい。例えば燃料電池スタックが多数のセルを有して大型化した場合などに、この間隔に空気を流すことによってスタック内の温度分布を均一化することができる。 The first support substrate and the second support substrate may be arranged with a space therebetween. For example, when the fuel cell stack has a large number of cells and is enlarged, the temperature distribution in the stack can be made uniform by flowing air at this interval.
 第1支持基板と第2支持基板とは、幅方向に並んで配置されていてもよい。そして、第1支持基板と第2支持基板との間は封鎖されていてもよい。この構成によれば、幅方向において、第1支持基板と第2支持基板との間が封鎖されている。このため、例えば、第1支持基板と第2支持基板との主面に沿って空気を流すとき、その空気が第1支持基板と第2支持基板との間から抜けることを防止できる。 The first support substrate and the second support substrate may be arranged side by side in the width direction. The space between the first support substrate and the second support substrate may be sealed. According to this configuration, the space between the first support substrate and the second support substrate is sealed in the width direction. For this reason, for example, when air flows along the main surfaces of the first support substrate and the second support substrate, it is possible to prevent the air from escaping from between the first support substrate and the second support substrate.
 第1支持基板と第2支持基板とは、幅方向において互いに接触するように並んで配置されていてもよい。 The first support substrate and the second support substrate may be arranged side by side so as to contact each other in the width direction.
 燃料電池スタックは、充填部材をさらに備えていてもよい。充填部材は、互いに間隔をあけて配置された第1支持基板と第2支持基板との間を充填するように配置されている。 The fuel cell stack may further include a filling member. The filling member is disposed so as to fill a space between the first support substrate and the second support substrate that are disposed at a distance from each other.
 好ましくは、燃料電池スタックは、複数の第1支持基板と、複数の第2支持基板と、を備えている。各第1支持基板は、主面同士が対向するよう間隔をあけて配置されている。各第2支持基板は、主面同士が対向するよう間隔をあけて配置されている。各第1支持基板は、各第2支持基板と幅方向において並んで配置されている。少なくとも一対の第1支持基板と第2支持基板との間は封鎖されている。 Preferably, the fuel cell stack includes a plurality of first support substrates and a plurality of second support substrates. Each 1st support substrate is arrange | positioned at intervals so that main surfaces may oppose. Each 2nd support substrate is arrange | positioned at intervals so that main surfaces may oppose. Each first support substrate is arranged side by side with each second support substrate in the width direction. At least a pair of the first support substrate and the second support substrate is sealed.
 好ましくは、連通部材は、第1ガス流路と第2ガス流路とを連通させる流路を有している。 Preferably, the communication member has a flow path for communicating the first gas flow path and the second gas flow path.
 連通部材は、多孔質であってもよい。この場合、連通部材は、外側面を構成する第3緻密層を有していることが好ましい。また、上述した流路は、連通部材内の気孔によって構成することができる。 The communicating member may be porous. In this case, it is preferable that the communication member has a third dense layer constituting the outer surface. Moreover, the flow path mentioned above can be comprised by the pore in a communicating member.
 連通部材は、上記流路として、第1ガス流路から第2ガス流路まで延びる空間を有していてもよい。 The communicating member may have a space extending from the first gas channel to the second gas channel as the channel.
 連通部材は、金属によって構成されていてもよい。 The communicating member may be made of metal.
 好ましくは、燃料電池スタックは、複数の第1発電素子部と、複数の第2発電素子部と、を備えている。各第1発電素子部は、第1支持基板の長手方向に沿って間隔をあけて配置されている。各第2発電素子部は、第2支持基板の長手方向に沿って間隔をあけて配置されている。 Preferably, the fuel cell stack includes a plurality of first power generation element units and a plurality of second power generation element units. Each first power generation element portion is arranged at an interval along the longitudinal direction of the first support substrate. Each 2nd electric power generation element part is arrange | positioned at intervals along the longitudinal direction of the 2nd support substrate.
 好ましくは、燃料電池スタックは、第1及び第2支持基板を支持するマニホールドをさらに備える。このマニホールドによって、各ガス流路へ燃料ガスを分配することができる。 Preferably, the fuel cell stack further includes a manifold that supports the first and second support substrates. With this manifold, fuel gas can be distributed to each gas flow path.
 好ましくは、マニホールドは、第1室と第2室とを有している。第1ガス流路は、第1室と連通している。第2ガス流路は、第2室に連通している。この構成によれば、第1室に燃料ガスを供給することによって、燃料ガスは、第1ガス流路、連通部材、第2ガス流路の順でスムーズに流れることができる。 Preferably, the manifold has a first chamber and a second chamber. The first gas flow path is in communication with the first chamber. The second gas flow path communicates with the second chamber. According to this configuration, by supplying the fuel gas to the first chamber, the fuel gas can smoothly flow in the order of the first gas flow path, the communication member, and the second gas flow path.
 マニホールドは、マニホールド本体部と、仕切板とを有していてもよい。マニホールド本体部は、空間部を有する。仕切板は、空間部を第1室と第2室とに仕切る。この構成によれば、第1及び第2室を有するマニホールドを容易に製造することができる。 The manifold may have a manifold body and a partition plate. The manifold main body has a space. The partition plate partitions the space portion into the first chamber and the second chamber. According to this configuration, a manifold having the first and second chambers can be easily manufactured.
 マニホールドは、第1マニホールド本体部と第2マニホールド本体部とを有していてもよい。第1マニホールド本体部は、第1室を有している。第2マニホールド本体部は、第2室を有している。 The manifold may have a first manifold body and a second manifold body. The first manifold body has a first chamber. The second manifold main body has a second chamber.
 好ましくは、マニホールドは、ガス供給部、及びガス排出部、をさらに有していてもよい。ガス供給部は、第1室に接続される。ガス排出部は、第2室に接続される。 Preferably, the manifold may further include a gas supply unit and a gas discharge unit. The gas supply unit is connected to the first chamber. The gas discharge part is connected to the second chamber.
 ガス供給部はマニホールドの第1側板に形成され、ガス排出部はマニホールドの第2側板に形成されていてもよい。マニホールドの第1側板と第2側板とは、互いに反対側に配置される。 The gas supply unit may be formed on the first side plate of the manifold, and the gas discharge unit may be formed on the second side plate of the manifold. The first side plate and the second side plate of the manifold are disposed on opposite sides.
 ガス供給部及びガス排出部は、ともに、マニホールドの第1側板に形成されていてもよい。 Both the gas supply part and the gas discharge part may be formed on the first side plate of the manifold.
 好ましくは、燃料電池スタックは、複数の第1支持基板と、複数の第2支持基板とを備えていてもよい。各第1支持基板は、第1側板が向く方向において、互いに間隔をあけて配置されている。各第2支持基板は、第1側板が向く方向において、互いに間隔をあけて配置されている。 Preferably, the fuel cell stack may include a plurality of first support substrates and a plurality of second support substrates. The first support substrates are arranged at intervals from each other in the direction in which the first side plate faces. Each of the second support substrates is disposed at a distance from each other in the direction in which the first side plate faces.
 好ましくは、第1緻密層は第1電解質を含み、第2緻密層は第2電解質を含む。 Preferably, the first dense layer includes a first electrolyte, and the second dense layer includes a second electrolyte.
 本発明に係る燃料電池スタックは、ガスを回収可能であり、且つこの燃料電池スタックを容易に製造することができる。 The fuel cell stack according to the present invention can recover gas and can easily manufacture the fuel cell stack.
燃料電池スタックの斜視図。The perspective view of a fuel cell stack. 第1セルの斜視図。The perspective view of a 1st cell. 第1セルの断面図。Sectional drawing of a 1st cell. 第2セルの斜視図。The perspective view of a 2nd cell. 第2セルの断面図。Sectional drawing of a 2nd cell. 燃料電池スタックの断面図。Sectional drawing of a fuel cell stack. 変形例5に係る燃料電池スタックの断面図。FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 5. 変形例6に係る燃料電池スタックの斜視図。10 is a perspective view of a fuel cell stack according to Modification 6. FIG. 変形例6に係る燃料電池スタックの断面図。FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 6. 変形例7に係る燃料電池スタックの断面図。FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 7. 変形例8に係る燃料電池スタックの斜視図。FIG. 10 is a perspective view of a fuel cell stack according to Modification 8. 変形例9に係る燃料電池スタックの断面図。FIG. 10 is a cross-sectional view of a fuel cell stack according to Modification 9.
 以下、本発明に係る燃料電池スタックの実施形態について図面を参照しつつ説明する。図1は、燃料電池スタックを示す斜視図である。なお、図1において、いくつかの第1及び第2セルの記載を省略している。 Hereinafter, embodiments of a fuel cell stack according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a fuel cell stack. In FIG. 1, the description of some first and second cells is omitted.
 [燃料電池スタック]
 図1に示すように、燃料電池スタック100は、複数の第1セル10aと、複数の第2セル10bと、連通部材3と、マニホールド4と、を備えている。なお、以下では、第1セル10aの構成部材の符号の末尾に「a」を付し、第2セル10bの構成部材の符号の末尾に「b」を付す。第1セル10aと第2セル10bとは、実質的に同じ構成であるため、以下では第1セル10aの構成部材のみを説明し、第2セル10bの構成部材については第1セル10aの構成部材と対応する符号を付して詳細な説明を省略する。
[Fuel cell stack]
