JP2018088358A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2018088358A
JP2018088358A JP2016231310A JP2016231310A JP2018088358A JP 2018088358 A JP2018088358 A JP 2018088358A JP 2016231310 A JP2016231310 A JP 2016231310A JP 2016231310 A JP2016231310 A JP 2016231310A JP 2018088358 A JP2018088358 A JP 2018088358A
Authority
JP
Japan
Prior art keywords
flow rate
fuel cell
rate adjusting
fuel
fuel cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231310A
Other languages
Japanese (ja)
Other versions
JP6368761B2 (en
Inventor
遥平 三浦
Yohei Miura
遥平 三浦
梨沙子 伊藤
Risako Ito
梨沙子 伊藤
誠 大森
Makoto Omori
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016231310A priority Critical patent/JP6368761B2/en
Publication of JP2018088358A publication Critical patent/JP2018088358A/en
Application granted granted Critical
Publication of JP6368761B2 publication Critical patent/JP6368761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell stack that can reduce a difference in temperature between fuel cells.SOLUTION: A fuel cell stack 100 comprises: a plurality of fuel cells 1; a plurality of flow rate adjustment members 2; and a manifold 3. The fuel cells 1 are arranged in an arrangement direction and have fuel gas passages 11. The flow rate adjustment members 2 are attached to the leading end parts 5 of the fuel cells 1. The manifold 3 supports the base end parts 4 of the fuel cells 1. The interval Sa between two central part flow rate adjustment members 2a attached to two central part fuel cells 1a located at the central part in the arrangement direction is larger than the interval Sb between two end part flow rate adjustment members 2b attached to two end part fuel cells 1b located at the end parts in the arrangement direction.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池スタックに関する。   The present invention relates to a fuel cell stack.

従来、燃料電池スタックの一種として、一列に並べられた複数の燃料電池と、各燃料電池の基端部を支持するマニホールドとを備える燃料電池スタックが知られている(例えば、特許文献1参照)。   Conventionally, as a kind of fuel cell stack, a fuel cell stack including a plurality of fuel cells arranged in a row and a manifold that supports a base end portion of each fuel cell is known (for example, see Patent Document 1). .

各燃料電池の内部には燃料ガス流路が形成されており、燃料電池スタックの作動時、マニホールドの内部から各燃料電池の燃料ガス流路に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池の外側に酸素含有ガス(例えば、空気)が供給される。   A fuel gas flow path is formed inside each fuel cell, and when the fuel cell stack is operated, fuel gas (for example, hydrogen) is supplied from the inside of the manifold to the fuel gas flow path of each fuel cell, An oxygen-containing gas (for example, air) is supplied to the outside of each fuel cell.

特開2015−187995号公報Japanese Patent Laying-Open No. 2015-187995

ここで、燃料電池スタックの作動時、配列方向の中央部に位置する燃料電池(以下、「中央部燃料電池」という。)と、配列方向の端部に位置する燃料電池(以下、「端部燃料電池」という。)との間には温度差が生じやすい。温度の高い燃料電池の燃料ガス流路を流れる燃料ガスの粘度は、温度の低い燃料電池の燃料ガス流路を流れる燃料ガスの粘度よりも高くなりやすいため、温度の高い燃料電池では燃料ガスの流量が少なくなってしまう。   Here, during operation of the fuel cell stack, a fuel cell located at the center in the arrangement direction (hereinafter referred to as “center part fuel cell”) and a fuel cell located at the end in the arrangement direction (hereinafter referred to as “end part”). A temperature difference is easily generated between the fuel cell and the fuel cell. The viscosity of the fuel gas flowing through the fuel gas flow path of the fuel cell having a high temperature tends to be higher than the viscosity of the fuel gas flowing through the fuel gas flow path of the fuel cell having a low temperature. The flow rate will decrease.

本発明は、上述の状況に鑑みてなされたものであり、各燃料電池の温度差を抑制可能な燃料電池スタックを提供することを目的とする。   The present invention has been made in view of the above-described situation, and an object thereof is to provide a fuel cell stack capable of suppressing a temperature difference between fuel cells.

燃料電池スタックは、複数の燃料電池と、複数の流量調整部材と、マニホールドとを備える。複数の燃料電池は、配列方向に配列され、燃料ガス流路を有する。複数の流量調整部材は、複数の燃料電池それぞれの先端部に取り付けられる。マニホールドは、複数の燃料電池それぞれの基端部を支持する。複数の流量調整部材のうち配列方向の中央部に位置する2つの燃料電池に取り付けられる2つの流量調整部材の第1間隔は、複数の流量調整部材のうち配列方向の端部に位置する2つの燃料電池に取り付けられる2つの流量調整部材の第2間隔と異なる。   The fuel cell stack includes a plurality of fuel cells, a plurality of flow rate adjusting members, and a manifold. The plurality of fuel cells are arranged in the arrangement direction and have fuel gas flow paths. The plurality of flow rate adjusting members are attached to the front ends of the plurality of fuel cells. The manifold supports the base end portion of each of the plurality of fuel cells. Among the plurality of flow rate adjustment members, the first interval between the two flow rate adjustment members attached to the two fuel cells located at the center portion in the arrangement direction is equal to two of the plurality of flow rate adjustment members located at the end portions in the arrangement direction. This is different from the second distance between the two flow rate adjusting members attached to the fuel cell.

本発明によれば、各燃料電池の温度差を抑制可能な燃料電池スタックを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell stack which can suppress the temperature difference of each fuel cell can be provided.

