JP2018081175A - Lens fixing member and microscope - Google Patents

Lens fixing member and microscope Download PDF

Info

Publication number
JP2018081175A
JP2018081175A JP2016222503A JP2016222503A JP2018081175A JP 2018081175 A JP2018081175 A JP 2018081175A JP 2016222503 A JP2016222503 A JP 2016222503A JP 2016222503 A JP2016222503 A JP 2016222503A JP 2018081175 A JP2018081175 A JP 2018081175A
Authority
JP
Japan
Prior art keywords
lens
fixing member
microscope
lens fixing
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016222503A
Other languages
Japanese (ja)
Inventor
洋平 武智
Yohei Takechi
洋平 武智
毅吏 浦島
Takashi Urashima
毅吏 浦島
禎章 太田
Sadaaki Ota
禎章 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016222503A priority Critical patent/JP2018081175A/en
Publication of JP2018081175A publication Critical patent/JP2018081175A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a lens fixing member that prevents heat from flowing out of a liquid immersion object lens when a biological sample is observed in liquid immersion with a microscope while being cultivated, easily controls a temeperature suitable for cultivation state, and has a high fixation accuracy of the object lens to a microscopic optical system; and a microscope.SOLUTION: A lens fixing member 4 mechanically coupling a lens 1 to a microscope body 2, comprises: a fixing cylinder 51 fixing the lens; a plurality of lateral projection parts 6 provided circumferentially and equally distantly on at least three locations on an outer peripheral surface of the fixing cylinder, and each including an outer surface as a curved surface arranged within one virtual cylindrical surface 10 ; a flange part 22 provided at an end of the fixing cylinder; and a plurality of vertical projection parts 7 provided on the flange part circumferentially and equally distantly on at least three locations of a circular cylinder and projecting in an axial direction of the fixing cylinder, and each including an end face as a planar surface arranged within one virtual plane 12.SELECTED DRAWING: Figure 1

Description

本発明は、顕微鏡などの光学機器において、レンズを保持及び固定するレンズ固定部材及びレンズ固定部材を有する顕微鏡に関するものである。   The present invention relates to a lens fixing member that holds and fixes a lens in an optical instrument such as a microscope, and a microscope having the lens fixing member.

半導体回路作成又は生体サンプル観察などに用いられる顕微鏡等では、観察用のレンズと被測定物との間を空気でなく、水などの液浸媒質で満たして、所謂、液浸状態とすることにより、光学的な分解能の向上、及び、レンズとサンプルとの間の空気層による不要な反射を排除することによるコントラスト向上などの効果が得られることが知られている。また、細胞などの生体サンプルを観察する場合は、サンプル自身が生理食塩水又は細胞培養用の培地液体に浸漬された状態のものが多く、そのままの状態で観察するのに、液浸での観察は都合がよい。そのような生体サンプルを、液浸レンズを備えた顕微鏡で観察する場合には、サンプルを浸漬する液体を培養用培地として、サンプルを含む培地全体を培養に適した温度に保持してサンプルを生かしたまま、もしくは培養しながら、タイムラプス観察のような長時間観察をすることがよく行われている。   In a microscope or the like used for semiconductor circuit creation or biological sample observation, the space between the observation lens and the object to be measured is filled with an immersion medium such as water instead of air so as to be in a so-called immersion state. It is known that effects such as an improvement in optical resolution and an improvement in contrast by eliminating unnecessary reflection due to an air layer between the lens and the sample can be obtained. In addition, when observing biological samples such as cells, the samples themselves are often immersed in physiological saline or a liquid medium for cell culture. Is convenient. When observing such a biological sample with a microscope equipped with an immersion lens, the liquid in which the sample is immersed is used as a culture medium, and the entire medium including the sample is maintained at a temperature suitable for culture. It is often carried out for a long time such as time-lapse observation while standing or culturing.

細胞などの生体サンプルの培養には、サンプルを、培養に適した温度、湿度、及び炭酸ガスなどのガス濃度を一定に保つことが必要である。生体サンプルを長時間観察しながら培養を行うための機器としては、顕微鏡用の培養器(インキュベータ)が知られている。   In culturing a biological sample such as a cell, it is necessary to keep the temperature of the sample suitable for culturing, humidity, and gas concentration such as carbon dioxide gas constant. As an apparatus for culturing while observing a biological sample for a long time, an incubator for a microscope is known.

図13は、特許文献1に記載された、従来の顕微鏡用インキュベータの構成を示す図である。   FIG. 13 is a diagram showing a configuration of a conventional microscope incubator described in Patent Document 1. As shown in FIG.

図13の従来の顕微鏡用インキュベータにおいては、サンプル32と培地31とが入った観察用のディッシュ33が、インキュベータ40内に設置されている。ディッシュ33の下部と上部とを挟むように、加温用ヒーター34が配置されており、観察を続けている間、培地31及びサンプル32の温度を一定に保つ役割を担っている。なお、一般的な室温は20℃〜25℃であるが、生体サンプル32の培養に適した温度は36℃〜38℃であり、良好な培養を継続するためには培地31及びサンプル32の温度をその範囲内に保つ必要がある。   In the conventional microscope incubator shown in FIG. 13, an observation dish 33 containing a sample 32 and a culture medium 31 is installed in an incubator 40. A heating heater 34 is disposed so as to sandwich the lower portion and the upper portion of the dish 33, and plays a role of keeping the temperature of the culture medium 31 and the sample 32 constant while the observation is continued. In addition, although general room temperature is 20 to 25 degreeC, the temperature suitable for culture | cultivation of the biological sample 32 is 36 to 38 degreeC, and in order to continue favorable culture | cultivation, the temperature of the culture medium 31 and the sample 32 Must be kept within that range.

特開2011−229474号公報JP 2011-229474 A

しかし、前記特許文献1の構成では、液浸観察を行うために、液浸用の対物レンズ30を培地31に浸漬してサンプル32の液浸観察を実施すると、培地31から対物レンズ30への熱伝導が起こり、さらに対物レンズ30から対物レンズ取り付け部を通して顕微鏡本体への熱伝導が起こる(図13には対物レンズ取り付け部、顕微鏡本体は図示せず)ため、前出の加温用ヒーター34により培地31及びサンプル32に与えられた熱が対物レンズ30を通じて逃げてしまい、培地31及びサンプル32を培養に適した温度に保つことが困難になる。一般的に、温度調整を安定させるためには熱の出入りを小さくすることが大切であるが、培地31及びサンプル32の熱はディッシュ33及びインキュベータ40中の空気を伝って逃げていく。中でも特に影響が大きいのは、先に述べた対物レンズ30を伝って逃げる熱である。観察中は、液浸媒質を兼ねる培地31に対物レンズ30の先端が常時接触しているため、対物レンズ30から逃げる熱を補うように、加温用ヒーター34でインキュベータ40内のサンプル32と培地31とを温めるが、出て行く熱量が多ければ、サンプル32と培地31とが十分な温度に達しない状況も在り得る。また、流出する熱量を補うために、インキュベータ40に設ける加温ヒーター34の発熱能力を大きいものにする必要も出てくる。   However, in the configuration of Patent Document 1, when immersion observation of the sample 32 is performed by immersing the immersion objective lens 30 in the culture medium 31 in order to perform immersion observation, the medium 31 is transferred from the culture medium 31 to the objective lens 30. Heat conduction occurs, and further heat conduction from the objective lens 30 to the microscope main body through the objective lens mounting portion (the objective lens mounting portion and the microscope main body are not shown in FIG. 13). As a result, the heat applied to the medium 31 and the sample 32 escapes through the objective lens 30, and it becomes difficult to maintain the medium 31 and the sample 32 at a temperature suitable for culture. In general, in order to stabilize the temperature adjustment, it is important to reduce the heat input and output, but the heat of the medium 31 and the sample 32 escapes through the air in the dish 33 and the incubator 40. Of these, heat that escapes through the objective lens 30 described above is particularly significant. During observation, since the tip of the objective lens 30 is always in contact with the culture medium 31 also serving as an immersion medium, the sample 32 and the medium in the incubator 40 are heated by the heating heater 34 so as to compensate for the heat escaping from the objective lens 30. However, if the amount of heat that goes out is large, there may be a situation where the sample 32 and the culture medium 31 do not reach a sufficient temperature. In addition, in order to compensate for the amount of heat flowing out, it is necessary to increase the heat generation capacity of the heating heater 34 provided in the incubator 40.