As shown in FIG. 1, the fuel cell stack 100 includes a plurality of first cells 10 a, a plurality of second cells 10 b, a communication member 3, and a manifold 4. In the following, “a” is added to the end of the reference numerals of the constituent members of the first cell 10a, and “b” is attached to the end of the reference numerals of the constituent members of the second cell 10b. Since the first cell 10a and the second cell 10b have substantially the same configuration, only the components of the first cell 10a will be described below, and the components of the second cell 10b will be described in the configuration of the first cell 10a. The reference numerals corresponding to the members are attached and detailed description is omitted.
 [マニホールド]
 マニホールド4は、第1及び第2セル10a、10bを支持するように構成されている。マニホールド4は、第1室41と第2室42とを有している。また、マニホールド4は、第1室41に接続されるガス供給部101、及び第2室42に接続されるガス排出部102を有している。第1室41には、ガス供給部101を介して燃料ガスが供給される。また、第2室42内の燃料ガスは、ガス排出部102を介してマニホールド4から排出される。
[Manifold]
The manifold 4 is configured to support the first and second cells 10a and 10b. The manifold 4 has a first chamber 41 and a second chamber 42. Further, the manifold 4 includes a gas supply unit 101 connected to the first chamber 41 and a gas discharge unit 102 connected to the second chamber 42. Fuel gas is supplied to the first chamber 41 via the gas supply unit 101. Further, the fuel gas in the second chamber 42 is discharged from the manifold 4 through the gas discharge unit 102.
 マニホールド4は、マニホールド本体部43と、仕切板44とを有している。マニホールド本体部43は、内部に空間を有している。マニホールド本体部43は、直方体状である。マニホールド本体部43は、上板431、底板432、第1側板433、第2側板434、第3側板435、及び第4側板436を有している。 The manifold 4 has a manifold main body 43 and a partition plate 44. The manifold main body 43 has a space inside. The manifold main body 43 has a rectangular parallelepiped shape. The manifold main body 43 includes an upper plate 431, a bottom plate 432, a first side plate 433, a second side plate 434, a third side plate 435, and a fourth side plate 436.
 第1~第4側板433~436は、底板432の周縁部から上方に延びている。第1側板433と第2側板434とが互いに反対側に配置されている。また、第3側板435と第4側板436とが互いに反対側に配置されている。上板431は、マニホールド本体部43の上面を封鎖するように配置されている。なお、上板431、底板432、第1側板433、第2側板434、第3側板435、及び第4側板436は、一体的に形成されている。 The first to fourth side plates 433 to 436 extend upward from the peripheral edge of the bottom plate 432. The first side plate 433 and the second side plate 434 are arranged on opposite sides. Further, the third side plate 435 and the fourth side plate 436 are disposed on opposite sides. The upper plate 431 is disposed so as to seal the upper surface of the manifold main body 43. The upper plate 431, the bottom plate 432, the first side plate 433, the second side plate 434, the third side plate 435, and the fourth side plate 436 are integrally formed.
 マニホールド本体部43の上板431には、複数の第1及び第2挿入孔(図示省略)が形成されている。第1セル10aは第1挿入孔に挿入され、第2セル10bは第2挿入孔に挿入される。なお、第1挿入孔は第1室41と連通しており、第2挿入孔は第2室42と連通している。 A plurality of first and second insertion holes (not shown) are formed in the upper plate 431 of the manifold main body 43. The first cell 10a is inserted into the first insertion hole, and the second cell 10b is inserted into the second insertion hole. The first insertion hole communicates with the first chamber 41, and the second insertion hole communicates with the second chamber 42.
 各第1挿入孔は、マニホールド本体部43の長手方向(z軸方向)に間隔をあけて並んでいる。すなわち、各第1挿入孔は、第1側板433が向く方向において、互いに間隔をあけて形成されている。また、各第2挿入孔も、マニホールド本体部43の長手方向(z軸方向)に間隔をあけて並んでいる。すなわち、各第2挿入孔は、第1側板433が向く方向において、互いに間隔をあけて形成されている。第1挿入孔と第2挿入孔とは、マニホールド本体部43の幅方向(y軸方向)に間隔をあけて並んでいる。 The first insertion holes are arranged at intervals in the longitudinal direction (z-axis direction) of the manifold main body 43. That is, the first insertion holes are formed at intervals in the direction in which the first side plate 433 faces. The second insertion holes are also arranged at intervals in the longitudinal direction (z-axis direction) of the manifold main body 43. That is, the second insertion holes are formed at intervals from each other in the direction in which the first side plate 433 faces. The first insertion hole and the second insertion hole are arranged at intervals in the width direction (y-axis direction) of the manifold main body 43.
 ガス供給部101は、第1側板433に形成されている。また、ガス排出部102も、第1側板433に形成されている。すなわち、ガス供給部101とガス排出部102とは、同じ第1側板433に形成されている。 The gas supply unit 101 is formed on the first side plate 433. Further, the gas discharge unit 102 is also formed on the first side plate 433. That is, the gas supply unit 101 and the gas discharge unit 102 are formed on the same first side plate 433.
 仕切板44は、マニホールド本体部43の空間を第1室41と第2室42とに仕切っている。詳細には、仕切板44は、マニホールド本体部43の略中央部において、マニホールド本体部43の長手方向に延びている。仕切板44は、マニホールド本体部43の空間を完全に仕切っていることが好ましいが、仕切板44とマニホールド本体部43との間に隙間が形成されていてもよい。 The partition plate 44 partitions the space of the manifold main body 43 into a first chamber 41 and a second chamber 42. Specifically, the partition plate 44 extends in the longitudinal direction of the manifold main body 43 at a substantially central portion of the manifold main body 43. Although it is preferable that the partition plate 44 completely partitions the space of the manifold main body 43, a gap may be formed between the partition plate 44 and the manifold main body 43.
 [第1セル]
 第1セル10aは、マニホールド4の第1室41の上方に配置されている。第1セル10aは、マニホールド4の第1挿入孔に挿入されている。第2セル10bは、マニホールド4の第2室42の上方に配置されている。第2セル10bは、マニホールド4の第2挿入孔に挿入されている。
[First cell]
The first cell 10 a is disposed above the first chamber 41 of the manifold 4. The first cell 10 a is inserted into the first insertion hole of the manifold 4. The second cell 10 b is disposed above the second chamber 42 of the manifold 4. The second cell 10 b is inserted into the second insertion hole of the manifold 4.
 各第1セル10aは、主面同士が対向するように並べられている。また、各第1セル10aは、マニホールド4の長手方向に沿って間隔をあけて並べられている。各第2セル10bは、主面が対向するように並べられている。また、各第2セル10bは、マニホールド4の長手方向に沿って間隔をあけて並べられている。第1セル10aの列と、第2セル10bの列とは、実質的に平行に配置されている。第1セル10aと第2セル10bとは、側面が対向するように配置されている。 The first cells 10a are arranged so that the main surfaces face each other. In addition, the first cells 10 a are arranged at intervals along the longitudinal direction of the manifold 4. The second cells 10b are arranged so that the main surfaces face each other. The second cells 10b are arranged at intervals along the longitudinal direction of the manifold 4. The row of the first cells 10a and the row of the second cells 10b are arranged substantially in parallel. The 1st cell 10a and the 2nd cell 10b are arrange | positioned so that a side surface may oppose.
 図2に示すように、第1セル10aは、第1支持基板5aと、複数の第1発電素子部2aとを有している。各第1発電素子部2aは、第1支持基板5aの一方の主面503aのみに支持されていてもよいし、第1支持基板5aの両方の主面503aに支持されていてもよい。なお、本実施形態では、各第1発電素子部2aは、第1支持基板5aの両方の主面503aに支持されている。各第1発電素子部2aは、第1電気的接続部9a(図3参照)によって互いに電気的に接続されている。 As shown in FIG. 2, the first cell 10a includes a first support substrate 5a and a plurality of first power generation element portions 2a. Each first power generation element portion 2a may be supported only on one main surface 503a of the first support substrate 5a, or may be supported on both main surfaces 503a of the first support substrate 5a. In the present embodiment, each first power generation element portion 2a is supported on both main surfaces 503a of the first support substrate 5a. The first power generation element portions 2a are electrically connected to each other by a first electrical connection portion 9a (see FIG. 3).
 [第1支持基板]
 第1支持基板5aは、第1基板本体部51aと、第1緻密層52aと、複数の第1ガス流路53aとを有している。また、第1支持基板5aは、近位端部501aと遠位端部502aとを有している。近位端部501a及び遠位端部502aは、第1支持基板5aの長手方向(x軸方向)における両端部である。第1支持基板5aの近位端部501aは、マニホールド4の第1挿入孔に挿入される。
[First support substrate]
The first support substrate 5a includes a first substrate body 51a, a first dense layer 52a, and a plurality of first gas flow paths 53a. The first support substrate 5a has a proximal end 501a and a distal end 502a. The proximal end portion 501a and the distal end portion 502a are both end portions in the longitudinal direction (x-axis direction) of the first support substrate 5a. The proximal end portion 501 a of the first support substrate 5 a is inserted into the first insertion hole of the manifold 4.
 第1支持基板5aは、2つの主面503aと、2つの側面504aを有している。各主面503aは、各第1発電素子部2aを支持している。各主面503aは、第1支持基板5aの厚さ方向(z軸方向)を向いている。各側面504aは、第1支持基板5aの幅方向(y軸方向)を向いている。各側面504aは、湾曲していてもよい。図1に示すように、各第1支持基板5aは、主面503a同士が対向するように間隔をあけて配置されている。各第1支持基板5aは、第1側板433が向く方向(z軸方向)において、互いに間隔をあけて配置されている。 The first support substrate 5a has two main surfaces 503a and two side surfaces 504a. Each main surface 503a supports each first power generation element portion 2a. Each main surface 503a faces the thickness direction (z-axis direction) of the first support substrate 5a. Each side surface 504a faces the width direction (y-axis direction) of the first support substrate 5a. Each side surface 504a may be curved. As shown in FIG. 1, each 1st support substrate 5a is arrange | positioned at intervals so that main surface 503a may oppose. The first support substrates 5a are arranged at intervals from each other in the direction (z-axis direction) in which the first side plate 433 faces.
 図2に示すように、第1基板本体部51aは、第1発電素子部2aを支持している。第1基板本体部51aは、電子伝導性を有さない多孔質の材料によって構成される。第1基板本体部51aは、例えば、CSZ(カルシア安定化ジルコニア)から構成される。または、第1基板本体部51aは、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。第1基板本体部51aの気孔率は、例えば、20~60%程度である。この気孔率は、例えば、アルキメデス法、又は微構造観察により測定される。 As shown in FIG. 2, the first substrate body 51a supports the first power generation element 2a. The first substrate body 51a is made of a porous material that does not have electronic conductivity. The first substrate body 51a is made of CSZ (calcia stabilized zirconia), for example. Alternatively, the first substrate body 51a may be composed of NiO (nickel oxide) and YSZ (8YSZ) (yttria-stabilized zirconia), or from NiO (nickel oxide) and Y 2 O 3 (yttria). may be constituted, MgO may be configured from (magnesium oxide) and MgAl 2 O 4 and (magnesia alumina spinel). The porosity of the first substrate body 51a is, for example, about 20 to 60%. This porosity is measured, for example, by Archimedes method or microstructure observation.
 第1緻密層52aは、第1基板本体部51aを覆っている。第1緻密層52aは、第1ガス流路53aを流れる燃料ガスが第1基板本体部51aを通って第2ガス流路53bへと流れることを抑制することができればよく、第1基板本体部51aの全面を覆っている必要は無い。本実施形態では、第1緻密層52aは、第1基板本体部51aの各主面、及び各側面を覆っている。すなわち、第1緻密層52aは、第1支持基板5aの各主面503aを構成するとともに、第1支持基板5aの各側面504aを構成している。なお、本実施形態では、第1緻密層52aは、後述する第1電解質7aと、第1インターコネクタ91aとによって構成されている。第1緻密層52aは、第1基板本体部51aよりも緻密である。例えば、第1緻密層52aの気孔率は、0~7%程度である。 The first dense layer 52a covers the first substrate body 51a. The first dense layer 52a only needs to be able to prevent the fuel gas flowing through the first gas flow path 53a from flowing through the first substrate body 51a to the second gas flow path 53b. It is not necessary to cover the entire surface of 51a. In the present embodiment, the first dense layer 52a covers each main surface and each side surface of the first substrate body 51a. That is, the first dense layer 52a constitutes each main surface 503a of the first support substrate 5a and constitutes each side surface 504a of the first support substrate 5a. In the present embodiment, the first dense layer 52a includes a first electrolyte 7a described later and a first interconnector 91a. The first dense layer 52a is denser than the first substrate body 51a. For example, the porosity of the first dense layer 52a is about 0 to 7%.
 第1ガス流路53aは、第1支持基板5aの近位端部501aから遠位端部502aまで延びている。第1ガス流路53aは、第1支持基板5aの長手方向(x軸方向)に沿って延びている。また、第1ガス流路53aは、第1基板本体部51a内を貫通して延びている。第1ガス流路53aの近位端部531aは、第1室41と連通している。また、第1ガス流路53aの遠位端部532aは、後述する連通部材3の流路30と連通している。 The first gas channel 53a extends from the proximal end 501a to the distal end 502a of the first support substrate 5a. The first gas channel 53a extends along the longitudinal direction (x-axis direction) of the first support substrate 5a. The first gas channel 53a extends through the first substrate body 51a. A proximal end portion 531 a of the first gas flow path 53 a communicates with the first chamber 41. Further, the distal end portion 532a of the first gas flow path 53a communicates with the flow path 30 of the communication member 3 described later.
 [第1発電素子部]
 図3に示すように、第1発電素子部2aは、第1燃料極6a、第1電解質7a、及び第1空気極8aを有している。また、第1発電素子部2aは、第1反応防止膜11aをさらに有している。第1燃料極6aは、電子伝導性を有する多孔質の材料からなる焼成体である。第1燃料極6aは、第1燃料極集電部61aと燃料極活性部62aとを有する。
[First power generation element section]
As shown in FIG. 3, the 1st electric power generation element part 2a has the 1st fuel electrode 6a, the 1st electrolyte 7a, and the 1st air electrode 8a. The first power generation element portion 2a further includes a first reaction preventing film 11a. The first fuel electrode 6a is a fired body made of a porous material having electron conductivity. The first fuel electrode 6a includes a first fuel electrode current collector 61a and a fuel electrode active part 62a.
 第1燃料極集電部61aは、凹部513a内に配置されている。凹部513aは、第1基板本体部51aの両面に形成されている。詳細には、第1燃料極集電部61aは、凹部513a内に充填されており、凹部513aと同様の外形を有する。各第1燃料極集電部61aは、凹部611a及び凹部612aを有している。燃料極活性部62aは、凹部611a内に配置されている。詳細には、燃料極活性部62aは、凹部611a内に充填されている。 The first fuel electrode current collector 61a is disposed in the recess 513a. The recesses 513a are formed on both surfaces of the first substrate body 51a. Specifically, the first fuel electrode current collector 61a is filled in the recess 513a and has the same outer shape as the recess 513a. Each first fuel electrode current collector 61a has a recess 611a and a recess 612a. The anode active part 62a is disposed in the recess 611a. Specifically, the fuel electrode active part 62a is filled in the recess 611a.
 第1燃料極集電部61aは、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、第1燃料極集電部61aは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。第1燃料極集電部61aの厚さ、並びに凹部513aの深さは、50~500μm程度である。 The first fuel electrode current collector 61a can be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Alternatively, the first fuel electrode current collector 61a may be composed of NiO (nickel oxide) and Y 2 O 3 (yttria), or composed of NiO (nickel oxide) and CSZ (calcia stabilized zirconia). May be. The thickness of the first fuel electrode current collector 61a and the depth of the recess 513a are about 50 to 500 μm.
 燃料極活性部62aは、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、燃料極活性部62aは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極活性部62aの厚さは、5~30μmである。 The fuel electrode active part 62a may be composed of, for example, NiO (nickel oxide) and YSZ (8YSZ) (yttria stabilized zirconia). Alternatively, the fuel electrode active part 62a may be composed of NiO (nickel oxide) and GDC (gadolinium-doped ceria). The thickness of the anode active portion 62a is 5 to 30 μm.
 第1電解質7aは、第1燃料極6a上を覆うように配置されている。詳細には、第1電解質7aは、一の第1インターコネクタ91aから他の第1インターコネクタ91aまで長手方向に延びている。すなわち、長手方向において、第1電解質7aと第1インターコネクタ91aとが交互に配置されている。また、第1電解質7aは、第1基板本体部51aの各主面及び各側面を覆っている。 The first electrolyte 7a is disposed so as to cover the first fuel electrode 6a. Specifically, the first electrolyte 7a extends in the longitudinal direction from one first interconnector 91a to the other first interconnector 91a. That is, the first electrolyte 7a and the first interconnector 91a are alternately arranged in the longitudinal direction. The first electrolyte 7a covers each main surface and each side surface of the first substrate body 51a.
 第1電解質7aは、第1基板本体部51aよりも緻密である。例えば、第1電解質7aの気孔率は、0~7%程度である。第1電解質7aは、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料からなる焼成体である。第1電解質7aは、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、LSGM(ランタンガレート)から構成されてもよい。第1電解質7aの厚さは、例えば、3~50μm程度である。 The first electrolyte 7a is denser than the first substrate body 51a. For example, the porosity of the first electrolyte 7a is about 0 to 7%. The first electrolyte 7a is a fired body made of a dense material having ion conductivity and not electron conductivity. The first electrolyte 7a can be composed of, for example, YSZ (8YSZ) (yttria stabilized zirconia). Or you may comprise from LSGM (lantern gallate). The thickness of the first electrolyte 7a is, for example, about 3 to 50 μm.
 第1反応防止膜11aは、緻密な材料からなる焼成体であり、平面視において、燃料極活性部62aと略同一の形状である。第1反応防止膜11aは、第1電解質7aを介して、燃料極活性部62aと対応する位置に配置されている。第1反応防止膜11aは、第1電解質7a内のYSZと第1空気極8a内のSrとが反応して第1電解質7aと第1空気極8aとの界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するために設けられている。第1反応防止膜11aは、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。第1反応防止膜11aの厚さは、例えば、3~50μm程度である。 The first reaction preventing film 11a is a fired body made of a dense material and has substantially the same shape as the fuel electrode active part 62a in plan view. The first reaction preventing film 11a is disposed at a position corresponding to the fuel electrode active part 62a via the first electrolyte 7a. The first reaction preventing film 11a has a reaction layer having a large electric resistance at the interface between the first electrolyte 7a and the first air electrode 8a due to a reaction between YSZ in the first electrolyte 7a and Sr in the first air electrode 8a. It is provided to suppress the occurrence of the phenomenon that is formed. The first reaction preventing film 11a can be made of, for example, GDC = (Ce, Gd) O 2 (gadolinium-doped ceria). The thickness of the first reaction preventing film 11a is, for example, about 3 to 50 μm.