燃料電池スタックの側面図Side view of fuel cell stack 流量調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached 流量調整部材が取り付けられた燃料電池の斜視図A perspective view of a fuel cell to which a flow rate adjusting member is attached

(燃料電池スタック100)
図1は、燃料電池スタック100の側面図である。燃料電池スタック100は、複数の燃料電池1と、複数の流量調整部材2と、マニホールド3とを備える。
(Fuel cell stack 100)
FIG. 1 is a side view of the fuel cell stack 100. The fuel cell stack 100 includes a plurality of fuel cells 1, a plurality of flow rate adjusting members 2, and a manifold 3.

複数の燃料電池1は、配列方向に配列される。各燃料電池1は、平板状に形成される。本実施形態では、18枚の燃料電池1が設けられているが、燃料電池1の枚数は適宜変更可能である。   The plurality of fuel cells 1 are arranged in the arrangement direction. Each fuel cell 1 is formed in a flat plate shape. In the present embodiment, 18 fuel cells 1 are provided, but the number of fuel cells 1 can be changed as appropriate.

各燃料電池1は、内部に燃料ガス流路11を有する。燃料ガス流路11は、燃料電池1の長手方向に延びる。燃料電池スタック100の作動時、マニホールド3の内部から各燃料電池1の燃料ガス流路11に燃料ガス(例えば、水素)が供給されるとともに、各燃料電池1の外側に酸素含有ガス(例えば、空気)が供給される。   Each fuel cell 1 has a fuel gas flow path 11 therein. The fuel gas channel 11 extends in the longitudinal direction of the fuel cell 1. During operation of the fuel cell stack 100, fuel gas (for example, hydrogen) is supplied from the inside of the manifold 3 to the fuel gas passage 11 of each fuel cell 1, and an oxygen-containing gas (for example, for example, outside the fuel cell 1). Air).

各燃料電池1の基端部4は、マニホールド3に固定される。各燃料電池1の先端部5は、自由端である。このように、各燃料電池1は、マニホールド3によって片持ち状態で支持される。   The base end portion 4 of each fuel cell 1 is fixed to the manifold 3. The tip 5 of each fuel cell 1 is a free end. Thus, each fuel cell 1 is supported by the manifold 3 in a cantilever state.

複数の燃料電池1の配列方向外側には、一対の導電部材6が配置される。各導電部材6の基端部は、マニホールド3に支持される。本実施形態において、各導電部材6は板状に形成されているが、これに限られるものではない。各導電部材6には、電流を引き出すための電流引き出し線6aが接続されている。   A pair of conductive members 6 are arranged on the outer side in the arrangement direction of the plurality of fuel cells 1. The base end portion of each conductive member 6 is supported by the manifold 3. In the present embodiment, each conductive member 6 is formed in a plate shape, but is not limited thereto. Each conductive member 6 is connected to a current drawing line 6a for drawing current.

各燃料電池1の間、及び、燃料電池1と導電部材6との間には、集電部材7が配置される。集電部材7は、各燃料電池1同士、及び、燃料電池1と導電部材6とを電気的に接続する。集電部材7は、隣接する2つの燃料電池1の間を基端部4側から先端部5側に向かって流れる酸素含有ガスの流れを妨げないように構成されていればよく、集電部材7の形状は特に制限されない。   A current collecting member 7 is disposed between each fuel cell 1 and between the fuel cell 1 and the conductive member 6. The current collecting member 7 electrically connects the fuel cells 1 to each other and the fuel cell 1 and the conductive member 6. The current collecting member 7 only needs to be configured so as not to hinder the flow of the oxygen-containing gas flowing between the two adjacent fuel cells 1 from the base end portion 4 side toward the tip end portion 5 side. The shape of 7 is not particularly limited.

各流量調整部材2は、各燃料電池1の先端部5に取り付けられる。各流量調整部材2は、隣接する2つの燃料電池1の間を基端部4側から先端部5側に向かって流れる酸素含有ガスの流量を調整するための部材である。2つの流量調整部材2の間には、酸素含有ガスが通過する酸素含有ガス流路が形成される。流量調整部材2同士の間隔については後述する。本実施形態では、18個の流量調整部材2が設けられているが、流量調整部材2の個数は燃料電池1の枚数に応じて適宜変更可能である。   Each flow rate adjusting member 2 is attached to the front end portion 5 of each fuel cell 1. Each flow rate adjusting member 2 is a member for adjusting the flow rate of the oxygen-containing gas that flows between the two adjacent fuel cells 1 from the base end portion 4 side toward the tip end portion 5 side. An oxygen-containing gas flow path through which the oxygen-containing gas passes is formed between the two flow rate adjusting members 2. The interval between the flow rate adjusting members 2 will be described later. In the present embodiment, 18 flow rate adjusting members 2 are provided, but the number of flow rate adjusting members 2 can be appropriately changed according to the number of fuel cells 1.

各流量調整部材2は、内部に燃料ガス排出路21を有する。燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。燃料ガス流路11を流れる燃料ガスのうち発電に使用されなかった余剰燃料ガスは、燃料ガス排出路21から外部に排出される。燃料ガス排出路21から排出される余剰燃料ガスは、酸素含有ガスと反応して燃焼する。   Each flow rate adjusting member 2 has a fuel gas discharge passage 21 therein. The fuel gas discharge path 21 is connected to the fuel gas flow path 11 of the fuel cell 1. Of the fuel gas flowing through the fuel gas passage 11, surplus fuel gas that has not been used for power generation is discharged from the fuel gas discharge passage 21 to the outside. Excess fuel gas discharged from the fuel gas discharge passage 21 reacts with the oxygen-containing gas and burns.

マニホールド3は、各燃料電池1の基端部4を支持する。マニホールド3は、各燃料電池1の燃料ガス流路11に燃料ガスを分配するように構成される。マニホールド3は、中空状の箱体であり、内部空間を有する。マニホールド3の内部空間には、図示しない燃料ガス供給源から燃料ガスが供給される。   The manifold 3 supports the base end portion 4 of each fuel cell 1. The manifold 3 is configured to distribute the fuel gas to the fuel gas channel 11 of each fuel cell 1. The manifold 3 is a hollow box and has an internal space. Fuel gas is supplied to the internal space of the manifold 3 from a fuel gas supply source (not shown).

