JP2018080961A - Calibrator of X-ray CT system - Google Patents

Calibrator of X-ray CT system Download PDF

Info

Publication number
JP2018080961A
JP2018080961A JP2016222185A JP2016222185A JP2018080961A JP 2018080961 A JP2018080961 A JP 2018080961A JP 2016222185 A JP2016222185 A JP 2016222185A JP 2016222185 A JP2016222185 A JP 2016222185A JP 2018080961 A JP2018080961 A JP 2018080961A
Authority
JP
Japan
Prior art keywords
ray
calibrator
diameter
ruby
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016222185A
Other languages
Japanese (ja)
Inventor
勇一 高橋
Yuichi Takahashi
勇一 高橋
幹大 狩野
Motohiro Kano
幹大 狩野
中村 哲也
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2016222185A priority Critical patent/JP2018080961A/en
Publication of JP2018080961A publication Critical patent/JP2018080961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibrator of X-ray CT system capable of improving the accuracy of estimation of internal shape using an X-ray CT system by carrying out beam hardening treatment by utilizing difference in diameter of ruby spheres on a calibrator which constituted of plural ruby spheres.SOLUTION: A correction method using an X-ray calibrator is for improving an error which is obtained in the following manner that: after calculating a coefficient from a diameter dimension (true value) of a ruby sphere which is obtained by means of three-dimensional measurement and an inverse number of a ratio (%) of average values of diameter dimension of the ruby sphere from a piece of image data of an X-ray CT, and by multiplying the coefficient by the ratio (%) of the diameter with respect to the true value.SELECTED DRAWING: Figure 1

Description

X線CT装置による内部形状評価の精度向上を目的として複数のルビー球からなる校正器に関するものである。 The present invention relates to a calibrator composed of a plurality of ruby balls for the purpose of improving the accuracy of internal shape evaluation by an X-ray CT apparatus.

産業用X線CT装置を計測に利用するため、欧州、主にドイツにおいて、三次元計測器メーカーによる三次元計測を目的としたX線CT装置が開発されている。
一方、日本において、X線CT装置を「ものづくり」に生かした取り組みの件数では、日本は世界一であるといわれているが、製品のクラックや内部欠陥の良/不良、可/否の判定を行う検査機としての用途が主流であり、寸法精度にかかわる三次元計測を目的とした使い方はまれである。
In order to use an industrial X-ray CT apparatus for measurement, an X-ray CT apparatus for three-dimensional measurement by a three-dimensional measuring instrument manufacturer has been developed in Europe, mainly in Germany.
On the other hand, in Japan, it is said that Japan is the world's best in the number of initiatives that make use of X-ray CT equipment for “manufacturing”. The main use is as an inspection machine, and it is rarely used for the purpose of three-dimensional measurement related to dimensional accuracy.

そのため、日本国内の企業、大学、公設試に導入済みのX線CT装置では、現在規格化が進んでいる計測関係において、X線CT装置による寸法計測が行えなくなる恐れがある。
ところで、従来技術としてX線CT装置の校正器として特許文献1,2が挙げられる。
特許文献1において、ベリリウム成型体と、該ベリリウム成型体を内包し、X線CT装置から得られる投影イメージにおいて前記ベリリウム成型体と異なるコントラストで示される外装体とを有することを特徴とするX線CT装置の校正及び評価用の標準ゲージが示されている。特許文献1においては、X線CT装置から得られる投影イメージから、試料の内部形状を含む形状寸法を精度良く校正することを目的とした標準ゲージでは、試料の形状等に対応して、成形された標準ゲージの確認が、三次元計測機により、適切に出来ない場合があることを課題とする。
For this reason, in an X-ray CT apparatus that has already been introduced to Japanese companies, universities, and public trials, there is a risk that dimension measurement by the X-ray CT apparatus cannot be performed in a measurement standard that is currently being standardized.
By the way, Patent Documents 1 and 2 are cited as calibrators of X-ray CT apparatuses as conventional techniques.
In Patent Document 1, an X-ray comprising: a beryllium molded body; and an exterior body including the beryllium molded body and having a contrast different from that of the beryllium molded body in a projection image obtained from an X-ray CT apparatus. A standard gauge for calibration and evaluation of CT apparatus is shown. In Patent Document 1, a standard gauge for the purpose of accurately calibrating a shape dimension including an internal shape of a sample from a projection image obtained from an X-ray CT apparatus is formed according to the shape of the sample. It is an issue that confirmation of standard gauges cannot be performed properly with a three-dimensional measuring machine.

そして、発明者達は、以前、特許文献2において、円筒体または円柱体の外円周に、異なる外径の球を複数個配置した構造の校正器を用いて、接触式三次元計測機により必要に応じていつでも、各部の寸法の実測が可能であるX線CT装置の校正器の提案を行った。 The inventors previously used a calibrator having a structure in which a plurality of spheres having different outer diameters are arranged on the outer circumference of a cylindrical body or a cylindrical body in Patent Document 2, using a contact-type three-dimensional measuring machine. We have proposed a calibrator for X-ray CT equipment that can measure the dimensions of each part whenever necessary.

特開2012−189517号公報JP 2012-189517 A 特開2014−190933号公報JP 2014-190933 A

今回、発明者達が特許文献2にて提案したX線CT装置の校正器を利用して、X線CT装置で断面画像を計測する上で問題になるビームハードニング(線質硬化)の軽減対策を行い校正器のルビー球径の誤差の低減を目指した。 This time, using the calibrator of the X-ray CT apparatus proposed by the inventors in Patent Document 2, beam hardening (wire quality hardening), which is a problem when measuring cross-sectional images with the X-ray CT apparatus, is reduced. Measures were taken to reduce the error of the ruby ball diameter of the calibrator.

X線の透過性の良好な材料であり、外径58mm、厚さ5mmの、アクリル樹脂製の円筒体2a、円筒体2b、円筒体2cからなり、これ等の円筒体の下端面から、所定の間隔をあけて平行に配置される仮想2平面上の同一径上に各ルビー球の中心を置き、異なる外径(大球3、中球4、小球5)から採用された4個のルビー球を1セットとなし、2セットを用意して、上下2段に1セットずつ配置して構成されてなるX線CT校正器を用いて、X線CT装置のボリュームデータ(複数の断層画像情報)から求めた径の値と接触式三次元計測機による校正器のルビー球の径の計測値(真値)の各比を求め、各比の平均値の逆数を適切な係数と定義し、各比とこの適切な係数との積の(最大値―最小値)の値を誤差と定義し、本願発明による補正を行わない場合のルビー球の径の真値に対する径の誤差0.6910%が本願発明による補正によりルビー球の径の真置に対する径の誤差0.4568%より0.2342%以上改善するX線校正器による補正方法である。 It is a material with good X-ray permeability, and consists of a cylindrical body 2a, a cylindrical body 2b, and a cylindrical body 2c made of acrylic resin having an outer diameter of 58mm and a thickness of 5mm. The center of each ruby sphere is placed on the same diameter on two virtual planes that are arranged in parallel with an interval of 4 and adopted from four different outer diameters (large sphere 3, middle sphere 4, small sphere 5) One set of ruby spheres, two sets are prepared, and the X-ray CT calibrator is configured by arranging one set in the upper and lower two stages. Information) and the ratio of the measured value (true value) of the ruby ball diameter of the calibrator with the contact-type CMM, and the reciprocal of the average value of each ratio is defined as an appropriate coefficient. The value of the product of each ratio and this appropriate coefficient (maximum value – minimum value) is defined as the error, and is corrected according to the present invention. In the correction method by the X-ray calibrator, the error of 0.6910% with respect to the true value of the diameter of the ruby sphere when not performed is improved by 0.2342% or more from the error of the diameter with respect to the true position of the ruby sphere of 0.4568% by the correction of the present invention. is there.

X線CT装置のボリュームデータ(複数の断層画像情報)から求めた径の値と接触式三次元計測機による校正器のルビー球の径の計測値(真値)の各比を求め、各比の平均値の逆数を適切な係数と定義し、各比とこの適切な係数との積の(最大値―最小値)の値を誤差と定義し、本願発明による補正を行わない場合のルビー球の径の真値に対する径の誤差(0.6910%)が本発明によりルビー球の径の真置に対する径の誤差(0.4568%)より(0.2342%)以上改善できる。 Obtain each ratio of the diameter value obtained from the volume data (multiple tomographic image information) of the X-ray CT device and the measured value (true value) of the ruby sphere diameter of the calibrator by the contact type three-dimensional measuring machine. Ruby sphere when the inverse of the average value is defined as an appropriate coefficient, the value of the product of each ratio and this appropriate coefficient is defined as the error (maximum value-minimum value), and correction according to the present invention is not performed The diameter error (0.6910%) with respect to the true value of the diameter of the sphere can be improved by 0.2342% or more from the diameter error (0.4568%) with respect to the true position of the ruby ball.

X線CT装置におけるワークの同じ密度で、厚みの違う補正用試料の投影データの輝度値から連続X線の減衰を近似曲線から求める本願発明による補正の考え方を示す説明図である。It is explanatory drawing which shows the idea of the correction | amendment by this invention which calculates | requires attenuation | damping of a continuous X-ray from an approximated curve from the luminance value of the projection data of the correction | amendment sample from which thickness differs with the same density of the workpiece | work in an X-ray CT apparatus. 鉄系焼結体の斜視図を示す。The perspective view of an iron system sintered compact is shown. X線CT装置の投影データの本願発明による補正前の断面画像である。It is a cross-sectional image before correction | amendment by this invention of the projection data of a X-ray CT apparatus. X線CT装置の投影データの本願発明による補正後の断面画像である。It is a cross-sectional image after correction | amendment by this invention of the projection data of a X-ray CT apparatus. 本発明に係る、X線CT装置の校正器の全体図であり、図5において、左方から、それぞれ、校正器大1a、校正器中1b、校正器小1cとし、正面上方からの斜視図を示す。FIG. 6 is an overall view of a calibrator of an X-ray CT apparatus according to the present invention, and is a perspective view from the upper front, with a calibrator large 1a, a calibrator middle 1b, and a calibrator small 1c, respectively, from the left in FIG. Indicates. 本発明に係る、X線CT装置の校正器におけるルビー球大(外径6mm)、中(外径3.5mm)、小(外径2.5mm)の投影データの輝度値の図を示す。The figure of the luminance value of the projection data of the ruby ball large (outer diameter 6 mm), medium (outer diameter 3.5 mm), and small (outer diameter 2.5 mm) in the calibrator of the X-ray CT apparatus according to the present invention is shown. ルビー球の割り振り図面を示すRuby ball allocation drawing is shown 近似曲線から単色X線の減衰を求める図を示す。The figure which calculates | requires attenuation | damping of a monochromatic X-ray from an approximated curve is shown. 機械的誤差要因図を示す。The mechanical error factor diagram is shown. X線CT装置の校正器の斜視図の代表図を示す。A representative view of a perspective view of a calibrator of an X-ray CT apparatus is shown. X線CT装置の校正器の上面図の代表図を示す。A representative view of a top view of a calibrator of an X-ray CT apparatus is shown. X線CT装置の校正器の正面図の代表図を示す。The representative figure of the front view of the calibrator of a X-ray CT apparatus is shown. X線CT装置の校正器の右側面図の代表図を示す。の上面図の代表図を示す。The representative figure of the right view of the calibrator of a X-ray CT apparatus is shown. The representative figure of the top view of is shown.

つぎに、本発明に係るX線CT装置の校正器の実施例について図面を参照して具体的に説明する。   Next, an embodiment of the calibrator of the X-ray CT apparatus according to the present invention will be specifically described with reference to the drawings.

X線CT装置では、連続X線を使用しているため、X線がワークを透過する際、高いエネルギーをもつX線よりも、低いエネルギーをもつX線のほうが、より多く吸収される。そのため、X線のエネルギー分布は少しずつ高い方へシフトしていく。エネルギーが高いという状態を専門用語で硬い(hard)と表現するため、ビームハードニング(線質硬化 beamu hardening)と呼ばれる。このビームハードニングはアーチファクトと呼ばれるノイズを発生させ断面画像の画質を低下させる。
これを補正するのがビームハードニング補正(beam hardenig corr-ection:以下、BHC)である。後述するように、BHCでは、ワークと同一密度で、厚みの異なる補正用試料の投影データの輝度値から連続X線の減衰を近似曲線から単色X線の減衰を求めるものである。
Since the X-ray CT apparatus uses continuous X-rays, when the X-rays pass through the workpiece, X-rays having low energy are absorbed more than X-rays having high energy. For this reason, the energy distribution of X-rays gradually shifts higher. Since the state of high energy is expressed as hard in technical terms, it is called beam hardening (beam hardening). This beam hardening generates noise called artifacts and degrades the image quality of a cross-sectional image.
This is corrected by beam hardening correction (hereinafter referred to as BHC). As will be described later, in the BHC, the attenuation of continuous X-rays is obtained from the brightness value of the projection data of the correction sample having the same density as the workpiece and different thickness, and the attenuation of monochromatic X-rays is obtained from the approximate curve.

図5は、本発明に係る、X線CT装置の校正器1、の全体図であり、図5において、X線CT装置の校正器1は、左方から、それぞれ、校正器大1a、校正器中1b、校正器小1cとし、正面上方からの斜視図を示す。これ等の校正器1a、校正器1b、校正器1cは、X線の透過性の良好な材料であり、外径58mm、厚さ5mmの、アクリル樹脂製の円筒体2(第1の円筒体2a、第2の円筒体2b、第3の円筒体2c)からなり、これ等の円筒体2の下端面から、所定の間隔をあけて平行に配置される仮想2平面上で、かつ、それぞれ、同一径の円周上に各ルビー球(3,4,5)の中心を置き、異なる外径のルビー球(大球3、中球4、小球5)のルビー球から採用された4個のルビー球を1セットとなし、2セットのルビー球を用意して、上下2段に1セットずつルビー球を配置して構成されてなるX線CT校正器1a,1b,1cである。 FIG. 5 is an overall view of the calibrator 1 of the X-ray CT apparatus according to the present invention. In FIG. 5, the calibrator 1 of the X-ray CT apparatus is calibrated from the left, the calibrator size 1a and the calibration, respectively. A perspective view from above the front is shown with the inside 1b and the small calibrator 1c. These calibrator 1a, calibrator 1b, and calibrator 1c are materials having good X-ray transmission, and are made of acrylic resin cylinder 2 (first cylinder) having an outer diameter of 58 mm and a thickness of 5 mm. 2a, the second cylindrical body 2b, and the third cylindrical body 2c) on the virtual two planes arranged in parallel with a predetermined distance from the lower end surface of these cylindrical bodies 2, and respectively The center of each ruby ball (3, 4, 5) is placed on the circumference of the same diameter, and is adopted from the ruby balls of different outer diameters (large ball 3, medium ball 4, small ball 5) 4 The X-ray CT calibrators 1a, 1b, and 1c are configured by forming one set of ruby spheres and preparing two sets of ruby spheres and arranging one set of ruby spheres on the upper and lower stages.

即ち、一方の異なる外径(大球3、中球4、小球5)から採用された4個のルビー球の1セットを、円筒体の下端面より所定の高さ寸法に位置する同一仮想平面上で、かつ、それぞれ、同一径の円周上に各ルビー球の中心を配置すると共に、該円筒体の外側壁面から所定寸法の位置に前記各ルビー球の中心を接着し得るように、各球の直径と同じ直径のボールエンドミルにより座面加工を施して、前記一方の4個のルビー球の1セットを固着形成し、更に、前記一方の4個のルビー球の1セットの位置より上方に位置し、且つ、前記仮想平面に平行な他の仮想平面上に他方の異なる外径(大球3、中球4、小球5)から採用された4個のルビー球の中心を配置すると共に、該円筒体の外側壁面から所定寸法の位置に各ルビー球の中心を接着し得るように、各球の直径と同じ直径のボールエンドミルにより座面加工を施して、他方の4個のルビー球の1セットを固着形成してなるX線CT装置の校正器1である。 That is, one set of four ruby spheres adopted from one different outer diameter (large sphere 3, middle sphere 4, small sphere 5) is the same virtual position located at a predetermined height from the lower end surface of the cylindrical body. The center of each ruby sphere is arranged on a plane and on the circumference of the same diameter, respectively, and the center of each ruby sphere can be bonded to a position of a predetermined dimension from the outer wall surface of the cylindrical body. The bearing surface is processed by a ball end mill having the same diameter as each of the balls, and one set of the four ruby balls is fixedly formed. Further, from the position of the one set of the four ruby balls, The center of four ruby spheres adopted from the other different outer diameters (large sphere 3, medium sphere 4, small sphere 5) is arranged on another virtual plane parallel to the virtual plane. At the same time, the center of each ruby ball is bonded to the position of a predetermined dimension from the outer wall surface of the cylindrical body. So that the, is subjected to the seating surface processing by a ball end mill of the same diameter as the diameter of each sphere is a calibrator 1 of the other four ruby sphere fixing formed X-ray CT apparatus comprising a set of.

ルビー球(3,4,5)は、前記の円筒体2よりもX線透過性が低く、真球加工が容易な、例えば、ルビーやジルコニア等がよく、本実施例では、ルビー球を採用した。そして、ルビー球は、大球3の直径は6mm、中球4の直径は3.5 mm、小球5の直径は2.5 mmとした。
X線CT装置の校正器である。1セット4個のルビー球を2段にセットした理由は、上下の対角線上の計測データも参照したいためである。
Ruby spheres (3,4,5) have lower X-ray transparency than the cylindrical body 2 and are easy to process true spheres, for example, rubies and zirconia are good. In this embodiment, rubies are used. did. In the ruby sphere, the diameter of the large sphere 3 is 6 mm, the diameter of the middle sphere 4 is 3.5 mm, and the diameter of the small sphere 5 is 2.5 mm.
It is a calibrator of an X-ray CT apparatus. The reason why one set of four ruby balls is set in two stages is that it is desired to refer to the measurement data on the upper and lower diagonal lines.

今回の実施例1では、X線CT装置の校正器(1a,1b,1c)の代表図面の斜視図を図10に、代表図面の上面図を図11に、代表図面の正面図を図12に、代表図面の右側面図を図13に示す。校正器1(1a,1b,1c)の円筒体2(2a,2b,2c)の外径を58mmとし、厚さ5mmのアクリル樹脂製とした。円筒体2の中心軸に直角で、円筒体2の外周より2mm大きい半径の水平な円周上に球の中心位置を定め、計4個の球を90度の間隔で配置した。前記したように、ルビー球において、大球3の直径は6mm、中球4の直径は3.5 mm、小球5の直径は2.5 mmであり、そして、そのX線CT装置によるX線透過の輝度値は図6の通りである。 In the first embodiment, a perspective view of a representative drawing of the calibrator (1a, 1b, 1c) of the X-ray CT apparatus is shown in FIG. 10, a top view of the representative drawing is shown in FIG. 11, and a front view of the representative drawing is shown in FIG. FIG. 13 is a right side view of the representative drawing. The cylindrical body 2 (2a, 2b, 2c) of the calibrator 1 (1a, 1b, 1c) was made of acrylic resin having an outer diameter of 58 mm and a thickness of 5 mm. The center position of the sphere was determined on a horizontal circumference having a radius of 2 mm larger than the outer periphery of the cylindrical body 2 and perpendicular to the central axis of the cylindrical body 2, and a total of four spheres were arranged at intervals of 90 degrees. As described above, in the ruby sphere, the diameter of the large sphere 3 is 6 mm, the diameter of the middle sphere 4 is 3.5 mm, the diameter of the small sphere 5 is 2.5 mm, and the brightness of X-ray transmission by the X-ray CT apparatus. The values are as shown in FIG.

図6に示すように、球径とX線吸収量は比例しないことから、ビームハードニングが発生していることが分かる。各校正器(1a,1b,1c)に使用しているルビー球(大球3、中球4、小球5)の球径の差を利用し、BHCを行った。 As shown in FIG. 6, since the spherical diameter and the X-ray absorption amount are not proportional, it can be seen that beam hardening occurs. BHC was performed using the difference in the diameter of the ruby balls (large sphere 3, medium sphere 4, small sphere 5) used in each calibrator (1a, 1b, 1c).

図1において、BHCの考え方を示す。BHCでは、同じ密度で、厚みの違う補正用試料の投影データの輝度値をもとに近似曲線を作成し、近似曲線から単色X線の同一密度のワークに厚みに対する減衰を求めるものである。
本事例では、校正器に使用されるルビー球(大球3、中球4、小球5)を利用し、投影データの輝度値から近似曲線を作成し、単色X線の減衰を求め補正を行った。近似曲線および単色X線の減衰を図8に示す。
FIG. 1 shows the concept of BHC. In the BHC, an approximate curve is created based on the brightness value of the projection data of the correction samples having the same density and different thicknesses, and attenuation with respect to the thickness is obtained from the approximate curve to a work having the same density of monochromatic X-rays.
In this example, using the ruby spheres (large sphere 3, medium sphere 4, and small sphere 5) used for the calibrator, an approximate curve is created from the brightness value of the projection data, and the attenuation of the monochromatic X-ray is obtained and corrected. went. The approximate curve and monochromatic X-ray attenuation are shown in FIG.

図7に示すように、1〜8まで番号を割り当てる。X線CT装置の校正器を構成するルビー球のボリュームデータから求めた径と、接触式三次元計測機によるX線CT装置の校正器のルビー球の計測結果(ここでは真値という。)と、を形状比較した。各ルビー球の真値に対する径の割合の校正前の結果を表1に、校正後の結果を表2にそれぞれ示す。BHCを行わない結果を図3に、BHCを行った結果を図4にそれぞれ示す。 As shown in FIG. 7, numbers 1 to 8 are assigned. The diameter obtained from the volume data of the ruby sphere constituting the calibrator of the X-ray CT apparatus, the measurement result of the ruby sphere of the calibrator of the X-ray CT apparatus by the contact type three-dimensional measuring instrument (herein referred to as a true value). The shapes were compared. The results before calibration of the ratio of the diameter to the true value of each ruby ball are shown in Table 1, and the results after calibration are shown in Table 2. FIG. 3 shows the result without BHC, and FIG. 4 shows the result with BHC.

X線CT装置については、図9のように検出器とX線源の焦点との距離SDD(Source to detector Distance)ワークの中心とX線源の焦点との距離SRD(Source to Rotation center Distance )の比断面画像の倍率が決まるが、SDD/SRDの位置決め精度は機械的誤差要因でありビームハードニングとは直接的な関係はない。
機械的誤差要因であるSDD/SRDの位置決め精度による誤差では、ルビー球の径は一律な縮小・拡大による補正が可能であるが、ビームハードニングではルビー球の径、ルビー球の同一平面上の並びにより、ルビー球おのおので誤差の大きさは異なる。
For the X-ray CT apparatus, as shown in FIG. 9, the distance between the center of the detector and the focus of the X-ray source SRD (Source to Rotation center Distance) between the center of the work and the focus of the X-ray source as shown in FIG. Although the magnification of the specific cross-sectional image is determined, the positioning accuracy of the SDD / SRD is a mechanical error factor and has no direct relationship with the beam hardening.
In the error due to the positioning accuracy of SDD / SRD, which is a mechanical error factor, the diameter of the ruby sphere can be corrected by uniform reduction / enlargement, but in beam hardening, the diameter of the ruby sphere is on the same plane as the ruby sphere. Moreover, the magnitude of the error is different for each ruby ball.

ボリュームデータ(複数の断層画像情報)から求めた径と接触式三次元計測機による校正器のルビー球の径の計測結果(真値)の各比を求め、各比の平均値の逆数を適切な係数と定義する。各比とこの適切な係数の積の最大値―最小値(減法の値)を誤差と定義する。BHCを行わない場合の誤差0.6910%がBHCにより誤差0.4568%と0.2342%以上改善することが分かる。 Obtain each ratio of the diameter obtained from the volume data (multiple tomographic image information) and the measurement result (true value) of the diameter of the ruby sphere of the calibrator by the contact-type three-dimensional measuring machine, and appropriately calculate the reciprocal of the average value of each ratio Is defined as a simple coefficient. The maximum-minimum value (subtraction value) of the product of each ratio and this appropriate coefficient is defined as the error. It can be seen that the error of 0.6910% when BHC is not performed is improved by 0.2342% or more by 0.4HC% by BHC.

以上、本発明の実施例を説明したが、本発明の範囲は、これに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更を加え得ることは勿論である。   The embodiments of the present invention have been described above, but the scope of the present invention is not limited to these embodiments, and various changes can be made without departing from the scope of the present invention.

本発明はX線CT装置を製造、販売する産業分野または、X線CT装置を使用する産業分野や医療分野で利用することが出来る The present invention can be used in an industrial field in which an X-ray CT apparatus is manufactured and sold, or in an industrial field or a medical field in which the X-ray CT apparatus is used.

1‥X線校正器、1a‥第1の校正器,1a‥第2の校正器,1a‥第3の校正器,
2‥校正器の円筒体、2a‥校正器の円筒体、2b‥校正器の円筒体、2c‥校正器の円筒体、
3‥ルビー球大、
4‥ルビー球中、
5‥ルビー球小、

DESCRIPTION OF SYMBOLS 1 ... X-ray calibrator, 1a ... 1st calibrator, 1a ... 2nd calibrator, 1a ... 3rd calibrator,
2 calibrator cylinder, 2a calibrator cylinder, 2b calibrator cylinder, 2c calibrator cylinder,
3 Ruby sphere,
4 ... in the ruby ball
5 Ruby ball,

Claims (1)

X線CT装置の校正器であって、アクリル樹脂製の円筒体からなり、この円筒体の下端面から、所定の間隔をあけて平行に配置される仮想2平面上の同一径上にルビー球の中心を置き、異なる外径(大球3、中球4、小球5)から採用された4個のルビー球を1セットとなし、2セットを備え、上下2段に1セットずつ配置して構成されてなるX線CT校正器を用いて、X線CT装置のボリュームデータ(複数の断層画像情報)から求めた径の値と接触式三次元計測機による校正器のルビー球の径の計測値(真値)の各比を求め、各比の平均値の逆数を適切な係数と定義し、各比とこの適切な係数との積の(最大値―最小値)の値を誤差と定義し、BHCを行わない場合のルビー球の径の真値に対する径の誤差がBHCによりルビー球の径の真置に対する径の誤差より改善できることを特徴とするX線校正器による補正方法。
A calibrator for an X-ray CT apparatus comprising a cylindrical body made of acrylic resin, and a ruby ball on the same diameter on two virtual planes arranged in parallel with a predetermined interval from the lower end surface of the cylindrical body The four ruby balls adopted from different outer diameters (large sphere 3, medium sphere 4, small sphere 5) are made into one set, and two sets are provided, one set arranged in two upper and lower tiers. Using the X-ray CT calibrator configured as described above, the diameter value obtained from the volume data (multiple tomographic image information) of the X-ray CT apparatus and the diameter of the ruby sphere of the calibrator by the contact type three-dimensional measuring machine Calculate each ratio of the measured values (true values), define the reciprocal of the average value of each ratio as an appropriate coefficient, and calculate the product of each ratio and this appropriate coefficient (maximum value – minimum value) as the error. The error of the diameter relative to the true value of the ruby ball diameter when the BHC is not performed is Correction method according to X-ray calibrator, characterized in that it improved than the error of the diameter to.
JP2016222185A 2016-11-15 2016-11-15 Calibrator of X-ray CT system Pending JP2018080961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222185A JP2018080961A (en) 2016-11-15 2016-11-15 Calibrator of X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222185A JP2018080961A (en) 2016-11-15 2016-11-15 Calibrator of X-ray CT system

Publications (1)

Publication Number Publication Date
JP2018080961A true JP2018080961A (en) 2018-05-24

Family

ID=62198809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222185A Pending JP2018080961A (en) 2016-11-15 2016-11-15 Calibrator of X-ray CT system

Country Status (1)

Country Link
JP (1) JP2018080961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063243A (en) * 2016-10-13 2018-04-19 地方独立行政法人東京都立産業技術研究センター Calibrator for ct scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063243A (en) * 2016-10-13 2018-04-19 地方独立行政法人東京都立産業技術研究センター Calibrator for ct scanner
JP7038399B2 (en) 2016-10-13 2022-03-18 地方独立行政法人東京都立産業技術研究センター Calibrator for CT equipment

Similar Documents

Publication Publication Date Title
Gapinski et al. Comparison of different method of measurement geometry using CMM, optical scanner and computed tomography 3D
US9146327B2 (en) Method for determining geometric imaging properties of a flat panel detector, correspondingly adapted X-ray inspection system and calibration phantom
CN105849537B (en) Calibration device and computed tomography method
Kumar et al. Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional measurement
Müller et al. A study on evaluation strategies in dimensional X-ray computed tomography by estimation of measurement uncertainties
Carmignato et al. CT for industrial metrology-accuracy and structural resolution of CT dimensional measurements
US7840367B2 (en) Multi-modality inspection system
JP7038399B2 (en) Calibrator for CT equipment
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
Wang et al. Measurement of the spatial resolution and the relative density resolution in an industrial cone-beam micro computed tomography system
JP7206249B2 (en) Method for determining uncertainty in measured data from measurements of objects
JP6205569B2 (en) X-ray CT system calibrator
JP2018080961A (en) Calibrator of X-ray CT system
Villarraga-Gómez et al. Improving the dimensional accuracy of 3D X-ray microscopy data
CN111504202A (en) Method for high-precision calibration splicing of multiple line lasers
CN110686624A (en) Method for measuring dimension using projection image obtained by X-ray CT apparatus
Müller et al. Investigation of measuring strategies in computed tomography
Kiekens et al. Parameter dependent thresholding for dimensional X-ray computed tomography
KR101865434B1 (en) Method and evaluation device for determining the position of a structure located in an object to be examined by means of x-ray computer tomography
Carmignato et al. First international intercomparison of computed tomography systems for dimensional metrology
JP2021050937A (en) Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement
CN115451821A (en) Calibration method and standard sample plate for cable insulation layer structure dimension tester
JP2019158541A (en) X-ray ct apparatus for measurement and method for measuring mass-produced workpieces
CN210198334U (en) Standard device for measuring and calibrating geometric quantity
CN111272625B (en) Porosity evaluation method, device, equipment and storage medium