本発明は、前記従来の課題を解決するもので、生体サンプルを培養しながら顕微鏡で液浸観察する際の液浸対物レンズからの熱の流出を防ぎ、培養状態に適した温度調整を容易に実現しつつ、顕微鏡光学系に対する対物レンズの固定精度が高いレンズ固定部材及び顕微鏡を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and prevents the outflow of heat from the immersion objective lens when immersing the biological sample with a microscope while culturing the biological sample, and easily adjusts the temperature suitable for the culture state. An object of the present invention is to provide a lens fixing member and a microscope with high accuracy of fixing an objective lens to a microscope optical system while realizing it.

前記目的を達成するために、本発明の1つの態様にかかるレンズ固定部材は、
レンズを機械的に顕微鏡本体に結合するレンズ固定部材であって、
前記レンズを固定する固定筒と、
少なくとも3箇所に周方向に等間隔に前記固定筒の外周面に設けられ、かつ、外面が、1つの仮想円柱面内に配置される湾曲面である複数の側面突起部と、
前記固定筒の端部に設けられた鍔部と、
少なくとも3箇所に前記円筒の前記周方向に等間隔かつ前記固定筒の軸方向に突出して前記鍔部に設けられ、かつ、端面が、1つの仮想平面内に配置される平面である複数の垂直突起部と、を備える。
In order to achieve the above object, a lens fixing member according to one aspect of the present invention includes:
A lens fixing member for mechanically coupling the lens to the microscope body,
A fixed cylinder for fixing the lens;
A plurality of side protrusions which are provided on the outer peripheral surface of the fixed cylinder at equal intervals in at least three locations, and whose outer surface is a curved surface disposed in one virtual cylindrical surface;
A collar provided at an end of the fixed cylinder;
A plurality of vertical portions which are provided at the flange portion at equal intervals in the circumferential direction of the cylinder and project in the axial direction of the fixed cylinder at at least three locations, and whose end surfaces are planes arranged in one virtual plane And a protrusion.

前記目的を達成するために、本発明の別の態様にかかる顕微鏡は、
前記態様にかかるレンズ固定部材と、
前記レンズ固定部材に固定された前記レンズと、
前記レンズ固定部材を固定する取り付け穴を有する顕微鏡本体と、を備え、
前記レンズ固定部材の前記全ての側面突起部の各湾曲面は、前記仮想円柱面に相当する、前記顕微鏡本体の前記取り付け穴の内周面に接触するとともに、前記レンズ固定部材の前記全ての垂直突起部の各平面は、前記仮想平面に相当する、前記顕微鏡本体の前記取り付け穴の観察物配置側の端部に径方向にくぼんだ凹部の軸方向の底面に接触して、前記レンズ固定部材が前記取り付け穴に固定され、
前記レンズ固定部材の前記固定筒及び前記鍔部は、前記顕微鏡本体と非接触である。
In order to achieve the above object, a microscope according to another aspect of the present invention includes:
A lens fixing member according to the aspect;
The lens fixed to the lens fixing member;
A microscope main body having a mounting hole for fixing the lens fixing member,
The curved surfaces of all the side projections of the lens fixing member are in contact with the inner peripheral surface of the mounting hole of the microscope body, which corresponds to the virtual cylindrical surface, and all the vertical surfaces of the lens fixing member. Each plane of the projection is in contact with the bottom surface in the axial direction of the concave portion that is recessed in the radial direction at the end of the mounting hole of the microscope main body, which corresponds to the virtual plane. Is fixed to the mounting hole,
The fixed cylinder and the flange of the lens fixing member are not in contact with the microscope main body.

以上のように、本発明の前記態様にかかるレンズ固定部材及び顕微鏡によれば、レンズ固定部材の固定筒及び鍔部が顕微鏡本体と非接触でありながら、1つの仮想円柱面内に配置された複数の側面突起部の外面の湾曲面が、顕微鏡本体の取り付け穴の内周面に接触して位置決めされ、1つの仮想平面内に配置された複数の垂直突起部の端面の平面が、顕微鏡本体の取り付け穴の内周面と交差する面に接触して位置決めされる。この結果、対物レンズの固定精度を低下させることなく、対物レンズからの熱流出を抑制して、インキュベータ内の生体サンプル及び培地の温度調節を安定かつ容易に実施することができる。   As described above, according to the lens fixing member and the microscope according to the aspect of the present invention, the fixing cylinder and the collar portion of the lens fixing member are arranged in one virtual cylindrical surface while being in non-contact with the microscope main body. The curved surfaces of the outer surfaces of the plurality of side projections are positioned in contact with the inner peripheral surface of the attachment hole of the microscope body, and the planes of the end surfaces of the plurality of vertical projections arranged in one virtual plane are the microscope body. It is positioned in contact with the surface intersecting the inner peripheral surface of the mounting hole. As a result, it is possible to stably and easily adjust the temperature of the biological sample and the culture medium in the incubator by suppressing heat outflow from the objective lens without reducing the fixing accuracy of the objective lens.

本発明の実施の形態1における光学部品固定機構の断面図Sectional drawing of the optical component fixing mechanism in Embodiment 1 of this invention 本発明の実施の形態1における光学部品固定機構の受け部材の斜視図The perspective view of the receiving member of the optical component fixing mechanism in Embodiment 1 of this invention 本発明の実施の形態1における光学部品固定機構の受け部材の上面図The top view of the receiving member of the optical component fixing mechanism in Embodiment 1 of this invention 本発明の実施の形態における顕微鏡本体の図The figure of the microscope main body in embodiment of this invention 本発明の実施の形態2における光学部品固定機構の断面図Sectional drawing of the optical component fixing mechanism in Embodiment 2 of this invention 本発明の実施の形態2における光学部品固定機構の受け部材の斜視図The perspective view of the receiving member of the optical component fixing mechanism in Embodiment 2 of this invention 本発明の実施の形態2における光学部品固定機構の受け部材の上面図The top view of the receiving member of the optical component fixing mechanism in Embodiment 2 of this invention 本発明の実施の形態3における光学部品固定機構の断面図Sectional drawing of the optical component fixing mechanism in Embodiment 3 of this invention 本発明の実施の形態3における光学部品固定機構の受け部材の斜視図The perspective view of the receiving member of the optical component fixing mechanism in Embodiment 3 of this invention 本発明の実施の形態3における光学部品固定機構の受け部材の上面図The top view of the receiving member of the optical component fixing mechanism in Embodiment 3 of this invention 本発明の実施の形態3における光学部品固定機構の受け部材の断面図Sectional drawing of the receiving member of the optical component fixing mechanism in Embodiment 3 of this invention 本発明の実施の形態3における光学部品固定機構の受け部材の断面図Sectional drawing of the receiving member of the optical component fixing mechanism in Embodiment 3 of this invention 特許文献1に記載された顕微鏡用インキュベータの構成を示す説明図Explanatory drawing which shows the structure of the incubator for microscopes described in patent document 1

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるレンズ固定部材を有する、光学部品固定機構の構成図である。図2は、本発明の実施の形態1における光学部品固定機構のうち、受け部材4のみを取り出して示した斜視図である。図3は、本発明の実施の形態1における光学部品固定機構のうち、図2における受け部材4を上部から見た図である。図4は、本発明の実施の形態1における光学部品固定機構のうち、受け部材4を取り付ける顕微鏡の下部の顕微鏡本体2の取り付け穴3の付近の図である。受け部材4は、レンズ固定部材の一例である。顕微鏡本体2は顕微鏡の構成の一部であり、液浸対物レンズ1などを固定する部分であって、取り付け穴3と、取り付け穴3の観察物配置側の端部に径方向に大きくくぼんだ凹部53とを有している。取り付け穴3の内周面は、受け部材4の径方向の取り付け円柱面14として機能する。円筒中心軸15は、取り付け円柱面14の中心軸である。凹部53の軸方向の底面は、取り付け穴3の内周面と交差する面の例であって、受け部材4の軸方向の取り付け面13として機能する。取り付け面13には、顕微鏡本体2を貫通する複数の取り付けねじ穴18の開口が所定間隔毎に配置されている。
(Embodiment 1)
FIG. 1 is a configuration diagram of an optical component fixing mechanism having a lens fixing member according to Embodiment 1 of the present invention. FIG. 2 is a perspective view showing only the receiving member 4 extracted from the optical component fixing mechanism according to Embodiment 1 of the present invention. FIG. 3 is a view of the receiving member 4 in FIG. 2 as viewed from above, of the optical component fixing mechanism according to Embodiment 1 of the present invention. FIG. 4 is a view of the vicinity of the attachment hole 3 of the microscope main body 2 at the lower part of the microscope to which the receiving member 4 is attached in the optical component fixing mechanism according to Embodiment 1 of the present invention. The receiving member 4 is an example of a lens fixing member. The microscope main body 2 is a part of the structure of the microscope, and is a part for fixing the immersion objective lens 1 and the like, and is greatly recessed in the radial direction at the attachment hole 3 and the end of the attachment hole 3 on the observation object arrangement side. And a recess 53. The inner peripheral surface of the mounting hole 3 functions as a mounting cylindrical surface 14 in the radial direction of the receiving member 4. The cylindrical central axis 15 is the central axis of the mounting cylindrical surface 14. The bottom surface in the axial direction of the recess 53 is an example of a surface that intersects the inner peripheral surface of the mounting hole 3, and functions as the mounting surface 13 in the axial direction of the receiving member 4. On the attachment surface 13, openings of a plurality of attachment screw holes 18 penetrating the microscope body 2 are arranged at predetermined intervals.

本光学部品固定機構は、顕微鏡本体2に設けてある取り付け穴3にはめ込まれた受け部材4が主に担っている。受け部材4は、鍔部22を有する円筒部51より構成され、円筒部51には、ねじ部5と、複数の側面突起部6と、複数の垂直受け突起部7と、複数の貫通穴8とが設けられている。円筒部51は、固定筒の一例である。円筒部51の中心軸方向の一端部の外周面には、円筒部51の軸直交方向、すなわち、径方向に突出した円環状の鍔部22を一体的に設けている。垂直受け突起部7は垂直突起部の一例である。   This optical component fixing mechanism is mainly performed by a receiving member 4 fitted in an attachment hole 3 provided in the microscope main body 2. The receiving member 4 includes a cylindrical portion 51 having a flange portion 22, and the cylindrical portion 51 includes a screw portion 5, a plurality of side protrusion portions 6, a plurality of vertical receiving protrusion portions 7, and a plurality of through holes 8. And are provided. The cylindrical part 51 is an example of a fixed cylinder. On the outer peripheral surface of one end portion in the central axis direction of the cylindrical portion 51, an annular flange portion 22 that protrudes in the direction orthogonal to the axis of the cylindrical portion 51, that is, in the radial direction, is integrally provided. The vertical receiving protrusion 7 is an example of a vertical protrusion.

液浸対物レンズ1と受け部材4とは、液浸対物レンズ1のねじ部1aがねじ部5へねじ込まれることで互いに固定されている。   The immersion objective lens 1 and the receiving member 4 are fixed to each other by screwing the screw part 1 a of the immersion objective lens 1 into the screw part 5.

円筒部51の外周面には、例えば縦長の大略長方形状の側面突起部6を周方向に等間隔で少なくとも3個(例えば図2では6個)設けている。各側面突起部6は径方向沿いには同じ高さを持っている。側面突起部6の外面の側部当たり面9は、細長い帯状又は短冊状の形状をなし、当該帯状の領域をねじ部5の中心軸17と平行な向きに揃えている。よって、側面突起部6の外側の側部当たり面9は、湾曲面で構成され、かつ、複数の側面突起部6のそれぞれの側部当たり面9の全体で仮想的な円筒形状である仮想円柱面10を構成するようになっている。仮想円柱面10の中心軸は、ねじ部5の外形を構成する円筒部51の中心軸17と一般的な機械工作精度の範囲で一致する構成になっている。全ての側部当たり面9は、受け部材4を顕微鏡本体2の取り付け穴3に取り付けるとき、取り付け穴3の内周面である取り付け円柱面14に接触して位置決め可能としている。   On the outer peripheral surface of the cylindrical portion 51, for example, at least three (for example, six in FIG. 2) side protrusions 6 that are vertically long and roughly rectangular are provided at equal intervals in the circumferential direction. Each side protrusion 6 has the same height along the radial direction. The side contact surface 9 on the outer surface of the side protrusion 6 has an elongated strip shape or a strip shape, and the strip region is aligned in a direction parallel to the central axis 17 of the screw portion 5. Therefore, the side contact surface 9 on the outer side of the side projection 6 is a curved surface, and the virtual contact cylinder 9 is a virtual cylindrical shape as a whole on each side contact surface 9 of the plurality of side projections 6. The surface 10 is configured. The central axis of the virtual cylindrical surface 10 is configured to coincide with the central axis 17 of the cylindrical portion 51 constituting the outer shape of the screw portion 5 within a range of general machining accuracy. All the side contact surfaces 9 can be positioned by contacting the mounting cylindrical surface 14 which is the inner peripheral surface of the mounting hole 3 when the receiving member 4 is mounted in the mounting hole 3 of the microscope body 2.

ここで、側面突起部6の軸方向の長さと、軸方向と直交する方向の幅と、径方向の高さとのそれぞれの数値範囲について例示する。   Here, the respective numerical ranges of the length in the axial direction of the side protrusion 6, the width in the direction orthogonal to the axial direction, and the height in the radial direction will be exemplified.

側面突起部6の軸方向の長さの例としては、3mm〜6mm程度が好ましい。軸方向の長さを長くし過ぎる(例えば、6mmを越える)と、取り付け精度は向上するが、顕微鏡本体との接触面積が増加するため、本発明の効果を損なう可能性がある。ただし、実施の形態2,3のように、側面突起部6を複数に分割させて構成する場合は、この上限に限定されない。その理由は、分割した複数の分割側部当たり面21全体で構成する仮想的な側面突起部6の長さ(例えば、上側の側面突起部6の上端から切り欠き26(凹凸)を介して下側の側面突起部6の下端までの長さ)については、複数の側面突起部6に分割することにより顕微鏡本体との接触面積の低減が図られているため、6mmを越えた長さであってもよいからである。すなわち、一例として、上側の側面突起部6の長さが3mm、切り欠き26の長さが2mm、下側の側面突起部6の長さが3mmの合計8mmとしてもよい。   As an example of the axial length of the side protrusion 6, about 3 mm to 6 mm is preferable. If the length in the axial direction is too long (for example, exceeding 6 mm), the mounting accuracy is improved, but the contact area with the microscope main body is increased, which may impair the effect of the present invention. However, when the side projection 6 is divided into a plurality of parts as in the second and third embodiments, the upper limit is not limited to this. The reason is that the length of the hypothetical side projection 6 composed of the entire divided side contact surface 21 (for example, from the upper end of the upper side projection 6 to the bottom through the notch 26 (unevenness)). About the length to the lower end of the side projection 6 on the side, the contact area with the microscope main body is reduced by dividing the side projection 6 into a plurality of side projections 6, and thus the length exceeds 6 mm. It is because it may be. That is, as an example, the length of the upper side protrusion 6 may be 3 mm, the length of the notch 26 may be 2 mm, and the length of the lower side protrusion 6 may be 3 mm, for a total of 8 mm.

側面突起部6の軸方向と直交する方向の幅の例としては、0.5mm〜2mm程度が好ましい。この幅を大きくし過ぎる(例えば2mmを越える)と、顕微鏡本体との接触面積が増加するため、本発明の効果を損なう可能性がある。   As an example of the width of the side protrusion 6 in the direction orthogonal to the axial direction, about 0.5 mm to 2 mm is preferable. If this width is too large (for example, exceeding 2 mm), the contact area with the microscope main body increases, which may impair the effects of the present invention.

側面突起部6の径方向の高さの例としては、本発明の効果を有効にするために、0.5mm以上であることが好ましく、加工しやすさの観点から、可能ならば1mm以上が好ましい。   As an example of the radial height of the side protrusion 6, it is preferably 0.5 mm or more in order to make the effects of the present invention effective. From the viewpoint of ease of processing, 1 mm or more is preferable. preferable.

鍔部22の上面には、少なくとも3箇所以上等間隔かつ円周上に複数個の円筒状の垂直受け突起部7を設けている。各垂直受け突起部7は、中心軸17の方向沿いに図1及び図2では上向きに、顕微鏡本体2の取り付け穴3の周囲に向けて突出し、一例として、円環状のリングで構成されている。また、各垂直受け突起部7の上部の垂直受け当たり面11、すなわち、少なくとも3箇所以上に等間隔かつ円周上に複数個設けてある垂直受け突起部7のそれぞれの垂直受け当たり面11が、平面で構成され、かつ、仮想的な平面である仮想平面12内に配置されている。   A plurality of cylindrical vertical receiving protrusions 7 are provided on the upper surface of the flange portion 22 at equal intervals and at least three places on the circumference. Each vertical receiving projection 7 protrudes upward in FIGS. 1 and 2 along the direction of the central axis 17 and toward the periphery of the mounting hole 3 of the microscope body 2, and as an example, is constituted by an annular ring. . In addition, the vertical receiving surfaces 11 of the upper portions of the vertical receiving projections 7, that is, the vertical receiving surfaces 11 of the vertical receiving projections 7 that are provided at a plurality at equal intervals and on the circumference at least at three or more locations. Are arranged in a virtual plane 12 which is a virtual plane.

ここで、垂直受け突起部7の軸方向の高さと、円筒部の幅(外径)とのそれぞれの数値範囲について例示する。   Here, each numerical range of the axial height of the vertical receiving projection 7 and the width (outer diameter) of the cylindrical portion will be exemplified.

軸方向の高さの例としては、本発明の効果を有効にするために、0.5mm以上であることが好ましく、加工しやすさの観点から、可能ならば1mm以上が好ましい。   An example of the height in the axial direction is preferably 0.5 mm or more in order to make the effect of the present invention effective, and is preferably 1 mm or more if possible from the viewpoint of ease of processing.

円筒部の幅(外径)の例としては、(貫通穴8の直径)+1mm以上が好ましく、可能ならば(貫通穴8の直径)+2mm〜(貫通穴8の直径)+4mm程度が好ましい。幅(直径)が大きくし過ぎる((貫通穴8の直径)+4mmより大きくなる)と、貫通穴8を通すねじで顕微鏡本体と締結する際、顕微鏡本体との接触面積が増加するため、本発明の効果を損なう可能性がある。   As an example of the width (outer diameter) of the cylindrical portion, (diameter of through hole 8) +1 mm or more is preferable, and (diameter of through hole 8) +2 mm to (diameter of through hole 8) +4 mm is preferable if possible. If the width (diameter) is too large ((diameter of the through hole 8) +4 mm), the area of contact with the microscope main body increases when the screw is passed through the through hole 8, and the contact area with the microscope main body increases. May impair the effectiveness of

顕微鏡本体2の取り付け穴3の周囲近傍の凹部53には、取り付け面13が設けられて、取り付け面13には、複数の取り付けねじ穴18が所定間隔毎に設けられている。また、取り付け穴3の内周面には、取り付け円柱面14が設けられている。   An attachment surface 13 is provided in the recess 53 near the periphery of the attachment hole 3 of the microscope body 2, and a plurality of attachment screw holes 18 are provided in the attachment surface 13 at predetermined intervals. A mounting cylindrical surface 14 is provided on the inner peripheral surface of the mounting hole 3.

受け部材4を取り付け穴3にはめ込む際、円筒部51の上部が取り付け穴3内に挿入されて、全ての側部当たり面9は、取り付け円柱面14に当たって位置決めされるとともに、全ての垂直受け当たり面11は、取り付け面13に当たって位置決めされるようになっている。先述のように少なくとも3箇所以上に等間隔に設けてある側部当たり面9は、全て1つの仮想円柱面10を構成しているため、取り付け円柱面14とは、一般的な機械工作精度の範囲で一致するように取り付けることができ、取り付け円柱面14の中心軸である円筒中心軸15と仮想円柱面10の中心軸、つまり、ねじ部5へ取り付けられた液浸対物レンズ1の中心軸(光軸)も同様に一致させることができる。言い換えれば、取付時、受け部材4の仮想円柱面10と顕微鏡本体2の取り付け穴3の取り付け円柱面14とを一致させるように取り付ければ、液浸対物レンズ1の中心軸(光軸)と取り付け穴3の中心軸17とを一致させるような位置決めができる。   When the receiving member 4 is fitted into the mounting hole 3, the upper part of the cylindrical portion 51 is inserted into the mounting hole 3, and all the side contact surfaces 9 are positioned against the mounting cylindrical surface 14 and all the vertical receiving contacts are placed. The surface 11 is positioned against the mounting surface 13. As described above, since the side contact surfaces 9 provided at equal intervals in at least three places all constitute one virtual cylindrical surface 10, the mounting cylindrical surface 14 has a general machining accuracy. The cylindrical central axis 15 that is the central axis of the mounting cylindrical surface 14 and the central axis of the virtual cylindrical surface 10, that is, the central axis of the immersion objective lens 1 that is attached to the screw portion 5. Similarly, the (optical axis) can be matched. In other words, at the time of attachment, if the virtual cylindrical surface 10 of the receiving member 4 and the attachment cylindrical surface 14 of the attachment hole 3 of the microscope body 2 are attached so as to coincide with each other, the attachment is performed with the central axis (optical axis) of the immersion objective lens 1. Positioning can be performed so that the center axis 17 of the hole 3 coincides.

また同様に、少なくとも3箇所以上に等間隔かつ円周上に設けてある垂直受け当たり面11は、全て1つの仮想平面12内に配置されているため、取り付け面13とは、一般的な機械工作精度の範囲で一致するように取り付けることができる。言い換えれば、取付時、受け部材4の仮想平面12と顕微鏡本体2の取り付け面13とを一致させるように取り付ければ、液浸対物レンズ1の中心軸(光軸)方向の位置決めができる。   Similarly, since the vertical contact surfaces 11 provided at least at three or more positions at equal intervals and on the circumference are all arranged in one virtual plane 12, the mounting surface 13 is a general machine. It can be attached to match within the range of machining accuracy. In other words, at the time of attachment, if the virtual plane 12 of the receiving member 4 and the attachment surface 13 of the microscope body 2 are attached so as to coincide with each other, the immersion objective lens 1 can be positioned in the central axis (optical axis) direction.

このようにして、受け部材4と顕微鏡本体2とは、受け部材4を取り付け穴3にはめ込んだ後、ねじ16を貫通穴8を通してねじ穴18へねじ込んでそれぞれ締結することで互いに固定される。ねじ16の頭部16aと貫通穴8との接触部には、座金19が挟んであり、ねじ16と貫通穴8の縁部との接触部を座金19で隔離してある。座金19の材質に、樹脂等の熱伝導率の低い材質を用いれば、更なる熱流出の抑制が期待できる。   In this way, the receiving member 4 and the microscope body 2 are fixed to each other by fitting the receiving member 4 into the mounting hole 3 and then screwing the screw 16 into the screw hole 18 through the through hole 8 and fastening them. A washer 19 is sandwiched between contact portions between the head 16 a of the screw 16 and the through hole 8, and a contact portion between the screw 16 and the edge of the through hole 8 is isolated by the washer 19. If a material having a low thermal conductivity such as a resin is used as the material of the washer 19, further suppression of heat outflow can be expected.

このとき、受け部材4と顕微鏡本体2との直接の接触は、各側部当たり面9と、各垂直受け当たり面11と、そして各座金19と、各ねじ16を介してのねじ穴18のみであり、受け部材4が取り付け円柱面14及び取り付け面13に面している部分の面積と比較すると、非常に小さな接触面積となっている。すなわち、各側面突起部6と各垂直受け突起部7とが顕微鏡本体2と接触し、円筒部51と鍔部22とは顕微鏡本体2と非接触である。そのため、液浸対物レンズ1の先端部が、インキュベータ内で加温された状態の培地などの液浸媒質に接触した状態でも、液浸対物レンズ1から受け部材4までは熱が伝わるが、受け部材4から顕微鏡本体2へは熱が伝わりにくい構造になっており、培養中の培地から、不必要に熱を奪うことを抑制できる。   At this time, the direct contact between the receiving member 4 and the microscope main body 2 is only the screw hole 18 through each side contact surface 9, each vertical contact surface 11, each washer 19, and each screw 16. Compared with the area of the portion where the receiving member 4 faces the mounting cylindrical surface 14 and the mounting surface 13, the contact area is very small. That is, each side projection 6 and each vertical receiving projection 7 are in contact with the microscope main body 2, and the cylindrical portion 51 and the flange portion 22 are not in contact with the microscope main body 2. Therefore, even when the tip of the immersion objective lens 1 is in contact with an immersion medium such as a medium heated in the incubator, heat is transmitted from the immersion objective lens 1 to the receiving member 4. The structure is such that heat is not easily transmitted from the member 4 to the microscope main body 2, and it is possible to suppress unnecessary removal of heat from the culture medium during culture.

また、各側面当たり面9は、細長い帯状の領域を、ねじ部5の中心軸17と平行な向きに揃えているが、このように設けることで、中心軸17に対して傾斜する方向へのガタを抑制しながら、仮想円柱面10の直径方向へのガタも抑制している。同様に、各垂直受け当たり面11は、取り付け面13にねじ部5を囲むように配置されているが、このように設けることで、中心軸17に対して傾斜する方向へのガタを抑制しつつ、中心軸17に沿った方向の位置を決定している。そのため、受け部材4により、液浸対物レンズ1は、顕微鏡本体2に対して高い位置精度で取り付け固定することが可能である。   Further, each side contact surface 9 has an elongated band-like region aligned in a direction parallel to the central axis 17 of the screw portion 5, but by providing in this way, in a direction inclined with respect to the central axis 17. While suppressing backlash, backlash in the diameter direction of the virtual cylindrical surface 10 is also suppressed. Similarly, each vertical receiving surface 11 is arranged on the mounting surface 13 so as to surround the screw portion 5. However, by providing the vertical receiving surface 11 in this way, backlash in a direction inclined with respect to the central axis 17 is suppressed. However, the position in the direction along the central axis 17 is determined. Therefore, the immersion objective lens 1 can be attached and fixed to the microscope body 2 with high positional accuracy by the receiving member 4.

また、垂直受け突起部7と側面突起部6との配置の関係は、垂直受け突起部7と中心軸17を含む断面内において、側面突起部6が含まれない配置となっており、すなわち、複数の側面突起部6と、前記複数の垂直受け突起部7とは、平面視において重複しない配置である。そのような構成により図2、図3に示すように顕微鏡本体2との接触部位である垂直受け突起部7と側面受け部6とが中心軸17の円周上での同位相部位に重なることなく分散して配置されるようになっている。これにより、接触部位から顕微鏡本体2へ熱伝導する箇所を特定の場所へ集中して配置させないことで、受け部材4の円周方向に対しても、中心軸17の方向に対しても、熱が均等に伝播し、顕微鏡本体2に温度むらを生じさせないようにしている。温度むらが生じると、顕微鏡本体2、特に取り付け穴3又は取り付け面13の近傍に機械的歪が発生し、顕微鏡本体2と液浸対物レンズ1との間に位置又は角度のずれを生じさせる原因となる。   The vertical receiving protrusion 7 and the side protrusion 6 are arranged so that the side protrusion 6 is not included in the cross section including the vertical receiving protrusion 7 and the central axis 17. The plurality of side projections 6 and the plurality of vertical receiving projections 7 are arranged so as not to overlap in a plan view. With such a configuration, as shown in FIGS. 2 and 3, the vertical receiving protrusion 7 and the side receiving portion 6 that are in contact with the microscope main body 2 overlap the same phase portion on the circumference of the central axis 17. They are arranged in a distributed manner. Thereby, the heat conduction location from the contact location to the microscope body 2 is not concentrated and arranged at a specific location, so that both the circumferential direction of the receiving member 4 and the direction of the central axis 17 are heated. Is transmitted evenly, and temperature unevenness is not generated in the microscope body 2. When temperature unevenness occurs, mechanical distortion occurs in the vicinity of the microscope main body 2, particularly in the vicinity of the attachment hole 3 or the attachment surface 13, causing a positional or angular shift between the microscope main body 2 and the immersion objective lens 1. It becomes.

光学部品固定機構の受け部材4に樹脂材料を用いることが考えられる。しかし、対物レンズ1の顕微鏡本体2への固定は、光学機器として一般的に想定されるレベルでの高い位置精度が求められるため、金属材料に比べて熱膨張係数が大きく、熱による歪又はクリープが避けられない樹脂材料では光学機器として必要十分な固定位置精度を得るのは困難である。固定部材に用いられる金属材料としては、鉄、アルミニウム、又は、鉄又はアルミニウム系の合金などが用いられるが、特に真鍮、又はステンレスなどは機械加工における加工精度が出せるため好ましい。   It is conceivable to use a resin material for the receiving member 4 of the optical component fixing mechanism. However, fixing the objective lens 1 to the microscope main body 2 requires a high positional accuracy at a level generally assumed as an optical instrument. Therefore, the thermal expansion coefficient is larger than that of a metal material, and distortion or creep caused by heat. However, it is difficult to obtain a necessary and sufficient fixed position accuracy as an optical instrument with a resin material that cannot be avoided. As the metal material used for the fixing member, iron, aluminum, iron, or an aluminum-based alloy is used. In particular, brass, stainless steel, or the like is preferable because processing accuracy in machining can be obtained.

以上より、本構成であれば、各側面突起部6と各垂直受け突起部7とが顕微鏡本体2と接触し、円筒部51と鍔部22とは顕微鏡本体2と非接触であるため、インキュベータで培養中の生体サンプルを液浸で観察する場合に、液浸対物レンズ1を経ての熱流出による不必要な培地の温度低下を防ぐことができる。すなわち、液浸用の対物レンズを用いたインキュベータによる培養状態にある生体サンプルの観察において問題となる、対物レンズを経路とする熱の著しい流出を抑制して、生体サンプル及び培地の不要な温度低下を防ぎ、インキュベータによる生体サンプル及び培地の安定で容易な温度調整を実現する。   As described above, in this configuration, each side projection 6 and each vertical receiving projection 7 are in contact with the microscope main body 2, and the cylindrical portion 51 and the flange 22 are not in contact with the microscope main body 2. Thus, when a biological sample in culture is observed by immersion, unnecessary temperature drop of the medium due to heat outflow through the immersion objective lens 1 can be prevented. In other words, it suppresses the significant flow of heat through the objective lens, which is a problem when observing a biological sample in a culture state by an incubator using an immersion objective lens. To achieve stable and easy temperature adjustment of biological samples and culture media using an incubator.

さらに、各側面当たり面9は、帯状の領域をねじ部5の中心軸17と平行な向きに揃えて、中心軸17に対して傾斜する方向へのガタを抑制しながら、仮想円柱面10の直径方向へのガタも抑制することができる。同様に、各垂直受け当たり面11は、取り付け面13にねじ部5を囲むように配置されて、中心軸17に対して傾斜する方向へのガタを抑制しつつ、中心軸17に沿った方向の位置を決定することができる。よって、前述したように温度低下を防ぎながら、対物レンズ1を高精度に固定して光学機器として必要な対物レンズ1の固定精度も高精度に維持でき、長時間の培養を安定かつ容易に継続しながら、位置ずれなく顕微鏡観察することが可能となる。   Further, each side contact surface 9 aligns the belt-like region in a direction parallel to the central axis 17 of the screw portion 5 and suppresses backlash in a direction inclined with respect to the central axis 17, while suppressing the backlash of the virtual cylindrical surface 10. The backlash in the diameter direction can also be suppressed. Similarly, each vertical receiving surface 11 is disposed on the mounting surface 13 so as to surround the screw portion 5, and suppresses backlash in a direction inclined with respect to the central axis 17, while the direction along the central axis 17. Can be determined. Therefore, as described above, the objective lens 1 can be fixed with high accuracy while preventing temperature drop, and the fixing accuracy of the objective lens 1 necessary as an optical device can be maintained with high accuracy, and long-term culture can be continued stably and easily. However, the microscope can be observed without positional deviation.

(実施の形態2)
図5は、本発明の実施の形態2における光学部品固定機構の構成図である。図6は本発明の実施の形態2における光学部品固定機構のうち、受け部材4のみを取り出して示した斜視図である。図7は、本発明の実施の形態2における光学部品固定機構のうち、図6における受け部材4を上部から見た図である。図5、図6、及び、図7において図1、図2、図3、及び、図4と同じ構成要素については同じ符号を用いて、説明を省略する。
(Embodiment 2)
FIG. 5 is a configuration diagram of an optical component fixing mechanism according to Embodiment 2 of the present invention. FIG. 6 is a perspective view showing only the receiving member 4 extracted from the optical component fixing mechanism according to Embodiment 2 of the present invention. FIG. 7 is a view of the receiving member 4 in FIG. 6 as viewed from above, in the optical component fixing mechanism according to Embodiment 2 of the present invention. 5, 6, and 7, the same components as those in FIGS. 1, 2, 3, and 4 are denoted by the same reference numerals, and description thereof is omitted.

図5で示す受け部材4は、先に本発明の実施の形態1において説明した光学部品固定機構の受け部材4とほぼ同様の構成であるが、垂直受け突起部7の上部の垂直受け当たり面11の構造と、側面突起部6の外側の側部当たり面9の構造とが異なっている。すなわち、垂直受け突起部7の上部の垂直受け当たり面11が、当たり面部分に切り欠き25(凹凸)を設けて周方向に複数に分割された分割垂直受け当たり面20に置き換わっていることと、側面突起部6の外側の側部当たり面9が、当たり面部分に切り欠き26(凹凸)を設けて軸方向に複数に分割された分割側部当たり面21に置き換わっていることが相違点である。具体的には、各垂直受け当たり面11に、周方向沿いに所定間隔毎に同じ幅の切り欠き25を形成して分割垂直受け当たり面20とし、分割垂直受け当たり面20が凹凸形状を有するようにしている。また、各側部当たり面9の長手方向の中間部に切り欠き26を形成して分割側部当たり面21とし、分割側部当たり面21が凹凸形状を有するようにしている。   The receiving member 4 shown in FIG. 5 has substantially the same configuration as the receiving member 4 of the optical component fixing mechanism described in the first embodiment of the present invention, but the vertical receiving surface on the upper portion of the vertical receiving protrusion 7. 11 is different from the structure of the side contact surface 9 on the outer side of the side protrusion 6. That is, the vertical receiving surface 11 at the upper part of the vertical receiving protrusion 7 is replaced with a divided vertical receiving surface 20 that is divided into a plurality of portions in the circumferential direction by providing a notch 25 (unevenness) in the contact surface portion. The difference is that the outer side contact surface 9 of the side projection 6 is replaced by a divided side contact surface 21 that is divided into a plurality of portions in the axial direction by providing a notch 26 (unevenness) in the contact surface portion. It is. Specifically, notches 25 having the same width are formed at predetermined intervals along the circumferential direction on each vertical receiving surface 11 to form a divided vertical receiving surface 20, and the divided vertical receiving surface 20 has an uneven shape. I am doing so. In addition, a notch 26 is formed in the longitudinal intermediate portion of each side contact surface 9 to form a divided side contact surface 21, and the divided side contact surface 21 has an uneven shape.

本発明の実施の形態1の場合と同様に、複数の分割垂直当たり面20の全ては仮想平面12内に配置されており、取り付け穴3へ受け部材4をはめ込む際に仮想平面12が取り付け面13に当たるようになっており、複数の分割側部当たり面21の全ては仮想円柱面10内に配置されており、取り付け穴3へ受け部材4をはめ込む際に仮想円柱面10が取り付け円柱面14に当たるようになっている。   As in the case of the first embodiment of the present invention, all of the plurality of divided vertical contact surfaces 20 are arranged in the virtual plane 12, and the virtual plane 12 is attached to the mounting surface when the receiving member 4 is fitted into the mounting hole 3. 13, all of the plurality of divided side contact surfaces 21 are arranged in the virtual cylindrical surface 10, and the virtual cylindrical surface 10 is attached to the mounting cylindrical surface 14 when the receiving member 4 is fitted into the mounting hole 3. It comes to hit.

このとき、受け部材4と顕微鏡本体2との直接の接触は、分割側部当たり面21と、分割垂直受け当たり面20と、そして座金19と、ねじ16とを介してのねじ穴18のみであり、受け部材4が、取り付け円柱面14及び取り付け面13に面している部分の面積と比較すると、非常に小さな接触面積となっている。また、本発明の実施の形態1における側部当たり面9と垂直受け当たり面11とに比べて、切り欠き26,25により分割側部当たり面21と分割垂直受け当たり面20とはさらに個々の接触面積を減らしながら、複数個配置されている各当たり面21,20全体で支持する面積は、同程度である。このため、本発明の実施の形態1で示した構成よりも、液浸対物レンズ1から顕微鏡本体2へは熱がさらに伝わりにくい構造になっており、培養中の培地から不必要に熱を奪うことを抑制できると同時に、取り付け面13及び取り付け円柱面14に当てることで得られる機械的な支持性能を維持しており、顕微鏡本体2に対する液浸対物レンズ1の取り付け固定を、本発明の実施の形態1と同程度に高い位置精度で実現することが可能である。   At this time, the direct contact between the receiving member 4 and the microscope main body 2 is made only by the screw hole 18 through the split side portion contact surface 21, the split vertical support surface 20, the washer 19, and the screw 16. Yes, the contact member 4 has a very small contact area as compared with the area of the portion facing the mounting cylindrical surface 14 and the mounting surface 13. Further, compared to the side contact surface 9 and the vertical contact surface 11 in the first embodiment of the present invention, the divided side contact surface 21 and the divided vertical contact surface 20 are further separated by the notches 26 and 25. While reducing the contact area, the area supported by the entire contact surfaces 21 and 20 arranged in a plurality is approximately the same. For this reason, compared with the configuration shown in the first embodiment of the present invention, heat is more difficult to be transferred from the immersion objective lens 1 to the microscope main body 2, and heat is unnecessarily deprived from the culture medium. At the same time, the mechanical support performance obtained by being applied to the mounting surface 13 and the mounting cylindrical surface 14 is maintained, and the mounting and fixing of the immersion objective lens 1 to the microscope body 2 can be performed. It can be realized with a position accuracy as high as that of the first embodiment.

以上より、本実施の形態2の構成であれば、前記実施の形態1で実現している顕微鏡本体2への液浸対物レンズ1の高精度な固定の機能を持たせながら、受け部材4と顕微鏡本体2との接触部を切り欠き25,26で分割して構成することにより、接触面積をさらに低減させることで、液浸対物レンズ1から顕微鏡本体2への熱流出抑制性能がより向上した、対物レンズ固定機構が実現できる。   As described above, according to the configuration of the second embodiment, the receiving member 4 and the receiving member 4 are provided with a function of fixing the immersion objective lens 1 to the microscope main body 2 realized in the first embodiment with high accuracy. The contact portion with the microscope main body 2 is divided by notches 25 and 26 to further reduce the contact area, thereby further improving the performance of suppressing heat outflow from the immersion objective lens 1 to the microscope main body 2. An objective lens fixing mechanism can be realized.

なお、側部当たり面9と垂直受け当たり面11との両方を当たり面21,20にする例に限られるものではなく、実施の形態1の側部当たり面9と垂直受け当たり面11とのいずれか一方のみを当たり面21又は20としてもよい。   The side contact surface 9 and the vertical contact surface 11 are not limited to the examples where the contact surfaces 21 and 20 are used, but the side contact surface 9 and the vertical contact surface 11 according to the first embodiment are not limited. Only one of them may be the contact surface 21 or 20.

(実施の形態3)
図8は、本発明の実施の形態3における光学部品固定機構の構成図である。図9は本発明の実施の形態3における光学部品固定機構のうち、受け部材4のみを取り出して示した斜視図である。図10は、本発明の実施の形態3における光学部品固定機構のうち、図6における受け部材4を上部から見た図である。図11は図10中に示したA−A断面に関する横断面図である。図12は図10中に示したB−B断面に関する横断面図である。図11、図12中には同一面内に含まれていない構造物も位置関係を分かりやすくするために破線にて図示している。
(Embodiment 3)
FIG. 8 is a configuration diagram of an optical component fixing mechanism according to Embodiment 3 of the present invention. FIG. 9 is a perspective view showing only the receiving member 4 extracted from the optical component fixing mechanism according to Embodiment 3 of the present invention. FIG. 10 is a view of the receiving member 4 in FIG. 6 as viewed from above in the optical component fixing mechanism according to Embodiment 3 of the present invention. FIG. 11 is a cross-sectional view of the AA cross section shown in FIG. FIG. 12 is a cross-sectional view regarding the BB cross section shown in FIG. In FIG. 11 and FIG. 12, structures that are not included in the same plane are also shown by broken lines for easy understanding of the positional relationship.

図8〜図12において図1〜図7と同じ構成要素については同じ符号を用いて、説明を省略する。   8 to 12, the same components as those in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.

図8で示す受け部材4は、先に本発明の実施の形態2において説明した光学部品固定機構の受け部材4とほぼ同様の構成であるが、図9、及び図10で示すように、垂直受け突起部7の位置が貫通穴8と同軸での構造物としていたものが、複数個配置してある貫通穴8の間の中間部分への配置に変更され、垂直受け突起部7の形状が円筒状から円柱状へ変更されたことにより、垂直受け突起部7の上面の垂直受け当たり面11の面積が、本発明の実施の形態1の場合よりも小さく変更されたことが相違点である。   The receiving member 4 shown in FIG. 8 has substantially the same configuration as the receiving member 4 of the optical component fixing mechanism described in the second embodiment of the present invention. However, as shown in FIGS. A structure in which the position of the receiving projection 7 is coaxial with the through hole 8 is changed to an arrangement in the middle portion between the plurality of through holes 8, and the shape of the vertical receiving projection 7 is changed. The difference is that the area of the vertical receiving surface 11 on the upper surface of the vertical receiving projection 7 is changed to be smaller than that in the first embodiment of the present invention due to the change from the cylindrical shape to the columnar shape. .

図8において、図8の中心軸17よりも左半分は図10におけるA−A断面付近を図示したもので、図8の中心軸17よりも右半分は図10におけるB−B断面付近を図示している。また、図8中の左右いずれにも側面突起部6が図示されているが、図9、図10と比較して分かるように実際には側面突起部6は貫通穴8や垂直受け突起部7を含み受け部材4の円筒軸を含む垂直断面内には存在しないが、部材間の当たり支持状態を分かりやすくするために図8中に破線で図示している。   8, the left half of the center axis 17 in FIG. 8 shows the vicinity of the AA cross section in FIG. 10, and the right half of the center axis 17 in FIG. 8 shows the vicinity of the BB cross section in FIG. Show. Further, although the side protrusions 6 are shown on both the left and right sides in FIG. 8, the side protrusions 6 are actually formed in the through holes 8 and the vertical receiving protrusions 7 as can be seen in comparison with FIGS. 8 is not shown in the vertical cross section including the cylindrical axis of the receiving member 4, but is shown by a broken line in FIG.

本発明の実施の形態2の場合と同様に、複数個の垂直当たり面11は仮想平面12内に配置されており、取り付け穴3へ受け部材4をはめ込む際に仮想平面12が取り付け面13に当たるようになっており、複数個の分割側部当たり面21は仮想円柱面10内に配置されており、取り付け穴3へ受け部材4をはめ込む際に仮想円柱面10が取り付け円柱面14に当たるようになっている。   As in the case of the second embodiment of the present invention, the plurality of vertical contact surfaces 11 are arranged in the virtual plane 12, and the virtual plane 12 hits the mounting surface 13 when the receiving member 4 is fitted into the mounting hole 3. The plurality of divided side contact surfaces 21 are arranged in the virtual cylindrical surface 10 so that the virtual cylindrical surface 10 contacts the mounting cylindrical surface 14 when the receiving member 4 is fitted into the mounting hole 3. It has become.

また、図11においては、貫通穴8と受け部材4の中心軸17とを含む同じ断面内に、垂直受け突起部7と側面突起部6とは含まれておらず、図12においては、図12の左側で示すように側面突起部6を含む片側断面には、垂直受け突起部7は含まれておらず、図12の右側で示すように垂直受け突起部7を含む断面には、側面突起部6は含まれていない。つまり、図10に示すように、受け部材4に配置されている貫通穴8と、側面突起部6と、垂直受け突起部7とは、受け部材4の中心軸17に関して、回転方向の位相をずらして配置し、受け部材4の中心軸17周りの円周上に分散して配置されるようにしている。   In FIG. 11, the vertical receiving protrusion 7 and the side protrusion 6 are not included in the same cross section including the through hole 8 and the central axis 17 of the receiving member 4. As shown on the left side of 12, the one-side cross section including the side protrusions 6 does not include the vertical receiving protrusion 7, and the cross section including the vertical receiving protrusions 7 as illustrated on the right side of FIG. The protrusion 6 is not included. That is, as shown in FIG. 10, the through hole 8, the side protrusion 6, and the vertical receiving protrusion 7 arranged in the receiving member 4 have a rotational phase relative to the central axis 17 of the receiving member 4. The receiving members 4 are arranged so as to be shifted and distributed on the circumference around the central axis 17 of the receiving member 4.

本発明の実施の形態2の場合と比較すると、貫通穴8と垂直受け突起部7とを別構造としたことで、垂直当たり面11の面積が小さくなっているが、複数個配置してある垂直当たり面11全体で支持する領域は同程度であるため、本発明の実施の形態2で示した構成よりもさらに、液浸対物レンズ1から顕微鏡本体2へ熱が伝わりにくい構造になっている。また、貫通穴8と、垂直受け突起部7と、側面突起部6との配置位置を受け部材4の中心軸17周りの円周上に分散して配置する。このように構成することにより、それらの接触部位から顕微鏡本体2へ熱伝導する箇所を特定の場所へ集中して配置させないことで受け部材4の中心軸17周りの円周方向に対しても、中心軸17方向に対しても、熱が均等に伝播し、顕微鏡本体2に温度むらを生じさせないようしている。このことにより、液浸観察しているサンプルの培養中の培地から不必要に熱を奪うことを抑制できると同時に、受け部材4及び顕微鏡本体2の熱歪の影響を最小限に抑えながら、取り付け面13及び取り付け円柱面14に当てることで得られる機械的な支持性能も維持しており、顕微鏡本体2に対する液浸対物レンズ1の取り付け固定を、本発明の実施の形態2と同程度に高い位置精度で実現することが可能である。   Compared to the case of the second embodiment of the present invention, the through hole 8 and the vertical receiving projection 7 have different structures, so that the area of the vertical contact surface 11 is reduced, but a plurality of them are arranged. Since the area supported by the entire vertical contact surface 11 is approximately the same, the structure is such that heat is not easily transmitted from the immersion objective lens 1 to the microscope body 2 as compared with the configuration shown in the second embodiment of the present invention. . In addition, the arrangement positions of the through holes 8, the vertical receiving projections 7, and the side projections 6 are distributed on the circumference around the central axis 17 of the member 4. By constructing in this way, even in the circumferential direction around the central axis 17 of the receiving member 4 by not concentrating and arranging the places that conduct heat from those contact parts to the microscope body 2 in a specific place, Even in the direction of the central axis 17, heat is evenly propagated so that temperature unevenness does not occur in the microscope body 2. As a result, it is possible to suppress the unnecessary removal of heat from the culture medium during the immersion observation of the sample, and at the same time, the mounting is performed while minimizing the influence of the thermal distortion of the receiving member 4 and the microscope body 2. The mechanical support performance obtained by contacting the surface 13 and the mounting cylindrical surface 14 is also maintained, and the fixing of the immersion objective lens 1 to the microscope body 2 is as high as that of the second embodiment of the present invention. It can be realized with positional accuracy.

以上より、本構成であれば前記実施の形態2で実現している顕微鏡本体への液浸対物レンズ1の高精度な固定の機能を持たせながら、支持位置を分散させることで熱歪の影響を低減させ、また、受け部材4と顕微鏡本体2との接触部を切り欠きで分割して構成したり、支持構造を別構成にしたりすることにより接触面積をさらに低減させることで、液浸対物レンズ1から顕微鏡本体2への熱流出抑制性能の向上した、対物レンズ固定機構が実現できる。   As described above, in the case of this configuration, the influence of thermal strain is achieved by dispersing the support position while providing the function of highly accurately fixing the immersion objective lens 1 to the microscope main body realized in the second embodiment. In addition, the contact area between the receiving member 4 and the microscope main body 2 is divided by a notch, and the contact area is further reduced by using a separate support structure. An objective lens fixing mechanism with improved heat outflow suppression performance from the lens 1 to the microscope body 2 can be realized.

以上の実施の形態1〜3によれば、レンズ固定部材の固定筒51及び鍔部22が顕微鏡本体2と非接触でありながら、1つの仮想円柱面10内に配置された複数の側面突起部6の外面の湾曲面9が、顕微鏡本体2の取り付け穴3の内周面14に接触して位置決めされ、1つの仮想平面12内に配置された複数の垂直突起部7の端面の平面11が、顕微鏡本体2の取り付け穴3の内周面と交差する面13に接触して位置決めされる。この結果、対物レンズ1の固定精度を低下させることなく、対物レンズ1からの熱流出を抑制して、インキュベータ内の生体サンプル及び培地の温度調節を安定かつ容易に実施することができる。   According to the above first to third embodiments, the plurality of side protrusions arranged in one virtual cylindrical surface 10 while the fixing cylinder 51 and the collar portion 22 of the lens fixing member are not in contact with the microscope main body 2. The curved surface 9 of the outer surface 6 is positioned in contact with the inner peripheral surface 14 of the mounting hole 3 of the microscope body 2, and the flat surface 11 of the end surfaces of the plurality of vertical protrusions 7 arranged in one virtual plane 12 is formed. Then, the microscope body 2 is positioned in contact with the surface 13 intersecting the inner peripheral surface of the mounting hole 3 of the microscope body 2. As a result, it is possible to stably and easily adjust the temperature of the biological sample and the culture medium in the incubator by suppressing heat outflow from the objective lens 1 without reducing the fixing accuracy of the objective lens 1.

なお、前記様々な実施の形態又は変形例のうちの任意の実施の形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施の形態同士の組み合わせ又は実施例同士の組み合わせ又は実施の形態と実施例との組み合わせが可能であると共に、異なる実施の形態又は実施例の中の特徴同士の組み合わせも可能である。   It is to be noted that, by appropriately combining any of the various embodiments or modifications, the effects possessed by them can be produced. In addition, combinations of embodiments, combinations of examples, or combinations of embodiments and examples are possible, and combinations of features in different embodiments or examples are also possible.

本発明の前記態様にかかるレンズ固定部材及び顕微鏡は、顕微鏡用のインキュベータで生体サンプルの培養を行いながら液浸用対物レンズでサンプルの観察を行う際に、顕微鏡本体への対物レンズの取り付け部材の工夫により、生体サンプルが浸漬されている培地液体から、培地液体に接触している対物レンズを伝っての顕微鏡本体への熱流出を抑制し、培養環境下にある生体サンプルや培地の温度調整を容易にし、生体サンプルの観察中培養を良好に維持することが可能となり、インキュベータに備える加温ヒーターの容量も比較的小さなもので温度調整可能とすることができ、広く、液浸状態で生体サンプルを培養しながらの観察を行う光学機器の対物レンズ固定機構として適用することができる。   The lens fixing member and the microscope according to the above aspect of the present invention are used to mount the objective lens to the microscope main body when observing the sample with the immersion objective lens while culturing the biological sample with the microscope incubator. By devising, the heat flow from the medium liquid in which the biological sample is immersed to the microscope body through the objective lens in contact with the medium liquid is suppressed, and the temperature of the biological sample and medium in the culture environment is adjusted. It makes it easy to maintain the culture well during observation of the biological sample, and the temperature of the heating heater provided in the incubator can be adjusted with a relatively small capacity, so that the biological sample can be widely immersed in the immersion state. It can be applied as an objective lens fixing mechanism of an optical instrument that performs observation while culturing.

1 液浸対物レンズ
1a ねじ部
2 顕微鏡本体
3 取り付け穴
4 受け部材
5 ねじ部
6 側面突起部
7 垂直受け突起部
8 貫通穴
9 側部当たり面
10 仮想円柱面
11 側部当たり面
12 垂直受け当たり面
13 取り付け面
14 取り付け円柱面
15 円筒中心軸
16 ねじ
17 中心軸
18 ねじ穴
19 座金
20 分割垂直受け当たり面
21 分割側部当たり面
22 鍔部
25 第1切り欠き
26 第2切り欠き
30 対物レンズ
31 培地
32 サンプル
33 ディッシュ
34 加温用ヒーター
40 インキュベータ
51 円筒部
53 凹部
DESCRIPTION OF SYMBOLS 1 Immersion objective lens 1a Thread part 2 Microscope main body 3 Mounting hole 4 Receiving member 5 Thread part 6 Side projection part 7 Vertical receiving projection part 8 Through hole 9 Side contact surface 10 Virtual cylindrical surface 11 Side contact surface 12 Per vertical support Surface 13 Mounting surface 14 Mounting cylindrical surface 15 Cylindrical central axis 16 Screw 17 Central axis 18 Screw hole 19 Washer 20 Divided vertical receiving surface 21 Divided side contact surface 22 Gutter 25 First notch 26 Second notch 30 Objective lens 31 Medium 32 Sample 33 Dish 34 Heating heater 40 Incubator 51 Cylindrical part 53 Recessed part

Claims (7)

レンズを機械的に顕微鏡本体に結合するレンズ固定部材であって、
前記レンズを固定する固定筒と、
少なくとも3箇所に周方向に等間隔に前記固定筒の外周面に設けられ、かつ、外面が、1つの仮想円柱面内に配置される湾曲面である複数の側面突起部と、
前記固定筒の端部に設けられた鍔部と、
少なくとも3箇所に前記固定筒の前記周方向に等間隔かつ前記固定筒の軸方向に突出して前記鍔部に設けられ、かつ、端面が、1つの仮想平面内に配置される平面である複数の垂直突起部と、を備える、レンズ固定部材。
A lens fixing member for mechanically coupling the lens to the microscope body,
A fixed cylinder for fixing the lens;
A plurality of side protrusions which are provided on the outer peripheral surface of the fixed cylinder at equal intervals in at least three locations, and whose outer surface is a curved surface disposed in one virtual cylindrical surface;
A collar provided at an end of the fixed cylinder;
A plurality of at least three positions that are equidistant in the circumferential direction of the fixed cylinder and project in the axial direction of the fixed cylinder, are provided on the flange portion, and whose end surfaces are planes arranged in one virtual plane A lens fixing member comprising a vertical protrusion.
前記複数の側面突起部と前記複数の垂直突起部とは、前記固定筒の軸方向沿いの方向からの平面視において、重複しないように設けられている、請求項1に記載のレンズ固定部材。   The lens fixing member according to claim 1, wherein the plurality of side protrusions and the plurality of vertical protrusions are provided so as not to overlap in a plan view from a direction along the axial direction of the fixed cylinder. 前記複数の側面突起部は、それぞれ、表面に切り欠きを有する凹凸形状を有する、請求項1又は2に記載のレンズ固定部材。   The lens fixing member according to claim 1, wherein each of the plurality of side surface protrusions has an uneven shape having a notch on the surface. 前記複数の垂直突起部は、それぞれ、表面に切り欠きを有する凹凸形状を有する、請求項1〜3いずれか1つに記載のレンズ固定部材。   4. The lens fixing member according to claim 1, wherein each of the plurality of vertical protrusions has an uneven shape having a notch on a surface thereof. 前記固定筒の中心軸と、前記レンズの光軸とが一致する、請求項1〜4いずれか1つに記載のレンズ固定部材。   The lens fixing member according to any one of claims 1 to 4, wherein a central axis of the fixed cylinder and an optical axis of the lens coincide with each other. 前記固定筒、前記鍔部、前記側面突起部、及び前記垂直突起部は、金属で構成される、請求項1〜5いずれか1つに記載のレンズ固定部材。   The lens fixing member according to claim 1, wherein the fixing cylinder, the flange portion, the side surface protruding portion, and the vertical protruding portion are made of metal. 請求項1〜5いずれか1つに記載のレンズ固定部材と、
前記レンズ固定部材に固定された前記レンズと、
前記レンズ固定部材を固定する取り付け穴を有する顕微鏡本体と、を備え、
前記レンズ固定部材の全ての前記側面突起部の各湾曲面は、前記仮想円柱面に相当する、前記顕微鏡本体の前記取り付け穴の内周面に接触するとともに、前記レンズ固定部材の全ての前記垂直突起部の各平面は、前記仮想平面に相当する、前記顕微鏡本体の前記取り付け穴の前記内周面と交差する面に接触して、前記レンズ固定部材が前記取り付け穴に固定され、
前記レンズ固定部材の前記固定筒及び前記鍔部は、前記顕微鏡本体と非接触である、顕微鏡。
The lens fixing member according to any one of claims 1 to 5,
The lens fixed to the lens fixing member;
A microscope main body having a mounting hole for fixing the lens fixing member,
Each curved surface of all the side protrusions of the lens fixing member is in contact with the inner peripheral surface of the mounting hole of the microscope main body, which corresponds to the virtual cylindrical surface, and all the vertical of the lens fixing member. Each plane of the protrusion is in contact with a surface corresponding to the virtual plane, intersecting the inner peripheral surface of the mounting hole of the microscope body, and the lens fixing member is fixed to the mounting hole.
The microscope, wherein the fixed cylinder and the flange of the lens fixing member are not in contact with the microscope main body.
JP2016222503A 2016-11-15 2016-11-15 Lens fixing member and microscope Pending JP2018081175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222503A JP2018081175A (en) 2016-11-15 2016-11-15 Lens fixing member and microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222503A JP2018081175A (en) 2016-11-15 2016-11-15 Lens fixing member and microscope

Publications (1)

Publication Number Publication Date
JP2018081175A true JP2018081175A (en) 2018-05-24

Family

ID=62198895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222503A Pending JP2018081175A (en) 2016-11-15 2016-11-15 Lens fixing member and microscope

Country Status (1)

Country Link
JP (1) JP2018081175A (en)

Similar Documents

Publication Publication Date Title
US10704146B2 (en) Support assembly for substrate backside discoloration control
JP2020524892A (en) Substrate support device
TWI785137B (en) Lift pin holder, and assembly and process chamber including the same
KR20180110596A (en) Pressure sensor
JP2018081175A (en) Lens fixing member and microscope
KR101535547B1 (en) Substrate processing apparatus
US20160064201A1 (en) Sputtering target having increased power compatibility
JP2005529340A (en) Low pressure chamber for scanning electron microscopes in damp environments
CN109841541A (en) SiC epitaxial growth device
US20160355775A1 (en) Vibration device for petri dishes
US9683929B2 (en) Optical measuring system for measuring optical polarization properties of a sample
JP5246995B2 (en) Focused charged particle beam system
US20160203940A1 (en) Anti-Contamination Trap, and Vacuum Application Device
TW202125689A (en) Pedestal heater for spatial multi-wafer processing tool
CN105700127A (en) Wave-front defocus correction device
KR101784202B1 (en) Evaporating source having cold lip structure
JP5112206B2 (en) Heat pipe attachment / detachment jig
Babchenko et al. Optically transparent diamond–PDMS microfluidic system for electronic monitoring of cells
JP2015155964A (en) Microscopic observation device
JP6920460B2 (en) Tube furnace equipment for atomizing furnaces
JP2019116663A (en) Evaporation source and vapor deposition apparatus
JP6299635B2 (en) Vapor growth apparatus and reflector used for vapor growth apparatus
JP2007049968A (en) Tool for storing culture solution and lid of laboratory dish
JP2017173575A (en) Objective lens cooling device, objective lens cooling method, and microscope
JP2020008569A (en) Device and method for measurement for thermal analysis of sample