(各流量調整部材2の間隔)
図1に示すように、複数の燃料電池1は、中央部燃料電池1aと、端部燃料電池1bと、中間部燃料電池1cとを含む。
(Interval between each flow rate adjusting member 2)
As shown in FIG. 1, the plurality of fuel cells 1 includes a central fuel cell 1a, an end fuel cell 1b, and an intermediate fuel cell 1c.

中央部燃料電池1aは、複数の燃料電池1のうち配列方向の中央部に配置された燃料電池1である。配列方向の中央部には、配列方向の中央とその近傍とが含まれる。具体的には、配列方向の中央を中心として、配列方向における複数の燃料電池1の全長の1/4程度の領域に配置された燃料電池1を、中央部燃料電池1aとすることができる。図1に示すように、本実施形態では、4枚の中央部燃料電池1aが設けられているが、中央部燃料電池1aの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The center part fuel cell 1a is the fuel cell 1 arranged in the center part in the arrangement direction among the plurality of fuel cells 1. The central portion in the arrangement direction includes the center in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region about ¼ of the total length of the plurality of fuel cells 1 in the arrangement direction with the center in the arrangement direction as the center can be used as the central fuel cell 1a. As shown in FIG. 1, in the present embodiment, four central fuel cells 1a are provided. The number of central fuel cells 1a depends on the total length of the plurality of fuel cells 1 and the size of each fuel cell 1. It can be appropriately changed depending on

端部燃料電池1bは、複数の燃料電池1のうち配列方向の端部に配置された燃料電池1である。配列方向の端部には、配列方向の両端とその近傍とが含まれる。具体的には、配列方向の両端から複数の燃料電池1の全長の1/4程度までの領域に配置された燃料電池1を、端部燃料電池1bとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に端部燃料電池1bが4枚ずつ設けられているが、端部燃料電池1bの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The end fuel cell 1b is a fuel cell 1 arranged at an end in the arrangement direction among the plurality of fuel cells 1. The ends in the arrangement direction include both ends in the arrangement direction and the vicinity thereof. Specifically, the fuel cell 1 arranged in a region from both ends in the arrangement direction to about ¼ of the total length of the plurality of fuel cells 1 can be used as the end fuel cell 1b. As shown in FIG. 1, in the present embodiment, four end fuel cells 1b are provided on both sides of the central fuel cell 1a, but the number of end fuel cells 1b is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

中間部燃料電池1cは、複数の燃料電池1のうち、配列方向の中央部と端部の間の中間部に配置された燃料電池1である。具体的には、配列方向の中央部と端部との間における複数の燃料電池1の全長の1/8程度の領域に配置された燃料電池1を、中間部燃料電池1cとすることができる。図1に示すように、本実施形態では、中央部燃料電池1aの両側に中間部燃料電池1cが3枚ずつ設けられているが、中間部燃料電池1cの枚数は、複数の燃料電池1の全長と各燃料電池1のサイズに応じて適宜変更できる。   The intermediate part fuel cell 1c is the fuel cell 1 arranged in an intermediate part between the center part and the end part in the arrangement direction among the plurality of fuel cells 1. Specifically, the fuel cell 1 arranged in a region of about 1/8 of the total length of the plurality of fuel cells 1 between the central portion and the end portion in the arrangement direction can be used as the intermediate fuel cell 1c. . As shown in FIG. 1, in the present embodiment, three intermediate fuel cells 1c are provided on both sides of the central fuel cell 1a, but the number of intermediate fuel cells 1c is the same as that of the plurality of fuel cells 1. It can be appropriately changed according to the total length and the size of each fuel cell 1.

本実施形態において、各燃料電池1のサイズは略同じである。すなわち、中央部燃料電池1a、端部燃料電池1b及び中間部燃料電池1cそれぞれのサイズは略同じである。そのため、図1に示すように、配列方向において、中央部燃料電池1aの厚みPa、端部燃料電池1bの厚みPb、及び中間部燃料電池1cの厚みPcは、略同じ(Pa≒Pb≒Pc)である。具体的に、厚みPa、厚みPb及び厚みPcは、全ての燃料電池1の厚みの算術平均値から±10%以内であればよい。本実施形態において、“厚み”とは、配列方向における各部材の幅を意味する。燃料電池1の厚みは、燃料電池1のうちマニホールドから長手方向に50mm離れた位置において、デジタルノギスを用いて測定するものとする。   In this embodiment, the size of each fuel cell 1 is substantially the same. That is, the sizes of the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c are substantially the same. Therefore, as shown in FIG. 1, in the arrangement direction, the thickness Pa of the central fuel cell 1a, the thickness Pb of the end fuel cell 1b, and the thickness Pc of the intermediate fuel cell 1c are substantially the same (Pa≈Pb≈Pc). ). Specifically, the thickness Pa, the thickness Pb, and the thickness Pc may be within ± 10% from the arithmetic average value of the thicknesses of all the fuel cells 1. In the present embodiment, “thickness” means the width of each member in the arrangement direction. The thickness of the fuel cell 1 is measured using a digital caliper at a position 50 mm away from the manifold in the longitudinal direction of the fuel cell 1.