 第1空気極8aは、第1反応防止膜11a上に配置されている。第1空気極8aは、電子伝導性を有する多孔質の材料からなる焼成体である。第1空気極8aは、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、第1空気極8aは、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。第1空気極8aの厚さは、例えば、10~100μmである。 The first air electrode 8a is disposed on the first reaction preventing film 11a. The first air electrode 8a is a fired body made of a porous material having electron conductivity. The first air electrode 8a can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, from LSF = (La, Sr) FeO 3 (lanthanum strontium ferrite), LNF = La (Ni, Fe) O 3 (lanthanum nickel ferrite), LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite), etc. It may be configured. The first air electrode 8a may be composed of two layers of a first layer (inner layer) made of LSCF and a second layer (outer layer) made of LSC. The thickness of the first air electrode 8a is, for example, 10 to 100 μm.
 第1電気的接続部9aは、隣り合う第1発電素子部2aを電気的に接続するように構成されている。第1電気的接続部9aは、第1インターコネクタ91a及び第1空気極集電膜92aを有する。第1インターコネクタ91aは、凹部612a内に配置されている。詳細には、第1インターコネクタ91aは、凹部612a内に埋設(充填)されている。第1インターコネクタ91aは、電子伝導性を有する緻密な材料からなる焼成体である。第1インターコネクタ91aは、第1基板本体部51aよりも緻密である。例えば、第1インターコネクタ91aの気孔率は、0~7%程度である。第1インターコネクタ91aは、例えば、LaCrO(ランタンクロマイト)から構成され得る。或いは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。第1インターコネクタ91aの厚さは、例えば、10~100μmである。 The first electrical connection portion 9a is configured to electrically connect the adjacent first power generation element portions 2a. The first electrical connection portion 9a includes a first interconnector 91a and a first air electrode current collector film 92a. The first interconnector 91a is disposed in the recess 612a. Specifically, the first interconnector 91a is embedded (filled) in the recess 612a. The first interconnector 91a is a fired body made of a dense material having electronic conductivity. The first interconnector 91a is denser than the first substrate body 51a. For example, the porosity of the first interconnector 91a is about 0 to 7%. The first interconnector 91a can be composed of, for example, LaCrO 3 (lanthanum chromite). Alternatively, it may be composed of (Sr, La) TiO 3 (strontium titanate). The thickness of the first interconnector 91a is, for example, 10 to 100 μm.
 第1空気極集電膜92aは、隣り合う第1発電素子部2aの第1インターコネクタ91aと第1空気極8aとの間を延びるように配置される。例えば、図3の左側に配置された第1発電素子部2aの第1空気極8aと、図3の右側に配置された第1発電素子部2aの第1インターコネクタ91aとを電気的に接続するように、第1空気極集電膜92aが配置されている。第1空気極集電膜92aは、電子伝導性を有する多孔質の材料からなる焼成体である。 The first air electrode current collector film 92a is disposed so as to extend between the first interconnector 91a and the first air electrode 8a of the adjacent first power generation element portion 2a. For example, the first air electrode 8a of the first power generation element portion 2a disposed on the left side in FIG. 3 and the first interconnector 91a of the first power generation element portion 2a disposed on the right side in FIG. 3 are electrically connected. Thus, the first air electrode current collector film 92a is disposed. The first air electrode current collector film 92a is a fired body made of a porous material having electron conductivity.
 第1空気極集電膜92aは、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、Ag(銀)、Ag-Pd(銀パラジウム合金)から構成されてもよい。第1空気極集電膜92aの厚さは、例えば、50~500μm程度である。 The first air electrode current collector film 92a can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite) may be used. Alternatively, it may be made of Ag (silver) or Ag—Pd (silver palladium alloy). The thickness of the first air electrode current collector film 92a is, for example, about 50 to 500 μm.
 [第2セル]
 図4及び図5に示すように、第2セル10bは、第2支持基板5bと第2発電素子部2bとを有している。図1に示すように、各第2支持基板5bは、主面503b同士が対向するように配置されている。各第2支持基板5bは、第1側板433が向く方向(z軸方向)において、互いに間隔をあけて配置されている。
[Second cell]
As shown in FIG.4 and FIG.5, the 2nd cell 10b has the 2nd support substrate 5b and the 2nd electric power generation element part 2b. As shown in FIG. 1, the second support substrates 5b are arranged so that the main surfaces 503b face each other. The respective second support substrates 5b are arranged at intervals from each other in the direction (z-axis direction) in which the first side plate 433 faces.
 図4及び図5に示すように、第2支持基板5bは、第2基板本体部51b、第2緻密層52b、及び第2ガス流路53bを有している。また、第2支持基板5bは、近位端部501bと遠位端部502bとを有している。第2支持基板5bの近位端部501bは、マニホールド4の第2挿入孔に挿入されている。第2基板本体部51bは、複数の第2発電素子部2bを支持している。第2緻密層52bは、第2基板本体部51bを覆っている。第2ガス流路53bは、第2支持基板5bの近位端部501bから遠位端部502bまで延びている。 As shown in FIGS. 4 and 5, the second support substrate 5b has a second substrate body 51b, a second dense layer 52b, and a second gas channel 53b. The second support substrate 5b has a proximal end portion 501b and a distal end portion 502b. The proximal end portion 501 b of the second support substrate 5 b is inserted into the second insertion hole of the manifold 4. The second substrate body 51b supports a plurality of second power generation element portions 2b. The second dense layer 52b covers the second substrate body 51b. The second gas channel 53b extends from the proximal end 501b to the distal end 502b of the second support substrate 5b.
 第2発電素子部2bは、第2燃料極6b、第2電解質7b、及び第2空気極8bを有している。上述したように、各第2セル10bは、第1セル10aと実質的に同じ構成であるため、詳細な説明を省略する。なお、第2発電素子部2bは、第1発電素子部2aよりも、燃料ガスに接触する面積が大きくしてもよい。すなわち、第2燃料極6bの面積は、第1燃料極6aの面積よりも大きくしてもよい。また、第2空気極8bの面積は、第1空気極8aの面積よりも大きくしてもよい。もちろん、第2燃料極6bの面積は、第1燃料極6aの面積と同じであってもよいし、第1燃料極6aの面積より小さくてもよい。また、第2空気極8bの面積は、第1空気極8aの面積と同じであってもよいし、第1空気極8aの面積より小さくてもよい。 The second power generation element portion 2b has a second fuel electrode 6b, a second electrolyte 7b, and a second air electrode 8b. As described above, each second cell 10b has substantially the same configuration as the first cell 10a, and thus detailed description thereof is omitted. The second power generation element portion 2b may have a larger area in contact with the fuel gas than the first power generation element portion 2a. That is, the area of the second fuel electrode 6b may be larger than the area of the first fuel electrode 6a. The area of the second air electrode 8b may be larger than the area of the first air electrode 8a. Of course, the area of the second fuel electrode 6b may be the same as the area of the first fuel electrode 6a or may be smaller than the area of the first fuel electrode 6a. The area of the second air electrode 8b may be the same as the area of the first air electrode 8a or may be smaller than the area of the first air electrode 8a.
 図1に示すように、各第1支持基板5aは、主面503a同士が対向するように間隔をあけて配置されている。また、各第2支持基板5bは、主面503b同士が対向するように間隔をあけて配置されている。第1支持基板5aと第2支持基板5bとは、幅方向(y軸方向)に並んで配置されている。第1支持基板5aの側面504aと第2支持基板5bの側面504bとが対向するように、第1及び第2支持基板5a、5bが配置されている。第1支持基板5aと第2支持基板5bとの間は隙間が形成されている。例えば、この隙間は、0.5~10mm程度とすることができる。 As shown in FIG. 1, the first support substrates 5 a are arranged at intervals so that the main surfaces 503 a face each other. In addition, the second support substrates 5b are arranged at intervals so that the main surfaces 503b face each other. The first support substrate 5a and the second support substrate 5b are arranged side by side in the width direction (y-axis direction). The first and second support substrates 5a and 5b are arranged so that the side surface 504a of the first support substrate 5a faces the side surface 504b of the second support substrate 5b. A gap is formed between the first support substrate 5a and the second support substrate 5b. For example, the gap can be about 0.5 to 10 mm.
 [連通部材]
 図6に示すように、連通部材3は、第1支持基板5aの遠位端部502aと第2支持基板5bの遠位端部502bとに亘って延びている。そして、連通部材3は、第1ガス流路53aと第2ガス流路53bとを連通させる流路30を有している。詳細には、流路30は、各第1ガス流路53aの遠位端部532aと各第2ガス流路53bの遠位端部532bとを連通する。流路30は、各第1ガス流路から各第2ガス流路まで延びる空間によって構成されている。連通部材3は、第1支持基板5aと第2支持基板5bとに接合されていることが好ましい。
[Communication member]
As shown in FIG. 6, the communication member 3 extends over the distal end portion 502a of the first support substrate 5a and the distal end portion 502b of the second support substrate 5b. And the communication member 3 has the flow path 30 which connects the 1st gas flow path 53a and the 2nd gas flow path 53b. Specifically, the channel 30 communicates the distal end 532a of each first gas channel 53a and the distal end 532b of each second gas channel 53b. The flow path 30 is comprised by the space extended from each 1st gas flow path to each 2nd gas flow path. The communication member 3 is preferably bonded to the first support substrate 5a and the second support substrate 5b.
 連通部材3は、多孔質である。また、連通部材3は、その外側面を構成する第3緻密層31を有している。第3緻密層31は、連通部材3の本体よりも緻密に形成されている。例えば、第3緻密層31の気孔率は、0~7%程度である。この第3緻密層31は、連通部材と同じ材料、電解質材料、又は結晶化ガラス等によって形成することができる。 The communicating member 3 is porous. Further, the communication member 3 has a third dense layer 31 that constitutes the outer surface thereof. The third dense layer 31 is formed more densely than the main body of the communication member 3. For example, the porosity of the third dense layer 31 is about 0 to 7%. The third dense layer 31 can be formed of the same material as the communication member, an electrolyte material, crystallized glass, or the like.
 [発電方法]
 上述したように構成された燃料電池スタック100では、マニホールド4の第1室41に水素ガスなどの燃料ガスを供給するとともに、第1及び第2セル10a、10bを空気などの酸素を含むガスに曝す。詳細には、隣り合う第1セル10aの間、及び隣り合う第2セル10bの間に空気を供給する。すると、第1空気極8a及び第2空気極8bにおいて下記(1)式に示す化学反応が起こり、第1燃料極6a及び第2燃料極6bにおいて下記(2)式に示す化学反応が起こり、電流が流れる。
(1/2)・O+2e→O    …(1)
+O →HO+2e     …(2)
[Power generation method]
In the fuel cell stack 100 configured as described above, fuel gas such as hydrogen gas is supplied to the first chamber 41 of the manifold 4, and the first and second cells 10a and 10b are made into gas containing oxygen such as air. Expose. Specifically, air is supplied between the adjacent first cells 10a and between the adjacent second cells 10b. Then, the chemical reaction shown in the following formula (1) occurs in the first air electrode 8a and the second air electrode 8b, and the chemical reaction shown in the following formula (2) occurs in the first fuel electrode 6a and the second fuel electrode 6b. Current flows.
(1/2) · O 2 + 2e → O 2 (1)
H 2 + O 2 → H 2 O + 2e (2)
 詳細には、第1室41に供給された燃料ガスは、各第1セル10aの第1ガス流路53a内を流れ、各第1発電素子部2aの第1燃料極6aにおいて、上記(2)式に示す化学反応が起こる。各第1燃料極6aにおいて未反応であった燃料ガスは、第1ガス流路53aを出て連通部材3の流路30を介して第2ガス流路53bへ供給される。そして、第2ガス流路53bへ供給された燃料ガスは、第2セル10bの第2燃料極6bにおいて上記(2)式に示す化学反応が起こる。第2燃料極6bにおいて未反応であった燃料ガスは、マニホールド4の第2室42へ回収される。 More specifically, the fuel gas supplied to the first chamber 41 flows in the first gas flow path 53a of each first cell 10a, and the above (2) in the first fuel electrode 6a of each first power generation element portion 2a. The chemical reaction shown in the formula occurs. The unreacted fuel gas in each first fuel electrode 6a exits the first gas channel 53a and is supplied to the second gas channel 53b through the channel 30 of the communication member 3. The fuel gas supplied to the second gas passage 53b undergoes a chemical reaction represented by the above formula (2) at the second fuel electrode 6b of the second cell 10b. The unreacted fuel gas in the second fuel electrode 6 b is collected in the second chamber 42 of the manifold 4.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 変形例1
 例えば、上記実施形態では、第1室41に燃料ガスを供給し、第2室42から燃料ガスを排出しているが、燃料ガスの流れは特にこれに限定されない。例えば、第2室42に燃料ガスを供給し、第1室41から燃料ガスを排出してもよい。すなわち、第2ガス流路、連通部材3、第1ガス流路の順で燃料ガスを流してもよい。
Modification 1
For example, in the above embodiment, the fuel gas is supplied to the first chamber 41 and the fuel gas is discharged from the second chamber 42, but the flow of the fuel gas is not particularly limited to this. For example, fuel gas may be supplied to the second chamber 42 and discharged from the first chamber 41. That is, the fuel gas may flow in the order of the second gas flow path, the communication member 3, and the first gas flow path.
 変形例2
 上記実施形態では、第1支持基板5aは複数の第1ガス流路53aを有しているが、第1ガス流路53aの数は1つでもよい。なお、この場合、第1ガス流路53aは扁平状であることが好ましい。
Modification 2
In the embodiment described above, the first support substrate 5a includes the plurality of first gas flow paths 53a, but the number of the first gas flow paths 53a may be one. In this case, the first gas flow path 53a is preferably flat.
 変形例3
 上記実施形態では、第1セル10a及び第2セル10bは、マニホールド4の長手方向(z軸方向)に並んでいるが、マニホールド4の幅方向(y軸方向)に並んでいてもよい。
Modification 3
In the above embodiment, the first cells 10a and the second cells 10b are arranged in the longitudinal direction (z-axis direction) of the manifold 4, but may be arranged in the width direction (y-axis direction) of the manifold 4.
 変形例4
 上記実施形態では、連通部材3は多孔質であるが、連通部材3は金属によって構成されていてもよい。具体的には、連通部材3は、Fe-Cr合金、Ni基合金、又はMgO系セラミックス材料(支持基板材料と同じでも良い)などによって構成することができる。
Modification 4
In the said embodiment, although the communication member 3 is porous, the communication member 3 may be comprised with the metal. Specifically, the communication member 3 can be made of an Fe—Cr alloy, a Ni-based alloy, or an MgO-based ceramic material (may be the same as the support substrate material).
 変形例5
 上記実施形態では、連通部材3の流路30は空間によって構成されていたが、連通部材3の流路30の構成はこれに限定されない。例えば、図7に示すように、連通部材3の流路30は、連通部材3内に形成された複数の気孔によって構成することができる。
Modification 5
In the said embodiment, although the flow path 30 of the communication member 3 was comprised by space, the structure of the flow path 30 of the communication member 3 is not limited to this. For example, as shown in FIG. 7, the flow path 30 of the communication member 3 can be configured by a plurality of pores formed in the communication member 3.
 変形例6
 上記実施形態では、第1支持基板5aの側面504aと第2支持基板5bの側面504bとは、互いに間隔をあけて配置されているが、これに限定されない。例えば、図8及び図9に示すように、第1支持基板5aの側面504aと第2支持基板5bの側面504bとの間は封鎖されていてもよい。例えば、第1支持基板5aと第2支持基板5bとは、幅方向(y軸方向)において互いに接触するように配置されていてもよい。すなわち、第1支持基板5aの側面504aと第2支持基板5bの側面504bとが互いに接触している。
Modification 6
In the above embodiment, the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are spaced apart from each other, but are not limited thereto. For example, as shown in FIGS. 8 and 9, the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b may be sealed. For example, the first support substrate 5a and the second support substrate 5b may be disposed so as to contact each other in the width direction (y-axis direction). That is, the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are in contact with each other.
 この場合、第1挿入孔と第2挿入孔とは互いに繋がっていてもよい。すなわち、第1挿入孔と第2挿入孔とによって1つの挿入孔が構成されていてもよい。第1セル10aは挿入孔に挿入されており、第1セル10aの下端面が第1室41に露出している。第2セル10bは挿入孔に挿入されており、第2セル10bの下端面が第2室42に露出している。なお、各挿入孔は、第1室41と第2室42とに亘って延びていてもよいし、第1室41と第2室42とのそれぞれに形成されていてもよい。 In this case, the first insertion hole and the second insertion hole may be connected to each other. That is, one insertion hole may be constituted by the first insertion hole and the second insertion hole. The first cell 10 a is inserted into the insertion hole, and the lower end surface of the first cell 10 a is exposed to the first chamber 41. The second cell 10 b is inserted into the insertion hole, and the lower end surface of the second cell 10 b is exposed to the second chamber 42. Each insertion hole may extend over the first chamber 41 and the second chamber 42, or may be formed in each of the first chamber 41 and the second chamber 42.
 変形例7
 変形例6では、第1支持基板5aの側面504aと第2支持基板5bの側面504bとが接触していたが、例えば、図10に示すように、第1支持基板5aと第2支持基板5bとは、幅方向(y軸方向)において互いに間隔をあけて配置されていてもよい。そして、第1支持基板5aと第2支持基板5bとの間に充填部材54が配置されていてもよい。この充填部材54によって、第1支持基板5aと第2支持基板5bとの間を封鎖していてもよい。
Modification 7
In Modification 6, the side surface 504a of the first support substrate 5a and the side surface 504b of the second support substrate 5b are in contact with each other. For example, as shown in FIG. 10, the first support substrate 5a and the second support substrate 5b May be arranged at intervals in the width direction (y-axis direction). And the filling member 54 may be arrange | positioned between the 1st support substrate 5a and the 2nd support substrate 5b. The filling member 54 may seal between the first support substrate 5a and the second support substrate 5b.
 なお、変形例6,7では、各第1支持基板5aと各第2支持基板5bとの間は全て封鎖されているが、一部の第1支持基板5aと第2支持基板5bとの間が封鎖されていなくてもよい。 In the modified examples 6 and 7, the space between each of the first support substrates 5a and each of the second support substrates 5b is sealed, but between some of the first support substrates 5a and the second support substrates 5b. May not be blocked.
 変形例8
 上記実施形態では、マニホールド4のガス供給部101とガス排出部102とは、同じ第1側板433に形成されているが、特にこれに限定されない。例えば、図11に示すように、ガス供給部101が第1側板433に形成され、ガス排出部が第2側板434に形成されていてもよい。
Modification 8
In the above embodiment, the gas supply unit 101 and the gas discharge unit 102 of the manifold 4 are formed on the same first side plate 433, but are not particularly limited thereto. For example, as shown in FIG. 11, the gas supply unit 101 may be formed on the first side plate 433 and the gas discharge unit may be formed on the second side plate 434.
 変形例9
 上記実施形態では、マニホールド4は、1つのマニホールド本体部43によって構成されていたが、マニホールド4の構成はこれに限定されない。例えば、図12に示すように、マニホールド4は、第1マニホールド本体部43aと、第2マニホールド本体部43bとを有していてもよい。第1マニホールド本体部43aは第1室41を有しており、第2マニホールド本体部43bは第2室42を有している。
Modification 9
In the above embodiment, the manifold 4 is configured by one manifold body 43, but the configuration of the manifold 4 is not limited to this. For example, as shown in FIG. 12, the manifold 4 may have a first manifold main body 43a and a second manifold main body 43b. The first manifold body 43 a has a first chamber 41, and the second manifold body 43 b has a second chamber 42.
2a   :第1発電素子部
 6a   :第1燃料極
 7a   :第1電解質
 8a   :第1空気極
2b   :第2発電素子部
 6b   :第2燃料極
 7b   :第2電解質
 8b   :第2空気極
3    :連通部材
 30   :流路
 31   :第3緻密層
5a   :第1支持基板
 51a  :第1基板本体部
 52a  :第1緻密層
 53a  :第1ガス流路
  531a :近位端部
  532a :遠位端部
 501a :近位端部
 502a :遠位端部
 504a :側面
5b   :第2支持基板
 51b  :第2基板本体部
 52b  :第2緻密層
 53b  :第2ガス流路
  532b :遠位端部
 501b :近位端部
 502b :遠位端部
 504b :側面
100  :燃料電池スタック
 
2a: 1st electric power generation element part 6a: 1st fuel electrode 7a: 1st electrolyte 8a: 1st air electrode 2b: 2nd electric power generation element part 6b: 2nd fuel electrode 7b: 2nd electrolyte 8b: 2nd air electrode 3: Communication member 30: channel 31: third dense layer 5a: first support substrate 51a: first substrate body 52a: first dense layer 53a: first gas channel 531a: proximal end 532a: distal end 501a: Proximal end portion 502a: Distal end portion 504a: Side surface 5b: Second support substrate 51b: Second substrate body portion 52b: Second dense layer 53b: Second gas flow path 532b: Distal end portion 501b: Near Upper end portion 502b: Distal end portion 504b: Side surface 100: Fuel cell stack

Claims (23)

  1.  第1燃料極、第1電解質、及び第1空気極を有する第1発電素子部と、
     前記第1発電素子部を支持する第1基板本体部、前記第1基板本体部を覆う第1緻密層、及び近位端部から遠位端部まで延びる第1ガス流路、を有する第1支持基板と、
     第2燃料極、第2電解質、及び第2空気極を有する第2発電素子部と、
     前記第2発電素子部を支持する第2基板本体部、前記第2基板本体部を覆う第2緻密層、及び前記近位端部から遠位端部まで延びる第2ガス流路、を有する第2支持基板と、
     前記第1支持基板の遠位端部と前記第2支持基板の遠位端部とに亘って延び、前記第1ガス流路と前記第2ガス流路とを連通させる連通部材と、
    を備える、燃料電池スタック。
     
    A first power generation element portion having a first fuel electrode, a first electrolyte, and a first air electrode;
    A first substrate body supporting the first power generation element; a first dense layer covering the first substrate body; and a first gas flow path extending from the proximal end to the distal end. A support substrate;
    A second power generation element portion having a second fuel electrode, a second electrolyte, and a second air electrode;
    A second substrate main body supporting the second power generation element, a second dense layer covering the second substrate main body, and a second gas flow path extending from the proximal end to the distal end. 2 support substrates;
    A communication member extending across a distal end portion of the first support substrate and a distal end portion of the second support substrate and communicating the first gas flow path and the second gas flow path;
    A fuel cell stack comprising:
  2.  前記第1支持基板及び前記第2支持基板は、前記第1支持基板の側面と前記第2支持基板の側面とが対向するように配置される、
    請求項1に記載の燃料電池スタック。
     
    The first support substrate and the second support substrate are disposed such that a side surface of the first support substrate and a side surface of the second support substrate face each other.
    The fuel cell stack according to claim 1.
  3.  前記第1支持基板と前記第2支持基板とは、互いに間隔をあけて配置される、
    請求項1又は2に記載の燃料電池スタック。
     
    The first support substrate and the second support substrate are disposed with a space therebetween.
    The fuel cell stack according to claim 1 or 2.
  4.  前記第1支持基板と前記第2支持基板とは、幅方向に並んで配置されており、
     前記第1支持基板と前記第2支持基板との間は封鎖されている、
    請求項1又は2に燃料電池スタック。
     
    The first support substrate and the second support substrate are arranged side by side in the width direction,
    The space between the first support substrate and the second support substrate is sealed,
    The fuel cell stack according to claim 1 or 2.
  5.  前記第1支持基板と前記第2支持基板とは、幅方向において互いに接触するように並んで配置される、
    請求項4に記載の燃料電池スタック。
     
    The first support substrate and the second support substrate are arranged side by side so as to contact each other in the width direction.
    The fuel cell stack according to claim 4.
  6.  互いに間隔をあけて配置された前記第1支持基板と前記第2支持基板との間を充填するように配置された充填部材をさらに備える、
    請求項4又は5に記載の燃料電池スタック。
     
    A filling member disposed to fill a space between the first support substrate and the second support substrate that are spaced apart from each other;
    The fuel cell stack according to claim 4 or 5.
  7.  当該燃料電池スタックは、複数の前記第1支持基板と、複数の前記第2支持基板と、を備え、
     前記各第1支持基板は、主面同士が対向するよう間隔をあけて配置され、
     前記各第2支持基板は、主面同士が対向するよう間隔をあけて配置され、
     前記各第1支持基板は、前記各第2支持基板と幅方向において並んで配置され、
     少なくとも一対の前記第1支持基板と前記第2支持基板との間は封鎖されている、
    請求項4から6のいずれかに記載の燃料電池スタック。
     
    The fuel cell stack includes a plurality of the first support substrates and a plurality of the second support substrates,
    Each of the first support substrates is arranged with an interval so that the main surfaces face each other,
    Each of the second support substrates is arranged with an interval so that the main surfaces face each other,
    The first support substrates are arranged side by side in the width direction with the second support substrates,
    Between at least a pair of the first support substrate and the second support substrate is sealed,
    The fuel cell stack according to any one of claims 4 to 6.
  8.  前記連通部材は、第1ガス流路と前記第2ガス流路とを連通させる流路を有する、
    請求項1から7のいずれかに記載の燃料電池スタック。
     
    The communication member has a flow path for communicating the first gas flow path and the second gas flow path.
    The fuel cell stack according to any one of claims 1 to 7.
  9.  前記連通部材は、多孔質である、
    請求項1から8のいずれかに記載の燃料電池スタック。
     
    The communication member is porous.
    The fuel cell stack according to any one of claims 1 to 8.
  10.  前記連通部材は、外側面を構成する第3緻密層を有する、
    請求項9に記載の燃料電池スタック。
     
    The communication member has a third dense layer constituting the outer surface.
    The fuel cell stack according to claim 9.
  11.  前記流路は、前記連通部材内の気孔によって構成される、
    請求項9または10に記載に燃料電池スタック。
     
    The flow path is configured by pores in the communication member.
    The fuel cell stack according to claim 9 or 10.
  12.  前記連通部材は、第1ガス流路と前記第2ガス流路とを連通させる流路として前記第1ガス流路から前記第2ガス流路へと延びる空間を内部に有している、
    請求項1から11のいずれかに記載の燃料電池スタック。
     
    The communication member has a space extending from the first gas flow path to the second gas flow path as a flow path for communicating the first gas flow path and the second gas flow path.
    The fuel cell stack according to claim 1.
  13.  前記連通部材は、金属によって構成される、
    請求項1から12のいずれかに記載の燃料電池スタック。
     
    The communication member is made of metal.
    The fuel cell stack according to any one of claims 1 to 12.
  14.  当該燃料電池スタックは、複数の前記第1発電素子部と、複数の前記第2発電素子部と、を備え、
     前記各第1発電素子部は、前記第1支持基板の長手方向に沿って間隔をあけて配置されており、
     前記各第2発電素子部は、前記第2支持基板の長手方向に沿って間隔をあけて配置される、
    請求項1から13のいずれかに記載の燃料電池スタック。
     
    The fuel cell stack includes a plurality of the first power generation element units and a plurality of the second power generation element units,
    Each of the first power generation element portions is disposed at intervals along the longitudinal direction of the first support substrate,
    Each of the second power generation element portions is disposed at an interval along the longitudinal direction of the second support substrate.
    The fuel cell stack according to any one of claims 1 to 13.
  15.  前記第1及び第2支持基板を支持するマニホールドをさらに備える、
    請求項1から14のいずれかに記載の燃料電池スタック。
     
    A manifold for supporting the first and second support substrates;
    The fuel cell stack according to any one of claims 1 to 14.
  16.  前記マニホールドは、第1室と第2室とを有しており、
     前記第1ガス流路は、前記第1室と連通し、
     前記第2ガス流路は、前記第2室に連通する、
    請求項15に記載の燃料電池スタック。
     
    The manifold has a first chamber and a second chamber,
    The first gas flow path communicates with the first chamber;
    The second gas flow path communicates with the second chamber;
    The fuel cell stack according to claim 15.
  17.  前記マニホールドは、
      空間部を有するマニホールド本体部と、
      前記空間部を前記第1室と前記第2室とに仕切る仕切板と、
    を有する、
    請求項16に記載の燃料電池スタック。
     
    The manifold is
    A manifold body having a space,
    A partition plate that partitions the space portion into the first chamber and the second chamber;
    Having
    The fuel cell stack according to claim 16.
  18.  前記マニホールドは、前記第1室を有する第1マニホールド本体部と、前記第2室を有する第2マニホールド本体部と、を有する、
    請求項16に記載の燃料電池スタック。
     
    The manifold includes a first manifold main body having the first chamber and a second manifold main body having the second chamber.
    The fuel cell stack according to claim 16.
  19.  前記マニホールドは、前記第1室に接続されるガス供給部と、前記第2室に接続されるガス排出部と、をさらに有する、
    請求項16から18のいずれかに記載の燃料電池スタック。
     
    The manifold further includes a gas supply unit connected to the first chamber and a gas discharge unit connected to the second chamber.
    The fuel cell stack according to any one of claims 16 to 18.
  20.  前記ガス供給部は、前記マニホールドの第1側板に形成され、
     前記ガス排出部は、前記第1側板の反対側に配置される第2側板に形成される、
    請求項19に記載の燃料電池スタック。
     
    The gas supply unit is formed on a first side plate of the manifold,
    The gas discharge part is formed on a second side plate disposed on the opposite side of the first side plate,
    The fuel cell stack according to claim 19.
  21.  前記ガス供給部及び前記ガス排出部は、前記マニホールドの第1側板に形成される、
    請求項19に記載の燃料電池スタック。
     
    The gas supply unit and the gas discharge unit are formed on a first side plate of the manifold.
    The fuel cell stack according to claim 19.
  22.  当該燃料電池スタックは、複数の前記第1支持基板と、複数の前記第2支持基板と、を備え、
     前記各第1支持基板は、前記第1側板が向く方向において、互いに間隔をあけて配置され、
     前記各第2支持基板は、前記第1側板が向く方向において、互いに間隔をあけて配置される、
    請求項20又は21に記載の燃料電池スタック。
     
    The fuel cell stack includes a plurality of the first support substrates and a plurality of the second support substrates,
    Each of the first support substrates is disposed at a distance from each other in the direction in which the first side plate faces.
    Each of the second support substrates is disposed at a distance from each other in the direction in which the first side plate faces.
    The fuel cell stack according to claim 20 or 21.
  23.  前記第1緻密層は、前記第1電解質を含み、
     前記第2緻密層は、前記第2電解質を含む、
    請求項1から22のいずれかに記載の燃料電池スタック。
     
    The first dense layer includes the first electrolyte,
    The second dense layer includes the second electrolyte.
    The fuel cell stack according to any one of claims 1 to 22.
PCT/JP2016/068954 2015-07-03 2016-06-27 Fuel cell stack WO2017006790A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016000108.8T DE112016000108B4 (en) 2015-07-03 2016-06-27 Fuel cell stack
CN201680001904.3A CN106507690A (en) 2015-07-03 2016-06-27 Fuel cell pack
US15/421,572 US10741869B2 (en) 2015-07-03 2017-02-01 Fuel cell stack

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2015-134102 2015-07-03
JP2015134102 2015-07-03
JP2016-124350 2016-06-23
JP2016124351A JP6030260B1 (en) 2015-07-03 2016-06-23 Fuel cell stack
JP2016124349A JP2017017021A (en) 2015-07-03 2016-06-23 Fuel cell stack
JP2016-124351 2016-06-23
JP2016124350A JP6030259B1 (en) 2015-07-03 2016-06-23 Fuel cell stack
JP2016124352A JP6030261B1 (en) 2015-07-03 2016-06-23 Fuel cell stack
JP2016-124352 2016-06-23
JP2016124353A JP6030262B1 (en) 2015-07-03 2016-06-23 Fuel cell stack
JP2016-124353 2016-06-23
JP2016-124349 2016-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/421,572 Continuation US10741869B2 (en) 2015-07-03 2017-02-01 Fuel cell stack

Publications (1)

Publication Number Publication Date
WO2017006790A1 true WO2017006790A1 (en) 2017-01-12

Family

ID=57685471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068954 WO2017006790A1 (en) 2015-07-03 2016-06-27 Fuel cell stack

Country Status (1)

Country Link
WO (1) WO2017006790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009729A (en) * 2018-07-12 2020-01-16 日本碍子株式会社 Electrochemical cell, and cell stack device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310165A (en) * 1993-04-26 1994-11-04 Mitsubishi Heavy Ind Ltd Flat solid electrolytic fuel cell
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008066296A (en) * 2006-08-10 2008-03-21 Ngk Insulators Ltd Electrochemical device
JP2009224299A (en) * 2008-03-19 2009-10-01 Kyocera Corp Cell stack device, and fuel battery module
JP2011060747A (en) * 2009-09-14 2011-03-24 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2014132518A (en) * 2011-10-25 2014-07-17 Ngk Insulators Ltd Stack structure of fuel battery
JP2015053186A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310165A (en) * 1993-04-26 1994-11-04 Mitsubishi Heavy Ind Ltd Flat solid electrolytic fuel cell
JP2007335213A (en) * 2006-06-14 2007-12-27 Kawamura Electric Inc Fuel cell stack
JP2008066296A (en) * 2006-08-10 2008-03-21 Ngk Insulators Ltd Electrochemical device
JP2009224299A (en) * 2008-03-19 2009-10-01 Kyocera Corp Cell stack device, and fuel battery module
JP2011060747A (en) * 2009-09-14 2011-03-24 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2014132518A (en) * 2011-10-25 2014-07-17 Ngk Insulators Ltd Stack structure of fuel battery
JP2015053186A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009729A (en) * 2018-07-12 2020-01-16 日本碍子株式会社 Electrochemical cell, and cell stack device

Similar Documents

Publication Publication Date Title
JP6030259B1 (en) Fuel cell stack
JP6275224B1 (en) Fuel cell stack
JP6605084B1 (en) Cell stack device
JP6533331B1 (en) Fuel cell and cell stack device
JP6239721B1 (en) Fuel cell stack
JP6275225B1 (en) Fuel cell stack
JP6605162B1 (en) Manifold, cell stack device, and electrochemical cell
WO2017006790A1 (en) Fuel cell stack
JP6630786B1 (en) Electrochemical cell and cell stack device
JP2020119660A (en) Fuel battery cell and cell stack device
JP6611393B1 (en) Cell stack device
JP6275223B1 (en) Fuel cell stack
JP6535804B1 (en) Manifold and cell stack device
JP6757778B2 (en) Fuel cell and cell stack device
JP6683860B1 (en) Cell stack device
JP6586504B1 (en) Cell stack device
JP2023072891A (en) Electrolysis cell, and cell stack device
JP2020043050A (en) Manifold and cell stack device
JP2020098692A (en) Cell stack device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000108

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821259

Country of ref document: EP

Kind code of ref document: A1