JP2018087411A - Structural plywood - Google Patents

Structural plywood Download PDF

Info

Publication number
JP2018087411A
JP2018087411A JP2016229732A JP2016229732A JP2018087411A JP 2018087411 A JP2018087411 A JP 2018087411A JP 2016229732 A JP2016229732 A JP 2016229732A JP 2016229732 A JP2016229732 A JP 2016229732A JP 2018087411 A JP2018087411 A JP 2018087411A
Authority
JP
Japan
Prior art keywords
hole
penetration
row
structural plywood
plywood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016229732A
Other languages
Japanese (ja)
Inventor
政安 宮崎
Masayasu Miyazaki
政安 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016229732A priority Critical patent/JP2018087411A/en
Publication of JP2018087411A publication Critical patent/JP2018087411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide structural plywood being low in a moisture permeable resistance value of not causing indoor dew condensation indispensable for a woody house of not collapsing even if an earthquake repeatedly exists in seismic intensity of 7.SOLUTION: Hole-penetration structural plywood 101 is arranged in a zigzag shape by penetrating through a hole in respective points of an equilateral triangle of an angle of 60 degrees in 5-sheet-mating structure plywood. Hole-penetration is zigzag arrangement, and a first row becomes the apex of the equilateral triangle, and a second row becomes two points of a base, and is orderly regularly arranged in a zigzag shape, and becomes a straight line of connecting the hole penetration 11 and 12 of the apex and hole penetration 19, and becomes the straight line by connecting two points of the hole penetration 21 and 22 of the base of the second row and the other hole penetration 29. The hole penetration 21 and 22 of the base are the second row but also become the hole penetration 21 and 22 of the apex of a third row, and a fourth row or a fifth row and the hole penetration of the equilateral triangle are regularly orderly arranged in a zigzag shape.SELECTED DRAWING: Figure 1

Description

本発明は構造用合板に孔貫通または孔加工をすることで透湿抵抗値の低い構造用合板に関する。   The present invention relates to a structural plywood having a low moisture permeation resistance value by subjecting the structural plywood to hole penetration or hole machining.

2011年3月11日の東北地震以降に国内各地で地震が多くなって来ている。
それにニュースや新聞報道によると既に知られている活断層に限らず未知の活断層が国内各地に数多く存在すると報じられていて、大災害に結び付く地震が何時どこで発生するか限定できないとのことである。
2016年に起きた熊本や鳥取地震でも問題となっているが新耐震基準で建てられた耐震化住宅であっても倒壊や傾く建物が多く、居住者の安全安心が未だに確保されていない状態が続いていると言っても過言ではない。
Since the Tohoku earthquake on March 11, 2011, earthquakes have been increasing in various parts of the country.
In addition, according to news and newspaper reports, it is reported that there are many unknown active faults not only in the already known active faults in various parts of the country, but it is not possible to limit when and where earthquakes that lead to major disasters occur. is there.
Even in the Kumamoto and Tottori earthquakes that occurred in 2016, there are many buildings that are collapsed or tilted even in earthquake-resistant houses built according to the new earthquake resistance standards, and the safety and security of residents has not been secured yet It is no exaggeration to say that it continues.

新耐震基準で建てられた木質系の耐震化住宅の多くは繰返し地震にも優れている壁倍率の高い構造用合板を外壁側に用いている。
しかし、構造用合板は透湿抵抗値が高いために外気温が下がる冬場に充填断熱材と構造用合板との境面部から結露が発生し始めるケースが多く、一般的に言う冬型結露である。
壁内結露には冬型結露と夏型結露があり、夏型結露は夏場に居室内を冷やすことで起きる結露である。
いずれにせよ昔の建物は真壁であっても大壁であっても壁を構成する材料の素材自体が透湿性の良い素材を組み合わせていたのに対し、最近の住宅は高気密高断熱をうたい文句に建てられていて、一般的な木造住宅の壁構成としては、室内側から『石膏ボード⇒防湿シート⇒断熱材⇒構造用合板⇒透湿防水シート⇒通気層⇒外壁』となっている。
しかし、防湿シートを張ったとしても完璧な施工は難しく中途半端な施工により小さな隙間から入り込んだ湿気が構造用合板面で冬型結露を発生したりして住宅の劣化を早めていのが現状である。
また、夏場には防湿シート面で夏型結露を発生すなどして住宅の大敵である壁内結露により腐朽菌が増殖し劣化が進み住宅の寿命が短くなっている実態は未だに解決に至っていない。
Many wooden earthquake-resistant houses built to the new seismic standards use structural plywood with high wall magnification on the outer wall side, which is excellent for repeated earthquakes.
However, since the structural plywood has a high moisture permeability resistance value, there are many cases in which dew condensation starts to occur from the boundary surface between the filled heat insulating material and the structural plywood in the winter when the outside air temperature decreases, which is generally called winter type dew condensation.
There are winter-type condensation and summer-type condensation in the wall, and summer-type condensation is caused by cooling the room in the summer.
In any case, the old building used to be a wall or a large wall, but the materials that make up the wall were combined with a highly moisture permeable material. The wall structure of a typical wooden house is “Gypsum board ⇒ Moisture proof sheet ⇒ Thermal insulation ⇒ Structural plywood ⇒ Breathable waterproof sheet ⇒ Breathable layer ⇒ Exterior wall”.
However, even if a moisture-proof sheet is applied, it is difficult to complete a perfect construction, and moisture that has entered through a small gap due to half-finished construction causes winter-type condensation on the structural plywood surface, which accelerates the deterioration of the house. .
In addition, the actual situation in which summer-time dew condensation occurs on the moisture-proof sheet surface in the summer, causing decay of germs due to dew condensation in the wall, which is a major enemy of the house, has deteriorated and the life of the house has been shortened. .

壁構成材料の透湿抵抗値(工学単位:m2・h・mmHg/g)専門書より
・9mmOSB⇒31,6
・9mm構造用合板⇒16,8
・60mm土壁⇒6,1
・12mm無機質素材系面材⇒3,0
・9mm石膏ボード⇒0,45
・100mmグラスウール⇒0,012
・100mmロックウール⇒0,012
・0,1mmポリエチレン防湿シート⇒300
・0,2mm透湿防水シート⇒0,4
Moisture permeability resistance value of wall constituent material (Engineering unit: m 2 · h · mmHg / g) From a specialized book • 9 mm OSB ⇒ 31, 6
・ 9mm structural plywood⇒16,8
・ 60mm earth wall⇒6,1
・ 12mm inorganic material face material⇒3,0
・ 9mm gypsum board⇒0,45
・ 100mm glass wool⇒0,012
・ 100mm rock wool⇒0,012
・ 0.1mm polyethylene moisture-proof sheet⇒300
・ 0,2mm breathable waterproof sheet⇒0,4

上記の壁構成材料の中で耐震面材として多用されているOSBや構造用合板は製造時に使用される接着材によって透湿抵抗値が高くなっているのである。
即ち、木の素材自体は透湿抵抗値が低くても接着材が透湿抵抗値を高くしているのである。
そこで、耐震化住宅には繰返し地震に優れ安価で有利な構造用合板の唯一の弱点である透湿抵抗値が高い問題点を如何にして低くするか、この問題点を解決することができれば壁内に入り込んだ湿気が逃げ易くなり壁内結露が生じ難くなる。
重要なのは気密と断熱性能が高くて呼吸ができる壁構成にできたならば年間を通じて壁内結露の心配がないので住宅の長寿命化が図れるのである。
The OSB and the structural plywood that are frequently used as earthquake-resistant surface materials among the above-mentioned wall constituting materials have a high moisture permeability resistance value due to the adhesive used at the time of manufacture.
That is, the wood material itself has a high moisture permeability resistance value even if the moisture permeability resistance value is low.
Therefore, for earthquake-resistant houses, how to reduce the problem of high moisture permeability resistance, which is the only weakness of structural plywood that is excellent in repeated earthquakes and is cheap and advantageous, and if this problem can be solved, the wall Moisture that has entered the inside easily escapes and condensation in the walls hardly occurs.
What is important is that if a wall structure with high airtightness and heat insulation performance and breathing is possible, there is no concern about condensation in the wall throughout the year, so that the life of the house can be extended.

透湿実験データによれば冬場の期間の評価実験で1m2の9mm石膏ボードが300ccに対し、同じ1m2の9mm石膏ボードに孔貫通面積2平方センチメートルを開けたものは3000ccと10倍の透湿が可能となる。
それは、同条件で1m2の9mm構造用合板では10ccと殆ど湿気の透過がないのに対して孔貫通面積2平方センチメートルがあれば略3000ccの透湿が可能となることを示しておりこの点に着目した。
低透湿抵抗値の構造用合板また孔貫通付き構造用合板などを入力しJPlatPatで検索したが見いだすことは出来なかった。
According to the moisture permeability test data, 1m 2 of 9mm gypsum board is 300cc in the evaluation experiment during the winter season, and the same 1m 2 9mm gypsum board with a hole penetration area of 2 square centimeters is 3000cc, 10 times moisture permeability. Is possible.
It shows that the 1m 2 9mm structural plywood has almost no moisture permeation of 10cc and the perforated area of 2 square centimeters allows about 3000cc of moisture permeation. Pay attention.
We entered a structural plywood with low moisture permeability resistance or a structural plywood with a hole through it and searched it using JPlatPat, but we could not find it.

上記の技術背景で述べたように構造用合板は壁倍率が大きく繰返し地震にも優れ耐震化住宅や耐震改修には安価で良いのだが他の面材と比べ透湿抵抗値が高いのが弱点で、構造用合板面で結露が起きると断熱材も湿り断熱性能が極端に低下することによって壁内結露への悪循環が起きるのである。   As mentioned in the above technical background, structural plywood has a large wall magnification and is excellent for repeated earthquakes. It is cheap for earthquake-resistant houses and earthquake-resistant repairs, but it has a weak moisture resistance value compared to other face materials. When condensation occurs on the surface of the structural plywood, the heat insulating material also gets wet, and the heat insulation performance is extremely lowered, resulting in a vicious cycle of condensation in the wall.

この壁内結露は主要な構造躯体である土台、柱、間柱、同差しを腐らせ建物全体を駄目にするし、また壁内結露は白蟻被害を引起す原因ともなっており如何に壁内結露が建物全体に深刻なダメージを与え、このことが地震時の住宅倒壊に結び付く原因ともなっているのである。 This dew condensation in the walls rots the foundations, pillars, studs and joints, which are the main structural frames, and destroys the entire building. The entire building is seriously damaged, and this leads to the collapse of the house during the earthquake.

本発明は、耐震化住宅に安価で有利な構造用合板の弱点である透湿抵抗値を如何に低くし壁内結露を引起さない呼吸する壁工法を確立し社会に普及拡大を図ることで、震度7で繰返し地震があっても倒壊しない木質系住宅に必須な透湿抵抗値の低い構造用合板の提供を目的とするものである。   The present invention establishes a wall construction method for breathing that does not cause condensation in the wall by lowering the moisture resistance value, which is a weak point of a structural plywood that is inexpensive and advantageous for earthquake-resistant houses, and is spreading and spreading to society. The purpose of the present invention is to provide a structural plywood having a low moisture permeability resistance value that is essential for a wooden house that does not collapse even if there are repeated earthquakes with a seismic intensity of 7.

前記の目的を達成するため本発明は以下の技術的手段を講じた。
第1に、
透湿抵抗値を低くするために構造用合板の両面が孔貫通している。
または構造用合板の最終接着面までは孔加工するが最終層の板面だけは孔貫通しない構造用合板とした。
In order to achieve the above object, the present invention takes the following technical means.
First,
In order to reduce the moisture permeation resistance value, both surfaces of the structural plywood are perforated.
Alternatively, a structural plywood was formed in which holes were processed up to the final bonding surface of the structural plywood, but only the plate surface of the final layer did not penetrate the hole.

第2に、
円形の孔貫通は角度60度の正三角形または逆正三角形をなす千鳥配列で孔貫通した構造用合板とした。
Second,
The circular hole penetration was a structural plywood that penetrated the holes in a staggered arrangement having a regular triangle or an inverted regular triangle with an angle of 60 degrees.

第3に、
円形の孔加工は角度60度の正三角形または逆正三角形をなす千鳥配列で孔加工した構造用合板とした。
Third,
The circular hole was formed as a structural plywood having holes formed in a staggered arrangement having a regular triangle or an inverted regular triangle with an angle of 60 degrees.

第4に、
孔貫通または孔加工の加工面の範囲は土台や柱、間柱、胴差し、梁、または枠に釘やネジ釘、接着で取付け固定する固定範囲幅を除いた構造用合板とした。
Fourth,
The processing surface range of the hole penetration or hole processing was a plywood for structure excluding the fixing range width that is attached and fixed to the base, pillar, stud, trunk, beam, or frame by nails, screw nails, or adhesion.

透湿抵抗値を低くするための孔貫通や孔加工は加工前の構造用合板の初期強度に対して弱くなるので初期強度を維持または必要強度を確保するために、孔貫通や孔加工の孔径の制限また千鳥配列の形状の制限管理が必要で、要求される壁倍率により構造用合板の厚みを増やすなど求められる透湿抵抗値と壁倍率の関係値から厳格な技術基準と品質基準の基で生産しなければならないことは言うまでもない。
なお、合板には厚さ毎に積層数のJIS基準があり下記のとおりとなっているが、一般的な構造用合板の標準積層数は5枚合わせとなっている。
・合板厚み15mm未満は3枚合わせ以上
・合板厚み15mm以上18mm未満は4枚合わせ以上
・合板厚み18mm以上24mm未満は5枚合わせ以上
・合板厚み24mm以上は7枚合わせ以上
Hole penetration and drilling to lower the moisture permeation resistance value are weaker than the initial strength of the structural plywood before processing, so in order to maintain the initial strength or ensure the required strength, the hole diameter of the hole penetration and drilling It is also necessary to control the shape of the staggered array and to limit the strict technical standards and quality standards based on the relationship between the required moisture permeability and the required value of the wall plywood. It goes without saying that it must be produced in
The plywood has JIS standards for the number of layers for each thickness and is as follows, but the standard number of layers for general structural plywood is five.
・ Plywood thickness of less than 15mm is a combination of 3 sheets or more ・ Plywood thickness is 15mm or more and less than 18mm is a combination of 4 sheets or more ・ Plywood thickness is 18mm or more and less than 24mm is a combination of 5 sheets

本発明の構造用合板を用いて造る木質系住宅であれば呼吸する壁構成となり壁内結露を引起さない長寿命で地震に強い耐震化住宅が提供できる。   If it is a wood type house built using the structural plywood of the present invention, it becomes a wall structure to breathe and can provide an earthquake resistant house that is long-life and does not cause condensation in the wall and is strong against earthquakes.

孔貫通構造用合板の平面図と断面図で孔貫通の千鳥配列の概念図Conceptual diagram of a staggered arrangement of holes penetrating with a plan view and a cross-sectional view of a plywood for a hole penetrating structure 孔加工構造用合板の平面図と断面図で孔加工の千鳥配列の概念図Conceptual diagram of a staggered arrangement of drilling holes with a plan view and a cross-sectional view of a plywood for drilling structure

以下、本発明の実施形態を図1では実施例1を、また図2では実施例2を各図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 and Example 1, and FIG.

実施例1の図1(a)(b)は5枚合わせの構造用合板に角度60度の正三角形の各点を孔貫通し千鳥配列した加工途中の構造用合板101である。
孔貫通の千鳥配列で一列目は正三角形の頂点となっていて、二列目は底辺の二点となり整然と規則的に千鳥配列されていて頂点の孔貫通11と12そして孔貫通19を結ぶと直線となっている。
二列目の底辺の孔貫通21と22の二点と他の孔貫通29を結べば直線となっている。
底辺の孔貫通21と22は二列目ではあるが三列目の頂点の孔貫通21と22ともなり四列目また五列目と正三角形の孔貫通が規則的で整然と千鳥配列した構造用合板101となっている。
FIGS. 1A and 1B of the first embodiment are structural plywoods 101 in the middle of processing in which five regular plywoods are arranged in a zigzag pattern through holes of 60 ° angle equilateral triangles.
In the zigzag arrangement of the through holes, the first row is the apex of the equilateral triangle, the second row is the bottom two points, and is regularly and regularly arranged in a staggered manner, and the apex hole penetrations 11 and 12 and the hole penetration 19 are connected. It is a straight line.
If two points of the hole penetrations 21 and 22 at the bottom of the second row are connected to another hole penetration 29, a straight line is formed.
The hole penetrations 21 and 22 on the bottom side are in the second row, but are also the hole penetrations 21 and 22 at the apex of the third row, and the hole penetrations in the fourth row, the fifth row, and the equilateral triangle are regular and orderly arranged. A plywood 101 is provided.

図1(b)は5枚合わせの構造用合板101の孔貫通11,12を図示した断面図である。
孔貫通の孔径と正三角形の一辺の寸法は要求された透湿抵抗値と構造用合板101の強度値によって決まるが、孔径を大きくすることと正三角形の一辺の寸法を短くすることは構造用合板101の強度値を低下させることになる。
したがって、孔貫通の孔径と正三角形の一辺の寸法は品質上で構造用合板101の強度値を保てない場合には一段上またはその上の厚みを選定することにより要求される透湿抵抗値と強度値を確保することになる。
FIG. 1B is a cross-sectional view illustrating the hole penetrations 11 and 12 of the five-layer structural plywood 101.
The hole diameter of the through hole and the dimension of one side of the equilateral triangle are determined by the required moisture permeation resistance value and the strength value of the structural plywood 101. However, increasing the hole diameter and shortening the dimension of one side of the equilateral triangle are for structural purposes. The strength value of the plywood 101 is reduced.
Therefore, if the hole diameter of the through hole and the dimension of one side of the equilateral triangle cannot maintain the strength value of the structural plywood 101 in terms of quality, the moisture permeation resistance value required by selecting the upper layer or the thickness above it is selected. And strength value will be secured.

孔貫通の加工方法としてはいくつか考えられるが多くのドリルが千鳥配列された加工機で生産するかレーザー加工など前記加工方法に限定するものではない。
また、孔貫通の孔径は略5mmを想定しているが正三角形の一辺の寸法を含め品質管理上で条件設定するもので限定していない。
次に、孔貫通の加工面の範囲は土台や柱、間柱、胴差し、梁、または枠に釘やネジ釘、接着等で取付け固定する固定範囲幅95、99を除いた構造用合板101となっている。
尚、図1(a)には間柱部分の固定範囲幅は図示していない。
There are several possible methods for drilling holes. However, the present invention is not limited to the above-described processing methods such as production with a processing machine in which many drills are arranged in a staggered manner or laser processing.
Moreover, although the hole diameter of the hole penetration is assumed to be approximately 5 mm, the condition is set for quality control including the dimension of one side of the equilateral triangle, and is not limited.
Next, the range of the machining surface for penetrating the holes is the plywood 101 for structure excluding the fixing range widths 95 and 99 for mounting and fixing to the base, pillar, stud, trunk, beam, or frame by nails, screw nails, adhesion, etc. It has become.
Note that FIG. 1A does not show the fixed range width of the stud portion.

実施例2の図2(a)(b)は5枚合わせの構造用合板に角度60度の逆正三角形の各点を孔加工し千鳥配列した加工途中の構造用合板105である。
孔加工の千鳥配列で一列目は逆正三角形の底辺の二点となっていて、二列目は頂点となり整然と規則的に千鳥配列されていて底辺の二点の孔加工41と42そして孔加工49を結ぶと直線となっている。
二列目の逆正三角形の頂点である孔加工51と他の孔加工59を結べば直線となっている。
頂点の孔加工51と52は二列目ではあるが三列目の底辺の孔加工51と52ともなり四列目また五列目と逆正三角形の孔加工が規則的で整然と千鳥配列した構造用合板105となっている。
FIGS. 2 (a) and 2 (b) of the second embodiment are structural plywoods 105 in the middle of processing in which each point of an inverted equilateral triangle with an angle of 60 degrees is formed in a staggered arrangement on five structural plywoods.
In the staggered arrangement of holes, the first row has two points on the bottom of the inverted equilateral triangle, the second row is the apex, and is regularly and regularly arranged in a staggered manner. When 49 is connected, it becomes a straight line.
A straight line is formed by connecting the hole processing 51 that is the apex of the inverted regular triangle in the second row and the other hole processing 59.
The top perforations 51 and 52 are in the second row, but the bottom perforations 51 and 52 in the third row are the same, and the fourth and fifth rows and the regular equilateral triangles are perforated in a regular and orderly manner. A plywood 105 is provided.

図2(b)は5枚合わせの構造用合板105の孔加工41,42を図示した断面図である。
孔加工の孔径と逆正三角形の一辺の寸法は要求された透湿抵抗値と構造用合板105の強度値によって決まるが、孔径を大きくすることと逆正三角形の一辺の寸法を短くすることは構造用合板105の強度値を低下させることになる。
したがって、孔加工の孔径と逆正三角形の一辺の寸法は品質上で構造用合板105の強度値を保てない場合には一段上またはその上の厚みを選定することにより要求される透湿抵抗値と強度値を確保することになる。
FIG. 2B is a cross-sectional view illustrating the hole drilling 41 and 42 of the five-layer structural plywood 105.
The hole diameter of the hole processing and the dimension of one side of the inverted equilateral triangle are determined by the required moisture permeability resistance value and the strength value of the structural plywood 105, but increasing the hole diameter and shortening the dimension of one side of the inverted equilateral triangle are The strength value of the structural plywood 105 is reduced.
Therefore, when the hole diameter of the hole processing and the dimension of one side of the inverted equilateral triangle cannot maintain the strength value of the structural plywood 105 in terms of quality, the moisture permeation resistance required by selecting the upper layer or the thickness above it is selected. Value and strength value will be secured.

孔加工の加工方法としてはいくつか考えられるが多くのドリルが千鳥配列された加工機で生産するがこれを限定するものではない。
次に、孔加工の加工面の範囲は土台や柱、間柱、胴差し、梁、または枠に釘やネジ釘、接着等で取付け固定する固定範囲幅85、89を除いた構造用合板105となっている。
尚、図2(a)には間柱部分の固定範囲幅は図示していない。
There are several possible drilling methods, but many drills are produced on a staggered processing machine, but this is not a limitation.
Next, the range of the machining surface for drilling is the structural plywood 105 excluding the fixing range widths 85 and 89 for mounting and fixing to the base, pillar, stud, trunk, beam, or frame by nails, screw nails, adhesion, etc. It has become.
Note that FIG. 2A does not show the fixed range width of the stud portion.

次に、孔加工の深さは構造用合板の製造時に使用される接着材によって透湿抵抗値が高くなっているので接着材を完全に除去する深さまで孔加工する。
したがって構造用合板の最終接着面までは孔加工するが最終層の板面100だけは貫通しない孔加工となっている。
この孔加工方法により一方の板面は孔加工が千鳥配列しているが、他方の最終層の板面100は孔加工がない状態の構造用合板105となっている。
Next, since the moisture permeation resistance value is high due to the adhesive used when manufacturing the structural plywood, the hole is drilled to a depth at which the adhesive is completely removed.
Therefore, the hole is drilled up to the final bonding surface of the structural plywood, but not the plate surface 100 of the final layer.
By this drilling method, one plate surface is staggered in the hole processing, but the plate surface 100 of the other final layer is a structural plywood 105 in a state without hole processing.

実施例1の孔貫通または実施例2の孔加工の孔径は略5mmを想定しているが正三角形または逆正三角形の一辺の寸法を含め品質管理上で条件設定するもので限定していない。
また、実施例2の加工方法は貫通させない方法であればどのような加工方法を選択しても良い。
Although the hole diameter of the hole penetration of Example 1 or the hole processing of Example 2 is assumed to be about 5 mm, it is not limited in terms of quality control including the dimension of one side of an equilateral triangle or an inverted equilateral triangle.
Moreover, any processing method may be selected as long as the processing method of the second embodiment is a method that does not allow penetration.

本発明の構造用合板であれは木質系住宅の耐震化住宅に活用できる他、結露しない住宅造りにより居住者の安全、安心、快適さの更なる改善が図られるので健康寿命が延びこれによって国民医療費の低減に結び付く可能が高い。 The structural plywood of the present invention can be used for earthquake-resistant houses such as wooden houses, and the construction of non-condensing houses can further improve the safety, security and comfort of residents, thereby extending the healthy life expectancy. It is likely to lead to a reduction in medical costs.

11、12,19 孔貫通
21,22,29 孔貫通
41、42,49 孔加工
51,52、59 孔加工
85、89 固定範囲幅
95、99 固定範囲幅
100 最終層の板面
101 孔貫通の構造用合板
105 孔加工の構造用合板









11, 12, 19 Hole penetration 21, 22, 29 Hole penetration 41, 42, 49 Hole machining 51, 52, 59 Hole machining 85, 89 Fixed range width 95, 99 Fixed range width 100 Final surface plate surface 101 Hole penetration Structural plywood 105 Plywood structural plywood









Claims (4)

透湿抵抗値を低くするために構造用合板の両面が孔貫通しているまたは構造用合板の最終接着面までは孔加工するが最終層の板面だけは孔貫通しないことを特徴とする構造用合板。 A structure characterized in that both sides of the structural plywood are perforated in order to reduce the moisture permeation resistance value, or the final bonding surface of the structural plywood is perforated, but only the surface of the final layer is not perforated. Plywood. 円形の孔貫通は角度60度の正三角形または逆正三角形をなす千鳥配列で孔貫通したことを特徴とする請求項1に記載の構造用合板。   2. The structural plywood according to claim 1, wherein the circular through holes are formed in a staggered arrangement having a regular triangle or an inverted regular triangle with an angle of 60 degrees. 円形の孔加工は角度60度の正三角形または逆正三角形をなす千鳥配列で孔加工したことを特徴とする請求項1に記載の構造用合板。   2. The structural plywood according to claim 1, wherein the circular hole processing is performed in a staggered arrangement having a regular triangle or an inverted regular triangle with an angle of 60 degrees. 孔貫通または孔加工の加工面の範囲は土台や柱、間柱、胴差し、梁、または枠に釘やネジ釘、接着で取付け固定する固定範囲幅を除いたことを特徴とする請求項1から請求項3いずれか一項に記載の構造用合板。




















2. The range of the machining surface for hole penetration or drilling is excluded from a fixed range width for mounting and fixing to a base, a pillar, a stud, a trunk, a beam, or a frame by a nail, a screw nail, or an adhesive. The structural plywood according to claim 3.




















JP2016229732A 2016-11-28 2016-11-28 Structural plywood Pending JP2018087411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229732A JP2018087411A (en) 2016-11-28 2016-11-28 Structural plywood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229732A JP2018087411A (en) 2016-11-28 2016-11-28 Structural plywood

Publications (1)

Publication Number Publication Date
JP2018087411A true JP2018087411A (en) 2018-06-07

Family

ID=62493501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229732A Pending JP2018087411A (en) 2016-11-28 2016-11-28 Structural plywood

Country Status (1)

Country Link
JP (1) JP2018087411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797963A (en) * 2019-03-01 2019-05-24 山东集顶装饰科技有限公司 Can quickly location and installation leveling keel structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196242A (en) * 1977-11-28 1980-04-01 Mclaren John C Flame retardant plywood panel
JPS56148442U (en) * 1980-04-08 1981-11-07
JPH0398210U (en) * 1990-01-24 1991-10-11
JP3041925U (en) * 1997-03-28 1997-10-03 株式会社 カワムラ Framed seismic structure for wooden buildings
JPH10338980A (en) * 1997-06-10 1998-12-22 Hiroshi Kobayashi Wall-surface structure of house
JP2005256440A (en) * 2004-03-12 2005-09-22 Daiken Trade & Ind Co Ltd Humidity conditioning interior finish panel and mounting structure therefor
US20120324814A1 (en) * 2011-06-21 2012-12-27 Victor Amend Exterior wall finishing arrangement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196242A (en) * 1977-11-28 1980-04-01 Mclaren John C Flame retardant plywood panel
JPS56148442U (en) * 1980-04-08 1981-11-07
JPH0398210U (en) * 1990-01-24 1991-10-11
JP3041925U (en) * 1997-03-28 1997-10-03 株式会社 カワムラ Framed seismic structure for wooden buildings
JPH10338980A (en) * 1997-06-10 1998-12-22 Hiroshi Kobayashi Wall-surface structure of house
JP2005256440A (en) * 2004-03-12 2005-09-22 Daiken Trade & Ind Co Ltd Humidity conditioning interior finish panel and mounting structure therefor
US20120324814A1 (en) * 2011-06-21 2012-12-27 Victor Amend Exterior wall finishing arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797963A (en) * 2019-03-01 2019-05-24 山东集顶装饰科技有限公司 Can quickly location and installation leveling keel structure
CN109797963B (en) * 2019-03-01 2024-05-07 山东集顶装饰科技有限公司 Keel structure capable of being positioned, installed and leveled rapidly

Similar Documents

Publication Publication Date Title
JP2016204958A (en) Fireproof cross-laminated timber
JP2008297867A (en) Method of manufacturing laminated bamboo material for building, and house using laminated bamboo material
HU228968B1 (en) Energy - and weight - saving building element, as well as making and application procedure thereof
JP2018087411A (en) Structural plywood
JP2005036456A (en) Structure material and building
EP3480385A2 (en) A novel insulated cross-laminated construction element and method for using the same
WO2022144479A1 (en) Acoustic suspended ceiling
KR20190001270U (en) Block wall for building and its assembly
JP5327665B2 (en) External heat insulation method and external heat insulation structure for the outer wall of wooden buildings
JP5279999B2 (en) Housing construction method
JP4035452B2 (en) Wall structure
JP2010100995A (en) Method for manufacturing furring strip with thermal insulating material
JP2008156910A (en) Building member and building structure
JP3306818B2 (en) Multiple air layer insulation wall
CN110847480A (en) Wallboard material suitable for wood structure fabricated building
JP2009138474A (en) Outside direct-sticking wooden framework bearing wall structure of plywood for thick structure
US11293177B2 (en) Wood foundation walls and foundations formed with such walls
JP6894625B2 (en) Fireproof wooden disaster prevention shelter
JP4160440B2 (en) Non-hozo nail-jointed timber structure
JP3587997B2 (en) Architectural laminated panel and building structure using it
JP2021181679A (en) Woody member
KR101898549B1 (en) Wood Complex Panel for Construction and Construction Method thereof
JP2010024809A (en) Forced outer-wall air circulation type wood frame construction
JP5913702B1 (en) Peripheral wall construction method for wooden buildings
JP2024055671A (en) Mortar exterior walls and their fixing structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413