また、本実施形態では、配列方向において、隣接する2つの燃料電池1同士は略等間隔に配置されている。そのため、中央部燃料電池1a同士の間隔Qa、端部燃料電池1b同士の間隔Qb、中間部燃料電池1c同士の間隔Qc、中央部燃料電池1aと中間部燃料電池1cの間隔Qd、及び中間部燃料電池1cと端部燃料電池1bとの間隔Qeは、略同じ(Qa≒Qb≒Qc≒Qd≒Qe)である。具体的に、間隔Qa、間隔Qb、間隔Qc、間隔Qd及び間隔Qeは、燃料電池1の全ての間隔の算術平均値から±10%以内であればよい。本実施形態において、燃料電池1の間隔は、マニホールドから長手方向に50mm離れた位置において、デジタルノギスを用いて測定するものとする。   In the present embodiment, the two adjacent fuel cells 1 are arranged at substantially equal intervals in the arrangement direction. Therefore, the interval Qa between the central fuel cells 1a, the interval Qb between the end fuel cells 1b, the interval Qc between the intermediate fuel cells 1c, the interval Qd between the central fuel cell 1a and the intermediate fuel cell 1c, and the intermediate portion The distance Qe between the fuel cell 1c and the end fuel cell 1b is substantially the same (Qa≈Qb≈Qc≈Qd≈Qe). Specifically, the interval Qa, the interval Qb, the interval Qc, the interval Qd, and the interval Qe may be within ± 10% from the arithmetic average value of all intervals of the fuel cell 1. In the present embodiment, the interval between the fuel cells 1 is measured using a digital caliper at a position 50 mm away from the manifold in the longitudinal direction.

図1に示すように、複数の流量調整部材2は、中央部流量調整部材2aと、端部流量調整部材2bと、中間部流量調整部材2cとを含む。   As shown in FIG. 1, the plurality of flow rate adjusting members 2 include a central flow rate adjusting member 2a, an end flow rate adjusting member 2b, and an intermediate flow rate adjusting member 2c.

中央部流量調整部材2aは、複数の流量調整部材2のうち中央部燃料電池1aに取り付けられた流量調整部材2である。端部流量調整部材2bは、複数の流量調整部材2のうち端部燃料電池1bに取り付けられた流量調整部材2である。中間部流量調整部材2cは、複数の流量調整部材2のうち中間部燃料電池1cに取り付けられた流量調整部材2である。   The central flow rate adjusting member 2 a is a flow rate adjusting member 2 attached to the central fuel cell 1 a among the plurality of flow rate adjusting members 2. The end flow rate adjusting member 2 b is a flow rate adjusting member 2 attached to the end fuel cell 1 b among the plurality of flow rate adjusting members 2. The intermediate part flow rate adjusting member 2 c is a flow rate adjusting member 2 attached to the intermediate part fuel cell 1 c among the plurality of flow rate adjusting members 2.

図1に示すように、配列方向において、中央部流量調整部材2aの厚みRaは、端部流量調整部材2bの厚みRbよりも薄い。中央部流量調整部材2aの厚みRaは、中間部流量調整部材2cの厚みRcよりも薄い。また、端部流量調整部材2bの厚みRbは、中間部流量調整部材2cの厚みRcよりも厚い。従って、Ra<Rc<Rbが成立する。流量調整部材2の厚みは、流量調整部材2の長手方向中央において、デジタルノギスを用いて測定するものとする。   As shown in FIG. 1, in the arrangement direction, the thickness Ra of the central flow rate adjusting member 2a is smaller than the thickness Rb of the end flow rate adjusting member 2b. The thickness Ra of the central flow rate adjusting member 2a is thinner than the thickness Rc of the intermediate flow rate adjusting member 2c. Further, the thickness Rb of the end flow rate adjusting member 2b is thicker than the thickness Rc of the intermediate flow rate adjusting member 2c. Therefore, Ra <Rc <Rb is established. The thickness of the flow rate adjusting member 2 is measured using a digital caliper at the center in the longitudinal direction of the flow rate adjusting member 2.

また、図1に示すように、配列方向において、隣接する2つの中央部流量調整部材2a同士の間隔Sa(第1間隔の一例)は、隣接する2つの端部流量調整部材2b同士の間隔Sb(第2間隔の一例)よりも広い。配列方向において、隣接する2つの中央部流量調整部材2a同士の間隔Saは、隣接する2つの中間部流量調整部材2c同士の間隔Scよりも広い。また、配列方向において、隣接する2つの端部流量調整部材2b同士の間隔Sbは、隣接する2つの中間部流量調整部材2c同士の間隔Scよりも狭い。従って、Sa>Sc>Sbが成立する。流量調整部材2の厚みは、流量調整部材2の長手方向中央の位置において、デジタルノギスを用いて測定するものとする。   Further, as shown in FIG. 1, in the arrangement direction, an interval Sa (an example of a first interval) between two adjacent central flow rate adjusting members 2a is an interval Sb between two adjacent end flow rate adjusting members 2b. It is wider than (an example of the second interval). In the arrangement direction, the interval Sa between the two adjacent central flow rate adjusting members 2a is wider than the interval Sc between the two adjacent intermediate flow rate adjusting members 2c. In the arrangement direction, the interval Sb between two adjacent end flow rate adjusting members 2b is narrower than the interval Sc between two adjacent intermediate flow rate adjusting members 2c. Therefore, Sa> Sc> Sb is established. The thickness of the flow rate adjusting member 2 is measured using a digital caliper at the center of the flow rate adjusting member 2 in the longitudinal direction.

