JP2018087114A - Method for producing scorodite - Google Patents
Method for producing scorodite Download PDFInfo
- Publication number
- JP2018087114A JP2018087114A JP2016231994A JP2016231994A JP2018087114A JP 2018087114 A JP2018087114 A JP 2018087114A JP 2016231994 A JP2016231994 A JP 2016231994A JP 2016231994 A JP2016231994 A JP 2016231994A JP 2018087114 A JP2018087114 A JP 2018087114A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- scorodite
- solution
- copper
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Removal Of Specific Substances (AREA)
- Compounds Of Iron (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、スコロダイトを効率よく安定に製造することができるスコロダイトの製造方法に関する。 The present invention relates to a method for producing scorodite capable of producing scorodite efficiently and stably.
銅の電解精製の際、銅アノードに含まれるヒ素などの不純物の一部は電解液に蓄積するため、電解液の一部を浄液処理として脱銅電解処理するのが一般的である。この工程の中で製錬中間産物としてヒ化銅(Cu3Asなど)を含むスライムが発生する。このヒ化銅含有スライムには、例えば、銅40〜60質量%、ヒ素20〜40質量%、鉛、錫、アンチモン、ビスマスなど(それぞれ0.5〜5質量%)が含まれているので、これを銅製錬工程に戻して繰返し処理するのが一般的である。またはヒ化銅含有スライム中のヒ素と銅を分離した後、ヒ素を安定な化合物に固定化処理して、銅製錬から系外除去する方法も知られている。 At the time of electrolytic refining of copper, a part of impurities such as arsenic contained in the copper anode accumulates in the electrolytic solution. Therefore, a part of the electrolytic solution is generally subjected to a copper removal electrolytic treatment as a cleaning treatment. In this process, slime containing copper arsenide (such as Cu 3 As) is generated as a smelting intermediate product. Since this copper arsenide-containing slime contains, for example, copper 40-60 mass%, arsenic 20-40 mass%, lead, tin, antimony, bismuth, etc. (each 0.5-5 mass%), Generally, this is returned to the copper smelting process and repeatedly processed. Alternatively, a method is also known in which arsenic and copper in a copper arsenide-containing slime are separated, and thereafter, arsenic is fixed to a stable compound and removed from the copper smelting system.
ヒ素を系外に除去する方法として、スライムに含まれるヒ素と銅を分離した後に、ヒ素を鉄と反応させて安定な鉄ヒ素化合物(スコロダイト:FeAsO4・2H2O)を生成させるスコロダイト法が知られている。 As a method for removing arsenic from the system, there is a scorodite method in which arsenic and copper contained in a slime are separated, and then arsenic is reacted with iron to generate a stable iron arsenic compound (scorodite: FeAsO 4 .2H 2 O). Are known.
例えば、5価のヒ素を含む溶液に2価の鉄イオンを加えて、溶液中のヒ素に対する鉄のモル比(Fe/As)を1以上〜1.5未満にし、酸化剤を加えて撹拌しながら70℃以上に加熱して反応させ、結晶性スコロダイトを合成する方法が知られている(特許第4087433号公報、特許第4149488号公報、特許第4615561号公報)。 For example, divalent iron ions are added to a solution containing pentavalent arsenic so that the molar ratio of iron to arsenic (Fe / As) in the solution is 1 or more and less than 1.5, and an oxidizing agent is added and stirred. However, there is known a method of synthesizing crystalline scorodite by heating to 70 ° C. or higher (Japanese Patent No. 4087433, Japanese Patent No. 4149488, and Japanese Patent No. 4615561).
しかし、ヒ素に対する鉄のモル比(Fe/As)を1以上〜1.5未満に調整してスコロダイトを合成する方法は、ヒ化銅などをアルカリ酸化浸出して銅分を除去した後に、Naとヒ素を含む溶液にCaを加えてCaヒ素化合物を生成させてNaと分離し、このCaヒ素化合物を硫酸溶解してCaを石膏にして除去したヒ素含有液を用いており、NaとCaの除去処理が煩雑である。 However, the method of synthesizing scorodite by adjusting the molar ratio of iron to arsenic (Fe / As) to 1 to less than 1.5 is performed by removing copper from alkali leaching of copper arsenide or the like and then removing Na. Ca is added to a solution containing arsenic to form a Ca arsenic compound, which is separated from Na. This arsenic-containing liquid is used in which Ca is dissolved in sulfuric acid and Ca is removed by gypsum. The removal process is complicated.
また、酸性水溶液中に含まれる5価のAsに対する3価のFeのモル比を0.9以上〜1.0未満に調節した後に加熱して結晶性スコロダイトを合成する方法が知られている(特許第4538481号公報)。しかし、この方法は、ヒ素を含む酸性水溶液として銅製錬工程で産出する電解沈殿銅の硫酸浸出液を用いているので、液中の銅濃度が高く、スコロダイト中にCuが1〜2wt%混入する問題がある。 Further, a method of synthesizing crystalline scorodite by heating after adjusting the molar ratio of trivalent Fe to pentavalent As contained in the acidic aqueous solution to 0.9 or more and less than 1.0 is known ( Japanese Patent No. 4538481). However, this method uses a sulfuric acid leaching solution of electrolytically precipitated copper produced in the copper smelting process as an acidic aqueous solution containing arsenic, so that the copper concentration in the solution is high and Cu is mixed in the scorodite by 1 to 2 wt%. There is.
従来方法の問題を解決した方法として、銅ヒ素含有物を水酸化ナトリウム溶液でアルカリ酸化浸出し、銅分を除去したヒ素含有溶液に第二鉄化合物を添加して鉄ヒ素澱物を生成させ、これをpH0.7〜1.2の硫酸酸性スラリーにし、加熱して結晶質のスコロダイトを生成する方法が提案されている(特開2014−208581号公報)。この方法は、処理工程が簡単であり、Cuの混入が少なく、かつ粒径の大きなスコロダイトを製造することができ、さらに鉄ヒ素澱物の容量がヒ素浸出液に対して大幅に低減する利点を有している。 As a method of solving the problems of the conventional method, the copper arsenic-containing material is alkaline oxidatively leached with a sodium hydroxide solution, and a ferric compound is added to the arsenic-containing solution from which copper has been removed to produce an iron arsenic starch, There has been proposed a method in which a sulfuric acid slurry having a pH of 0.7 to 1.2 is formed and heated to produce crystalline scorodite (Japanese Patent Laid-Open No. 2014-208581). This method has the advantage that the treatment process is simple, Cu contamination is small, and scorodite with a large particle size can be produced, and the capacity of iron arsenic starch is greatly reduced with respect to arsenic leachate. doing.
特許文献5の製造方法は、スコロダイトのヒ素溶出量は0.2ppmに抑制されており、溶出基準0.3ppm(廃掃法・特別管理廃棄物)に適合しているが、ヒ素は有毒物質であるのでヒ素の溶出量は出来るだけ少ないことが好ましい。また、特許文献5の製造方法はスコロダイトへの転換率が約90%の処理例があるが、スコロダイトの生産性を高めるにはより高い転換率が好ましい。さらにスコロダイトへの転換率が高くなれば、排液のヒ素濃度が減少し、排液処理の負担を軽減することができる。 In the production method of Patent Document 5, the arsenic elution amount of scorodite is suppressed to 0.2 ppm, which is compatible with the elution standard of 0.3 ppm (waste disposal method / special management waste), but arsenic is a toxic substance. Therefore, it is preferable that the amount of arsenic eluted is as small as possible. Moreover, although the manufacturing method of patent document 5 has a processing example whose conversion rate to scorodite is about 90%, a higher conversion rate is preferable in order to increase the productivity of scorodite. Furthermore, if the conversion rate to scorodite increases, the arsenic concentration of the drainage decreases, and the burden of the drainage treatment can be reduced.
本発明の製造方法は、特許文献5の製造方法におけるヒ素溶出量のさらなる低減とスコロダイト転換率の向上と云う課題を解決したものであり、特許文献5の製造方法よりもヒ素溶出量が少ないスコロダイトを95%以上の高い転換率で製造する方法を提供する。 The production method of the present invention solves the problems of further reduction of the arsenic elution amount and improvement of the scorodite conversion rate in the production method of Patent Document 5, and scorodite with less arsenic elution amount than the production method of Patent Document 5 Is produced at a high conversion rate of 95% or more.
本発明は、以下の構成を有するスコロダイトの製造方法である。
〔1〕銅ヒ素含有物をナトリウム含有溶液でアルカリ酸化浸出して銅分を除去したヒ素浸出液に、第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、この澱物をpH1.5以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成する方法において、前記酸性溶液のFe/Asモル比を1.0以上〜1.25以下、およびナトリウム濃度を2.5g/L以上にして、ヒ素溶出濃度が0.15mg/L以下のスコロダイトを95%以上の転換率で生成させることを特徴とするスコロダイトの製造方法。
〔2〕ナトリウム濃度を3.0g/L以上〜4.0g/L未満にして、ヒ素溶出濃度が0.07mg/L以下のスコロダイトを98%以上の転換率で生成させる前記[1]に記載するスコロダイトの製造方法。
〔3〕銅ヒ素含有物に水酸化ナトリウム溶液を加え、加熱下でアルカリ酸化浸出を行い、酸化銅を含む残渣を分離した後に、ヒ素を含む浸出液に第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、この澱物を用いる前記[1]または前記[2]に記載するスコロダイトの製造方法。
The present invention is a method for producing scorodite having the following configuration.
[1] An iron arsenic starch is formed by adding a ferric compound to an arsenic leachate obtained by removing copper from an alkali oxidation leaching of a copper arsenic-containing substance with a sodium-containing solution, and solid-liquid separation is performed. In a method of producing crystalline scorodite by heating to an acidic solution having a pH of 1.5 or less, the Fe / As molar ratio of the acidic solution is 1.0 to 1.25 and the sodium concentration is 2.5 g. A method for producing scorodite, characterized by producing scorodite having an arsenic elution concentration of 0.15 mg / L or less at a conversion rate of 95% or more.
[2] The method according to [1], wherein scorodite having an arsenic elution concentration of 0.07 mg / L or less is generated at a conversion rate of 98% or more by setting the sodium concentration to 3.0 g / L or more and less than 4.0 g / L. To produce scorodite.
[3] A sodium hydroxide solution is added to a copper arsenic-containing material, and alkaline oxidation leaching is performed under heating to separate a residue containing copper oxide. Then, a ferric compound is added to the leaching solution containing arsenic to add iron arsenic starch. The method for producing scorodite according to the above [1] or [2], wherein a product is produced, solid-liquid separated, and the starch is used.
〔具体的な説明〕
以下、本発明を実施例と共に具体的に説明する。
本発明の製造方法は、銅ヒ素含有物をナトリウム含有溶液でアルカリ酸化浸出して銅分を除去したヒ素浸出液に、第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、これをpH1.5以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成する方法において、前記酸性溶液のFe/Asモル比を1.0以上〜1.25以下、およびナトリウム濃度を2.5g/L以上にして、ヒ素溶出濃度が0.15mg/L以下のスコロダイトを95%以上の転換率で生成させることを特徴とするスコロダイトの製造方法である。
[Specific description]
Hereinafter, the present invention will be specifically described together with examples.
In the production method of the present invention, an iron arsenic starch is formed by adding a ferric compound to an arsenic leachate obtained by removing copper by oxidative leaching of a copper arsenic-containing substance with a sodium-containing solution, and solid-liquid separation is performed. In the method of producing an acidic solution having a pH of 1.5 or less and heating to produce crystalline scorodite, the Fe / As molar ratio of the acidic solution is 1.0 to 1.25 and the sodium concentration is 2 The scorodite production method is characterized in that scorodite having an arsenic elution concentration of 0.15 mg / L or less is generated at a conversion rate of 95% or more at a rate of 0.5 g / L or more.
本発明の製造方法は、銅ヒ素含有物をナトリウム含有溶液でアルカリ酸化処理して銅分を除去したヒ素浸出液に、第二鉄化合物を添加して生成させた鉄ヒ素澱物を用いる。銅ヒ素含有物は、例えば、ヒ化銅(Cu3As、Cu5As2)を含有する脱銅電解スライムなどである。ヒ化銅を含む脱銅電解スライムから鉄ヒ素澱物を生成する工程、および該鉄ヒ素澱物からスコロダイトを生成する処理工程の一例を図1に示す。 The production method of the present invention uses an iron arsenic starch produced by adding a ferric compound to an arsenic leachate obtained by removing copper from a copper arsenic-containing material by alkali oxidation treatment with a sodium-containing solution. The copper arsenic-containing material is, for example, a copper removal electrolytic slime containing copper arsenide (Cu 3 As, Cu 5 As 2 ). An example of the process of producing iron arsenic starch from decoppered electrolytic slime containing copper arsenide and the treatment process of producing scorodite from the iron arsenic starch are shown in FIG.
図示する処理例において、ヒ化銅を含む脱銅電解スライムに、水酸化ナトリウム液を加え、酸化剤として例えば空気や酸素を吹き込み、50℃〜60℃の加熱下で酸化浸出(アルカリ溶液による酸化浸出:アルカリ酸化浸出と云う)してヒ素を溶出し、銅分を酸化銅にして残渣にし、これを固液分離してヒ素浸出液を回収する。回収したヒ素浸出液に硫酸第二鉄などの第二鉄化合物を添加することによって鉄ヒ素澱物が生成する。該鉄ヒ素澱物は水酸化鉄にヒ酸イオンが吸着した状態の澱物であり、ヒ素の一部は非結晶質なヒ酸鉄として存在することもある。 In the illustrated processing example, a sodium hydroxide solution is added to a copper removal electrolytic slime containing copper arsenide, and air or oxygen, for example, is blown as an oxidant, and oxidative leaching (oxidation with an alkaline solution) is performed at 50 ° C. to 60 ° C. The arsenic is eluted by leaching: alkali leaching), and the copper content is made into copper oxide to form a residue, which is separated into solid and liquid to recover the arsenic leachate. An iron arsenic starch is produced by adding a ferric compound such as ferric sulfate to the recovered arsenic leachate. The iron arsenic starch is a starch in which arsenic ions are adsorbed on iron hydroxide, and a part of arsenic may exist as amorphous iron arsenate.
本発明の製造方法は、前記鉄ヒ素澱物を固液分離して洗浄し、必要に応じて硫酸などを加えて溶解し、pH1.5以下、好ましくはpH0.5以上〜1.0以下の酸性溶液(鉄ヒ素澱物溶解液)にし、加熱して結晶質のスコロダイトを生成する方法において、該酸性溶液のFe/Asモル比を1.0以上〜1.25以下、および初期ナトリウム濃度を2.5g/L以上にして、結晶質のスコロダイトを生成させる方法である。 In the production method of the present invention, the iron arsenic starch is washed by solid-liquid separation, and if necessary, dissolved by adding sulfuric acid or the like to a pH of 1.5 or less, preferably a pH of 0.5 or more and 1.0 or less. In the method of forming an acidic solution (iron arsenic starch solution) and heating to produce crystalline scorodite, the Fe / As molar ratio of the acidic solution is 1.0 to 1.25 and the initial sodium concentration is This is a method for producing crystalline scorodite at 2.5 g / L or more.
前記鉄ヒ素澱物の酸性溶液のpHが1.5より高いと該澱物が溶解し難く、pH0.5未満ではスコロダイトが生成し難い。pH1.5以下、好ましくはpH0.5以上〜1.0以下の酸性溶液を90℃以上に加熱して結晶質のスコロダイトを生成させる。 When the pH of the acidic solution of iron arsenic starch is higher than 1.5, the starch hardly dissolves, and when the pH is less than 0.5, scorodite is hardly generated. An acidic solution having a pH of 1.5 or less, preferably a pH of 0.5 to 1.0 is heated to 90 ° C. or more to produce crystalline scorodite.
本発明の製造方法は、前記溶液のFe/Asモル比が1.0以上〜1.25以下の範囲でスコロダイトを生成させる。該Fe/Asモル比は、鉄ヒ素澱物のFe/Asモル比であるので、ヒ素浸出液などに硫酸第二鉄を添加して鉄ヒ素澱物を生成させるときに、鉄ヒ素澱物のFe/Asモル比が1.0以上〜1.25以下になるように、ヒ素濃度に応じて硫酸第二鉄の添加量を調整し、前記Fe/Asモル比の鉄ヒ素澱物を生成させ、この鉄ヒ素澱物を用いればよい。 In the production method of the present invention, scorodite is produced in a range where the Fe / As molar ratio of the solution is 1.0 or more and 1.25 or less. Since the Fe / As molar ratio is the Fe / As molar ratio of iron arsenic starch, when ferric sulfate is added to arsenic leachate or the like to produce iron arsenic starch, the Fe / As molar ratio of Fe The amount of ferric sulfate is adjusted according to the arsenic concentration so that the / As molar ratio is 1.0 or more and 1.25 or less, and iron arsenic starch having the Fe / As molar ratio is generated. This iron arsenic starch may be used.
Fe/Asモル比が1.0未満では、液中のヒ素量が過剰になり、安定なスコロダイトが生成し難く、また生成したスコロダイトからのヒ素溶出量が多くなる。一方、Fe/Asモル比が1.25を上回ると、スコロダイトへの転換率が低下し、操業効率が落ちる。 If the Fe / As molar ratio is less than 1.0, the amount of arsenic in the liquid becomes excessive, it is difficult to generate stable scorodite, and the amount of arsenic eluted from the generated scorodite increases. On the other hand, when the Fe / As molar ratio exceeds 1.25, the conversion rate to scorodite decreases and the operation efficiency decreases.
本発明の製造方法は、前記溶液のFe/Asモル比が前記範囲において、該溶液の初期ナトリウム濃度が2.5g/L以上の範囲、好ましくは3.0g/L以上〜4.0g/L未満の範囲でスコロダイトを生成させる。該ナトリウム濃度はヒ素のアルカリ酸化浸出に由来するので、該ヒ素浸出液から回収した鉄ヒ素澱物に残留するナトリウムによって前記溶液のナトリウム濃度が前記範囲になるようにすればよい。 In the production method of the present invention, the Fe / As molar ratio of the solution is in the above range, and the initial sodium concentration of the solution is in the range of 2.5 g / L or more, preferably from 3.0 g / L to 4.0 g / L. Generate scorodite in the range below. Since the sodium concentration is derived from the alkaline oxidation leaching of arsenic, the sodium concentration of the solution may be in the above range by the sodium remaining in the iron arsenic starch recovered from the arsenic leaching solution.
ヒ化銅を含むスライムに水酸化ナトリウム液を加えアルカリ酸化浸出して得たヒ素浸出液に第二鉄化合物を添加して鉄ヒ素澱物を生成させたときに、この鉄ヒ素澱物にはヒ素浸出液に由来するナトリウムが残留している。通常は、固液分離・回収した鉄ヒ素澱物を洗浄することで、ナトリウムイオン、硫酸イオンなどの付着物の量を調整または除去することができる。 When an iron arsenic starch is formed by adding a ferric compound to an arsenic leachate obtained by adding sodium hydroxide solution to a slime containing copper arsenide and oxidative leaching with alkali, this iron arsenic starch contains arsenic. Sodium from the leachate remains. Usually, the amount of deposits such as sodium ions and sulfate ions can be adjusted or removed by washing the solid-liquid separated and recovered iron arsenic starch.
本発明の製造方法において、前記鉄ヒ素澱物をpH1.5以下、好ましくはpH0.5以上〜1.0以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成するときに、該溶液の初期ナトリウム濃度がスコロダイトの安定性および転換率に大きな影響を及ぼすことが見出された。具体的には、Fe/Asモル比が1.0以上〜1.25以下の範囲で、初期ナトリウム濃度を2.5g/L以上にしてスコロダイトを生成させることによって、ヒ素溶出量が0.15mg/L以下の結晶質スコロダイトを95%以上の転換率で製造することができる。 In the production method of the present invention, when the iron arsenic starch is an acidic solution having a pH of 1.5 or less, preferably 0.5 to 1.0, and heated to produce crystalline scorodite, It has been found that the initial sodium concentration has a significant effect on scorodite stability and conversion. Specifically, the arsenic elution amount is 0.15 mg by generating scorodite with an Fe / As molar ratio in the range of 1.0 to 1.25 and an initial sodium concentration of 2.5 g / L or more. / L or less crystalline scorodite can be produced with a conversion rate of 95% or more.
さらに前記Fe/Asモル比の範囲で、初期ナトリウム濃度を3.0g/L以上〜4.0g/L未満に制御することによって、ヒ素溶出濃度が0.07mg/L以下のスコロダイトを98%以上の転換率で生成させることができる。なお、初期ナトリウム濃度が4.0g/L以上になると、スコロダイトへの転換率は約95.0%〜約97.5%であるので、スコロダイトを98%以上の高い転換率で製造するには鉄ヒ素酸性溶液の初期ナトリウム濃度は3.0g/L以上〜4.0g/L未満の範囲が好ましい。 Further, by controlling the initial sodium concentration within the range of the Fe / As molar ratio to 3.0 g / L or more to less than 4.0 g / L, the scorodite having an arsenic elution concentration of 0.07 mg / L or less can be increased to 98% or more. Can be generated at a conversion rate of When the initial sodium concentration is 4.0 g / L or more, the conversion rate to scorodite is about 95.0% to about 97.5%. Therefore, to produce scorodite with a high conversion rate of 98% or more. The initial sodium concentration of the iron arsenic acid solution is preferably in the range of 3.0 g / L to less than 4.0 g / L.
ヒ化銅を含むスライムに水酸化ナトリウム液を加えアルカリ酸化浸出して得たヒ素浸出液に第二鉄化合物を添加して生成させ回収した鉄ヒ素澱物を洗浄せずに溶解させると約8〜30g/Lのナトリウムが含まれている液が得られるので、鉄ヒ素澱物を洗浄しナトリウム濃度が2.5g/L以上、好ましくは3.0g/L以上、さらに好ましくは3.0g/L以上〜4.0g/L未満になるようにすればよい。 When the iron arsenic starch produced and recovered by adding a ferric compound to the arsenic leachate obtained by adding sodium hydroxide solution to the slime containing copper arsenide and alkaline leaching is dissolved without washing, about 8 to Since a liquid containing 30 g / L of sodium is obtained, the iron arsenic starch is washed and the sodium concentration is 2.5 g / L or more, preferably 3.0 g / L or more, more preferably 3.0 g / L. It may be set to be above-less than 4.0 g / L.
一方、本発明の製造方法は、回収した鉄ヒ素澱物を洗浄せずに使用することもできる。この場合、溶液のナトリウム濃度は約8〜30g/L程度になる。 On the other hand, the production method of the present invention can be used without washing the recovered iron arsenic starch. In this case, the sodium concentration of the solution is about 8 to 30 g / L.
本発明の製造方法によって生成したスコロダイトは結晶質である。このスコロダイトを回収し、その一部を鉄ヒ素澱物の生成工程に戻して種晶として使用することができる。 The scorodite produced by the production method of the present invention is crystalline. This scorodite can be recovered, and a part thereof can be returned to the iron arsenic starch production step and used as a seed crystal.
本発明の製造方法によれば、鉄ヒ素澱物の酸性溶液のFe/Asモル比を1.0以上〜1.25以下の範囲にし、初期ナトリウム濃度を2.5g/L以上に制御することによって、ヒ素溶出濃度が0.15mg/L以下のスコロダイトを95%以上の高い転換率で製造することができる。 According to the production method of the present invention, the Fe / As molar ratio of the acidic solution of iron arsenic starch is set in the range of 1.0 to 1.25 and the initial sodium concentration is controlled to 2.5 g / L or more. Thus, scorodite having an arsenic elution concentration of 0.15 mg / L or less can be produced at a high conversion rate of 95% or more.
さらに、本発明の製造方法によれば、前記酸性溶液のFe/Asモル比を1.0以上〜1.25以下の範囲にし、初期ナトリウム濃度を3.0g/L以上〜4.0g/L未満に制御することによって、ヒ素溶出濃度が0.07mg/L以下のスコロダイトを98%以上の転換率で製造することができる。 Furthermore, according to the production method of the present invention, the Fe / As molar ratio of the acidic solution is in the range of 1.0 to 1.25 and the initial sodium concentration is 3.0 g / L to 4.0 g / L. By controlling to less than scorodite having an arsenic elution concentration of 0.07 mg / L or less can be produced at a conversion rate of 98% or more.
このように本発明の製造方法は、スコロダイトへの転換率が高いので製造後の排液のヒ素濃度が低く、従って、排液処理の負担を低減することができる。 As described above, the production method of the present invention has a high conversion rate to scorodite, so that the arsenic concentration of the drainage after production is low, and therefore the burden of the drainage treatment can be reduced.
以下、本発明の実施例を比較例と共に示す。ヒ素浸出液を調製し、このヒ素浸出液を用いて実施例および比較例を実施した。実施例の結果を表1に示し、比較例の結果を表2に示す。ヒ素、鉄、ナトリウムの測定はICP−AESを用いた。生成したスコロダイトを洗浄して環告13号に準拠した溶出試験を行った。この溶出試験の結果をAs溶出濃度(mg/L)として示した。スコロダイトの転換率を示した。スコロダイトの転換率は次式によって求めた。
転換率%=100−(終期ヒ素濃度(g/L)/初期ヒ素濃度(g/L)×100)
Examples of the present invention are shown below together with comparative examples. Arsenic leachate was prepared, and Examples and Comparative Examples were carried out using this arsenic leachate. The results of Examples are shown in Table 1, and the results of Comparative Examples are shown in Table 2. ICP-AES was used for the measurement of arsenic, iron and sodium. The produced scorodite was washed and an elution test based on Circular 13 was conducted. The result of this dissolution test was shown as As dissolution concentration (mg / L). The conversion rate of scorodite was shown. The conversion rate of scorodite was obtained by the following equation.
Conversion rate% = 100- (final arsenic concentration (g / L) / initial arsenic concentration (g / L) × 100)
〔ヒ素浸出液の調製〕
ヒ化銅を主成分とするスライム400g(As25質量%)と、水2Lをスラリーにし、攪拌しながら水酸化ナトリウムをNaOH/Asモル比約1.6になるように加え、スラリー調整した。このスラリーを50℃〜60℃に加熱し、空気を1L/分の流量で約6時間導入し、酸化浸出を行った。浸出が進むにつれてスラリーは黒色から茶色(Cu2Oの色)に変化した。ここで撹拌を止め、スラリーを濾過してヒ素浸出液を回収した。このヒ素浸出液はpH8.5、As40g/L、Na24.5g/L、Cu2ppm以下であった。
[Preparation of arsenic leachate]
400 g (As 25 mass%) of slime mainly composed of copper arsenide and 2 L of water were made into a slurry, and sodium hydroxide was added to the NaOH / As molar ratio of about 1.6 while stirring to prepare a slurry. This slurry was heated to 50 ° C. to 60 ° C., and air was introduced at a flow rate of 1 L / min for about 6 hours to perform oxidative leaching. As leaching progressed, the slurry changed from black to brown (Cu 2 O color). Here, the stirring was stopped, and the slurry was filtered to recover the arsenic leachate. This arsenic leachate had a pH of 8.5, As 40 g / L, Na 24.5 g / L, and Cu of 2 ppm or less.
〔実施例1〕
前記ヒ素浸出液600mlを50℃〜60℃に加熱して、ポリ硫酸第二鉄液(Fe濃度160g/Lの日鉄鉱業社製品:ポリテツ)121〜127mlを加え、60分間撹拌して鉄ヒ素澱物を生成させた。その後、湿潤状態の澱物約220g(含水率約70質量%)を吸引ろ過及び洗浄して回収した。この澱物100gに濃硫酸約8mlを混合し、Fe/Asモル比1.08〜1.13、初期ナトリウム濃度3.12g/L〜3.74g/L、初期pH0.71〜0.78の溶液を調製した。この溶液を93℃±3℃まで加熱し、結晶性スコロダイト6g(50g/L)を種材として加え、6時間、加熱撹拌を続けた。その後、生成したスコロダイトを固液分離して回収した。製造条件および結果を表1に示す(試料1〜試料4)。
[Example 1]
Heat 600 ml of the arsenic leachate to 50 ° C. to 60 ° C., add 121-127 ml of polyferric sulfate solution (Nittetsu Mining Co., Ltd. product: Polytetsu, Fe concentration 160 g / L), and stir for 60 minutes to stir iron arsenic. Product was produced. Thereafter, about 220 g of wet starch (water content: about 70% by mass) was collected by suction filtration and washing. About 100 ml of concentrated sulfuric acid is mixed with 100 g of this starch, and the Fe / As molar ratio is 1.08 to 1.13, the initial sodium concentration is 3.12 g / L to 3.74 g / L, and the initial pH is 0.71 to 0.78. A solution was prepared. This solution was heated to 93 ° C. ± 3 ° C., 6 g (50 g / L) of crystalline scorodite was added as a seed material, and heating and stirring were continued for 6 hours. Thereafter, the produced scorodite was recovered by solid-liquid separation. Production conditions and results are shown in Table 1 (Sample 1 to Sample 4).
〔実施例2〕
試料5〜試料16について、表1に示す初期pH、初期ナトリウム濃度、およびFe/Asモル比になるように調整した以外は実施例1と同様にして、鉄ヒ素澱物溶液を調製した。これらの溶液を93±3℃に加熱した後、結晶性スコロダイトを種晶として50g/Lになるように加え、6時間、加熱攪拌を続けた。生成したスコロダイトを固液分離して回収した。製造条件および結果を表1に示す。
[Example 2]
For samples 5 to 16, iron arsenic starch solutions were prepared in the same manner as in Example 1 except that the initial pH, initial sodium concentration, and Fe / As molar ratio shown in Table 1 were adjusted. After these solutions were heated to 93 ± 3 ° C., crystalline scorodite was added as a seed crystal so as to be 50 g / L, and heating and stirring were continued for 6 hours. The produced scorodite was recovered by solid-liquid separation. Production conditions and results are shown in Table 1.
表1に示すように、Fe/Asモル比1.05〜1.18、および初期ナトリウム濃度3.12g/L〜26.38g/Lの試料No.1〜16は、何れもスコロダイトのヒ素溶出量が0.15mg/L以下であってスコロダイトが安定であり、また、スコロダイトへの転換率が95%以上と高い。さらに、これらのうち、初期ナトリウム濃度が3.12g/L〜3.74g/Lの試料No.1〜4は、スコロダイトのヒ素溶出量が0.07〜0.03mg/Lであって格段に低く、かつスコロダイトへの転換率が何れも98%以上であり、格段に高い転換率を示している。 As shown in Table 1, sample Nos. 1 to 16 having Fe / As molar ratios of 1.05 to 1.18 and initial sodium concentrations of 3.12 g / L to 26.38 g / L are all scorodite arsenic elution. The amount is 0.15 mg / L or less, scorodite is stable, and the conversion rate to scorodite is as high as 95% or more. Furthermore, among these, sample Nos. 1 to 4 having an initial sodium concentration of 3.12 g / L to 3.74 g / L have a scorodite arsenic elution amount of 0.07 to 0.03 mg / L, which is markedly higher. Both are low and the conversion rate to scorodite is 98% or more, indicating a remarkably high conversion rate.
〔比較例1〕
表2に示す初期pH、初期ナトリウム濃度(2.5g/L未満)、およびFe/Asモル比になるように調整した以外は実施例1と同様にして、鉄ヒ素澱物溶液を調製した。これらの溶液を93±3℃に加熱した後、結晶性スコロダイトを種晶として50g/Lになるように加え、6時間、加熱攪拌を続けた。生成したスコロダイトを固液分離して回収した。製造条件および結果を表2に示す(試料20〜30)。
[Comparative Example 1]
An iron arsenic starch solution was prepared in the same manner as in Example 1 except that the initial pH, initial sodium concentration (less than 2.5 g / L), and Fe / As molar ratio were adjusted as shown in Table 2. After these solutions were heated to 93 ± 3 ° C., crystalline scorodite was added as a seed crystal so as to be 50 g / L, and heating and stirring were continued for 6 hours. The produced scorodite was recovered by solid-liquid separation. Production conditions and results are shown in Table 2 (Samples 20 to 30).
〔比較例2〕
表2に示す初期pH、初期ナトリウム濃度(3.9g/L〜13.4g/L)、およびFe/Asモル比(1.0未満)になるように調整した以外は実施例1と同様にして、鉄ヒ素澱物溶液を調製した。これらの溶液を93±3℃に加熱した後、結晶性スコロダイトを種晶として50g/Lになるように加え、6時間、加熱攪拌を続けた。生成したスコロダイトを固液分離して回収した。製造条件および結果を表2に示す(試料31〜35)。
[Comparative Example 2]
The same procedure as in Example 1 was conducted except that the initial pH, initial sodium concentration (3.9 g / L to 13.4 g / L), and Fe / As molar ratio (less than 1.0) shown in Table 2 were adjusted. Thus, an iron arsenic starch solution was prepared. After these solutions were heated to 93 ± 3 ° C., crystalline scorodite was added as a seed crystal so as to be 50 g / L, and heating and stirring were continued for 6 hours. The produced scorodite was recovered by solid-liquid separation. Production conditions and results are shown in Table 2 (Samples 31 to 35).
〔比較例3〕
表2に示す初期pH、初期ナトリウム濃度(3.91g/L〜4.9g/L)、およびFe/Asモル比(1.25以上)になるように調整した以外は実施例1と同様にして、鉄ヒ素澱物溶液を調製した。これらの溶液を93±3℃に加熱した後、結晶性スコロダイトを種晶として50g/Lになるように加え、6時間、加熱攪拌を続けた。生成しスコロダイトを固液分離して回収した。製造条件および結果を表2に示す(試料36〜38)。
[Comparative Example 3]
The same as Example 1 except that the initial pH, initial sodium concentration (3.91 g / L to 4.9 g / L), and Fe / As molar ratio (1.25 or more) were adjusted as shown in Table 2. Thus, an iron arsenic starch solution was prepared. After these solutions were heated to 93 ± 3 ° C., crystalline scorodite was added as a seed crystal so as to be 50 g / L, and heating and stirring were continued for 6 hours. The produced scorodite was recovered by solid-liquid separation. Production conditions and results are shown in Table 2 (Samples 36 to 38).
表2に示すように、初期ナトリウム濃度の低い比較例1の試料20〜30の大部分は、ヒ素の溶出量が多く、スコロダイトの安定性が低い、またスコロダイトへの転換率が低く90%以下である。また、Fe/Asモル比の低い比較例2の試料31〜35は、スコロダイトへの転換率は高いが、ヒ素の溶出量が多く、スコロダイトの安定性が低い。一方、Fe/Asモル比が高い比較例3の試料36〜38は、ヒ素の溶出量が0.2mg/L未満であるのでコロダイトの安定性は良いが、スコロダイトへの転換率は大幅に低い。 As shown in Table 2, most of the samples 20 to 30 of Comparative Example 1 having a low initial sodium concentration have a large amount of arsenic, low scorodite stability, and a low conversion rate to scorodite of 90% or less. It is. In addition, Samples 31 to 35 of Comparative Example 2 having a low Fe / As molar ratio have a high conversion rate to scorodite, but a large amount of arsenic is eluted, and scorodite stability is low. On the other hand, in the samples 36 to 38 of Comparative Example 3 having a high Fe / As molar ratio, the arsenic elution amount is less than 0.2 mg / L, so the stability of the colloid is good, but the conversion rate to scorodite is significantly low. .
本発明は、以下の構成を有するスコロダイトの製造方法である。
〔1〕銅ヒ素含有物をナトリウム含有溶液でアルカリ酸化浸出して銅分を除去したヒ素浸出液に、第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、この澱物をpH0.5以上〜1.0以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成する方法において、前記酸性溶液のFe/Asモル比を1.0以上〜1.25以下、およびナトリウム濃度を2.5g/L以上にして、ヒ素溶出濃度が0.15mg/L以下のスコロダイトを95%以上の転換率で生成させることを特徴とするスコロダイトの製造方法。
〔2〕ナトリウム濃度を3.0g/L以上〜4.0g/L未満にして、ヒ素溶出濃度が0.07mg/L以下のスコロダイトを98%以上の転換率で生成させる前記[1]に記載するスコロダイトの製造方法。
〔3〕銅ヒ素含有物に水酸化ナトリウム溶液を加え、加熱下でアルカリ酸化浸出を行い、酸化銅を含む残渣を分離した後に、ヒ素を含む浸出液に第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、この澱物を用いる前記[1]または前記[2]に記載するスコロダイトの製造方法。
The present invention is a method for producing scorodite having the following configuration.
[1] An iron arsenic starch is formed by adding a ferric compound to an arsenic leachate obtained by removing copper from an alkali oxidation leaching of a copper arsenic-containing substance with a sodium-containing solution, and solid-liquid separation is performed. In an acidic solution having a pH of 0.5 to 1.0 and heating to produce crystalline scorodite, the Fe / As molar ratio of the acidic solution is 1.0 to 1.25 and sodium. A method for producing a scorodite, characterized in that a scorodite having a concentration of 2.5 g / L or more and an arsenic elution concentration of 0.15 mg / L or less is produced at a conversion rate of 95% or more.
[2] The method according to [1], wherein scorodite having an arsenic elution concentration of 0.07 mg / L or less is generated at a conversion rate of 98% or more by setting the sodium concentration to 3.0 g / L or more and less than 4.0 g / L. To produce scorodite.
[3] A sodium hydroxide solution is added to a copper arsenic-containing material, and alkaline oxidation leaching is performed under heating to separate a residue containing copper oxide. Then, a ferric compound is added to the leaching solution containing arsenic to add iron arsenic starch. The method for producing scorodite according to the above [1] or [2], wherein a product is produced, solid-liquid separated, and the starch is used.
〔具体的な説明〕
以下、本発明を実施例と共に具体的に説明する。
本発明の製造方法は、銅ヒ素含有物をナトリウム含有溶液でアルカリ酸化浸出して銅分を除去したヒ素浸出液に、第二鉄化合物を添加して鉄ヒ素澱物を生成させて固液分離し、これをpH0.5以上〜1.0以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成する方法において、前記酸性溶液のFe/Asモル比を1.0以上〜1.25以下、およびナトリウム濃度を2.5g/L以上にして、ヒ素溶出濃度が0.15mg/L以下のスコロダイトを95%以上の転換率で生成させることを特徴とするスコロダイトの製造方法である。
[Specific description]
Hereinafter, the present invention will be specifically described together with examples.
In the production method of the present invention, an iron arsenic starch is formed by adding a ferric compound to an arsenic leachate obtained by removing copper by oxidative leaching of a copper arsenic-containing substance with a sodium-containing solution, and solid-liquid separation is performed. In the method of making this an acidic solution having a pH of 0.5 or more and 1.0 or less and heating to produce crystalline scorodite, the Fe / As molar ratio of the acidic solution is 1.0 or more and 1.25 or less, And a scorodite production method characterized in that scorodite having an arsenic elution concentration of 0.15 mg / L or less is produced at a conversion rate of 95% or more with a sodium concentration of 2.5 g / L or more.
本発明の製造方法は、前記鉄ヒ素澱物を固液分離して洗浄し、必要に応じて硫酸などを加えて溶解し、pH0.5以上〜1.0以下の酸性溶液(鉄ヒ素澱物溶解液)にし、加熱して結晶質のスコロダイトを生成する方法において、該酸性溶液のFe/Asモル比を1.0以上〜1.25以下、および初期ナトリウム濃度を2.5g/L以上にして、結晶質のスコロダイトを生成させる方法である。 In the production method of the present invention, the iron arsenic starch is solid-liquid separated and washed, and if necessary, dissolved by adding sulfuric acid or the like, and an acidic solution (iron arsenic starch) having a pH of 0.5 to 1.0. In the method of producing a crystalline scorodite by heating, the Fe / As molar ratio of the acidic solution is set to 1.0 to 1.25 and the initial sodium concentration is set to 2.5 g / L or more. This is a method for producing crystalline scorodite.
前記鉄ヒ素澱物の酸性溶液のpHが1.5より高いと該澱物が溶解し難く、pH0.5未満ではスコロダイトが生成し難い。好ましくはpH0.5以上〜1.0以下の酸性溶液にし、90℃以上に加熱して結晶質のスコロダイトを生成させる。 When the pH of the acidic solution of iron arsenic starch is higher than 1.5, the starch hardly dissolves, and when the pH is less than 0.5, scorodite is hardly generated . Preferably, an acidic solution having a pH of 0.5 to 1.0 is heated to 90 ° C. or higher to form crystalline scorodite.
本発明の製造方法において、前記鉄ヒ素澱物をpH0.5以上〜1.0以下の酸性溶液にし、加熱して結晶質のスコロダイトを生成するときに、該溶液の初期ナトリウム濃度がスコロダイトの安定性および転換率に大きな影響を及ぼすことが見出された。具体的には、Fe/Asモル比が1.0以上〜1.25以下の範囲で、初期ナトリウム濃度を2.5g/L以上にしてスコロダイトを生成させることによって、ヒ素溶出量が0.15mg/L以下の結晶質スコロダイトを95%以上の転換率で製造することができる。 In the production method of the present invention, when the iron arsenic starch is converted to an acidic solution having a pH of 0.5 to 1.0 and heated to produce crystalline scorodite, the initial sodium concentration of the solution is stable scorodite. It was found to have a significant effect on sex and conversion. Specifically, the arsenic elution amount is 0.15 mg by generating scorodite with an Fe / As molar ratio in the range of 1.0 to 1.25 and an initial sodium concentration of 2.5 g / L or more. / L or less crystalline scorodite can be produced with a conversion rate of 95% or more.
Claims (3)
Add sodium hydroxide solution to copper arsenic containing material, perform alkaline oxidation leaching under heating, separate the residue containing copper oxide, add ferric compound to the leaching solution containing arsenic to produce iron arsenic starch The method for producing scorodite according to claim 1 or 2, wherein the starch is used after solid-liquid separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016231994A JP6828400B2 (en) | 2016-11-30 | 2016-11-30 | Manufacturing method of scrodite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016231994A JP6828400B2 (en) | 2016-11-30 | 2016-11-30 | Manufacturing method of scrodite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018087114A true JP2018087114A (en) | 2018-06-07 |
JP6828400B2 JP6828400B2 (en) | 2021-02-10 |
Family
ID=62492906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016231994A Active JP6828400B2 (en) | 2016-11-30 | 2016-11-30 | Manufacturing method of scrodite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6828400B2 (en) |
-
2016
- 2016-11-30 JP JP2016231994A patent/JP6828400B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6828400B2 (en) | 2021-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6241661B2 (en) | Arsenic separation and immobilization method | |
JP6304530B2 (en) | Tellurium separation and recovery method | |
JP3999805B1 (en) | Arsenic-containing solution processing method | |
CN101743202B (en) | Method of treating copper-arsenic compound | |
AU2007216890B2 (en) | Process for treating electrolytically precipitated copper | |
KR20100049593A (en) | Method of treating arsenical matter with alkali | |
JP2008231478A (en) | Method for producing scorodite | |
JP7016463B2 (en) | How to collect tellurium | |
CN107400904B (en) | Preparation method of copper electrolyte impurity removing agent and copper electrolyte impurity removing method | |
JP5840920B2 (en) | Recovery method of arsenic from non-ferrous smelting ash | |
JP4529969B2 (en) | Method for removing selenium from selenate-containing liquid | |
JP2004285368A (en) | Method for refining cobalt aqueous solution | |
JP2010138490A (en) | Method of recovering zinc | |
JP5200588B2 (en) | Method for producing high purity silver | |
JP6828527B2 (en) | Manufacturing method of scrodite | |
JP2013256419A (en) | Method for separating and recovering tellurium | |
JP5888129B2 (en) | How to recover nickel | |
JP4717917B2 (en) | Manufacturing method and cleaning method of scorodite | |
JP5059081B2 (en) | Method for producing scorodite and method for recycling liquid after synthesis of scorodite | |
JP7068618B2 (en) | Manufacturing method of scrodite | |
JP5889603B2 (en) | Arsenic leaching method from non-ferrous smelting ash | |
US5939042A (en) | Tellurium extraction from copper electrorefining slimes | |
JP2018087114A (en) | Method for producing scorodite | |
JP5423592B2 (en) | Method for producing low chlorine nickel sulfate / cobalt solution | |
JP2003105456A (en) | Method for manufacturing silver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6828400 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |