JP2018087893A - Display - Google Patents

Display Download PDF

Info

Publication number
JP2018087893A
JP2018087893A JP2016230867A JP2016230867A JP2018087893A JP 2018087893 A JP2018087893 A JP 2018087893A JP 2016230867 A JP2016230867 A JP 2016230867A JP 2016230867 A JP2016230867 A JP 2016230867A JP 2018087893 A JP2018087893 A JP 2018087893A
Authority
JP
Japan
Prior art keywords
optical
optical sheet
image
display device
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016230867A
Other languages
Japanese (ja)
Inventor
後藤 正浩
Masahiro Goto
正浩 後藤
龍児 橋本
Tatsuji Hashimoto
龍児 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016230867A priority Critical patent/JP2018087893A/en
Publication of JP2018087893A publication Critical patent/JP2018087893A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a display that can inhibit a non-video area from being visually recognized, the non-video area caused by non-pixel areas present between pixel areas of a video source.SOLUTION: In a display 1, the cross-sectional shape of unit shapes 21a and 23a included in an optical sheet 20 is formed to be a triangular shape; when the base angle of the triangular shape of the unit shapes 21a and 23a is θ, a higher refractive index of the refractive indices of optical layers adjacent to each other at an interface on which the unit shapes 21a and 23a are formed is n1, the refractive index lower than the refractive index n1 is n2, and the distance between an optical sheet 20 and a display layer 11e of a video source 11 is L, the degree of diffusion D as an index indicating the degree at which video light V is diffused by the optical sheet 20 is defined as D=θ×(1-(n2/n1))×L, and when a pixel arrangement pitch at which pixel areas are arranged is PP, 17≤D/PP≤35 is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、観察者に映像を表示する表示装置に関するものである。   The present invention relates to a display device that displays an image to an observer.

従来、LCD(Liquid Crystal Display)や有機ELディスプレイ等の映像源による映像を、光学系を介して観察者に観察させる頭部装着型の表示装置、いわゆるヘッドマウントディスプレイ(HMD)が提案されている(例えば、特許文献1)。このような頭部装着型の表示装置は、レンズ等の光学系によって映像源から投射される映像光を拡大して鮮明な映像を観察者に表示している。
このような表示装置に用いられる映像源は、映像を構成する複数の画素領域と、各画素領域間に設けられ、映像の表示に寄与しない非画素領域とが設けられている。このような映像源から出射された映像光をレンズにより拡大した場合、画素領域により構成される映像だけでなく、非画素領域が起因となる非映像領域も拡大されてしまうこととなり、映像だけでなく非映像領域も観察者に視認されてしまう場合があり、鮮明な映像の表示の妨げとなる場合があった。
2. Description of the Related Art Conventionally, there has been proposed a head-mounted display device, so-called head mounted display (HMD), that allows an observer to observe an image from an image source such as an LCD (Liquid Crystal Display) or an organic EL display through an optical system. (For example, patent document 1). Such a head-mounted display device enlarges image light projected from an image source by an optical system such as a lens and displays a clear image to an observer.
A video source used in such a display device is provided with a plurality of pixel regions constituting a video and non-pixel regions that are provided between the pixel regions and do not contribute to video display. When the image light emitted from such an image source is enlarged by a lens, not only the image constituted by the pixel area, but also the non-image area caused by the non-pixel area is enlarged, and only the image is obtained. In some cases, the non-video area may be visually recognized by the observer, which may hinder the display of a clear video.

特表2011−509417号公報Special table 2011-509417 gazette

本発明の課題は、映像源の画素領域間に存在する非画素領域が起因となる非映像領域が視認されてしまうことを抑制することができる表示装置を提供することである。   The subject of this invention is providing the display apparatus which can suppress that the non-video area | region resulting from the non-pixel area | region which exists between the pixel areas of a video source becomes visible.

本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。   The present invention solves the above problems by the following means. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this.

第1の発明は、複数の画素領域が配列され映像光を出射する映像源(11)と、前記映像光を拡大して観察者側へ出射するレンズ(12)と、前記映像源(11)と前記レンズ(12)との間、又は、前記レンズ(12)の観察者側に配置される光学シート(20)と、を備え、前記光学シート(20)は、2層以上の光学層(21,22,23)が積層され、隣接する前記光学層(21,22,23)の間の界面に凸状又は凹状の単位形状(21a,23a)が複数形成されており、前記単位形状(21a,23a)は、前記光学シート(20)の厚み方向に直交するシート面内の第1の方向に延在し、前記シート面内の前記第1の方向に直交する第2の方向に配列され、前記光学シート(20)の厚み方向に平行であって前記第2の方向に平行な断面における断面形状が三角形状に形成されており、前記単位形状(21a,23a)の三角形状の底角をθとし、前記単位形状(21a,23a)が形成された界面を介して互いに隣接する前記光学層(21,22,23)の屈折率のうち屈折率が高い方の屈折率をn1とし、屈折率がn1よりも低い方の屈折率をn2とし、前記光学シート(20)と前記映像源(11)の表示層との間の距離をLとして、前記光学シート(20)によって前記映像光が拡散される程度を表す指標としての拡散度Dを、D=θ×(1−(n2/n1))×Lと定義し、前記画素領域が配列されている画素配列ピッチをPPとしたとき、17≦D/PP≦35を満たす表示装置(1)である。   According to a first aspect of the present invention, there is provided an image source (11) that emits image light in which a plurality of pixel regions are arranged, a lens (12) that expands the image light and emits the image light to an observer, and the image source (11) And the lens (12), or an optical sheet (20) disposed on the observer side of the lens (12), the optical sheet (20) comprising two or more optical layers ( 21, 22, 23) are stacked, and a plurality of convex or concave unit shapes (21 a, 23 a) are formed at the interface between the adjacent optical layers (21, 22, 23). 21a and 23a) extend in a first direction in the sheet surface orthogonal to the thickness direction of the optical sheet (20), and are arranged in a second direction orthogonal to the first direction in the sheet surface. The second direction is parallel to the thickness direction of the optical sheet (20). The cross-sectional shape in a parallel cross section is formed in a triangular shape, and the triangular base angle of the unit shape (21a, 23a) is θ, and the unit shapes (21a, 23a) are mutually connected via the interface on which the unit shape (21a, 23a) is formed. Of the refractive indexes of the adjacent optical layers (21, 22, 23), the refractive index having a higher refractive index is n1, the refractive index having a refractive index lower than n1 is n2, and the optical sheet (20) And the distance between the image source (11) and the display layer of the image source (11) is L, and a diffusivity D as an index indicating the degree to which the image light is diffused by the optical sheet (20) -(N2 / n1)) × L, and a display device (1) that satisfies 17 ≦ D / PP ≦ 35, where PP is the pixel array pitch in which the pixel regions are arrayed.

第2の発明は、請求項1に記載の表示装置(1)において、22≦D/PP≦30を満たすこと、を特徴とする表示装置(1)である。   A second invention is the display device (1) according to claim 1, wherein 22 ≦ D / PP ≦ 30 is satisfied.

第3の発明は、請求項1又は請求項2までのいずれか1項に記載の表示装置(1)において、
前記単位形状(21a)は、凸状であって、前記光学シート(20)の厚み方向に直交するシート面に沿って配列された四角錐形状に形成されていること、を特徴とする表示装置(1)である。
According to a third aspect of the present invention, in the display device (1) according to any one of the first or second aspect,
The unit shape (21a) is a convex shape, and is formed in a quadrangular pyramid shape arranged along a sheet surface perpendicular to the thickness direction of the optical sheet (20). (1).

第4の発明は、請求項1から請求項3までのいずれか1項に記載の表示装置(1)において、前記光学シート(20)は、3層以上の前記光学層(21,22,23)を有し、隣接する前記光学層(21,22,23)の間の各界面に設けられた前記単位形状(21a,23a)のシート面方向における延在方向は、前記光学シート(20)の厚み方向から見て交差していること、を特徴とする表示装置(1)である。   According to a fourth aspect of the present invention, in the display device (1) according to any one of the first to third aspects, the optical sheet (20) includes three or more optical layers (21, 22, 23). The unit shape (21a, 23a) provided at each interface between the adjacent optical layers (21, 22, 23) has an extending direction in the sheet surface direction of the optical sheet (20). It is the display apparatus (1) characterized by crossing seeing from the thickness direction.

本発明によれば、表示装置は、映像源の画素領域間に存在する非画素領域が起因となる非映像領域が視認されてしまうことを抑制することができる。   According to the present invention, the display device can suppress the non-video area caused by the non-pixel area existing between the pixel areas of the video source from being visually recognized.

本実施形態の頭部装着型の表示装置1を説明する図である。図1は、表示装置1を鉛直方向上側から見た図である。It is a figure explaining the head mounting type display apparatus 1 of this embodiment. FIG. 1 is a view of the display device 1 as viewed from above in the vertical direction. 本実施形態の表示装置1に用いられる光学シート20の詳細を説明する図である。It is a figure explaining the detail of the optical sheet 20 used for the display apparatus 1 of this embodiment. 本実施形態の表示装置1に用いられる光学シート20の詳細を説明する図である。It is a figure explaining the detail of the optical sheet 20 used for the display apparatus 1 of this embodiment. 本実施形態の表示装置1によって表示された画像の例を示す図である。It is a figure which shows the example of the image displayed by the display apparatus 1 of this embodiment. 比較例の表示装置5を説明する図である。It is a figure explaining the display apparatus 5 of a comparative example. 光学シート20と映像源11の表示層11eとの間の距離Lについて説明する図である。It is a figure explaining the distance L between the optical sheet 20 and the display layer 11e of the video source 11. FIG. 光学シート20の見え方とD/PPとの関係を示す図である。It is a figure which shows the relationship between the appearance of the optical sheet 20, and D / PP. 本実施形態の表示装置1に用いられる光学シート20の他の形態の詳細を説明する図である。It is a figure explaining the detail of the other form of the optical sheet 20 used for the display apparatus 1 of this embodiment. 光学シート20の別の形態を説明する図である。It is a figure explaining another form of the optical sheet. 本実施形態の頭部装着型の表示装置1の他の形態を説明する図である。It is a figure explaining the other form of the head-mounted display apparatus 1 of this embodiment.

以下、図面等を参照して、本発明の実施形態について説明する。なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
本明細書中において、記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
本明細書中において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
本明細書中において、シート面とは、シート状の部材において、そのシート全体として見たときにおける、シートの平面方向となる面を示すものであるとする。
Embodiments of the present invention will be described below with reference to the drawings. In addition, each figure shown below including FIG. 1 is the figure shown typically, and the magnitude | size and shape of each part are exaggerated suitably for easy understanding.
In the present specification, numerical values such as dimensions and material names of each member to be described are examples of the embodiment, and are not limited thereto, and may be appropriately selected and used.
In this specification, terms that specify shape and geometric conditions, for example, terms such as parallel and orthogonal, are strictly meanings, have similar optical functions, and can be regarded as parallel and orthogonal It also includes a state having an error of.
In the present specification, the sheet surface is a sheet-like member that indicates a surface in the planar direction of the sheet when viewed as the entire sheet.

(実施形態)
図1は、本実施形態の頭部装着型の表示装置1を説明する図である。図1は、表示装置1を鉛直方向上側から見た図である。
図2及び図3は、本実施形態の表示装置1に用いられる光学シート20の詳細を説明する図である。図2(a)は、光学シート20の水平面(XY面)に平行な断面における断面図であり、図2(b)は、図2(a)のb部断面図である。図3(a)は、図2(a)のc部詳細を示す図であり、図3(b)は、図2(b)のd部詳細を示す図である。
図4は、本実施形態の表示装置1によって表示された画像の例を示す図である。
図5は、比較例の表示装置5を説明する図である。図5(a)は、比較例の表示装置5の構成を説明する図であり、図1に対応する図である。図5(a)では、理解を容易にするために、表示装置5として、映像源51とレンズ52のみを示している。図5(b)は、比較例の表示装置5によって表示された画像の例を示す図である。
(Embodiment)
FIG. 1 is a diagram illustrating a head-mounted display device 1 according to this embodiment. FIG. 1 is a view of the display device 1 as viewed from above in the vertical direction.
2 and 3 are views for explaining the details of the optical sheet 20 used in the display device 1 of the present embodiment. 2A is a cross-sectional view in a cross section parallel to the horizontal plane (XY plane) of the optical sheet 20, and FIG. 2B is a cross-sectional view of a portion b in FIG. 2A. FIG. 3A is a diagram showing details of a portion c in FIG. 2A, and FIG. 3B is a diagram showing details of a portion d in FIG. 2B.
FIG. 4 is a diagram illustrating an example of an image displayed by the display device 1 of the present embodiment.
FIG. 5 is a diagram illustrating a display device 5 of a comparative example. FIG. 5A is a diagram for explaining the configuration of the display device 5 of the comparative example, and corresponds to FIG. In FIG. 5A, only the video source 51 and the lens 52 are shown as the display device 5 for easy understanding. FIG. 5B is a diagram illustrating an example of an image displayed by the display device 5 of the comparative example.

なお、図1を含め以下に示す図中及び以下の説明において、理解を容易にするために、観察者がその頭部に表示装置1を装着した状態において、鉛直方向(上下方向)をZ方向とし、水平方向をX方向及びY方向とする。また、この水平方向のうち、光学シート20の厚み方向をY方向とし、その厚み方向に直交する左右方向をX方向とする。このY方向の−Y側を観察者側とし、+Y側を映像源側(背面側)とする。   In the drawings shown below including FIG. 1 and the following description, the vertical direction (vertical direction) is set to the Z direction in a state where the viewer wears the display device 1 on the head for easy understanding. Let the horizontal direction be the X direction and the Y direction. Moreover, among this horizontal direction, let the thickness direction of the optical sheet 20 be Y direction, and let the left-right direction orthogonal to the thickness direction be X direction. The −Y side in the Y direction is the observer side, and the + Y side is the video source side (back side).

表示装置1は、観察者がその頭部に装着し、観察者の眼前に映像を表示する、いわゆるヘッドマウントディスプレイ(HMD)である。図1に示すように、本実施形態の頭部装着型の表示装置1は、筐体30の内側に、映像源11と、レンズ12と、光学シート20とを備えており、筐体30が観察者の眼前となるようにその頭部に装着することによって、映像源11に表示された映像を光学シート20、レンズ12を介して観察者の眼Eに視認させることができる。
なお、図1において、表示装置1は、観察者の両眼E1,E2に対して映像を表示する例を挙げて説明するが、これに限定されるものでなく、例えば、観察者の片側の眼E1に対して配置され、その眼E1に対して映像を表示する形態としてもよい。
The display device 1 is a so-called head mounted display (HMD) that is attached to the head of an observer and displays an image in front of the eyes of the observer. As shown in FIG. 1, the head-mounted display device 1 according to the present embodiment includes an image source 11, a lens 12, and an optical sheet 20 inside a housing 30. By wearing the head in front of the observer's eyes, the image displayed on the image source 11 can be visually recognized by the observer's eye E through the optical sheet 20 and the lens 12.
In FIG. 1, the display device 1 will be described with reference to an example in which an image is displayed on the observer's eyes E1 and E2. However, the display device 1 is not limited to this example. It is good also as a form arrange | positioned with respect to the eye E1, and displaying an image | video with respect to the eye E1.

筐体30は、左右方向に横長の矩形の箱型の筐体であり、その内側に、映像源11を保持する保持部31、光学シート20(20A,20B)を保持する保持部32、レンズ12(12A,12B)を保持する保持部33を備えている。この筐体30は、例えば、不図示のベルト等により、観察者の頭部に装着可能である。
保持部31は、映像源11を保持する部材であり、その映像源11の表示面11a側の面に、観察者の眼E(E1,E2)及びレンズ12(12A,12B)に対応する位置に開口部311(311A,311B)を有している。本実施形態では、映像源11は、この保持部31(すなわち、表示装置1)に着脱可能に保持される。映像源11から出射した映像光Vは、この開口部311(311A,311B)を通ってレンズ12(12A,12B)へ入射する。
The housing 30 is a rectangular box-shaped housing that is horizontally long in the left-right direction, and a holding unit 31 that holds the image source 11, a holding unit 32 that holds the optical sheet 20 (20 </ b> A, 20 </ b> B), and a lens inside thereof. 12 (12A, 12B) is provided. The housing 30 can be attached to the observer's head with, for example, a belt (not shown).
The holding unit 31 is a member that holds the image source 11, and a position corresponding to the eye E (E 1, E 2) and the lens 12 (12 A, 12 B) of the observer on the display surface 11 a side of the image source 11. Have openings 311 (311A, 311B). In the present embodiment, the video source 11 is detachably held by the holding unit 31 (that is, the display device 1). The video light V emitted from the video source 11 enters the lens 12 (12A, 12B) through the opening 311 (311A, 311B).

保持部32は、保持部31及び映像源11よりも観察者側(−Y側)に位置し、光学シート20を保持する部材である。保持部32は、開口部311(311A,311B)に対応する位置に設けられた開口部321(321A,321B)内に、光学シート20(20A,20B)が嵌めこまれ、保持されている。
この保持部32と前述の保持部31とは、一体となってY方向に移動可能であり、Y方向において所望の位置で固定可能である。したがって、観察者の視力等に応じて、映像源11及び光学シート20とレンズ12との間の距離(レンズ12に対するY方向における位置)を調整可能(ピント調整可能)である。なお、これに限らず、保持部31及び保持部32は、Y方向の位置が固定された形態としてもよい。
保持部33は、保持部32及び光学シート20よりも観察者側(−Y側)に位置し、レンズ12(12A,12B)を保持する部材である。この保持部33は、光学シート20(20A,20B)に対応する位置に開口部331(331A,331B)を有し、その開口部331(331A,331B)内にレンズ12(12A,12B)が嵌めこまれ、保持されている。
The holding unit 32 is a member that is positioned closer to the observer side (−Y side) than the holding unit 31 and the image source 11 and holds the optical sheet 20. In the holding part 32, the optical sheet 20 (20A, 20B) is fitted and held in the opening part 321 (321A, 321B) provided at a position corresponding to the opening part 311 (311A, 311B).
The holding unit 32 and the above-described holding unit 31 are integrally movable in the Y direction and can be fixed at a desired position in the Y direction. Therefore, the distance (position in the Y direction with respect to the lens 12) between the image source 11 and the optical sheet 20 and the lens 12 can be adjusted (focus adjustment is possible) according to the visual acuity of the observer. In addition, not only this but the holding | maintenance part 31 and the holding | maintenance part 32 are good also as a form by which the position of the Y direction was fixed.
The holding unit 33 is a member that is positioned closer to the observer side (−Y side) than the holding unit 32 and the optical sheet 20 and holds the lens 12 (12A, 12B). The holding portion 33 has an opening 331 (331A, 331B) at a position corresponding to the optical sheet 20 (20A, 20B), and the lens 12 (12A, 12B) is located in the opening 331 (331A, 331B). It is fitted and held.

映像源11は、映像光Vを出射し、表示面11aに映像を表示するマイクロディスプレイであり、例えば、透過型の液晶表示デバイスや、反射型の液晶表示デバイス、有機EL等を使用することができる。本実施形態の映像源11は、例えば、対角が5インチの有機ELディスプレイが使用される。
映像源11は、その表示面11aが観察者側(−Y側)となるようにして、保持部31に保持されている。
なお、本実施形態では、この表示装置1は、映像源11を1つ備える例を示したが、これに限らず、例えば、後述するレンズ12A,12B及び観察者の眼E1,E2にそれぞれ対応する2台の映像源を備える形態としてもよい。
The video source 11 is a micro display that emits video light V and displays an image on the display surface 11a. For example, a transmissive liquid crystal display device, a reflective liquid crystal display device, an organic EL, or the like may be used. it can. As the video source 11 of this embodiment, for example, an organic EL display having a diagonal of 5 inches is used.
The video source 11 is held by the holding unit 31 such that the display surface 11a is on the viewer side (−Y side).
In the present embodiment, the display device 1 has an example in which one video source 11 is provided. It is good also as a form provided with two video sources which do.

レンズ12(12A,12B)は、映像源11から出射された映像光Vを拡大して観察者側に出射する凸レンズである。本実施形態では、映像源11及び光学シート20(20A,20B)よりも観察者側(−Y側)に配置されている。レンズ12は、透光性の高いガラス製又は樹脂製である。
レンズ12の映像源側(背面側、+Y側)の表面には、反射抑制層12aが形成されている。この反射抑制層12aは、例えば、汎用の反射防止機能を有する材料(例えば、フッ化マグネシウム(MgF)、二酸化ケイ素(SiO)、フッ素系光学用コーティング剤等)を所定の膜厚でコーティングする等により設けてもよいし、光の波長より小さなピッチで形成された微小な凹凸形状を有するモスアイ構造を光の入射側の面に有することにより反射抑制機能を奏する層をレンズ12の映像源側に一体に積層して設けてもよい。
The lenses 12 (12A, 12B) are convex lenses that magnify the image light V emitted from the image source 11 and emit it to the viewer side. In the present embodiment, the image source 11 and the optical sheet 20 (20A, 20B) are arranged closer to the viewer (−Y side). The lens 12 is made of glass or resin with high translucency.
A reflection suppression layer 12 a is formed on the surface of the lens 12 on the image source side (back side, + Y side). The antireflection layer 12a is coated with a material having a general antireflection function (for example, magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), fluorine optical coating agent, etc.) with a predetermined film thickness. The image source of the lens 12 may be provided with a layer exhibiting a reflection suppressing function by having a moth-eye structure having a minute concavo-convex shape formed at a pitch smaller than the wavelength of light on the surface on the light incident side. Alternatively, they may be integrally laminated on the side.

このような反射抑制層12aを設けることにより、レンズ12に入射する光がレンズ12の映像源側で反射して光学シート20側へ向かい、光学シート20の表面で再度反射する等により迷光となることを抑制し、映像のコントラストや明るさの向上を図ることができる。
また、反射抑制層12aは、さらに、レンズ12の観察者側(−Y側)の面に設けてもよい。この位置にさらに反射抑制層12aを設けることにより、レンズ12から映像光が出射する際に、レンズ12と空気との界面で反射し、レンズ12内で迷光となることを抑制でき、映像のコントラスト等を向上できる。
By providing such a reflection suppressing layer 12a, the light incident on the lens 12 is reflected on the image source side of the lens 12, travels toward the optical sheet 20, and is reflected again on the surface of the optical sheet 20 to become stray light. This can be suppressed and the contrast and brightness of the video can be improved.
Further, the reflection suppressing layer 12a may be further provided on the surface of the lens 12 on the viewer side (−Y side). By further providing a reflection suppression layer 12a at this position, when image light is emitted from the lens 12, it can be prevented from being reflected at the interface between the lens 12 and air and becoming stray light in the lens 12, and image contrast. Etc. can be improved.

光学シート20は、図1に示すように、映像源11とレンズ12との間に配置されている。レンズ12は、映像源11から出射した映像光Vを微少に拡散する拡散機能を有する光透過性のあるシートである。
本実施形態では、観察者の両眼E1,E2に対応して、それぞれ、レンズ12A,12B及び光学シート20A,20Bが設けられている。しかし、これに限らず、例えば、レンズ12A,12Bの領域をカバーできる程度に大きい1枚の光学シート20を、レンズ12よりも映像源側(背面側、−Y側)に配置する形態としてもよい。
As shown in FIG. 1, the optical sheet 20 is disposed between the video source 11 and the lens 12. The lens 12 is a light-transmitting sheet having a diffusion function for slightly diffusing the image light V emitted from the image source 11.
In the present embodiment, lenses 12A and 12B and optical sheets 20A and 20B are provided corresponding to the observer's eyes E1 and E2, respectively. However, the present invention is not limited to this. For example, one optical sheet 20 that is large enough to cover the area of the lenses 12A and 12B may be arranged on the image source side (back side, -Y side) from the lens 12. Good.

従来、主に使用されている頭部装着型の表示装置5(以下、比較例の表示装置5という)は、図5(a)に示すように、上述の光学シート20を備えていない形態であり、映像源51から出射された映像光Vをレンズ52により拡大して、その映像を観察者に表示していた。
映像源51及び映像源11に用いられる有機EL等のディスプレイは、その表示部に映像を形成する画素領域G1が複数配列されており、また、各画素領域G1間には映像の形成に寄与しない非画素領域G2が設けられている。そのため、比較例の表示装置5では、映像源51から出射する映像光Vにより表示される映像は、レンズ52を介して拡大された場合に、図5(b)に示すように、画素領域G1による映像F1だけでなく、非画素領域G2が起因となる非映像領域F2も拡大されてしまう。そして、非映像領域F2も明瞭に観察者に視認され、鮮明な映像表示の妨げとなってしまう場合があった。
Conventionally, the head-mounted display device 5 (hereinafter, referred to as a display device 5 of a comparative example) that has been mainly used is not provided with the above-described optical sheet 20 as shown in FIG. Yes, the image light V emitted from the image source 51 is magnified by the lens 52 and the image is displayed to the observer.
A display such as an organic EL used for the video source 51 and the video source 11 has a plurality of pixel areas G1 that form an image on the display portion thereof, and does not contribute to the formation of an image between the pixel areas G1. A non-pixel region G2 is provided. Therefore, in the display device 5 of the comparative example, when the video displayed by the video light V emitted from the video source 51 is enlarged through the lens 52, as shown in FIG. In addition to the image F1 caused by the above, the non-image region F2 caused by the non-pixel region G2 is also enlarged. In addition, the non-video area F2 is also clearly visible to the observer, which may hinder clear video display.

これに対して、本実施形態の表示装置1では、上述の光学シート20を設けることにより、映像源11から出射した映像光を微少に拡散させ、図3に示すように、その拡散された映像光によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制することができる。   On the other hand, in the display device 1 of the present embodiment, by providing the optical sheet 20 described above, the image light emitted from the image source 11 is slightly diffused, and the diffused image is displayed as shown in FIG. It is possible to suppress the non-image area F2 caused by the non-pixel area G2 from being visually recognized by the observer.

本実施形態の光学シート20は、図2に示すように、映像源側(背面側、+Y側)から順に、反射抑制層24、第1光学層21、第2光学層22、第3光学層23が積層されている。光学シート20は、この第1光学層21及び第2光学層22の界面と、第2光学層22及び第3光学層23の界面とに、それぞれ単位形状21a、単位形状23aが複数形成されている。
第1光学層21は、光学シート20の厚み方向(Y方向)において、第2光学層22及び第3光学層23よりも映像源側(+Y側)に位置し、光透過性を有する層である。第1光学層21の映像源側の面は、略平坦に形成されている。第1光学層21の観察者側(−Y側)の面には、図2(a)に示すように、単位形状21aが複数形成されている。単位形状21aは、観察者側(−Y側)に凸となっている。
この単位形状21aは、第1光学層21の観察者側の面に沿うようにして、上下方向(Z方向)に延在し、延在方向に直交する左右方向(X方向)に複数配列されている。また、単位形状21aは、左右方向及び厚み方向に平行な面(XY面)における断面形状が三角形状、いわゆるプリズム形状に形成されている。ここで、三角形状とは、二等辺三角形や、正三角形等を含む。
As shown in FIG. 2, the optical sheet 20 of the present embodiment has a reflection suppression layer 24, a first optical layer 21, a second optical layer 22, and a third optical layer in order from the image source side (back side, + Y side). 23 are stacked. In the optical sheet 20, a plurality of unit shapes 21a and unit shapes 23a are formed on the interface between the first optical layer 21 and the second optical layer 22 and on the interface between the second optical layer 22 and the third optical layer 23, respectively. Yes.
The first optical layer 21 is a layer that is located on the image source side (+ Y side) with respect to the second optical layer 22 and the third optical layer 23 in the thickness direction (Y direction) of the optical sheet 20 and has optical transparency. is there. The image source side surface of the first optical layer 21 is formed substantially flat. As shown in FIG. 2A, a plurality of unit shapes 21a are formed on the surface of the first optical layer 21 on the viewer side (−Y side). The unit shape 21a is convex on the observer side (−Y side).
The unit shapes 21a extend in the up-down direction (Z direction) and are arranged in the left-right direction (X direction) orthogonal to the extending direction so as to follow the surface on the viewer side of the first optical layer 21. ing. The unit shape 21a is formed in a so-called prism shape in cross section on a plane (XY plane) parallel to the horizontal direction and the thickness direction. Here, the triangle shape includes an isosceles triangle, a regular triangle, and the like.

第3光学層23は、光学シート20の最も観察者側(−Y側)に位置する光透過性を有する層である。第3光学層23の観察者側の面は、光学シート20を透過した映像光が出射する面であり、略平坦に形成されている。第3光学層23の映像源側(+Y側)の面は、図2(b)に示すように、単位形状23aが複数形成されている。単位形状23aは、映像源側(+Y側)に凸となっている。
この単位形状23aは、第3光学層23の映像源側の面に沿うようにして、左右方向(X方向)に延在し、延在方向に直交する鉛直方向(Z方向)に複数配列されており、鉛直方向及び厚み方向に平行な面(YZ面)における断面形状が三角形状、いわゆるプリズム形状に形成されている。
The third optical layer 23 is a layer having optical transparency located on the most observer side (−Y side) of the optical sheet 20. The surface on the observer side of the third optical layer 23 is a surface from which image light transmitted through the optical sheet 20 is emitted, and is formed to be substantially flat. On the image source side (+ Y side) surface of the third optical layer 23, as shown in FIG. 2B, a plurality of unit shapes 23a are formed. The unit shape 23a is convex toward the video source side (+ Y side).
A plurality of unit shapes 23 a are arranged in the vertical direction (Z direction) perpendicular to the extending direction, extending in the left-right direction (X direction) along the image source side surface of the third optical layer 23. In addition, the cross-sectional shape in a plane (YZ plane) parallel to the vertical direction and the thickness direction is formed in a triangular shape, a so-called prism shape.

光学シート20の厚み方向(シート面の法線方向、Y方向)から見て、第3光学層23に設けられた単位形状23aの延在方向(X方向)と第1光学層21に設けられた単位形状21aの延在方向(Z方向)とは、交差(直交)している。
また、光学シート20の厚み方向(シート面の法線方向、Y方向)から見て、単位形状21aの配列方向(X方向)と単位形状23aの配列方向(Z方向)とは、交差(直交)している。
When viewed from the thickness direction of the optical sheet 20 (the normal direction of the sheet surface, the Y direction), the extending direction (X direction) of the unit shape 23a provided in the third optical layer 23 and the first optical layer 21 are provided. The unit shape 21a intersects (orthogonal) with the extending direction (Z direction).
Further, when viewed from the thickness direction of the optical sheet 20 (the normal direction of the sheet surface, the Y direction), the arrangement direction (X direction) of the unit shapes 21a and the arrangement direction (Z direction) of the unit shapes 23a intersect (orthogonal). )doing.

第2光学層22は、第1光学層21及び第3光学層23間に設けられた光透過性を有する層である。第2光学層22の両面は、第1光学層21の単位形状21a側の面と、第3光学層23の単位形状23a側の面とが互いに対向するようにして配置されている。   The second optical layer 22 is a light transmissive layer provided between the first optical layer 21 and the third optical layer 23. Both surfaces of the second optical layer 22 are arranged such that the surface on the unit shape 21a side of the first optical layer 21 and the surface on the unit shape 23a side of the third optical layer 23 face each other.

光学シート20は、上述したように、映像光Vを拡散する作用によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制する。光学シート20による拡散作用が強すぎると、映像光Vが必要以上に拡散されてしまい、映像の質が劣化してしまう。一方、光学シート20による拡散作用が弱すぎると、非映像領域F2が観察者に視認されてしまう。したがって、光学シート20は、適切な拡散作用を備えるものとしなければならない。
光学シート20の単位形状21a,23aは、上述したように三角形状の形状に形成されている。よって、光学シート20と映像源11とレンズ12との相対的な位置関係を考慮すれば、光学シート20による映像光Vを拡散する作用によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制する程度を示す指標を設定可能である。
As described above, the optical sheet 20 suppresses the observer from visually recognizing the non-image area F2 caused by the non-pixel area G2 due to the action of diffusing the image light V. If the diffusing action by the optical sheet 20 is too strong, the image light V is diffused more than necessary, and the quality of the image is deteriorated. On the other hand, if the diffusion action by the optical sheet 20 is too weak, the non-image area F2 is visually recognized by the observer. Therefore, the optical sheet 20 must have an appropriate diffusing action.
The unit shapes 21a and 23a of the optical sheet 20 are formed in a triangular shape as described above. Therefore, in consideration of the relative positional relationship among the optical sheet 20, the image source 11, and the lens 12, the non-image area F2 caused by the non-pixel area G2 is caused by the action of diffusing the image light V by the optical sheet 20. It is possible to set an index indicating the degree of suppressing the viewer from visually recognizing.

ここで、単位形状21a,23aの三角形状の底角をθとする。単位形状21a,23aが形成された界面を介して互いに隣接する光学層の屈折率のうち屈折率が高い方である第1光学層21及び第3光学層23の屈折率をn1とし、屈折率がn1よりも低い方である第2光学層22の屈折率をn2とする。光学シート20と映像源11の表示層(11e:後述)との間の距離をLとする。そうすると、光学シート20によって映像光Vが拡散される程度を表す指標としての拡散度Dを、
D=θ×(1−(n2/n1))×L
と定義することができる。この拡散度Dは、光学シート20単体で光を拡散する程度を表すが、画素領域が配列されている画素配列ピッチをPPとして、D/PPを求めれば、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを光学シート20が抑制する程度を表す指標として用いることが可能である。
Here, the triangular base angle of the unit shapes 21a and 23a is θ. The refractive index of the first optical layer 21 and the third optical layer 23 having the higher refractive index among the refractive indexes of the optical layers adjacent to each other through the interface where the unit shapes 21a and 23a are formed is n1, and the refractive index. Let n2 be the refractive index of the second optical layer 22 that is lower than n1. Let L be the distance between the optical sheet 20 and the display layer (11e: described later) of the image source 11. Then, the diffusion degree D as an index indicating the degree to which the image light V is diffused by the optical sheet 20 is
D = θ × (1− (n2 / n1)) × L
Can be defined as This diffusivity D represents the degree of diffusion of light by the optical sheet 20 alone. However, if D / PP is determined with the pixel arrangement pitch in which the pixel areas are arranged as PP, the non-pixel area G2 is caused. It can be used as an index representing the degree to which the optical sheet 20 suppresses the video region F2 from being visually recognized by the observer.

なお、光学シート20と映像源11の表示層(11e)との間の距離をLとすると先に説明した。この点について、説明する。
図6は、光学シート20と映像源11の表示層11eとの間の距離Lについて説明する図である。
映像源11は、例えば、有機ELディスプレイである場合には、図6に例示するように、観察者側から、透明基板11b、透明電極11c、有機正孔輸送層11d、有機発光層(表示層)11e、有機電子輸送層11f、金属電極11gのように、複数の層が積層されている。上述した拡散度Dの演算に用いる距離Lは、これらの層のうち、表示層11eからの距離を用いるとよい。表示層11eの位置において、非画素領域G2が形成されているからである。
また、光学シート20は、複数の層を重ねて構成されている。よって、上述の距離Lの基準とする位置は、単位形状21aと単位形状23aとの間の中央の位置とするとよい。
なお、本実施形態では、光学シート20が3層構造であり、屈折率界面が2つ有り、単位形状が2種類配置されているので、距離Lの基準位置を上述したように、単位形状21aと単位形状23aとの間の中央の位置とした。しかし、この基準の位置は、単位形状の構成によって変更して適用すべきである。例えば、光学シートが2層構造であって、屈折率界面が1つであって単位形状が1種類のみの場合には、単位形状の高さの平均高さとなる位置とするとよい。また、屈折率界面がさらに多くなる場合にも、屈折率か界面の位置の平均位置とするとよい。
As described above, the distance between the optical sheet 20 and the display layer (11e) of the image source 11 is L. This point will be described.
FIG. 6 is a diagram for explaining the distance L between the optical sheet 20 and the display layer 11 e of the video source 11.
For example, when the image source 11 is an organic EL display, as illustrated in FIG. 6, the transparent substrate 11 b, the transparent electrode 11 c, the organic hole transport layer 11 d, and the organic light emitting layer (display layer) are displayed from the viewer side. ) 11e, an organic electron transport layer 11f, and a metal electrode 11g, a plurality of layers are laminated. Of these layers, the distance L from the display layer 11e may be used as the distance L used for the calculation of the diffusivity D described above. This is because the non-pixel region G2 is formed at the position of the display layer 11e.
Moreover, the optical sheet 20 is configured by stacking a plurality of layers. Therefore, the position used as the reference for the distance L is preferably a central position between the unit shape 21a and the unit shape 23a.
In the present embodiment, since the optical sheet 20 has a three-layer structure, two refractive index interfaces, and two types of unit shapes are arranged, the unit position 21a is the reference position of the distance L as described above. And the central position between the unit shape 23a. However, this reference position should be changed and applied according to the configuration of the unit shape. For example, when the optical sheet has a two-layer structure, the refractive index interface is one, and there is only one type of unit shape, the position may be the average height of the unit shape. Also, when the refractive index interface is further increased, it is preferable to set the refractive index or the average position of the interfaces.

次に、各種パラメータを変化させて複数種類の光学シート20を作成し実際の見え方を評価した結果を、上記のように定義した拡散度D及び指標D/PPを併記して図7に示す。
なお、表示装置1に用いられる映像源11の画素領域G1の画素配列ピッチPPは、400〜500ppi(pixel per inch)である。本実施形態では、映像源11の画素領域G1の画素配列ピッチPPは、PP=0.0508mm(500ppi)である。
Next, the result of having created various types of optical sheets 20 by changing various parameters and evaluating the actual appearance is shown in FIG. 7 together with the diffusivity D and the index D / PP defined as described above. .
Note that the pixel arrangement pitch PP of the pixel region G1 of the video source 11 used in the display device 1 is 400 to 500 ppi (pixel per inch). In the present embodiment, the pixel arrangement pitch PP of the pixel region G1 of the video source 11 is PP = 0.0508 mm (500 ppi).

図7は、光学シート20の見え方とD/PPとの関係を示す図である。
なお、図7では、拡散度Dを計算するための中間値としてΔnを求めた結果も併記している。Δn=1−(n2/n1)である。よって、拡散度Dは、
D=θ×Δn×L
と表すこともできる。
この図7を見れば明らかなように、非映像領域F2が観察者に視認されてしまうことを抑制する程度とD/PPとの間には、よい相関関係がある。
そして、17≦D/PP≦35の範囲であれば、画素が独立して見えずに、かつ、映像がぼけ過ぎずない、良好な画像を観察することができるといえる。
なお、図7中にも示したが、D/PPの値が35を越える場合、拡散が大きすぎて、ぼけすぎるだけではなく、映像や文字が2重に見える2重像が生じてしまい、画質の劣化が著しい。
また、より厳しい条件、すなわち、22≦D/PP≦30の範囲であれば、最適な画像を観察することが可能である。
FIG. 7 is a diagram illustrating the relationship between the appearance of the optical sheet 20 and D / PP.
In FIG. 7, the result of obtaining Δn as an intermediate value for calculating the diffusion degree D is also shown. Δn = 1− (n2 / n1). Therefore, the diffusion degree D is
D = θ × Δn × L
Can also be expressed.
As is clear from FIG. 7, there is a good correlation between the degree of suppressing the non-image area F2 from being visually recognized by the observer and D / PP.
And if it is the range of 17 <= D / PP <= 35, it can be said that a favorable image which a pixel does not see independently and an image is not too blurred can be observed.
As shown in FIG. 7, when the value of D / PP exceeds 35, the diffusion is too large and not only is too blurry, but a double image in which the video and characters are doubled is generated. Degradation of image quality is remarkable.
In addition, an optimal image can be observed under more severe conditions, that is, in a range of 22 ≦ D / PP ≦ 30.

このように、光学シート20に関して、D/PPの値の範囲を規定することによって、本実施形態の表示装置1は、映像源11から出射した映像光Vを鉛直方向や左右方向に微少に拡散することができる。これにより、表示装置1は、観察者に鮮明な映像を表示するとともに、映像光Vの微少な拡散によって映像源11の非画素領域G2が起因となる非映像領域F2が目立ってしまうことを抑制することができる。   As described above, by defining the D / PP value range with respect to the optical sheet 20, the display device 1 of the present embodiment slightly diffuses the video light V emitted from the video source 11 in the vertical direction and the horizontal direction. can do. As a result, the display device 1 displays a clear image to the observer and suppresses the non-image region F2 caused by the non-pixel region G2 of the image source 11 from being noticeable due to the minute diffusion of the image light V. can do.

第1光学層21及び第3光学層23は、それぞれ、光透過性の高いPC(ポリカーボネート)樹脂、MS(メチルメタクリレート・スチレン)樹脂、アクリル系樹脂等から形成されており、本実施形態では、第1光学層21及び第3光学層23はともに同じ材料で形成され、同じ屈折率を有している。
また、第2光学層22は、光透過性の高いウレタンアクリレート樹脂や、エポキシアクリレート樹脂等の紫外線硬化型樹脂等から形成されており、本実施形態では、第1光学層21及び第3光学層23の屈折率よりも低い屈折率となっている。
The first optical layer 21 and the third optical layer 23 are each formed of a highly light-transmitting PC (polycarbonate) resin, MS (methyl methacrylate / styrene) resin, acrylic resin, and the like. In this embodiment, Both the first optical layer 21 and the third optical layer 23 are made of the same material and have the same refractive index.
Further, the second optical layer 22 is made of a highly light transmissive urethane acrylate resin, an ultraviolet curable resin such as an epoxy acrylate resin, or the like. In the present embodiment, the first optical layer 21 and the third optical layer are used. The refractive index is lower than the refractive index of 23.

なお、本実施形態の光学シート20は、単位形状21aと単位形状23aとは、その断面形状が同じ形状であり、底角θも同一の値であることとして、上述の拡散度Dの計算を行っている。しかし、単位形状21aと単位形状23aとで、異なる底角θの三角形形状としてもよい。そのような場合には、上述の拡散度Dの計算において、拡散方向毎に、それぞれの値を用いればよい。すなわち、単位形状21aが光を拡散する方向に関しては、単位形状21aの底角θの値を用いればよく、単位形状23aが光を拡散する方向に関しては、単位形状23aの底角θの値を用いればよい。そして、両方向に関して、D/PPが上述した所定の範囲内に収まっていれば、良好な結果を得ることができる。
また、各単位形状の断面形状が完全な三角形ではない場合には、その形状を三角形で近似して、その三角形形状の底角θを用いて演算すればよい。
In the optical sheet 20 of the present embodiment, the unit shape 21a and the unit shape 23a have the same cross-sectional shape, and the base angle θ also has the same value. Is going. However, the unit shape 21a and the unit shape 23a may be triangular shapes having different base angles θ. In such a case, each value may be used for each diffusion direction in the calculation of the diffusion degree D described above. That is, for the direction in which the unit shape 21a diffuses light, the value of the base angle θ of the unit shape 21a may be used, and for the direction in which the unit shape 23a diffuses light, the value of the base angle θ of the unit shape 23a is set. Use it. Good results can be obtained if D / PP is within the above-described predetermined range in both directions.
Further, when the cross-sectional shape of each unit shape is not a perfect triangle, the shape may be approximated by a triangle and calculated using the base angle θ of the triangle shape.

また、本実施形態では、単位形状21aの配列ピッチP1及び単位形状23aの配列ピッチP2は、それぞれ、0.1mm≦P1≦0.5mm、0.1≦P1≦0.5mmを満たすことが好ましい。仮に、配列ピッチP1,P2が0.1mm未満であると、このような寸法の単位形状21a,23aを製造するのが困難となり、また、光の回折現象が生じやすくなり、回折光の影響によって映像が不鮮明になるので好ましくない。また、配列ピッチP1,P2が0.5mmよりも大きい場合、隣り合う単位形状間のラインが視認されてしまう場合があり、好ましくない。   In the present embodiment, the arrangement pitch P1 of the unit shapes 21a and the arrangement pitch P2 of the unit shapes 23a preferably satisfy 0.1 mm ≦ P1 ≦ 0.5 mm and 0.1 ≦ P1 ≦ 0.5 mm, respectively. . If the arrangement pitches P1 and P2 are less than 0.1 mm, it is difficult to manufacture the unit shapes 21a and 23a having such dimensions, and a light diffraction phenomenon is likely to occur. This is not preferable because the image becomes unclear. Moreover, when arrangement pitch P1, P2 is larger than 0.5 mm, the line between adjacent unit shapes may be visually recognized, and it is not preferable.

さらに、本実施形態の光学シート20は、第1光学層21の映像源側(背面側、+Y側)に、反射抑制層24が設けられている。
この反射抑制層24は、レンズ12の映像源側に設けられた反射抑制層12aと同様に、例えば、汎用の反射防止機能を有する材料(例えば、フッ化マグネシウム(MgF)、二酸化ケイ素(SiO)、フッ素系光学用コーティング剤等)を所定の膜厚でコーティングする等により設けてもよい。また、映像源11が表示装置に固定され、着脱不可能である場合等には、光の波長より小さなピッチで形成された微小な凹凸形状を有するモスアイ構造を光の入射側の面に有することにより反射抑制機能を奏する層を光学シート20の映像源側に一体に積層して設けてもよい。
Furthermore, the optical sheet 20 of the present embodiment is provided with a reflection suppressing layer 24 on the image source side (back side, + Y side) of the first optical layer 21.
The reflection suppression layer 24 is, for example, a material having a general antireflection function (for example, magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), in the same manner as the reflection suppression layer 12 a provided on the image source side of the lens 12. 2 ), a fluorine-based optical coating agent, etc.) may be provided by coating with a predetermined film thickness. In addition, when the image source 11 is fixed to the display device and cannot be removed, the moth-eye structure having a minute uneven shape formed at a pitch smaller than the wavelength of the light is provided on the light incident side surface. Thus, a layer exhibiting a reflection suppressing function may be integrally laminated on the image source side of the optical sheet 20.

反射抑制層24を光学シート20の映像源側に設けることにより、光学シート20に入射する光が光学シート20の映像源側の面で反射して映像源11側へ向かうことによる映像の明るさの低下を抑制できる。
また、反射抑制層24を光学シート20の映像源側に設けることにより、光学シート20に入射する光が光学シート20の映像源側の面で反射して映像源11側へ向かい、映像源11の表示面11aで再度反射する等により迷光となることを抑制し、映像のコントラスト向上を図ることができる。
By providing the reflection suppression layer 24 on the image source side of the optical sheet 20, the brightness of the image due to the light incident on the optical sheet 20 being reflected by the image source side surface of the optical sheet 20 toward the image source 11 side. Can be suppressed.
Further, by providing the reflection suppressing layer 24 on the image source side of the optical sheet 20, the light incident on the optical sheet 20 is reflected by the surface of the optical sheet 20 on the image source side and travels toward the image source 11 side. It is possible to prevent stray light from being reflected again on the display surface 11a and improve the contrast of the image.

なお、反射抑制層24は、さらに、光学シート20の観察者側(−Y側)の面に設けてもよい。この位置にさらに反射抑制層24を設けることにより、光学シート20から映像光が出射する際に、光学シート20と空気との界面で反射し、光学シート20内で迷光となることを抑制でき、映像のコントラスト等を向上できる。
また、光学シート20の映像源側(+Y側)の面に、ハードコート機能や、防汚機能等を有する層を設けてもよい。このような層を設けることにより、映像源11が筐体30に着脱可能である場合に、映像源11を筐体30から外したときに、光学シート20が傷ついたり、汚れが付着したりして、映像の視認の妨げになることを抑制できる。
The antireflection layer 24 may be further provided on the surface of the optical sheet 20 on the viewer side (−Y side). By further providing the reflection suppressing layer 24 at this position, when image light is emitted from the optical sheet 20, it can be reflected at the interface between the optical sheet 20 and air, and can be suppressed to become stray light in the optical sheet 20, The contrast of the video can be improved.
Further, a layer having a hard coat function, an antifouling function, or the like may be provided on the image source side (+ Y side) surface of the optical sheet 20. By providing such a layer, when the image source 11 is detachable from the housing 30, the optical sheet 20 may be damaged or soiled when the image source 11 is removed from the housing 30. Therefore, it is possible to suppress the hindrance to visual recognition of the video.

また、本実施形態の表示装置1は、上述のように、レンズ12よりも映像源側(+Y側)に光学シート20が位置するので、映像源11が筐体30に着脱可能である表示装置1において映像源11を筐体30から外した場合等に、筐体内に侵入した埃やゴミ等の異物によってレンズ12が破損したり汚れたりすることがない。また、光学シート20の映像源側が異物等で汚れた場合にも、単位形状を傷つけることなく、ふき取ることが可能である。
また、特に、モスアイ構造を有する反射抑制層に関しては、高い反射抑制効果を有しているが、破損しやすいために観察者の指等が触れない位置に設けることが重要となる。本実施形態の表示装置1では、レンズ12よりも映像源側(+Y側)に光学シート20が位置するので、そのような反射抑制層を光学シート20の観察者側やレンズ12の映像源側等に設けることができ、より高い反射抑制効果が得られ、映像のコントラストや明るさの向上を図ることができる。
Further, as described above, the display device 1 according to the present embodiment has the optical sheet 20 positioned closer to the image source side (+ Y side) than the lens 12, so that the image source 11 can be attached to and detached from the housing 30. 1, the lens 12 is not damaged or soiled by foreign matter such as dust or dust that has entered the housing when the video source 11 is removed from the housing 30. Further, even when the image source side of the optical sheet 20 is contaminated with foreign matter or the like, it is possible to wipe off the unit shape without damaging it.
In particular, the antireflection layer having a moth-eye structure has a high antireflection effect, but it is important that the antireflection layer is provided at a position where an observer's finger or the like cannot be touched because it easily breaks. In the display device 1 of the present embodiment, since the optical sheet 20 is positioned closer to the image source side (+ Y side) than the lens 12, such an antireflection layer is provided on the observer side of the optical sheet 20 or the image source side of the lens 12. And the like, and a higher reflection suppression effect can be obtained, and the contrast and brightness of the image can be improved.

次に、映像源11から出射された映像光Vが観察者の眼E(E1,E2)に届くまでの動作について説明する。
図1に示すように、映像源11から出射した映像光Vは、光学シート20(20A,20B)の映像源側(+Y側)の面に入射する。そして、光学シート20に入射した映像光Vは、第1光学層21を透過して、第1光学層21及び第2光学層22との界面の単位形状21aによって、左右方向(X方向)に微少に拡散して第2光学層22内を透過する。
第2光学層22を透過した映像光Vは、第2光学層22及び第3光学層23との界面に形成された単位形状23aによって、鉛直方向(Z方向)に微少に拡散し、第3光学層23を透過して光学シート20の観察者側(−Y側)の面から出射する。
光学シート20を透過した映像光Vは、レンズ12(12A,12B)へ入射する。そして、レンズ12により、映像光Vが拡大され、観察者側(−Y側)へ出射する。
Next, an operation until the video light V emitted from the video source 11 reaches the observer's eyes E (E1, E2) will be described.
As shown in FIG. 1, the image light V emitted from the image source 11 is incident on the image source side (+ Y side) surface of the optical sheet 20 (20A, 20B). Then, the image light V incident on the optical sheet 20 is transmitted through the first optical layer 21, and in the left-right direction (X direction) by the unit shape 21 a at the interface between the first optical layer 21 and the second optical layer 22. It diffuses slightly and passes through the second optical layer 22.
The video light V transmitted through the second optical layer 22 is slightly diffused in the vertical direction (Z direction) by the unit shape 23a formed at the interface between the second optical layer 22 and the third optical layer 23, and the third The light passes through the optical layer 23 and is emitted from the surface on the viewer side (−Y side) of the optical sheet 20.
The video light V transmitted through the optical sheet 20 enters the lens 12 (12A, 12B). Then, the image light V is enlarged by the lens 12 and is emitted to the observer side (−Y side).

映像光Vは、光学シート20により左右方向及び鉛直方向に微少に拡散させられる。そのため、レンズ12により画像が拡大されても、観察者の眼Eによって視認される画像には、図4に示すように、比較例の表示装置5の場合に比して(図5(b)参照)、映像源11の非画素領域G2が起因となる非映像領域F2が目立ってしまうことを極力抑制することができ、鮮明な映像を表示することができる。   The image light V is slightly diffused in the left-right direction and the vertical direction by the optical sheet 20. Therefore, even when the image is magnified by the lens 12, the image visually recognized by the observer's eye E is compared with the display device 5 of the comparative example as shown in FIG. 4 (FIG. 5B). Reference), the non-image area F2 caused by the non-pixel area G2 of the image source 11 can be suppressed as much as possible, and a clear image can be displayed.

また、17≦D/PP≦35の範囲であれば、画素が独立して見えずに、かつ、映像がぼけ過ぎずない、良好な画像を観察することができる。また、より厳しい条件、すなわち、22≦D/PP≦30の範囲であれば、最適な画像を観察することが可能である。   If the range is 17 ≦ D / PP ≦ 35, it is possible to observe a good image in which pixels are not seen independently and the video is not excessively blurred. In addition, an optimal image can be observed under more severe conditions, that is, in a range of 22 ≦ D / PP ≦ 30.

次に、本実施形態の表示装置1に用いられる光学シート20の製造方法について説明する。
上述したように、光学シート20の第1光学層21及び第3光学層23に設けられた各単位形状21a、単位形状23aは、互いに同じ形状に形成されているため、まず、この凸状の単位形状に対応する凹形状が設けられた金型を使用して、単位形状が形成されたシート状部材を押出成形法や、射出成形法等により形成する。
それから、単位形状が形成されたシート状部材を、所定の寸法に裁断して、第1光学層21及び第3光学層23を得る。
このように、単位形状21a及び単位形状23aが同形状に形成されている場合、1枚のシート状部材から第1光学層21及び第3光学層23を同時に切り出すことができ、光学シート20の製造効率を向上させることができる。
Next, the manufacturing method of the optical sheet 20 used for the display apparatus 1 of this embodiment is demonstrated.
As described above, the unit shapes 21a and the unit shapes 23a provided in the first optical layer 21 and the third optical layer 23 of the optical sheet 20 are formed in the same shape. Using a mold provided with a concave shape corresponding to the unit shape, a sheet-like member on which the unit shape is formed is formed by an extrusion molding method, an injection molding method, or the like.
Then, the sheet-like member on which the unit shape is formed is cut into a predetermined dimension, and the first optical layer 21 and the third optical layer 23 are obtained.
Thus, when the unit shape 21a and the unit shape 23a are formed in the same shape, the first optical layer 21 and the third optical layer 23 can be cut out simultaneously from one sheet-like member, and the optical sheet 20 Manufacturing efficiency can be improved.

続いて、第1光学層21の単位形状21a側の面上に、第2光学層22を形成する樹脂を充填し、その樹脂と、第3光学層23の単位形状23a側の面とを貼り合わせて、第1光学層21及び第3光学層23間に所定の距離を設けた状態で樹脂を硬化させる。このとき、第1光学層21及び第3光学層23は、単位形状21aの延在方向と単位形状23aの延在方向とが互いに交差(直交)するようにして配置される。
これにより、第1光学層21、第2光学層22、第3光学層23が順次積層された状態となる。さらに、第1光学層21の表面(第2光学層22側とは反対側の面)に、反射抑制層24を設けることにより、光学シート20が完成する。
Subsequently, a resin for forming the second optical layer 22 is filled on the surface of the first optical layer 21 on the unit shape 21a side, and the resin and the surface of the third optical layer 23 on the unit shape 23a side are pasted. In addition, the resin is cured in a state where a predetermined distance is provided between the first optical layer 21 and the third optical layer 23. At this time, the first optical layer 21 and the third optical layer 23 are arranged such that the extending direction of the unit shape 21a and the extending direction of the unit shape 23a intersect (orthogonal) each other.
Accordingly, the first optical layer 21, the second optical layer 22, and the third optical layer 23 are sequentially stacked. Furthermore, the optical sheet 20 is completed by providing the antireflection layer 24 on the surface of the first optical layer 21 (the surface opposite to the second optical layer 22 side).

以上より、本実施形態の表示装置1は、映像源11とレンズ12との間に、少なくとも2層以上の光学層を有し、各光学層間の界面に単位形状21a,23aが複数形成された光学シート20を備え、単位形状21a,23aが界面に形成されており、17≦D/PP≦35を満たす、又は、22≦D/PP≦30を満たす。これにより、表示装置1は、映像源11から出射した映像光Vを微少に拡散することができ、観察者に鮮明な映像を表示するとともに、映像源11の非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制することができる。   As described above, the display device 1 of the present embodiment has at least two or more optical layers between the video source 11 and the lens 12, and a plurality of unit shapes 21a and 23a are formed at the interface between the optical layers. The optical sheet 20 is provided, and the unit shapes 21a and 23a are formed at the interface, and satisfy 17 ≦ D / PP ≦ 35 or 22 ≦ D / PP ≦ 30. Accordingly, the display device 1 can slightly diffuse the video light V emitted from the video source 11, displays a clear video to the observer, and causes non-pixel regions G <b> 2 of the video source 11. It is possible to suppress the video region F2 from being visually recognized by the observer.

また、本実施形態の表示装置1は、上述のように、レンズ12よりも映像源側(+Y側)に光学シート20が位置するので、映像源11が表示装置1(筐体30)から外された状態であったとしても、侵入した埃やごみ等の異物からレンズ12を保護することができ、異物によってレンズ12が破損したり汚れたりするがなく、光学シート20の映像源側表面が汚れたり曇ったりした場合等も、単位形状を傷つけることなく、ふき取ることが可能である。
また、本実施形態の表示装置1は、光学シート20の映像源側(入光側、+Y側)の面に反射抑制層24を備え、レンズ12の映像源側の面に反射抑制層12aを備えているので、迷光を抑制し、映像の明るさやコントラストを向上できる。
Further, as described above, since the optical sheet 20 is positioned on the video source side (+ Y side) of the lens 12 in the display device 1 according to the present embodiment, the video source 11 is removed from the display device 1 (housing 30). Even in such a state, the lens 12 can be protected from foreign matter such as dust and dirt that has entered, and the lens 12 is not damaged or soiled by the foreign matter. Even when it becomes dirty or cloudy, it can be wiped off without damaging the unit shape.
In addition, the display device 1 of the present embodiment includes the reflection suppression layer 24 on the image source side (incident side, + Y side) surface of the optical sheet 20, and the reflection suppression layer 12 a on the image source side surface of the lens 12. Since it is provided, stray light can be suppressed and the brightness and contrast of the image can be improved.

また、本実施形態の表示装置1は、単位形状21aが、凸状であって、光学シート20の厚み方向(Y方向)に直交するシート面(XZ面)内のZ方向(第1の方向)に延在し、シート面内のZ方向に直交するX方向(第2の方向)に配列され、光学シート20の厚み方向及び配列方向に平行な断面(XY面)における断面形状が三角形状に形成されている。同様に、単位形状23aが、凸状であって、光学シート20の厚み方向(Y方向)に直交するシート面(XZ面)内のX方向に延在し、シート面内のX方向に直交するZ方向に配列され、光学シート20の厚み方向及び配列方向に平行な断面(YZ面)における断面形状が三角形状に形成されている。これにより、表示装置1は、単位形状21a,23aを通過する映像光を効率よく均等に拡散させることができる。   In the display device 1 of the present embodiment, the unit shape 21a is convex, and the Z direction (first direction) in the sheet surface (XZ surface) orthogonal to the thickness direction (Y direction) of the optical sheet 20 is used. ) And arranged in the X direction (second direction) orthogonal to the Z direction in the sheet plane, and the cross-sectional shape in the cross section (XY plane) parallel to the thickness direction and the arrangement direction of the optical sheet 20 is triangular. Is formed. Similarly, the unit shape 23a is convex, extends in the X direction in the sheet surface (XZ surface) orthogonal to the thickness direction (Y direction) of the optical sheet 20, and is orthogonal to the X direction in the sheet surface. The cross-sectional shape in the cross section (YZ plane) arranged in the Z direction and parallel to the thickness direction and the arrangement direction of the optical sheet 20 is formed in a triangular shape. Thereby, the display device 1 can efficiently and evenly diffuse the image light passing through the unit shapes 21a and 23a.

さらに、本実施形態の表示装置1は、光学シート20が3層以上の光学層を有しており、隣り合う光学層間の各界面に設けられた単位形状21a及び単位形状23aのシート面内における延在方向(Z方向、X方向)が、光学シート20の厚み方向から見て直交(交差)している。これにより、表示装置1は、映像源11から出射した映像光を複数の方向(左右方向及び鉛直方向)に拡散させることができ、映像源11の非画素領域が起因となる非映像領域をより効果的に目立たなくすることができる。   Further, in the display device 1 of the present embodiment, the optical sheet 20 has three or more optical layers, and the unit shape 21a and the unit shape 23a provided at each interface between adjacent optical layers in the sheet surface. The extending direction (Z direction, X direction) is orthogonal (intersect) when viewed from the thickness direction of the optical sheet 20. Thereby, the display apparatus 1 can diffuse the image light emitted from the image source 11 in a plurality of directions (left and right directions and vertical directions), and more non-image areas caused by the non-pixel areas of the image source 11 can be obtained. It can be effectively inconspicuous.

なお、第1光学層21の単位形状21a及び第3光学層23の単位形状23aの各配列方向や、各配列方向及び光学シート20の厚み方向に沿った断面での単位形状21a,23aの断面形状に関しては、上述の例に限らず、適宜変更してよい。
以下に、本実施形態の表示装置1に用いられる光学シート20の他の形態について説明する。
The cross sections of the unit shapes 21 a and 23 a in the arrangement direction of the unit shapes 21 a of the first optical layer 21 and the unit shapes 23 a of the third optical layer 23, and in the cross sections along the arrangement directions and the thickness direction of the optical sheet 20. The shape is not limited to the above example, and may be changed as appropriate.
Below, the other form of the optical sheet 20 used for the display apparatus 1 of this embodiment is demonstrated.

例えば、光学シート20は、単位形状21aの延在方向が鉛直方向(Z方向)であり、単位形状23aの延在方向が左右方向(X方向)であり、これらが直交する例を説明したが、光学シート20の単位形状21aの延在方向が、左右方向に対して45°傾斜した方向(上下方向に対して45°傾斜)であり、単位形状23aの延在方向が、左右方向に対して−45°に傾斜した方向であり、Y方向から見て、単位形状21aの延在方向と単位形状23aの延在方向とが交差(この場合は、直交)する形態としてもよい。   For example, in the optical sheet 20, the extending direction of the unit shape 21a is the vertical direction (Z direction), the extending direction of the unit shape 23a is the left-right direction (X direction), and an example in which these are orthogonal to each other has been described. The extending direction of the unit shape 21a of the optical sheet 20 is a direction inclined by 45 ° with respect to the horizontal direction (inclined by 45 ° with respect to the vertical direction), and the extending direction of the unit shape 23a is with respect to the horizontal direction. The extending direction of the unit shape 21a and the extending direction of the unit shape 23a may intersect (in this case, orthogonal) when viewed from the Y direction.

また、光学シート20の単位形状21aの延在方向が鉛直方向(Z方向)に対して傾斜する角度、及び、単位形状23aの延在方向が左右方向(X方向)に対して傾斜する角度は、上記の45°に限らず、例えば、15°や30°等としてもよく、映像源11の画素の配列や所望する光学性能等に応じて、各単位形状の延在方向を適宜設定してよい。これにより、非画素領域G2に起因する非映像領域F2を目立たせなくする効果をさらに高めることができる。
また、一方の単位形状の延在方向が、他方の単位形状の延在方向と直交以外の角度で交差するようにしてもよい。このような形態としても、非画素領域G2に起因する非映像領域F2を目立たせなくする効果をさらに高めることができる。
The angle at which the extending direction of the unit shape 21a of the optical sheet 20 is inclined with respect to the vertical direction (Z direction) and the angle at which the extending direction of the unit shape 23a is inclined with respect to the left and right direction (X direction) are However, the angle is not limited to 45 °, and may be, for example, 15 ° or 30 °. The extending direction of each unit shape is appropriately set according to the pixel arrangement of the video source 11 or the desired optical performance. Good. Thereby, the effect of making the non-video region F2 caused by the non-pixel region G2 inconspicuous can be further enhanced.
Further, the extending direction of one unit shape may intersect with the extending direction of the other unit shape at an angle other than orthogonal. Even in such a form, it is possible to further enhance the effect of making the non-video region F2 caused by the non-pixel region G2 inconspicuous.

図8は、本実施形態の表示装置1に用いられる光学シート20の他の形態の詳細を説明する図である。
図8(a)は、他の形態の光学シート20の斜視図である。図8(b)は、図8(a)のb−b断面図である。図8(c)は、図8(a)のc−c断面図である。
図8に示す他の形態の光学シート20を含め以下に示す光学シート20の他の形態に関して、上述の実施形態と同様の機能を果たす部分には同一の符号を付して、適宜重複する説明を省略する。また、図8を含め以下に示す光学シート20の他の形態を示す図面について、理解を容易にするために、反射抑制層24を備えない形態を示しているが、適宜、第1光学層21の映像源側(背面側、+Y側)に前述のような反射抑制層24を設けてもよい。
図8に示すx方向、y方向、z方向は互いに直交し、y方向は、Y方向と平行である。また、x方向は、X方向に対して45°をなし、z方向は、Z方向に対して45°をなしている。
FIG. 8 is a diagram illustrating details of another form of the optical sheet 20 used in the display device 1 of the present embodiment.
Fig.8 (a) is a perspective view of the optical sheet 20 of another form. FIG. 8B is a bb cross-sectional view of FIG. FIG.8 (c) is cc sectional drawing of Fig.8 (a).
Regarding other forms of the optical sheet 20 shown below including the optical sheet 20 of the other form shown in FIG. 8, the same reference numerals are given to the portions that perform the same functions as those of the above-described embodiment, and the description is appropriately repeated. Is omitted. Further, for the sake of facilitating understanding, the drawings showing other forms of the optical sheet 20 shown below including FIG. 8 show a form without the antireflection layer 24, but the first optical layer 21 is appropriately included. The reflection suppression layer 24 as described above may be provided on the image source side (back side, + Y side).
The x direction, y direction, and z direction shown in FIG. 8 are orthogonal to each other, and the y direction is parallel to the Y direction. The x direction is 45 ° with respect to the X direction, and the z direction is 45 ° with respect to the Z direction.

図8に示す光学シート20において、第1光学層21の観察者側(−y側、−Y側)の面に形成される単位形状21aは、図8(a),(b)に示すように、第1光学層21の観察者側の面に沿うようにして、左右方向(X方向)に対して45°傾斜したx方向に延在し、鉛直方向(Z方向)に対して45°傾斜したz方向に複数配列されている。第3光学層23の映像源側(+y側、+Y側)の面に形成される単位形状23aは、図8(a),(c)に示すように、第3光学層23の映像源側の面に沿うようにして、鉛直方向(Z方向)に対して45°傾斜したz方向に延在し、左右方向(X方向)に対して45°傾斜したx方向に複数配列されている。
単位形状21aの延在方向(x方向)と単位形状23aの延在方向(z方向)とは、交差(直交)しており、単位形状21aの配列方向(z方向)と単位形状23aの配列方向(x方向)とは、交差(直交)している。
In the optical sheet 20 shown in FIG. 8, the unit shape 21a formed on the viewer side (−y side, −Y side) surface of the first optical layer 21 is as shown in FIGS. 8 (a) and 8 (b). Furthermore, it extends in the x direction inclined by 45 ° with respect to the left-right direction (X direction) so as to be along the surface on the viewer side of the first optical layer 21, and 45 ° with respect to the vertical direction (Z direction). A plurality are arranged in the inclined z direction. As shown in FIGS. 8A and 8C, the unit shape 23a formed on the image source side (+ y side, + Y side) surface of the third optical layer 23 is the image source side of the third optical layer 23. Are extended in the z direction inclined by 45 ° with respect to the vertical direction (Z direction), and are arranged in a plurality of x directions inclined by 45 ° with respect to the left and right direction (X direction).
The extension direction (x direction) of the unit shapes 21a and the extension direction (z direction) of the unit shapes 23a intersect (orthogonal), and the arrangement direction (z direction) of the unit shapes 21a and the arrangement of the unit shapes 23a The direction (x direction) intersects (perpendicular).

また、この単位形状21aは、z方向及びy方向に平行な面(yz面)における断面形状が三角形状、いわゆるプリズム形状に形成されている。同様に、単位形状23aは、x方向及びy方向に平行な面(xy面)における断面形状が三角形状、いわゆるプリズム形状に形成されている。   Further, the unit shape 21a is formed in a so-called prism shape in which a cross-sectional shape on a plane (yz plane) parallel to the z direction and the y direction is triangular. Similarly, the unit shape 23a is formed in a so-called prism shape in cross section on a plane parallel to the x direction and the y direction (xy plane).

図8では、単位形状21a,23aは、それぞれ、光学シート20の厚み方向に平行であって、配列方向に平行な断面における断面形状が二等辺三角形状に形成されている例を示している。また、単位形状21a,23aは、その二等辺三角形状が各配列方向に連続した状態で形成されている。   FIG. 8 shows an example in which the unit shapes 21a and 23a are parallel to the thickness direction of the optical sheet 20 and the cross-sectional shape in a cross section parallel to the arrangement direction is formed in an isosceles triangle shape. Further, the unit shapes 21a and 23a are formed in a state in which their isosceles triangles are continuous in each arrangement direction.

図8に示す光学シート20では、単位形状21a,23aの配列ピッチP1,P2は、それぞれ0.1mm≦P1≦0.5mm、0.1mm≦P2≦0.5mmを満たすことが望ましい。仮に、配列ピッチP1,P2が0.1mm未満であると、このような寸法の単位形状21a,23aを製造するのが困難となり、また、光の回折現象が生じやすくなり、回折光の影響によって映像が不鮮明になるので好ましくない。また、配列ピッチP1,P2が0.5mmよりも大きい場合、隣り合う単位形状間のラインが視認されてしまう場合があり、好ましくない。   In the optical sheet 20 shown in FIG. 8, it is desirable that the arrangement pitches P1 and P2 of the unit shapes 21a and 23a satisfy 0.1 mm ≦ P1 ≦ 0.5 mm and 0.1 mm ≦ P2 ≦ 0.5 mm, respectively. If the arrangement pitches P1 and P2 are less than 0.1 mm, it is difficult to manufacture the unit shapes 21a and 23a having such dimensions, and a light diffraction phenomenon is likely to occur. This is not preferable because the image becomes unclear. Moreover, when arrangement pitch P1, P2 is larger than 0.5 mm, the line between adjacent unit shapes may be visually recognized, and it is not preferable.

また、図8に示す光学シート20においても、17≦D/PP≦35を満たすことが必要であり、より望ましくは、22≦D/PP≦30を満たすとよい。   Also in the optical sheet 20 shown in FIG. 8, it is necessary to satisfy 17 ≦ D / PP ≦ 35, and more desirably 22 ≦ D / PP ≦ 30.

人間の眼には、左右方向(X方向)に延在するラインが、左右方向に対して傾斜した方向や、鉛直方向(Z方向)に延在するライン等よりも視認しやすくなる傾向がある。
そのため、上述のように、各単位形状の延在する方向を左右方向に対して傾斜させることによって、本実施形態の表示装置1は、単位形状が起因となるラインを観察者に対して視認され難くすることができ、表示される映像をより鮮明に観察者に視認させることができる。
For human eyes, a line extending in the left-right direction (X direction) tends to be more visible than a direction inclined with respect to the left-right direction, a line extending in the vertical direction (Z direction), or the like. .
Therefore, as described above, by tilting the extending direction of each unit shape with respect to the left-right direction, the display device 1 of the present embodiment can visually recognize the line caused by the unit shape to the observer. It is possible to make it difficult for the observer to visually recognize the displayed image.

図9は、光学シート20の別の形態を説明する図である。図9(a)は、厚み方向(Y方向)に平行であって、左右方向(X方向)に平行な断面(XY断面)における断面図であり、図9(b)は、厚み方向(Y方向)に平行であって鉛直方向(Z方向)に平行な断面(YZ断面)における断面図である。図9(c)は、第1光学層21を観察者側(−Y側)の面から見た斜視図である。
光学シート20は、図9に示すように、第1光学層21及び第2光学層22の2層から構成される形態とし、第1光学層21の観察者側(−Y側)の面に四角錐形状の単位形状21aが、鉛直方向及び左右方向に複数隙間なく配列されるようにしてもよい。ここで、四角錐形状とは、完全な四角錐の形状だけでなく、四角錐の頂部や稜線がわずかに曲面や平面に面取りされた形状や、四角錐の各三角形状の斜面が微小に湾曲された形状等も含むものをいう。なお、図9に示す四角錐形状の単位形状21aは、鉛直方向(Z方向)及び左右方向(X方向)に対して傾斜(例えば、45°傾斜)した方向に配列される形態としてもよい。
FIG. 9 is a diagram illustrating another form of the optical sheet 20. 9A is a cross-sectional view in a cross section (XY cross section) parallel to the thickness direction (Y direction) and parallel to the left and right direction (X direction), and FIG. 9B is a cross section in the thickness direction (Y direction). Is a cross-sectional view in a cross section (YZ cross section) parallel to the vertical direction (Z direction). FIG. 9C is a perspective view of the first optical layer 21 as viewed from the surface on the viewer side (−Y side).
As shown in FIG. 9, the optical sheet 20 is configured by two layers of a first optical layer 21 and a second optical layer 22, and is on the surface on the viewer side (−Y side) of the first optical layer 21. The quadrangular pyramid-shaped unit shapes 21a may be arranged without a plurality of gaps in the vertical direction and the left-right direction. Here, the quadrangular pyramid shape is not only a complete quadrangular pyramid shape, but also a shape in which the top and ridge lines of the quadrangular pyramid are slightly chamfered on a curved surface or a plane, and each triangular slope of the quadrangular pyramid is slightly curved It also includes those that have been made. Note that the quadrangular pyramid shaped unit shapes 21a shown in FIG. 9 may be arranged in a direction inclined (for example, 45 ° inclined) with respect to the vertical direction (Z direction) and the horizontal direction (X direction).

光学シート20を図9に示す形態としても、17≦D/PP≦35を満たす、又は、22≦D/PP≦30を満たすことにより、映像源11から出射した映像光を微少に拡散させ、図4に示すように、その拡散された映像光によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制することができる。また、上述の図2に示す光学シート20や図8に示す光学シート20等と比べて層構成を減らすことができ、光学シート20を薄型化したり、軽量化したりすることが可能となる。さらに、光学シート20をより容易に安価に製造することも可能となる。   Even if the optical sheet 20 has the form shown in FIG. 9, the image light emitted from the image source 11 is slightly diffused by satisfying 17 ≦ D / PP ≦ 35 or 22 ≦ D / PP ≦ 30. As shown in FIG. 4, it is possible to suppress the non-image area F2 caused by the non-pixel area G2 from being visually recognized by the observer due to the diffused image light. Further, the layer structure can be reduced as compared with the optical sheet 20 shown in FIG. 2 and the optical sheet 20 shown in FIG. 8, and the optical sheet 20 can be made thinner or lighter. Furthermore, it becomes possible to manufacture the optical sheet 20 more easily and inexpensively.

図10は、本実施形態の頭部装着型の表示装置1の他の形態を説明する図である。
図10に示すように、光学シート20をレンズ12よりも観察者側(−Y側)に配置してもよい。このような配置を採用しても、表示装置1は、観察者にぼやけの少ない鮮明な映像を表示するとともに、映像光の微少な拡散によって映像源11の非画素領域G2に起因する非映像領域F2が目立って観察されることを抑制することができる。
光学シート20を、図10に示すように、レンズ12よりも観察者側(−Y側)に配置した場合であっても、17≦D/PP≦35を満たすことが必要であり、より望ましくは、22≦D/PP≦30を満たすとよい。
FIG. 10 is a diagram for explaining another form of the head-mounted display device 1 of the present embodiment.
As shown in FIG. 10, the optical sheet 20 may be disposed closer to the observer side (−Y side) than the lens 12. Even if such an arrangement is adopted, the display device 1 displays a clear image with less blur to the observer and a non-image region caused by the non-pixel region G2 of the image source 11 due to a slight diffusion of the image light. It can suppress that F2 is observed conspicuously.
As shown in FIG. 10, even when the optical sheet 20 is arranged on the viewer side (−Y side) from the lens 12, it is necessary to satisfy 17 ≦ D / PP ≦ 35, which is more desirable. May satisfy 22 ≦ D / PP ≦ 30.

(変形形態)
以上説明した実施形態等に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(Deformation)
The present invention is not limited to the above-described embodiments and the like, and various modifications and changes are possible, and these are also within the scope of the present invention.

(1)実施形態において、光学シート20は、第1光学層21、第2光学層22、第3光学層23の3つの光学層が順次、積層された層構成を有する例を示したが、これに限定されるものでない。
例えば、光学シート20は、所望する光学性能等に応じて、第1光学層21及び第2光学層22の2層が積層された形態としてもよく、また、4層以上の光学層を備える形態としてもよい。
(1) In the embodiment, the optical sheet 20 has an example in which the three optical layers of the first optical layer 21, the second optical layer 22, and the third optical layer 23 are sequentially stacked. It is not limited to this.
For example, the optical sheet 20 may have a configuration in which two layers of the first optical layer 21 and the second optical layer 22 are laminated according to desired optical performance and the like, and a configuration including four or more optical layers. It is good.

(2)実施形態において、光学シート20は、保持部32に保持される形態を示したがこれに限らず、例えば、映像源11を保持する保持部31の開口部311の観察者側等に開口部311を塞ぐように接合される形態等としてもよいし、レンズ12を保持する保持部33の開口部331の映像源側に開口部331を塞ぐように貼り付けられる形態としてもよい。 (2) In the embodiment, the optical sheet 20 has been shown to be held by the holding unit 32, but is not limited to this. It is good also as a form etc. which are joined so that the opening part 311 may be block | closed, and it is good also as a form stuck so that the opening part 331 may be blocked | closed to the image source side of the opening part 331 of the holding | maintenance part 33 holding the lens 12.

(3)実施形態において、光学シート20は、映像源側(+Y側)に第1光学層21が配置され、観察者側(−Y側)に第3光学層23が配置される例を示したが、これに限定されるものでなく、第1光学層21が観察者側に、第3光学層23が映像源側に配置されるようにしてもよい。 (3) In the embodiment, the optical sheet 20 shows an example in which the first optical layer 21 is arranged on the image source side (+ Y side) and the third optical layer 23 is arranged on the observer side (−Y side). However, the present invention is not limited to this, and the first optical layer 21 may be disposed on the viewer side and the third optical layer 23 may be disposed on the image source side.

(4)実施形態において、光学シート20は、第1光学層21及び第3光学層23の屈折率が、第2光学層22の屈折率よりも高い例を説明したが、これに限定されるものでなく、例えば、第1光学層21及び第3光学層23の屈折率が、第2光学層22の屈折率よりも低くなるようにしてもよい。 (4) In the embodiment, the optical sheet 20 has been described as an example in which the refractive index of the first optical layer 21 and the third optical layer 23 is higher than the refractive index of the second optical layer 22, but is not limited thereto. For example, the refractive index of the first optical layer 21 and the third optical layer 23 may be lower than the refractive index of the second optical layer 22.

(5)実施形態において、第2光学層22は、紫外線硬化型樹脂により構成される層である例を示したが、これに限定されるものでなく、例えば、透過性のある粘着剤により構成され、第1光学層21及び第3光学層23を接合するようにしてもよい。 (5) In the embodiment, the example in which the second optical layer 22 is a layer made of an ultraviolet curable resin has been shown. However, the present invention is not limited to this. In addition, the first optical layer 21 and the third optical layer 23 may be bonded.

(6)実施形態において、映像源11は、表示装置1に予め固定され、着脱不可能である形態としてもよい。 (6) In the embodiment, the video source 11 may be fixed in advance to the display device 1 and not attachable / detachable.

(7)実施形態において、単位形状21aは、いずれも隣り合う単位形状21aと隣接して配置されている例を挙げて説明した。これに限らず、例えば、単位形状21aと単位形状21aとの間に、平坦部を設けてもよい。平坦部を幅を単位形状21aの幅の10%程度とすれば、十分に本発明の効果を得ることができる。なお、単位形状23aについても同様である。 (7) In the embodiment, the unit shape 21a has been described by giving an example in which each of the unit shapes 21a is disposed adjacent to the adjacent unit shape 21a. For example, a flat portion may be provided between the unit shape 21a and the unit shape 21a. If the width of the flat portion is about 10% of the width of the unit shape 21a, the effect of the present invention can be sufficiently obtained. The same applies to the unit shape 23a.

なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態等によって限定されることはない。   In addition, although embodiment and a deformation | transformation form can also be used in combination as appropriate, detailed description is abbreviate | omitted. Further, the present invention is not limited by the above-described embodiments and the like.

1 表示装置
5 表示装置(従来)
11 映像源
11a 表示面
11b 透明基板
11c 透明電極
11d 有機正孔輸送層
11e 表示層
11f 有機電子輸送層
11g 金属電極
12 レンズ
12A レンズ
12B レンズ
12a 反射抑制層
20 光学シート
20A 光学シート
20B 光学シート
21 第1光学層
21a 単位形状
22 第2光学層
23 第3光学層
23a 単位形状
24 反射抑制層
30 筐体
31 保持部
32 保持部
33 保持部
51 映像源(従来)
52 レンズ(従来)
120 光学シート
121 第1光学層
121a 単位形状
122 第2光学層
311 開口部
321 開口部
331 開口部
1 Display device 5 Display device (conventional)
11 Image source 11a Display surface 11b Transparent substrate 11c Transparent electrode 11d Organic hole transport layer 11e Display layer 11f Organic electron transport layer 11g Metal electrode 12 Lens 12A Lens 12B Lens 12a Antireflection layer 20 Optical sheet 20A Optical sheet 20B Optical sheet 21 First 1 optical layer 21a unit shape 22 second optical layer 23 third optical layer 23a unit shape 24 reflection suppression layer 30 housing 31 holding unit 32 holding unit 33 holding unit 51 image source (conventional)
52 Lens (Conventional)
120 optical sheet 121 first optical layer 121a unit shape 122 second optical layer 311 opening 321 opening 331 opening

Claims (4)

複数の画素領域が配列され映像光を出射する映像源と、
前記映像光を拡大して観察者側へ出射するレンズと、
前記映像源と前記レンズとの間、又は、前記レンズの観察者側に配置される光学シートと、
を備え、
前記光学シートは、2層以上の光学層が積層され、隣接する前記光学層の間の界面に凸状又は凹状の単位形状が複数形成されており、
前記単位形状は、前記光学シートの厚み方向に直交するシート面内の第1の方向に延在し、前記シート面内の前記第1の方向に直交する第2の方向に配列され、前記光学シートの厚み方向に平行であって前記第2の方向に平行な断面における断面形状が三角形状に形成されており、
前記単位形状の三角形状の底角をθとし、前記単位形状が形成された界面を介して互いに隣接する前記光学層の屈折率のうち屈折率が高い方の屈折率をn1とし、屈折率がn1よりも低い方の屈折率をn2とし、前記光学シートと前記映像源の表示層との間の距離をLとして、前記光学シートによって前記映像光が拡散される程度を表す指標としての拡散度Dを、
D=θ×(1−(n2/n1))×L
と定義し、前記画素領域が配列されている画素配列ピッチをPPとしたとき、
17≦D/PP≦35
を満たす表示装置。
A video source in which a plurality of pixel regions are arranged to emit video light;
A lens that magnifies and emits the image light to the viewer side;
An optical sheet disposed between the image source and the lens or on the viewer side of the lens;
With
In the optical sheet, two or more optical layers are laminated, and a plurality of convex or concave unit shapes are formed at an interface between the adjacent optical layers,
The unit shapes extend in a first direction in a sheet surface orthogonal to the thickness direction of the optical sheet, and are arranged in a second direction orthogonal to the first direction in the sheet surface, The cross-sectional shape in a cross section parallel to the thickness direction of the sheet and parallel to the second direction is formed in a triangular shape,
The base angle of the triangular shape of the unit shape is θ, the refractive index of the refractive index of the optical layer adjacent to each other through the interface on which the unit shape is formed is n1, and the refractive index is Diffusion degree as an index indicating the degree to which the image light is diffused by the optical sheet, where n2 is a refractive index lower than n1, and L is a distance between the optical sheet and the display layer of the image source. D
D = θ × (1− (n2 / n1)) × L
And when the pixel arrangement pitch in which the pixel regions are arranged is PP,
17 ≦ D / PP ≦ 35
A display device that meets the requirements.
請求項1に記載の表示装置において、
22≦D/PP≦30を満たすこと、
を特徴とする表示装置。
The display device according to claim 1,
Satisfy 22 ≦ D / PP ≦ 30,
A display device.
請求項1又は請求項2までのいずれか1項に記載の表示装置において、
前記単位形状は、凸状であって、前記光学シートの厚み方向に直交するシート面に沿って配列された四角錐形状に形成されていること、
を特徴とする表示装置。
In the display device according to any one of claims 1 and 2,
The unit shape is a convex shape, and is formed in a quadrangular pyramid shape arranged along a sheet surface orthogonal to the thickness direction of the optical sheet,
A display device.
請求項1から請求項3までのいずれか1項に記載の表示装置において、
前記光学シートは、3層以上の前記光学層を有し、隣接する前記光学層の間の各界面に設けられた前記単位形状のシート面方向における延在方向は、前記光学シートの厚み方向から見て交差していること、
を特徴とする表示装置。
In the display device according to any one of claims 1 to 3,
The optical sheet has three or more optical layers, and the extending direction in the sheet surface direction of the unit shape provided at each interface between the adjacent optical layers is from the thickness direction of the optical sheet. Seeing and crossing,
A display device.
JP2016230867A 2016-11-29 2016-11-29 Display Pending JP2018087893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016230867A JP2018087893A (en) 2016-11-29 2016-11-29 Display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016230867A JP2018087893A (en) 2016-11-29 2016-11-29 Display

Publications (1)

Publication Number Publication Date
JP2018087893A true JP2018087893A (en) 2018-06-07

Family

ID=62494331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016230867A Pending JP2018087893A (en) 2016-11-29 2016-11-29 Display

Country Status (1)

Country Link
JP (1) JP2018087893A (en)

Similar Documents

Publication Publication Date Title
JP7215612B2 (en) Display device
US10191287B2 (en) Optical element and display device
JP2021105721A (en) Screen, and video display device
JP6660008B2 (en) Display device
JP6027155B2 (en) Transflective reflection sheet, display device
US10466393B2 (en) Display device
JP2016110080A (en) Light guide plate and display device
JP2016224364A (en) Display device
JP2017032785A (en) Display device
JP6972642B2 (en) Display device
JP6805756B2 (en) Display device
JP6848376B2 (en) Display device
JP2018109687A (en) Reflection screen and video display device
JP6308323B1 (en) Display device
JP2016110108A (en) Light guide plate and display device
JP6565458B2 (en) Optical sheet, display device
JP2018087893A (en) Display
JP6957869B2 (en) Display device
JP6859655B2 (en) Display device
US10168535B2 (en) Optical element and display device
JP2018013634A (en) Transmission type screen, and rear surface projection type display device
JP2018055035A (en) Display device
JP2018066884A (en) Display device
JP2018055034A (en) Display device
JP2018100998A (en) Display device