ここで、燃料電池スタック100の作動時、各燃料電池1は、燃料電池1自身のジュール熱や反応熱による熱エネルギーを放出する。この際、端部燃料電池1bは隣接する燃料電池1が少ないため、端部燃料電池1bからの熱エネルギーは外部に放散されやすいのに対して、中央部燃料電池1aの両側には多数の燃料電池1が配置されているため、中央部燃料電池1aからの熱エネルギーは端部燃料電池1bに比べて外部に放散されにくい。そのため、中央部燃料電池1aは、端部燃料電池1bに比べて高温になりやすい。   Here, when the fuel cell stack 100 is operated, each fuel cell 1 releases thermal energy due to Joule heat or reaction heat of the fuel cell 1 itself. At this time, since the end fuel cell 1b has few adjacent fuel cells 1, the thermal energy from the end fuel cell 1b is easily dissipated to the outside, whereas many fuels are present on both sides of the center fuel cell 1a. Since the battery 1 is disposed, the thermal energy from the central fuel cell 1a is less likely to be dissipated outside than the end fuel cell 1b. Therefore, the center fuel cell 1a is likely to be hotter than the end fuel cell 1b.

そこで、本実施形態では、中央部流量調整部材2a同士の間隔Saが、端部流量調整部材2b同士の間隔Sbよりも広くされている。換言すれば、端部流量調整部材2b同士の間隔Sbが、隣接する2つの中央部流量調整部材2a同士の間隔Saよりも狭くされている。これにより、中央部燃料電池1a同士の隙間を流れる酸素含有ガスの流量を、端部燃料電池1b同士の隙間を流れる酸素含有ガスの流量よりも多くすることができる。従って、中央部燃料電池1aの温度を低下させるとともに、端部燃料電池1bの温度を上昇させることができるため、中央部燃料電池1aと端部燃料電池1bとの温度差を低減することができる。その結果、中央部燃料電池1a及び端部燃料電池1bそれぞれの燃料ガス流路11を流れる燃料ガスの粘度差が低減されるため、中央部燃料電池1a及び端部燃料電池1bそれぞれの燃料ガス流路11を流れる燃料ガスの流量差を低減することができる。   Therefore, in the present embodiment, the interval Sa between the central flow rate adjusting members 2a is made wider than the interval Sb between the end flow rate adjusting members 2b. In other words, the interval Sb between the end flow rate adjusting members 2b is narrower than the interval Sa between the two adjacent central flow rate adjusting members 2a. Thereby, the flow rate of the oxygen-containing gas flowing through the gap between the central fuel cells 1a can be made larger than the flow rate of the oxygen-containing gas flowing through the gap between the end fuel cells 1b. Therefore, since the temperature of the center part fuel cell 1a can be lowered and the temperature of the end part fuel cell 1b can be raised, the temperature difference between the center part fuel cell 1a and the end part fuel cell 1b can be reduced. . As a result, the difference in the viscosity of the fuel gas flowing through the fuel gas channel 11 of each of the central fuel cell 1a and the end fuel cell 1b is reduced, so that the fuel gas flow of each of the central fuel cell 1a and the end fuel cell 1b. The flow rate difference of the fuel gas flowing through the passage 11 can be reduced.

また、燃料電池スタック100の作動時、中間部燃料電池1cは、端部燃料電池1bに比べて高温になりやすく、かつ、中央部燃料電池1aに比べて低温になりやすい。   Further, during the operation of the fuel cell stack 100, the intermediate fuel cell 1c is likely to be hotter than the end fuel cell 1b, and is likely to be colder than the central fuel cell 1a.

そこで、本実施形態では、中間部流量調整部材2c同士の間隔Scが、中央部流量調整部材2a同士の間隔Saよりも狭く、かつ、端部流量調整部材2b同士の間隔Sbよりも広くされている。これにより、中間部燃料電池1c同士の隙間を流れる酸素含有ガスの流量を、中央部燃料電池1a同士の隙間を流れる酸素含有ガスの流量よりも少なく、かつ、端部燃料電池1b同士の隙間を流れる酸素含有ガスの流量よりも多くすることができる。従って、中央部燃料電池1a、端部燃料電池1b及び中間部燃料電池1cそれぞれの燃料ガス流路11を流れる燃料ガスの流量差を低減することができる。   Therefore, in the present embodiment, the interval Sc between the intermediate flow rate adjusting members 2c is narrower than the interval Sa between the central flow rate adjusting members 2a and wider than the interval Sb between the end flow rate adjusting members 2b. Yes. Accordingly, the flow rate of the oxygen-containing gas flowing through the gap between the intermediate fuel cells 1c is less than the flow rate of the oxygen-containing gas flowing through the gap between the central fuel cells 1a, and the gap between the end fuel cells 1b is reduced. The flow rate of the flowing oxygen-containing gas can be increased. Therefore, it is possible to reduce the difference in flow rate of the fuel gas flowing through the fuel gas passages 11 of the central fuel cell 1a, the end fuel cell 1b, and the intermediate fuel cell 1c.

(燃料電池1及び流量調整部材2の構成)
図2及び図3は、流量調整部材2が取り付けられた燃料電池1の斜視図である。
(Configuration of fuel cell 1 and flow rate adjusting member 2)
2 and 3 are perspective views of the fuel cell 1 to which the flow rate adjusting member 2 is attached.

図2及び図3では、燃料電池1の一例として、いわゆる横縞型の固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)が図示されている。   2 and 3, as an example of the fuel cell 1, a so-called horizontal stripe type solid oxide fuel cell (SOFC) is illustrated.

燃料電池1は、多孔支持基板10、複数の発電部20、及び緻密シール膜30を備える。   The fuel cell 1 includes a porous support substrate 10, a plurality of power generation units 20, and a dense seal film 30.

多孔支持基板10は、長手方向に延びる扁平な平板状に形成される。多孔支持基板10の内部には、6本の燃料ガス流路11が形成される。   The porous support substrate 10 is formed in a flat plate shape extending in the longitudinal direction. Six fuel gas passages 11 are formed inside the porous support substrate 10.

多孔支持基板10は、電子伝導性の低い多孔質材料によって構成される。多孔支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)、MgO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)の複合材料、MgO(酸化ニッケル)とY(イットリア)の複合材料、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)の複合材料などによって構成することができる。多孔支持基板10は、遷移金属を含有していてもよい。多孔支持基板10の気孔率は特に制限されないが、20%〜60%とすることができる。多孔支持基板10の厚さは特に制限されないが、1mm〜10mmとすることができる。 The porous support substrate 10 is made of a porous material having low electron conductivity. The porous support substrate 10 includes, for example, CSZ (calcia stabilized zirconia), a composite material of MgO (nickel oxide) and YSZ (yttria stabilized zirconia), a composite material of MgO (nickel oxide) and Y 2 O 3 (yttria), A composite material of MgO (magnesium oxide) and MgAl 2 O 4 (magnesia alumina spinel) can be used. The porous support substrate 10 may contain a transition metal. The porosity of the porous support substrate 10 is not particularly limited, but can be 20% to 60%. The thickness of the porous support substrate 10 is not particularly limited, but can be 1 mm to 10 mm.

複数の発電部20は、多孔支持基板10の主面上において長手方向に並べられる。複数の発電部20は、多孔支持基板10の両主面上に配置されていてもよい。発電部20の個数は適宜変更することができる。   The plurality of power generation units 20 are arranged in the longitudinal direction on the main surface of the porous support substrate 10. The plurality of power generation units 20 may be disposed on both main surfaces of the porous support substrate 10. The number of the power generation units 20 can be changed as appropriate.

各発電部20は、燃料極と、固体電解質層と、空気極と、インターコネクタとを有する。燃料極は、多孔支持基板10上に配置される。固体電解質層は、燃料極と空気極の間に配置される。インターコネクタは、当該発電部20の燃料極と隣接する他の発電部20の空気極とを電気的に接続する。各発電部20は、固体電解質層と空気極との間に配置されるバリア層を有していてもよい。各発電部20は、空気極上に配置される空気極集電層を有していてもよい。   Each power generation unit 20 includes a fuel electrode, a solid electrolyte layer, an air electrode, and an interconnector. The fuel electrode is disposed on the porous support substrate 10. The solid electrolyte layer is disposed between the fuel electrode and the air electrode. The interconnector electrically connects the fuel electrode of the power generation unit 20 and the air electrode of another power generation unit 20 adjacent thereto. Each power generation unit 20 may have a barrier layer disposed between the solid electrolyte layer and the air electrode. Each power generation unit 20 may have an air electrode current collecting layer disposed on the air electrode.

緻密シール膜30は、多孔支持基板10の外表面を覆う。緻密シール膜30は、各発電部20の固体電解質層と一体的に形成されていてもよい。緻密シール膜30は、緻密質材料によって構成される。緻密質材料としては、例えば、YSZ、ScSZ、ガラス、スピネル酸化物などが挙げられる。   The dense seal film 30 covers the outer surface of the porous support substrate 10. The dense seal film 30 may be formed integrally with the solid electrolyte layer of each power generation unit 20. The dense seal film 30 is made of a dense material. Examples of the dense material include YSZ, ScSZ, glass, and spinel oxide.

流量調整部材2は、燃料電池1の先端部5に取り付けられる。流量調整部材2は、接合材によって、燃料電池1の先端部5に固定されていてもよい。接合材としては、例えば、結晶化ガラスを用いることができる。結晶化ガラスとしては、例えば、SiO−B系、SiO−CaO系、又はSiO−MgO系のガラスを用いることができる。 The flow rate adjusting member 2 is attached to the tip portion 5 of the fuel cell 1. The flow rate adjusting member 2 may be fixed to the front end portion 5 of the fuel cell 1 with a bonding material. For example, crystallized glass can be used as the bonding material. As the crystallized glass, for example, SiO 2 —B 2 O 3 based, SiO 2 —CaO based, or SiO 2 —MgO based glass can be used.

本実施形態において、流量調整部材2は、平板状の緻密体である。流量調整部材2は、緻密質材料によって構成される。緻密質材料としては、MgO、ZrO、MgAlなどのスピネル酸化物や、フェライト系ステンレス、SiO−MgO系などのガラス材料が挙げられるが、これに限られるものではない。流量調整部材2の気孔率は、20%以下が好ましく、5%以下がより好ましい。 In the present embodiment, the flow rate adjusting member 2 is a flat dense body. The flow rate adjusting member 2 is made of a dense material. Examples of the dense material include spinel oxides such as MgO, ZrO 2 , and MgAl 2 O 4 , and glass materials such as ferrite-based stainless steel and SiO 2 —MgO-based materials, but are not limited thereto. The porosity of the flow rate adjusting member 2 is preferably 20% or less, and more preferably 5% or less.

流量調整部材2は、内部に6本の燃料ガス排出路21を有する。各燃料ガス排出路21は、燃料電池1の燃料ガス流路11に連なる。各燃料ガス排出路21は、燃料電池1の長手方向に延びる。   The flow rate adjusting member 2 has six fuel gas discharge paths 21 inside. Each fuel gas discharge passage 21 is connected to the fuel gas passage 11 of the fuel cell 1. Each fuel gas discharge path 21 extends in the longitudinal direction of the fuel cell 1.

(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
(Other embodiments)
The present invention is not limited to the embodiment described above, and various modifications or changes can be made without departing from the scope of the present invention.

上記実施形態では、本発明にかかる流量調整部材を横縞型の燃料電池1に適用した場合について説明したが、本発明にかかる流量調整部材は、いわゆる縦縞型の燃料電池などにも適用することができる。縦縞型の燃料電池は、導電性の支持基板と、支持基板の一主面上に配置される発電部(燃料極、固体電解質層及び空気極)と、支持基板の他主面上に配置されるインターコネクタとを備える。   In the above embodiment, the case where the flow rate adjusting member according to the present invention is applied to the horizontal stripe type fuel cell 1 has been described. However, the flow rate adjusting member according to the present invention can also be applied to a so-called vertical stripe type fuel cell. it can. The vertically striped fuel cell is disposed on a conductive support substrate, a power generation unit (a fuel electrode, a solid electrolyte layer, and an air electrode) disposed on one main surface of the support substrate, and on the other main surface of the support substrate. Interconnector.

上記実施形態では、流量調整部材2は、平板状の緻密体であることとしたが、これに限られるものではない。流量調整部材2は、燃料電池1の先端部5の側面上に形成された緻密膜であってもよい。このような緻密膜は、ZrO、SiO−MgO系の結晶化ガラスなどの緻密質材料を先端部5の側面上にディップ成膜することによって形成することができる。 In the said embodiment, although the flow volume adjustment member 2 decided to be a flat dense body, it is not restricted to this. The flow rate adjusting member 2 may be a dense film formed on the side surface of the tip portion 5 of the fuel cell 1. Such a dense film can be formed by dip-filming a dense material such as ZrO 2 , SiO 2 —MgO-based crystallized glass on the side surface of the tip portion 5.

上記実施形態では、図1に示したように、複数の流量調整部材2は、中間部流量調整部材2cを含むこととしたが、中間部流量調整部材2cを含んでいなくてもよい。この場合、中間部燃料電池1cには、中間部流量調整部材2cの代わりに、中央部流量調整部材2aを取り付けてもよいし、端部流量調整部材2bを取り付けてもよい。   In the above embodiment, as shown in FIG. 1, the plurality of flow rate adjustment members 2 include the intermediate part flow rate adjustment member 2 c, but may not include the intermediate part flow rate adjustment member 2 c. In this case, instead of the intermediate flow rate adjusting member 2c, the middle flow rate adjusting member 2a may be attached to the intermediate fuel cell 1c, or the end flow rate adjusting member 2b may be attached.

上記実施形態では、図1に示したように、複数の流量調整部材2には、中央部流量調整部材2a、端部流量調整部材2b及び中間部流量調整部材2cが含まれることとしたが、中央部流量調整部材2aと中間部流量調整部材2cとの間、又は/及び、端部流量調整部材2bと中間部流量調整部材2cとの間に、中央部流量調整部材2a、端部流量調整部材2b及び中間部流量調整部材2cそれぞれと異なる厚みを有する1以上の補充流量調整部材を含んでいてもよい。   In the above embodiment, as shown in FIG. 1, the plurality of flow rate adjusting members 2 include the central flow rate adjusting member 2 a, the end flow rate adjusting member 2 b, and the intermediate flow rate adjusting member 2 c. Between the central flow rate adjusting member 2a and the intermediate flow rate adjusting member 2c and / or between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, the central flow rate adjusting member 2a and the end flow rate adjusting member are provided. One or more replenishment flow rate adjustment members having different thicknesses from the member 2b and the intermediate part flow rate adjustment member 2c may be included.

補充流量調整部材は、中央部流量調整部材2aと中間部流量調整部材2cとの間に配置される場合、中央部燃料電池1aと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流量調整部材の厚みは、中央部流量調整部材2aの厚みRaよりも大きいことが好ましく、中間部流量調整部材2cの厚みRcよりも小さいことがより好ましい。   When the replenishment flow rate adjusting member is disposed between the central part flow rate adjusting member 2a and the intermediate part flow rate adjusting member 2c, it may be attached to either the central part fuel cell 1a or the intermediate part fuel cell 1c. In this case, the thickness of the replenishment flow rate adjusting member is preferably larger than the thickness Ra of the central flow rate adjusting member 2a, and more preferably smaller than the thickness Rc of the intermediate flow rate adjusting member 2c.

補充流量調整部材は、端部流量調整部材2bと中間部流量調整部材2cとの間に配置される場合、端部燃料電池1bと中間部燃料電池1cのいずれに取り付けられていてもよい。この場合、補充流量調整部材の厚みは、端部流量調整部材2bの厚みRbよりも小さいことが好ましく、中間部流量調整部材2cの厚みRcよりも大きいことがより好ましい。   When the replenishment flow rate adjusting member is disposed between the end flow rate adjusting member 2b and the intermediate flow rate adjusting member 2c, it may be attached to either the end fuel cell 1b or the intermediate fuel cell 1c. In this case, the thickness of the replenishment flow rate adjusting member is preferably smaller than the thickness Rb of the end flow rate adjusting member 2b, and more preferably larger than the thickness Rc of the intermediate flow rate adjusting member 2c.

上記実施形態では、図1に示したように、複数の流量調整部材2には、3種類の流量調整部材(中央部流量調整部材2a、端部流量調整部材2b及び中間部流量調整部材2c)だけが含まれることとしたが、これに限られるものではない。例えば、複数の流量調整部材2それぞれの厚みが異なっており、配列方向の端部から中央部に向かって順番に厚みが小さくなるように並べられていてもよい。   In the above embodiment, as shown in FIG. 1, the plurality of flow rate adjusting members 2 include three types of flow rate adjusting members (a central flow rate adjusting member 2a, an end flow rate adjusting member 2b, and an intermediate flow rate adjusting member 2c). However, it is not limited to this. For example, the thicknesses of the plurality of flow rate adjusting members 2 may be different, and the flow rate adjusting members 2 may be arranged so that the thickness decreases in order from the end in the arrangement direction toward the center.

1 燃料電池
1a 中央部燃料電池
1b 端部燃料電池
1c 中間部燃料電池
2 流量調整部材
2a 中央部流量調整部材
2b 端部流量調整部材
2c 中間部流量調整部材
100 燃料電池スタック
DESCRIPTION OF SYMBOLS 1 Fuel cell 1a Center part fuel cell 1b End part fuel cell 1c Middle part fuel cell 2 Flow rate adjustment member 2a Center part flow rate adjustment member 2b End part flow rate adjustment member 2c Middle part flow rate adjustment member 100 Fuel cell stack

Claims (6)

配列方向に配列され、燃料ガス流路を有する複数の燃料電池と、
前記複数の燃料電池それぞれの先端部に取り付けられる複数の流量調整部材と、
前記複数の燃料電池それぞれの基端部を支持するマニホールドと、
を備え、
前記複数の流量調整部材のうち前記配列方向の中央部に位置する2つの燃料電池に取り付けられる2つの流量調整部材の第1間隔は、前記複数の流量調整部材のうち前記配列方向の端部に位置する2つの燃料電池に取り付けられる2つの流量調整部材の第2間隔と異なる、
燃料電池スタック。
A plurality of fuel cells arranged in the arrangement direction and having fuel gas flow paths;
A plurality of flow rate adjusting members attached to the tip of each of the plurality of fuel cells;
A manifold that supports a base end portion of each of the plurality of fuel cells;
With
Among the plurality of flow rate adjusting members, a first interval between two flow rate adjusting members attached to two fuel cells located in the central portion in the arrangement direction is at an end of the plurality of flow rate adjustment members in the arrangement direction. Different from the second interval between the two flow rate adjusting members attached to the two located fuel cells,
Fuel cell stack.
前記第1間隔は、前記第2間隔よりも広い、
請求項1に記載の燃料電池スタック。
The first interval is wider than the second interval;
The fuel cell stack according to claim 1.
前記複数の燃料電池は、前記配列方向において略等間隔に配置されている、
請求項1又は2に記載の燃料電池スタック。
The plurality of fuel cells are arranged at substantially equal intervals in the arrangement direction.
The fuel cell stack according to claim 1 or 2.
前記複数の燃料電池それぞれの厚みは、略同じである、
請求項1乃至3のいずれかに記載の燃料電池スタック。
The thickness of each of the plurality of fuel cells is substantially the same.
The fuel cell stack according to any one of claims 1 to 3.
前記複数の流量調整部材それぞれは、前記燃料ガス流路に連なる燃料ガス排出路を有する平板状の緻密体である、
請求項1乃至4のいずれかに記載の燃料電池スタック。
Each of the plurality of flow rate adjusting members is a plate-like dense body having a fuel gas discharge passage connected to the fuel gas passage.
The fuel cell stack according to any one of claims 1 to 4.
前記複数の流量調整部材それぞれは、前記先端部の側面上に形成された緻密膜である、
請求項1乃至4のいずれかに記載の燃料電池スタック。
Each of the plurality of flow rate adjusting members is a dense film formed on a side surface of the tip portion.
The fuel cell stack according to any one of claims 1 to 4.
JP2016231310A 2016-11-29 2016-11-29 Fuel cell stack Expired - Fee Related JP6368761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231310A JP6368761B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231310A JP6368761B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2018088358A true JP2018088358A (en) 2018-06-07
JP6368761B2 JP6368761B2 (en) 2018-08-01

Family

ID=62494540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231310A Expired - Fee Related JP6368761B2 (en) 2016-11-29 2016-11-29 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP6368761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450046B1 (en) * 2018-06-22 2019-01-09 日本碍子株式会社 Fuel cell and cell stack device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346988A (en) * 2004-05-31 2005-12-15 Kyocera Corp Fuel battery assembly and fuel battery
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2013161574A (en) * 2012-02-02 2013-08-19 Kyocera Corp Solid oxide fuel cell, fuel cell module and fuel cell device
JP2014067669A (en) * 2012-09-27 2014-04-17 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2016115581A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346988A (en) * 2004-05-31 2005-12-15 Kyocera Corp Fuel battery assembly and fuel battery
WO2008041593A1 (en) * 2006-09-27 2008-04-10 Kyocera Corporation Fuel battery cell stack and fuel battery
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2013161574A (en) * 2012-02-02 2013-08-19 Kyocera Corp Solid oxide fuel cell, fuel cell module and fuel cell device
JP2014067669A (en) * 2012-09-27 2014-04-17 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2016115581A (en) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450046B1 (en) * 2018-06-22 2019-01-09 日本碍子株式会社 Fuel cell and cell stack device
JP2019220427A (en) * 2018-06-22 2019-12-26 日本碍子株式会社 Fuel cell and cell stack device

Also Published As

Publication number Publication date
JP6368761B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6030261B1 (en) Fuel cell stack
JP2010114092A (en) Fuel cell assembly
JP6275224B1 (en) Fuel cell stack
JP6533331B1 (en) Fuel cell and cell stack device
JP6368761B2 (en) Fuel cell stack
JP4758074B2 (en) Fuel cell assembly and fuel cell
JP2020009726A (en) Cell stack device
JP6368762B2 (en) Fuel cell stack
JP6483887B2 (en) Fuel cell stack
JP6312912B2 (en) Fuel cell system
JP6547052B1 (en) Cell stack device
WO2017006790A1 (en) Fuel cell stack
JP6535802B1 (en) Fuel cell and cell stack device
JP6611393B1 (en) Cell stack device
JP5451808B2 (en) Fuel cell assembly
JP3174601U (en) Lead wire connection structure of stacked solid oxide fuel cell
JP3174602U (en) Lead wire connection structure of stacked solid oxide fuel cell
JP6483908B1 (en) Cell stack device
JP6275223B1 (en) Fuel cell stack
JP6267389B1 (en) Electrochemical cell stack
JP6130578B1 (en) Fuel cell stack
JP2019220309A (en) Fuel cell and cell stack device
JP2019220426A (en) Fuel cell and cell stack device
JP2020004694A (en) Fuel cell and cell stack device
JP2019220427A (en) Fuel cell and cell stack device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees