JP2018080090A - Manufacturing method of bismuth iron oxide - Google Patents
Manufacturing method of bismuth iron oxide Download PDFInfo
- Publication number
- JP2018080090A JP2018080090A JP2016224148A JP2016224148A JP2018080090A JP 2018080090 A JP2018080090 A JP 2018080090A JP 2016224148 A JP2016224148 A JP 2016224148A JP 2016224148 A JP2016224148 A JP 2016224148A JP 2018080090 A JP2018080090 A JP 2018080090A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- bismuth
- ions
- coprecipitate
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- YDADSACUMGYURZ-UHFFFAOYSA-N [O-2].[Fe+2].[Bi+3] Chemical compound [O-2].[Fe+2].[Bi+3] YDADSACUMGYURZ-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 239000007788 liquid Substances 0.000 claims abstract description 242
- 238000006243 chemical reaction Methods 0.000 claims abstract description 217
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 108
- 150000002500 ions Chemical class 0.000 claims abstract description 58
- 239000002253 acid Substances 0.000 claims abstract description 44
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 39
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 38
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract description 32
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 94
- 229910052742 iron Inorganic materials 0.000 claims description 74
- 238000002360 preparation method Methods 0.000 claims description 70
- -1 iron ions Chemical class 0.000 claims description 65
- 238000010304 firing Methods 0.000 claims description 53
- 229910001451 bismuth ion Inorganic materials 0.000 claims description 46
- 229910052797 bismuth Inorganic materials 0.000 claims description 32
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000007864 aqueous solution Substances 0.000 claims description 23
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 15
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 229910017604 nitric acid Inorganic materials 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 12
- 239000001099 ammonium carbonate Substances 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 11
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 11
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 11
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 6
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- 239000003125 aqueous solvent Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 10
- 239000000047 product Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 26
- 238000002441 X-ray diffraction Methods 0.000 description 25
- 230000032683 aging Effects 0.000 description 21
- 235000011114 ammonium hydroxide Nutrition 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 239000012071 phase Substances 0.000 description 13
- 238000000975 co-precipitation Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 5
- FBXVOTBTGXARNA-UHFFFAOYSA-N bismuth;trinitrate;pentahydrate Chemical compound O.O.O.O.O.[Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FBXVOTBTGXARNA-UHFFFAOYSA-N 0.000 description 5
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000002572 peristaltic effect Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 150000001621 bismuth Chemical class 0.000 description 3
- RDQSSKKUSGYZQB-UHFFFAOYSA-N bismuthanylidyneiron Chemical compound [Fe].[Bi] RDQSSKKUSGYZQB-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910000380 bismuth sulfate Inorganic materials 0.000 description 1
- SFOQXWSZZPWNCL-UHFFFAOYSA-K bismuth;phosphate Chemical compound [Bi+3].[O-]P([O-])([O-])=O SFOQXWSZZPWNCL-UHFFFAOYSA-K 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- BEQZMQXCOWIHRY-UHFFFAOYSA-H dibismuth;trisulfate Chemical compound [Bi+3].[Bi+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BEQZMQXCOWIHRY-UHFFFAOYSA-H 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Iron (AREA)
Abstract
Description
本発明は、誘電体セラミックス、圧電セラミックス及びその原料として有用なビスマス鉄酸化物の製造方法に関する。 The present invention relates to a dielectric ceramic, a piezoelectric ceramic and a method for producing bismuth iron oxide useful as a raw material thereof.
Pb(Zr,Ti)O3(以下、「PZT」という)は、優れた圧電特性を示す材料として知られているが、地球環境問題の観点から強誘電体とする機能性材料では、鉛を含む材料の使用が厳しく制限されつつある。現在、鉛を含まないPZTの代替材料として、BiFeO3およびそれを用いた固溶体が注目されている。 Pb (Zr, Ti) O 3 (hereinafter referred to as “PZT”) is known as a material exhibiting excellent piezoelectric characteristics. The use of containing materials is being severely restricted. At present, BiFeO 3 and a solid solution using the same are attracting attention as an alternative material for PZT not containing lead.
BiFeO3の製造方法としては、例えば、下記特許文献1には、酸化ビスマス及び酸化鉄を乾式混合し、焼成する固相法が提案されている。また、下記特許文献2には硝酸鉄及び硝酸ビスマスを硝酸水溶液に溶解した溶液に、炭酸水素アンモニウムとアンモニア水を添加してビスマス鉄複合酸化物を得、次いで、ビスマス鉄複合酸化物を非イオン性高分子凝集剤で凝集させて凝集物を得、次いで、該凝集物を400℃以上650℃以下で焼成する方法が提案されている。 As a method for producing BiFeO 3 , for example, Patent Document 1 below proposes a solid phase method in which bismuth oxide and iron oxide are dry-mixed and fired. Further, in Patent Document 2 below, ammonium bicarbonate and aqueous ammonia are added to a solution in which iron nitrate and bismuth nitrate are dissolved in an aqueous nitric acid solution to obtain a bismuth iron composite oxide, and then the bismuth iron composite oxide is converted into a non-ion. A method has been proposed in which agglomerates are obtained by aggregating with a functional polymer flocculant, and then the agglomerates are fired at 400 ° C. or higher and 650 ° C. or lower.
しかしながら、BiFeO3は、Biの揮発性が高いことから、焼成中にBiが揮発し、組成がずれて不純物が生成しやすく、不純物含有量の少ない高純なものを製造することが難しいことが知られている。 However, since BiFeO 3 has high volatility of Bi, Bi is volatilized during firing, the composition tends to shift and impurities are easily generated, and it is difficult to manufacture a high purity product with a small impurity content. Are known.
このため、例えば、非特許文献1には、不純物が少ないBiFeO3の製造方法として、化学両論組成よりも過剰のBi2O3を加えて焼成し、不純物と未反応のBi2O3を硝酸で溶かして取り除く方法が提案されている。 Therefore, for example, in Non-Patent Document 1, as a method for producing BiFeO 3 with less impurities, Bi 2 O 3 in excess of the stoichiometric composition is added and baked, and impurities and unreacted Bi 2 O 3 are mixed with nitric acid. A method of removing it by melting with is proposed.
ところが、非特許文献1に開示されている製造方法では、工程が煩雑になり工業的に有利な方法とは言い難い。 However, the manufacturing method disclosed in Non-Patent Document 1 is not an industrially advantageous method because the process becomes complicated.
従って、本発明の目的は、工業的に有利な方法で、不純物含有量が少ないBiFeO3で表されるビスマス鉄酸化物を製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a bismuth iron oxide represented by BiFeO 3 having a low impurity content by an industrially advantageous method.
本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う共沈体調製工程において、反応容器へのA液及びB液の供給速度又は供給量を調節することにより、反応容器内の反応液のpHを制御して反応を行って得られた共沈体を焼成することにより、X線回折的に不純物含有量が少ないBiFeO3で表されるビスマス鉄酸化物が得られることを見出し、本発明を完成させた。 As a result of intensive studies in view of the above circumstances, the present inventors have supplied an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, while maintaining bicarbonate ions or In the coprecipitate preparation step in which an aqueous solution (Liquid B) containing carbonate ions and ammonium ions is supplied to react, the supply speed or supply amount of liquid A and liquid B to the reaction vessel is adjusted. Bismuth iron oxide represented by BiFeO 3 having a small impurity content in X-ray diffraction by firing the coprecipitate obtained by controlling the pH of the reaction solution in the reaction vessel And the present invention was completed.
すなわち、本発明(1)は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、該反応容器への該A液及び該B液の供給速度を調節することにより、該反応容器内の反応液のpHを、5.5〜8.5の範囲に制御しつつ反応を行い、共沈体を得る共沈体調製工程(1)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法を提供するものである。
That is, the present invention (1) is a method for producing a bismuth iron oxide represented by BiFeO 3,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. This is a step of supplying and reacting, and the pH of the reaction solution in the reaction vessel is adjusted to 5.5 to 8.5 by adjusting the supply rate of the solution A and the solution B to the reaction vessel. A coprecipitate preparation step (1) for obtaining a coprecipitate by carrying out the reaction while controlling within the range of
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
The manufacturing method of the bismuth iron oxide characterized by having this.
また、本発明(2)は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、少なくとも、該反応容器に該A液及び該B液の全量を供給した後の該反応容器内の反応液のpHが5.5〜8.5の範囲になるように、該A液及び該B液の供給量を調節して、反応を行い、共沈体を得る共沈体調製工程(2)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法を提供するものである。
The present invention (2) is a method for producing a bismuth iron oxide represented by BiFeO 3 ,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. The step of supplying and reacting, and at least the pH of the reaction liquid in the reaction container after supplying the entire amount of the liquid A and the liquid B to the reaction container is in the range of 5.5 to 8.5. The coprecipitate preparation step (2) for adjusting the supply amount of the liquid A and the liquid B and performing a reaction to obtain a coprecipitate,
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
The manufacturing method of the bismuth iron oxide characterized by having this.
本発明によれば、工業的に有利な方法で、不純物含有量が少ないBiFeO3で表されるビスマス鉄酸化物を製造する方法を提供することができる。 According to the present invention, in an industrially advantageous way, it is possible to provide a method for producing a bismuth iron oxide impurity content is represented by a small BiFeO 3.
本発明の第一の形態のビスマス鉄酸化物の製造方法は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、該反応容器への該A液及び該B液の供給速度を調節することにより、該反応容器内の反応液のpHを、5.5〜8.5の範囲に制御しつつ反応を行い、共沈体を得る共沈体調製工程(1)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法である。
Manufacturing method of the first bismuth iron oxide of the present invention is a method for producing a bismuth iron oxide represented by BiFeO 3,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. This is a step of supplying and reacting, and the pH of the reaction solution in the reaction vessel is adjusted to 5.5 to 8.5 by adjusting the supply rate of the solution A and the solution B to the reaction vessel. A coprecipitate preparation step (1) for obtaining a coprecipitate by carrying out the reaction while controlling within the range of
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
It is a manufacturing method of the bismuth iron oxide characterized by having.
本発明の第一の形態のビスマス鉄酸化物の製造方法は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、共沈体調製工程(1)と、焼成工程と、を有する。 Manufacturing method of the first bismuth iron oxide of the present invention is a method for producing a bismuth iron oxide represented by BiFeO 3, has a coprecipitate preparation step (1), a firing step, the .
本発明の第一の形態のビスマス鉄酸化物の製造方法に係る共沈体調製工程(1)は、反応容器に、A液を供給しつつ、B液を供給して、反応を行うに当たって、反応容器へのA液及びB液の供給速度を調節することにより、反応容器内の反応液のpHを、5.5〜8.5の範囲に制御しつつ反応を行い、共沈体を得る工程である。 In the coprecipitate preparation step (1) according to the method for producing the bismuth iron oxide of the first aspect of the present invention, the liquid B is supplied to the reaction vessel while the liquid B is supplied, and the reaction is performed. By adjusting the supply rate of the liquid A and liquid B to the reaction vessel, the reaction is carried out while controlling the pH of the reaction solution in the reaction vessel in the range of 5.5 to 8.5 to obtain a coprecipitate. It is a process.
共沈体調製工程(1)で用いるA液は、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液である。A液中のビスマスイオンは、ビスマスイオン源に由来するビスマスイオンである。また、鉄イオンは、鉄イオン源に由来する鉄イオンである。また、酸イオンは、A液の調製の際に、水に添加する酸に由来する酸イオンと、ビスマスイオン源又は鉄イオン源のアニオンが、酸イオンの場合に、アニオンが酸イオンであるビスマスイオン源又は鉄イオン源に由来する酸イオンがある。 The liquid A used in the coprecipitate preparation step (1) is an aqueous solution containing bismuth ions, iron ions, and acid ions. The bismuth ions in the liquid A are bismuth ions derived from the bismuth ion source. Moreover, an iron ion is an iron ion derived from an iron ion source. The acid ion is bismuth in which the anion is an acid ion when the acid ion derived from the acid added to water and the anion of the bismuth ion source or iron ion source is an acid ion when preparing the liquid A. There are acid ions derived from an ion source or an iron ion source.
A液は、ビスマスイオン源と、鉄イオン源と、必要に応じて酸と、を水に溶解させることにより得られる水溶液である。 Liquid A is an aqueous solution obtained by dissolving a bismuth ion source, an iron ion source, and, if necessary, an acid in water.
A液に係るビスマスイオン源としては、例えば、硝酸ビスマス、硫酸ビスマス、リン酸ビスマス、有機酸のビスマス塩等のビスマス塩が挙げられ、これらは、含水物であっても無水物であってもよい。これらのうち、A液に係るビスマスイオン源としては、硝酸ビスマスが、溶解性が高く、反応副生成物が少ない点で、好ましい。 Examples of the bismuth ion source related to the liquid A include bismuth salts such as bismuth nitrate, bismuth sulfate, bismuth phosphate, and bismuth salts of organic acids, which may be hydrated or anhydrous. Good. Among these, as a bismuth ion source related to the liquid A, bismuth nitrate is preferable because it has high solubility and few reaction byproducts.
A液に係る鉄イオン源としては、例えば、硝酸鉄、硫酸鉄、リン酸鉄、有機酸の鉄塩等の鉄塩が挙げられ、これらは、含水物であっても無水物であってもよい。これらのうち、A液に係る鉄イオン源としては、硝酸鉄が、溶解性が高く、反応副生成物が少ない点で、好ましい。 Examples of the iron ion source related to the liquid A include iron salts such as iron nitrate, iron sulfate, iron phosphate, and iron salts of organic acids, which may be hydrated or anhydrous. Good. Among these, as the iron ion source related to the liquid A, iron nitrate is preferable because it has high solubility and few reaction by-products.
A液に係る酸としては、例えば、塩酸、硝酸、硫酸、リン酸、有機酸等が挙げられる。これらのうち、A液に係る酸としては、硝酸が、金属塩の溶解性が高くなり、反応副生成物が少なくなる点で、好ましい。 Examples of the acid related to the liquid A include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and organic acids. Among these, nitric acid is preferable as the acid related to the liquid A because the solubility of the metal salt is increased and the reaction by-products are reduced.
A液中のビスマスイオンの濃度は、好ましくは0.2〜1.0モル/L、特に好ましくは0.5〜0.7モル/Lである。A液中のビスマスイオンの濃度が、上記範囲にあることにより、ビスマス塩の溶解性が高く、鉄イオンとの均質な混合溶液となるため、ビスマスと鉄の均質な共沈体が得られる点で好ましい。 The concentration of bismuth ions in the liquid A is preferably 0.2 to 1.0 mol / L, particularly preferably 0.5 to 0.7 mol / L. Since the concentration of bismuth ions in the liquid A is in the above range, the solubility of bismuth salts is high, and a homogeneous mixed solution with iron ions is obtained, so that a homogeneous coprecipitate of bismuth and iron can be obtained. Is preferable.
A液中の鉄イオンの濃度は、好ましくは0.2〜1.0モル/L、特に好ましくは0.5〜0.7モル/Lである。A液中のビスマスイオンの濃度が、上記範囲にあることにより、鉄塩の溶解性が高く、ビスマスイオンとの均質な混合溶液となるため、ビスマスと鉄の均質な共沈体が得られる点で好ましい。 The concentration of iron ions in the liquid A is preferably 0.2 to 1.0 mol / L, particularly preferably 0.5 to 0.7 mol / L. Since the concentration of bismuth ions in the liquid A is in the above range, the iron salt has high solubility and becomes a homogeneous mixed solution with bismuth ions, so that a homogeneous coprecipitate of bismuth and iron can be obtained. Is preferable.
A液中の鉄イオンに対するビスマスイオンのモル比(ビスマスイオン/鉄イオン)は、好ましくは0.980〜1.020、特に好ましくは0.990〜1.010である。A液中の鉄イオンに対するビスマスイオンのモル比が、上記範囲にあることにより、焼成後に得られるBiFeO3で表されるビスマス鉄酸化物の組成が安定して得られる点で好ましい。 The molar ratio of bismuth ions to iron ions in the liquid A (bismuth ions / iron ions) is preferably 0.980 to 1.020, particularly preferably 0.990 to 1.010. When the molar ratio of bismuth ions to iron ions in the liquid A is in the above range, it is preferable in that the composition of bismuth iron oxide represented by BiFeO 3 obtained after firing is stably obtained.
A液中の酸イオンの濃度は、好ましくは1.0〜8.0モル/L、特に好ましくは3.0〜5.5モル/Lである。A液中の酸イオンの濃度が、上記範囲にあることにより、金属塩の溶解性が高くなり、反応時のpH制御をし易くなる点で、好ましい。なお、本発明において、A液中の酸イオンの濃度とは、A液に含まれる全ての酸イオンの濃度を指す。すなわち、A液を調製するために用いるビスマスイオン源、鉄イオン源及び酸に含まれている酸イオンの合計の濃度である。例えば、水に、ビスマスイオン源として硝酸ビスマスと、鉄イオン源として硝酸鉄と、酸として硝酸を添加して、A液を調製した場合、A液中の酸イオン濃度とは、硝酸ビスマス由来の硝酸イオンと、硝酸鉄由来の硝酸イオンと、酸として添加した硝酸由来の硝酸イオンを合計した硝酸イオンの濃度である。また、A液が2種以上の酸イオンを含有する場合は、A液中の酸イオンの濃度とは、A液中の各酸イオンのモル数の合計を酸イオンのモル数として計算される濃度である。 The concentration of acid ions in the liquid A is preferably 1.0 to 8.0 mol / L, particularly preferably 3.0 to 5.5 mol / L. It is preferable that the concentration of the acid ion in the liquid A is in the above range because the solubility of the metal salt is increased and the pH can be easily controlled during the reaction. In addition, in this invention, the density | concentration of the acid ion in A liquid refers to the density | concentration of all the acid ions contained in A liquid. That is, the total concentration of the bismuth ion source, the iron ion source, and the acid ions contained in the acid used for preparing the liquid A. For example, when liquid A is prepared by adding bismuth nitrate as a bismuth ion source, iron nitrate as an iron ion source, and nitric acid as an acid to water, the acid ion concentration in liquid A is derived from bismuth nitrate. This is the concentration of nitrate ions, the sum of nitrate ions, nitrate ions derived from iron nitrate, and nitrate ions derived from nitric acid added as an acid. Moreover, when A liquid contains 2 or more types of acid ions, the density | concentration of the acid ion in A liquid is calculated by making the total number of moles of each acid ion in A liquid into the number of moles of acid ions. Concentration.
A液のpHは、好ましくは0.01〜0.10、特に好ましくは0.02〜0.08である。A液のpHが上記範囲にあることにより、共沈反応中の反応液のpHを5.5〜8.5、好ましくは7.0〜8.0に制御し易くなる。なお、A液のpHの調節であるが、水に、ビスマスイオン源及び鉄イオン源を添加して、A液を調製するときに、それらに加えて酸を添加することにより、A液のpHの調節を行うことができる。 The pH of the liquid A is preferably 0.01 to 0.10, particularly preferably 0.02 to 0.08. When pH of A liquid exists in the said range, it becomes easy to control pH of the reaction liquid in coprecipitation reaction to 5.5-8.5, Preferably it is 7.0-8.0. In addition, although it is adjustment of pH of A liquid, when adding a bismuth ion source and an iron ion source to water and preparing A liquid, by adding an acid in addition to them, pH of A liquid is added. Adjustments can be made.
共沈体調製工程(1)で用いるB液は、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液である。B液中の重炭酸イオンは、重炭酸イオン源に由来する重炭酸イオンであり、また、炭酸イオンは、炭酸イオン源に由来する炭酸イオンである。また、アンモニウムイオンは、B液の調製の際に、水に添加するアンモニア水に由来するアンモニウムイオンと、重炭酸イオン源又は炭酸イオン源のカチオンが、アンモニウムイオンの場合に、カチオンがアンモニウムイオンである重炭酸イオン源又は炭酸イオン源に由来するアンモニウムイオンがある。 The liquid B used in the coprecipitate preparation step (1) is an aqueous solution containing bicarbonate ions or carbonate ions and ammonium ions. The bicarbonate ion in the B liquid is a bicarbonate ion derived from a bicarbonate ion source, and the carbonate ion is a carbonate ion derived from a carbonate ion source. In addition, when the ammonium ion derived from the ammonia water added to water and the cation of the bicarbonate ion source or the carbonate ion source is an ammonium ion when the B liquid is prepared, the cation is an ammonium ion. There are certain bicarbonate ion sources or ammonium ions derived from carbonate ion sources.
B液は、重炭酸イオン源又は炭酸イオン源と、必要に応じてアンモニア水と、を水に溶解させることにより得られる水溶液である。 Liquid B is an aqueous solution obtained by dissolving a bicarbonate ion source or a carbonate ion source and, if necessary, ammonia water in water.
B液に係る重炭酸イオン源としては、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム等が挙げられ、これらは、含水物であっても無水物であってもよい。また、B液に係る炭酸イオン源としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等が挙げられ、これらは含水物であっても無水物であってもよい。これらのうち、炭酸水素アンモニウムが、固体時に取り扱い易く、水への溶解性が高く、反応副生成物が少なくなる点で、好ましい。 Examples of the bicarbonate ion source related to the liquid B include sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate and the like, and these may be hydrated or anhydrous. Moreover, as a carbonate ion source which concerns on B liquid, sodium carbonate, potassium carbonate, ammonium carbonate etc. are mentioned, for example, These may be a hydrate or an anhydride. Among these, ammonium hydrogen carbonate is preferable because it is easy to handle when solid, has high solubility in water, and reduces reaction by-products.
B液中の重炭酸イオン及び炭酸イオンの合計の濃度は、好ましくは0.2〜1.0モル/L、特に好ましくは0.5〜0.7モル/Lである。B液中の重炭酸イオン及び炭酸イオンの合計の濃度が、上記範囲にあることにより、重炭酸イオン源及び炭酸イオン源の溶解性が高くなる点で、好ましい。なお、重炭酸イオン及び炭酸イオンの合計の濃度とは、重炭酸イオン及び炭酸イオンの両方のイオンを含む態様以外に、重炭酸イオン又は炭酸イオンのどちらか一方のイオンのみの態様も含む。 The total concentration of bicarbonate ions and carbonate ions in the liquid B is preferably 0.2 to 1.0 mol / L, particularly preferably 0.5 to 0.7 mol / L. When the total concentration of bicarbonate ions and carbonate ions in the liquid B is in the above range, it is preferable in that the solubility of the bicarbonate ion source and the carbonate ion source is increased. Note that the total concentration of bicarbonate ions and carbonate ions includes not only an embodiment including both bicarbonate ions and carbonate ions, but also an embodiment including only one of bicarbonate ions or carbonate ions.
B液中のアンモニウムイオンの濃度は、好ましくは1.0〜8.0モル/L、特に好ましくは3.0〜5.5モル/Lである。B液中の酸イオンの濃度が、上記範囲にあることにより、反応時のpH制御をし易くなる点で、好ましい。なお、本発明において、B液中のアンモニウムイオンの濃度とは、B液に含まれる全てのアンモニウムイオンの濃度を指す。すなわち、B液を調製するために用いる重炭酸イオン源、炭酸イオン源及びアンモニア水に含まれているアンモニウムイオンの合計の濃度である。例えば、水に、重炭酸アンモニウムと、アンモニア水を添加して、B液を調製した場合、B液中のアンモニウムイオン濃度とは、重炭酸アンモニウム由来のアンモニウムイオンと、アンモニア水由来のアンモニウムを合計したアンモニウムイオンの濃度である。 The concentration of ammonium ions in the liquid B is preferably 1.0 to 8.0 mol / L, particularly preferably 3.0 to 5.5 mol / L. It is preferable in that the pH of the acid ion in the liquid B is in the above range, so that the pH can be easily controlled during the reaction. In addition, in this invention, the density | concentration of the ammonium ion in B liquid refers to the density | concentration of all the ammonium ions contained in B liquid. That is, it is the total concentration of the ammonium ion contained in the bicarbonate ion source, the carbonate ion source and the ammonia water used for preparing the liquid B. For example, when liquid B is prepared by adding ammonium bicarbonate and aqueous ammonia to water, the ammonium ion concentration in liquid B is the sum of ammonium ion derived from ammonium bicarbonate and ammonium derived from aqueous ammonia. Concentration of ammonium ions.
B液のpHは、好ましくは9.5〜11、特に好ましくは10.0〜10.5である。B液のpHが上記範囲にあることにより、共沈反応中の反応液のpHを5.5〜8.5、好ましくは7.0〜8.0に制御し易くなる。B液としては、水に、重炭酸イオン源を添加し、更に、アンモニア水を添加することにより、好ましくは9.5〜11.0、特に好ましくは10.0〜10.5に調節されたものが好ましい。 The pH of B liquid becomes like this. Preferably it is 9.5-11, Most preferably, it is 10.0-10.5. When pH of B liquid exists in the said range, it becomes easy to control pH of the reaction liquid in coprecipitation reaction to 5.5-8.5, Preferably it is 7.0-8.0. Liquid B was adjusted to preferably 9.5 to 11.0, particularly preferably 10.0 to 10.5 by adding a bicarbonate ion source to water and further adding aqueous ammonia. Those are preferred.
共沈体調製工程(1)では、反応容器に、A液を供給しつつ、B液を供給して、反応容器内で、共沈反応を行わせて、共沈体を得る。そして、共沈体調製工程(1)では、反応容器にA液を供給しつつ、B液を供給し、且つ、共沈体を生成させるときに、反応容器へのA液及びB液の供給速度を調節することにより、反応容器内の反応液のpHを、5.5〜8.5の範囲、好ましくは7.0〜8.0の範囲に制御しつつ反応を行う。反応容器にA液を供給しつつ、B液を供給し、且つ、反応液のpHを上記範囲に制御しつつ共沈反応を行うことにより、共沈体の精密な組成制御が可能となり、このことにより、焼成を経て単相のBiFeO3で表されるビスマス鉄酸化物が得られる。一方、先にA液の全量を反応容器内に入れておき、その中に、B液を供給する場合、反対に、先にB液の全量を反応容器内に入れておき、その中に、A液を供給する場合は、反応液中のビスマスイオン及び鉄イオンを効率的に共沈体へと用いることができなくなり精密な組成制御が困難となる。また、反応容器にA液を供給しつつ、B液を供給して反応を行ってはいるものの、A液とB液の全量を供給した後の反応液のpHが上記範囲から外れている場合は、反応液中のビスマスイオン及び鉄イオンを効率的に共沈体へと用いることができなくなり精密な組成制御が困難となる。 In the coprecipitate preparation step (1), the liquid B is supplied to the reaction container while the liquid A is supplied, and the coprecipitation reaction is performed in the reaction container to obtain a coprecipitate. In the coprecipitate preparation step (1), the liquid A is supplied to the reaction vessel, the liquid B is supplied, and when the coprecipitate is generated, the liquid A and the liquid B are supplied to the reaction vessel. By adjusting the speed, the reaction is carried out while controlling the pH of the reaction solution in the reaction vessel in the range of 5.5 to 8.5, preferably in the range of 7.0 to 8.0. By supplying the liquid B to the reaction vessel, supplying the liquid B, and performing the coprecipitation reaction while controlling the pH of the reaction liquid within the above range, precise composition control of the coprecipitate can be performed. Thus, a bismuth iron oxide represented by single-phase BiFeO 3 is obtained through firing. On the other hand, when the total amount of the liquid A is first put in the reaction container and the liquid B is supplied therein, the total amount of the liquid B is first put in the reaction container. When supplying A liquid, the bismuth ion and iron ion in a reaction liquid cannot be efficiently used for a coprecipitate, and precise composition control becomes difficult. In addition, when the reaction is performed by supplying the liquid B while supplying the liquid A to the reaction vessel, the pH of the reaction liquid after supplying the entire amount of the liquid A and the liquid B is out of the above range. However, bismuth ions and iron ions in the reaction solution cannot be efficiently used as a coprecipitate, and precise composition control becomes difficult.
共沈体調製工程(1)において、反応容器へA液とB液が供給されているときに反応容器内で、A液内のイオンとB液内のイオンとが十分に接触できるように、反応液を撹拌する。 In the coprecipitate preparation step (1), when the liquid A and the liquid B are supplied to the reaction container, the ions in the liquid A and the ions in the liquid B can be sufficiently contacted in the reaction container. Stir the reaction.
共沈体調製工程(1)において、反応容器へのA液及びB液の供給速度は、反応液のpHが上記範囲内に維持される供給速度であればよく、A液及びB液中の各イオンの濃度、反応容器のスケール、反応方式、撹拌機器設備能力、送液機器設備能力等に合わせて、適宜選択される。 In the coprecipitate preparation step (1), the supply speeds of the liquid A and the liquid B to the reaction vessel may be any supply speed at which the pH of the reaction liquid is maintained within the above range. The concentration is appropriately selected according to the concentration of each ion, the scale of the reaction vessel, the reaction system, the capacity of the stirring device, the capacity of the liquid feeding device, and the like.
共沈体調製工程(1)において、A液を供給しつつ、B液を供給して、反応容器内で、共沈反応を行わせる方法としては、例えば、(1)連続的に反応原料の供給と反応液の排出が行える流通式の反応容器に、A液とB液を供給しつつ、反応容器から、反応液を排出する方法、(2)バッチ式の反応容器に、予め、pHが5.5〜8.5、好ましくは7.0〜8.0の水溶媒(C液)を入れておき、C液が入れられている反応容器に、A液とB液を供給する方法、(3)バッチ式の反応容器に、A液とB液を供給する方法等が挙げられる。 In the coprecipitate preparation step (1), while supplying the liquid A, the liquid B is supplied and the coprecipitation reaction is performed in the reaction vessel. For example, (1) A method of discharging the reaction liquid from the reaction container while supplying the liquid A and the liquid B to a flow-type reaction container capable of supplying and discharging the reaction liquid. (2) The pH is previously set in the batch reaction container. A method of supplying A liquid and B liquid to a reaction vessel in which an aqueous solvent (liquid C) of 5.5 to 8.5, preferably 7.0 to 8.0 is put, and liquid C is placed, (3) The method etc. which supply A liquid and B liquid to a batch-type reaction container are mentioned.
反応方式として、(2)バッチ式の反応容器に、予め、pHが5.5〜8.5、好ましくは7.0〜8.0の水溶媒(C液)を入れておき、C液が入れられている反応容器に、A液とB液を供給する方法を採用する場合、A液とB液を供給する前のC液のpHを5.5〜8.5、好ましくは7.0〜8.0とし、且つ、A液とB液の供給を行っているときの反応液(A液及びB液が添加されたC液)のpHを5.5〜8.5、好ましくは7.0〜8.0とする。そして、(2)の反応方式において、A液とB液を供給する前のC液のpHを5.5〜8.5、好ましくは7.0〜8.0とし、且つ、A液とB液の供給を行っているときの反応液(A液及びB液が添加されたC液)のpHを5.5〜8.5、好ましくは7.0〜8.0とすることにより、共沈体の精密な組成制御が可能となり、このことにより、焼成を経て単相のBiFeO3で表されるビスマス鉄酸化物が得られる。 As a reaction method, (2) an aqueous solvent (solution C) having a pH of 5.5 to 8.5, preferably 7.0 to 8.0 is placed in a batch-type reaction vessel in advance. When the method of supplying the A liquid and the B liquid to the reaction vessel is employed, the pH of the C liquid before supplying the A liquid and the B liquid is 5.5 to 8.5, preferably 7.0. The pH of the reaction liquid (C liquid to which A liquid and B liquid are added) is set to 5.5 to 8.5, preferably 7 when liquid A and liquid B are supplied. .0 to 8.0. In the reaction system of (2), the pH of the C liquid before supplying the A liquid and the B liquid is set to 5.5 to 8.5, preferably 7.0 to 8.0. By adjusting the pH of the reaction liquid (liquid C with liquid A and liquid B added) to 5.5 to 8.5, preferably 7.0 to 8.0, while supplying the liquid, Precise composition control of the precipitate becomes possible, and thus bismuth iron oxide represented by single-phase BiFeO 3 is obtained through firing.
なお、本発明において、「反応容器に、A液を供給しつつ、B液を供給する。」とは、反応容器へのA液の供給時間と反応容器へのB液の供給時間とが、完全に又は一部重なっていることを指す。そして、反応容器へのA液の供給時間と反応容器へのB液の供給時間とが、完全に重なっていること、すなわち、A液の供給開始とB液の供給開始とが同時であり且つA液の供給終了とB液の供給終了が同時であることが、共沈体中のBiとFeの組成調節が容易になる点で好ましいが、本発明の効果を損なわない程度であれば、完全に重なっていなくてもよい。 In the present invention, “supplying solution B while supplying solution A to the reaction vessel” means that the supply time of solution A to the reaction vessel and the supply time of solution B to the reaction vessel are Refers to complete or partial overlap. And the supply time of the A liquid to the reaction vessel and the supply time of the B liquid to the reaction vessel are completely overlapped, that is, the supply start of the A solution and the supply start of the B solution are simultaneous and The end of the supply of the A liquid and the end of the supply of the B liquid are preferable in terms of facilitating the adjustment of the composition of Bi and Fe in the coprecipitate. It does not have to overlap.
共沈体調製工程(1)において、反応容器内の反応液の温度、すなわち、共沈反応の反応温度は、好ましくは50℃以下、特に好ましくは15〜35℃である。反応容器内の反応液の温度が上記範囲であることにより、十分な原料の溶解性が得られ、金属イオンの反応性が高くなり、精密な共沈体の組成制御をし易くなるため、設備管理、工程管理に有益となる。また、アンモニア成分の揮発が抑制され、臭気対策等の作業面でも大きなメリットを得ることができる。 In the coprecipitate preparation step (1), the temperature of the reaction solution in the reaction vessel, that is, the reaction temperature of the coprecipitation reaction is preferably 50 ° C. or less, particularly preferably 15 to 35 ° C. Since the temperature of the reaction solution in the reaction vessel is within the above range, sufficient raw material solubility is obtained, the reactivity of metal ions is increased, and precise coprecipitate composition control is facilitated. Useful for management and process management. Further, the volatilization of the ammonia component is suppressed, and a great merit can be obtained in terms of work such as odor countermeasures.
共沈体調製工程(1)において、モル換算のビスマスイオン及び鉄イオンの合計の供給速度(mol/分)に対する重炭酸イオン及び炭酸イオンの合計の供給速度(mol/分)の比((重炭酸イオン+炭酸イオン)/(ビスマスイオン+鉄イオン))は、好ましくは0.5〜2.1、特に好ましくは0.51〜1.0である。モル換算のビスマスイオン及び鉄イオンの合計の供給速度(mol/分)に対する重炭酸イオン及び炭酸イオンの合計の供給速度(mol/分)の比((重炭酸イオン+炭酸イオン)/(ビスマスイオン+鉄イオン))が上記範囲であることにより、焼成して得られるビスマス鉄酸化物が単相になり易い共沈体が得られる点で、好ましい。なお、モル換算のビスマスイオン及び鉄イオンの合計の供給速度(mol/分)とは、単位時間当たりに反応容器に供給されるビスマスイオンのモル数と鉄イオンのモル数の合計であり、また、モル換算の重炭酸イオン及び炭酸イオンの合計の供給速度(mol/分)とは、単位時間当たりに反応容器に供給される重炭酸イオン及び炭酸イオンの合計のモル数である。 In the coprecipitate preparation step (1), the ratio of the total supply rate of bicarbonate ions and carbonate ions (mol / min) to the total supply rate of mol-converted bismuth ions and iron ions (mol / min) ((heavy (Carbonate ion + carbonate ion) / (bismuth ion + iron ion)) is preferably 0.5 to 2.1, particularly preferably 0.51 to 1.0. Ratio of the total feed rate of bicarbonate ions and carbonate ions (mol / min) to the total feed rate of mol-converted bismuth ions and iron ions (mol / min) ((bicarbonate ions + carbonate ions) / (bismuth ions) When + iron ion)) is in the above range, bismuth iron oxide obtained by firing is preferable in that a coprecipitate can easily be obtained in a single phase. The total supply rate (mol / min) of bismuth ions and iron ions in terms of mole is the sum of the number of moles of bismuth ions and the number of moles of iron ions supplied to the reaction vessel per unit time. The total supply rate (mol / min) of bicarbonate ion and carbonate ion in terms of mole is the total number of moles of bicarbonate ion and carbonate ion supplied to the reaction vessel per unit time.
共沈体調製工程(1)において、モル換算の酸イオンの供給速度(mol/分)に対するアンモニウムイオンの供給速度(mol/分)の比(アンモニウムイオン/酸イオン)は、好ましくは1.00〜2.00、特に好ましくは1.02〜1.60である。モル換算の酸イオンの供給速度(mol/分)に対するアンモニウムイオンの供給速度(mol/分)の比(アンモニウムイオン/酸イオン)が上記範囲であることにより、反応液のpHを所望の範囲に制御し易くなり、金属イオンの反応性が高くなり、精密な共沈体の組成制御がし易くなる。なお、モル換算の酸イオンの供給速度(mol/分)とは、単位時間当たりに反応容器に供給される酸イオンのモル数であり、また、モル換算のアンモニウムイオンの供給速度(mol/分)とは、単位時間当たりに反応容器に供給されるアンモニウムイオンのモル数である。 In the coprecipitate preparation step (1), the ratio (ammonium ion / acid ion) of the ammonium ion supply rate (mol / min) to the molar acid ion supply rate (mol / min) is preferably 1.00. ˜2.00, particularly preferably 1.02 to 1.60. The ratio of ammonium ion supply rate (mol / min) to mol-converted acid ion supply rate (mol / min) (ammonium ion / acid ion) is within the above range, so that the pH of the reaction solution falls within a desired range. It becomes easy to control, the reactivity of metal ions is increased, and precise composition control of the coprecipitate is facilitated. The molar acid ion supply rate (mol / min) is the number of moles of acid ion supplied to the reaction vessel per unit time, and the molar ammonium ion supply rate (mol / min). ) Is the number of moles of ammonium ions supplied to the reaction vessel per unit time.
共沈体調製工程(1)において、A液及びB液の供給速度は、一定であることが好ましいが、反応容器の反応液のpHを所望の範囲内で維持できるのであれば、A液又はB液の供給速度は一定でなくてもよい。 In the coprecipitate preparation step (1), the supply rates of the liquid A and the liquid B are preferably constant, but if the pH of the reaction liquid in the reaction vessel can be maintained within a desired range, the liquid A or The supply speed of the B liquid may not be constant.
共沈体調製工程(1)を、バッチ式の反応容器を用いて行った場合、反応容器へのA液及びB液の供給終了後、引き続き反応液の撹拌を継続する熟成を行ってもよい。熟成を行うことにより、反応液中の未反応成分を低減することができる。熟成を行うときの反応液のpHは、好ましくは5.5〜8.5、特に好ましくは7.0〜8.0である。熟成の際の反応液のpHが上記範囲であることにより、析出したビスマス成分及び鉄成分が再溶解し難く、組成変化が起こり難く、高収率で共沈体を得ることができる。熟成の際の反応液の温度は、55℃以下、好ましくは15〜35℃である。熟成温度が上記範囲であることにより、熟成の効果が得られ易い。 When the coprecipitate preparation step (1) is performed using a batch-type reaction vessel, after completion of the supply of the liquid A and the liquid B to the reaction vessel, aging may be performed to continue the stirring of the reaction solution. . By aging, unreacted components in the reaction solution can be reduced. The pH of the reaction solution when aging is preferably 5.5 to 8.5, and particularly preferably 7.0 to 8.0. When the pH of the reaction solution at the time of aging is in the above range, the precipitated bismuth component and iron component are difficult to redissolve, composition change hardly occurs, and a coprecipitate can be obtained in high yield. The temperature of the reaction solution during aging is 55 ° C. or less, preferably 15 to 35 ° C. When the aging temperature is in the above range, the aging effect is easily obtained.
共沈体調製工程(1)を行った後、常法により固液分離し、共沈体を得、必要に応じて更に熟成を行ったときは、熟成を行った後、常法により固液分離し、共沈体を得、必要により、共沈体の水洗、乾燥を行う。 After performing the coprecipitate preparation step (1), solid-liquid separation is performed by a conventional method to obtain a coprecipitate, and when further aging is performed as necessary, after aging, the solid-liquid is prepared by a conventional method. Separate and obtain a coprecipitate, and if necessary, wash and dry the coprecipitate.
本発明の第一の形態のビスマス鉄酸化物の製造方法に係る焼成工程は、共沈体調製工程(1)を行い得られた共沈体を、焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る工程である。 The firing step according to the method for producing the bismuth iron oxide of the first aspect of the present invention is represented by BiFeO 3 by firing the coprecipitate obtained by performing the coprecipitate preparation step (1). This is a step of obtaining bismuth iron oxide.
焼成工程における焼成温度は、450〜600℃、好ましくは500〜550℃である。焼成温度が上記範囲であることにより、結晶性が高く、X線回折的にBi2Fe4O9やBi2O3等の不純物のピークが少ないBiFeO3で表されるビスマス鉄酸化物が得られる。焼成時間は、適宜選択されるが、粒径の揃った主相率の高いBiFeO3で表されるビスマス鉄酸化物が得られる点で、好ましくは3時間以上、特に好ましくは5〜30時間である。焼成雰囲気は、特に制限されず、大気雰囲気、酸素雰囲気のいずれでもよい。 The firing temperature in the firing step is 450 to 600 ° C, preferably 500 to 550 ° C. When the firing temperature is within the above range, a bismuth iron oxide represented by BiFeO 3 having high crystallinity and few impurity peaks such as Bi 2 Fe 4 O 9 and Bi 2 O 3 in X-ray diffraction is obtained. It is done. The firing time is appropriately selected, but is preferably 3 hours or more, particularly preferably 5 to 30 hours in that a bismuth iron oxide represented by BiFeO 3 having a uniform main phase ratio with a uniform particle size is obtained. is there. The firing atmosphere is not particularly limited, and may be either an air atmosphere or an oxygen atmosphere.
焼成工程では、焼成を複数回行ってもよい。例えば、1回共沈体の焼成を行い、次いで、焼成物を冷却及び粉砕後、再び焼成物の粉砕物を焼成してもよい。 In the firing step, firing may be performed a plurality of times. For example, the coprecipitate may be fired once, and then the fired product may be cooled and ground, and then the fired product may be fired again.
焼成工程を行った後、焼成物を適宜冷却し、必要に応じて、粉砕、解砕、分級等を行い、BiFeO3で表されるビスマス鉄酸化物を得る。 After performing the firing step, the fired product is appropriately cooled and, if necessary, pulverized, crushed, classified, etc., to obtain a bismuth iron oxide represented by BiFeO 3 .
本発明の第二の形態のビスマス鉄酸化物の製造方法は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、少なくとも、該反応容器に該A液及び該B液の全量を供給した後の該反応容器内の反応液のpHが5.5〜8.5の範囲になるように、該A液及び該B液の供給量を調節して、反応を行い、共沈体を得る共沈体調製工程(2)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法である。
Second process for producing bismuth iron oxide of the present invention is a method for producing a bismuth iron oxide represented by BiFeO 3,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. The step of supplying and reacting, and at least the pH of the reaction liquid in the reaction container after supplying the entire amount of the liquid A and the liquid B to the reaction container is in the range of 5.5 to 8.5. The coprecipitate preparation step (2) for adjusting the supply amount of the liquid A and the liquid B and performing a reaction to obtain a coprecipitate,
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
It is a manufacturing method of the bismuth iron oxide characterized by having.
本発明の第二の形態のビスマス鉄酸化物の製造方法は、BiFeO3で表されるビスマス鉄酸化物の製造方法であって、共沈体調製工程(2)と、焼成工程と、を有する。 Second process for producing bismuth iron oxide of the present invention is a method for producing a bismuth iron oxide represented by BiFeO 3, has a coprecipitate preparation step (2), a firing step, the .
本発明の第二の形態のビスマス鉄酸化物の製造方法に係る共沈体調製工程(2)は、反応容器に、A液を供給しつつ、B液を供給して、反応を行うに当たって、少なくとも、反応容器にA液及びB液の全量を供給した後の反応容器内の反応液のpHが5.5〜8.5の範囲になるように、A液及びB液の供給量を調節して、反応を行い、共沈体を得る工程である。つまり、共沈体調製工程(2)は、A液とB液の全量を反応容器に供給した後の反応液のpHが5.5〜8.5になるように、A液及びB液を反応容器に供給する。よって、共沈体調製工程(2)では、反応開始前及びA液とB液の供給途中は、反応液のpHは5.5〜8.5であってもなくてもよく、A液とB液の全量を反応容器に供給した後の反応液のpHが5.5〜8.5になるように、A液とB液の供給量が調節されていればよい。 In the coprecipitate preparation step (2) according to the method for producing the bismuth iron oxide of the second aspect of the present invention, the liquid B is supplied to the reaction vessel while supplying the liquid B, and the reaction is performed. Adjust the supply amount of A solution and B solution so that the pH of the reaction solution in the reaction vessel is in the range of 5.5 to 8.5 after supplying the whole amount of A solution and B solution to the reaction vessel. Thus, the reaction is performed to obtain a coprecipitate. That is, in the coprecipitate preparation step (2), the liquid A and the liquid B are adjusted so that the pH of the reaction liquid after supplying all of the liquid A and the liquid B to the reaction vessel is 5.5 to 8.5. Feed into reaction vessel. Therefore, in the coprecipitate preparation step (2), the pH of the reaction solution may or may not be 5.5 to 8.5 before the start of the reaction and during the supply of the A solution and the B solution. The supply amount of A liquid and B liquid should just be adjusted so that the pH of the reaction liquid after supplying the whole quantity of B liquid to a reaction container may be set to 5.5-8.5.
共沈体調製工程(2)に係るA液及びB液は、共沈体調製工程(1)に係るA液及びB液と同様である。 The liquid A and the liquid B according to the coprecipitate preparation step (2) are the same as the liquid A and the liquid B according to the coprecipitate preparation step (1).
共沈体調製工程(2)では、反応容器に、A液を供給しつつ、B液を供給して、反応容器内で、共沈反応を行わせて、共沈体を得る。そして、共沈体調製工程(2)では、反応容器にA液を供給しつつ、B液を供給し、且つ、反応容器へのA液及びB液の供給量を調節することにより、反応溶液にA液及びB液の全量を供給した後の反応容器内の反応液のpHを、5.5〜8.5の範囲、好ましくは7.0〜8.0の範囲に調節する。反応容器にA液を供給しつつ、B液を供給し、且つ、反応液のpHを上記範囲に調節して共沈反応を行うことにより、共沈体の精密な組成制御が可能となり、このことにより、焼成を経て単相のBiFeO3で表されるビスマス鉄酸化物が得られる。一方、先にA液の全量を反応容器内に入れておき、その中に、B液を供給する場合、反対に、先にB液の全量を反応容器内に入れておき、その中に、A液を供給する場合や、反応容器にA液を供給しつつ、B液を供給して反応を行ってはいるものの、A液とB液の全量を供給した後の反応液のpHが上記範囲から外れている場合は、反応液中のビスマスイオン及び鉄イオンを効率的に共沈体へと用いることができなくなり精密な組成制御が困難となる。 In the coprecipitate preparation step (2), while supplying the liquid A to the reaction vessel, the liquid B is supplied, and a coprecipitation reaction is performed in the reaction vessel to obtain a coprecipitate. Then, in the coprecipitate preparation step (2), while supplying the liquid A to the reaction vessel, the liquid B is supplied, and the supply amount of the liquid A and the liquid B to the reaction vessel is adjusted. The pH of the reaction solution in the reaction vessel after supplying the entire amount of solution A and solution B is adjusted to a range of 5.5 to 8.5, preferably 7.0 to 8.0. By supplying the liquid B while supplying the liquid A to the reaction vessel and adjusting the pH of the reaction liquid to the above range and performing the coprecipitation reaction, it becomes possible to precisely control the composition of the coprecipitate. Thus, a bismuth iron oxide represented by single-phase BiFeO 3 is obtained through firing. On the other hand, when the total amount of the liquid A is first put in the reaction container and the liquid B is supplied therein, the total amount of the liquid B is first put in the reaction container. In the case of supplying the A liquid, or while the A liquid is supplied to the reaction vessel and the B liquid is supplied to carry out the reaction, the pH of the reaction liquid after supplying the whole amount of the A liquid and the B liquid is the above If it is out of the range, bismuth ions and iron ions in the reaction solution cannot be efficiently used for the coprecipitate, and precise composition control becomes difficult.
共沈体調製工程(2)において、反応容器へA液とB液が供給されているときの反応容器内で、A液内のイオンとB液内のイオンとが十分に接触できるように、反応液を撹拌する。 In the coprecipitate preparation step (2), the ions in the A liquid and the ions in the B liquid can be sufficiently brought into contact with each other in the reaction container when the A liquid and the B liquid are supplied to the reaction container. Stir the reaction.
共沈体調製工程(2)において、反応容器へのA液及びB液の供給速度及び全供給量は、A液及びB液の全量を供給した後の反応液のpHが上記範囲内に維持される供給速度及び全供給量であればよく、A液及びB液中の各イオンの濃度、反応容器のスケール、反応方式、撹拌機器設備能力、送液機器設備能力等に合わせて、適宜選択される。 In the coprecipitate preparation step (2), the supply rate and the total supply amount of the liquid A and the liquid B to the reaction vessel are maintained within the above-mentioned range in the pH of the reaction liquid after the total amount of the liquid A and the liquid B is supplied. The supply rate and the total supply amount to be used may be selected appropriately according to the concentration of each ion in the liquid A and the liquid B, the scale of the reaction vessel, the reaction method, the stirrer equipment capacity, the liquid feed equipment capacity, etc. Is done.
共沈体調製工程(2)において、A液を供給しつつ、B液を供給して、反応容器内で、共沈反応を行わせる方法としては、例えば、(1)バッチ式の反応容器に、予め、水溶媒(C液)を入れておき、C液が入れられている反応容器に、A液とB液を供給する方法、(2)バッチ式の反応容器に、A液とB液を供給する方法等が挙げられる。 In the coprecipitate preparation step (2), while supplying the liquid A, the liquid B is supplied and the coprecipitation reaction is performed in the reaction vessel. For example, (1) a batch type reaction vessel is used. A method in which an aqueous solvent (liquid C) is put in advance, and liquid A and liquid B are supplied to a reaction container in which liquid C is placed. (2) liquid A and liquid B are fed into a batch-type reaction container. The method etc. which supply are mentioned.
なお、本発明において、「反応容器に、A液を供給しつつ、B液を供給する。」とは、反応容器へのA液の供給時間と反応容器へのB液の供給時間とが、完全に又は一部重なっていることを指す。そして、反応容器へのA液の供給時間と反応容器へのB液の供給時間とが、完全に重なっていること、すなわち、A液の供給開始とB液の供給開始とが同時であり且つA液の供給終了とB液の供給終了が同時であることが、共沈体中のBiとFeの組成調節が容易になる点で好ましいが、本発明の効果を損なわない程度であれば、完全に重なっていなくてもよい。 In the present invention, “supplying solution B while supplying solution A to the reaction vessel” means that the supply time of solution A to the reaction vessel and the supply time of solution B to the reaction vessel are Refers to complete or partial overlap. And the supply time of the A liquid to the reaction vessel and the supply time of the B liquid to the reaction vessel are completely overlapped, that is, the supply start of the A solution and the supply start of the B solution are simultaneous and The end of the supply of the A liquid and the end of the supply of the B liquid are preferable in terms of facilitating the adjustment of the composition of Bi and Fe in the coprecipitate. It does not have to overlap.
共沈体調製工程(2)において、反応容器内の反応液の温度、すなわち、共沈反応の反応温度は、好ましくは50℃以下、特に好ましくは15〜35℃である。反応容器内の反応液の温度が上記範囲であることにより、十分な原料の溶解性が得られ、金属イオンの反応性が高くなり、精密な共沈体の組成制御をし易くなるため、設備管理、工程管理に有益となる。また、アンモニア成分の揮発が抑制され、臭気対策等の作業面でも大きなメリットを得ることができる。 In the coprecipitate preparation step (2), the temperature of the reaction solution in the reaction vessel, that is, the reaction temperature of the coprecipitation reaction is preferably 50 ° C. or less, particularly preferably 15 to 35 ° C. Since the temperature of the reaction solution in the reaction vessel is within the above range, sufficient raw material solubility is obtained, the reactivity of metal ions is increased, and precise coprecipitate composition control is facilitated. Useful for management and process management. Further, the volatilization of the ammonia component is suppressed, and a great merit can be obtained in terms of work such as odor countermeasures.
共沈体調製工程(2)において、モル換算のビスマスイオン及び鉄イオンの合計の全供給量(mol)に対する重炭酸イオン及び炭酸イオンの合計の全供給量(mol)の比((重炭酸イオン+炭酸イオン)/(ビスマスイオン+鉄イオン))は、好ましくは0.5〜2.1、特に好ましくは0.51〜1.0である。モル換算のビスマスイオン及び鉄イオンの合計の全供給量(mol)に対する重炭酸イオン及び炭酸イオンの合計の全供給量(mol)の比((重炭酸イオン+炭酸イオン)/(ビスマスイオン+鉄イオン))が上記範囲であることにより、焼成して得られるビスマス鉄酸化物が単相になり易い共沈体が得られる点で、好ましい。 In the coprecipitate preparation step (2), the ratio of the total supply amount (mol) of bicarbonate ions and carbonate ions to the total supply amount (mol) of bismuth ions and iron ions in terms of moles ((bicarbonate ions + Carbonic acid ion) / (bismuth ion + iron ion)) is preferably 0.5 to 2.1, particularly preferably 0.51 to 1.0. Ratio of total supply amount (mol) of bicarbonate ion and carbonate ion to total supply amount (mol) of total bismuth ion and iron ion in mol ((bicarbonate ion + carbonate ion) / (bismuth ion + iron When the ion)) is in the above range, it is preferable in that a coprecipitate easily obtained when the bismuth iron oxide obtained by firing becomes a single phase is obtained.
共沈体調製工程(2)において、モル換算の酸イオンの全供給量(mol)に対するアンモニウムイオンの全供給量(mol)の比(アンモニウムイオン/酸イオン)は、好ましくは1.00〜2.00、特に好ましくは1.02〜1.60である。モル換算の酸イオンの全供給量(mol)に対するアンモニウムイオンの全供給量(mol)の比(アンモニウムイオン/酸イオン)が上記範囲であることにより、反応液のpHを所望の範囲に制御し易くなり、金属イオンの反応性が高くなり、精密な共沈体の組成制御がし易くなる。 In the coprecipitate preparation step (2), the ratio (ammonium ion / acid ion) of the total supply amount (mol) of ammonium ion to the total supply amount (mol) of acid ion in terms of mole is preferably 1.00-2. 0.00, particularly preferably 1.02-1.60. The ratio of the total supply amount (mol) of ammonium ions to the total supply amount (mol) of acid ions in terms of mole (ammonium ions / acid ions) is within the above range, so that the pH of the reaction solution is controlled within a desired range. It becomes easy, the reactivity of a metal ion becomes high, and it becomes easy to perform precise composition control of a coprecipitate.
共沈体調製工程(2)において、A液及びB液の供給速度は、一定であることが好ましいが、反応後の反応容器内の反応液のpHを所望の範囲内で維持できるのであれば、A液又はB液の供給速度は一定でなくてもよい。 In the coprecipitate preparation step (2), it is preferable that the supply rates of the liquid A and the liquid B are constant, as long as the pH of the reaction liquid in the reaction vessel after the reaction can be maintained within a desired range. The supply rate of liquid A or liquid B may not be constant.
共沈体調製工程(2)を、バッチ式の反応容器を用いて行った場合、反応容器へのA液及びB液の供給終了後、引き続き反応液の撹拌を継続する熟成を行ってもよい。熟成を行うことにより、反応液中の未反応成分を低減することができる。熟成を行うときの反応液のpHは、好ましくは5.5〜8.5、特に好ましくは7.0〜8.0である。熟成の際の反応液のpHが上記範囲であることにより、析出したビスマス成分及び鉄成分が再溶解し難く、組成変化が起こり難く、高収率で共沈体を得ることができる。熟成の際の反応液の温度は、55℃以下、好ましくは15〜35℃である。熟成温度が上記範囲であることにより、熟成の効果が得られ易い。 When the coprecipitate preparation step (2) is performed using a batch-type reaction vessel, after completion of the supply of the liquid A and the liquid B to the reaction vessel, aging may be performed to continue the stirring of the reaction solution. . By aging, unreacted components in the reaction solution can be reduced. The pH of the reaction solution when aging is preferably 5.5 to 8.5, and particularly preferably 7.0 to 8.0. When the pH of the reaction solution at the time of aging is in the above range, the precipitated bismuth component and iron component are difficult to redissolve, composition change hardly occurs, and a coprecipitate can be obtained in high yield. The temperature of the reaction solution during aging is 55 ° C. or less, preferably 15 to 35 ° C. When the aging temperature is in the above range, the aging effect is easily obtained.
共沈体調製工程(2)を行った後、常法により固液分離し、共沈体を得、必要に応じて更に熟成を行ったときは、熟成を行った後、常法により固液分離し、共沈体を得、必要により、共沈体の水洗、乾燥を行う。 After performing the coprecipitate preparation step (2), solid-liquid separation is performed by a conventional method to obtain a coprecipitate, and when further aging is performed as necessary, after aging, the solid-liquid is prepared by a conventional method. Separate and obtain a coprecipitate, and if necessary, wash and dry the coprecipitate.
本発明の第二の形態のビスマス鉄酸化物の製造方法に係る焼成工程は、共沈体調製工程(2)を行い得られた共沈体を、焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る工程である。本発明の第二の形態のビスマス鉄酸化物の製造方法に係る焼成工程は、焼成原料に共沈体調製工程(2)を行い得られる共沈体を用いること以外は、本発明の第一の形態のビスマス鉄酸化物の製造方法に係る焼成工程と同様である。 The firing step according to the method for producing the bismuth iron oxide of the second aspect of the present invention is represented by BiFeO 3 by firing the coprecipitate obtained by performing the coprecipitate preparation step (2). This is a step of obtaining bismuth iron oxide. The firing step according to the method for producing the bismuth iron oxide of the second aspect of the present invention is the first step of the present invention except that the coprecipitate obtained by performing the coprecipitate preparation step (2) is used as the firing raw material. It is the same as that of the baking process which concerns on the manufacturing method of the bismuth iron oxide of the form.
焼成工程における焼成温度は、450〜600℃、好ましくは500〜550℃である。焼成温度が上記範囲であることにより、結晶性が高く、X線回折的にBi2Fe4O9やBi2O3等の不純物のピークが少ないBiFeO3で表されるビスマス鉄酸化物が得られる。焼成時間は、適宜選択されるが、粒径の揃った主相率の高いBiFeO3で表されるビスマス鉄酸化物が得られる点で、好ましくは3時間以上、特に好ましくは5〜30時間である。焼成雰囲気は、特に制限されず、大気雰囲気、酸素雰囲気のいずれでもよい。 The firing temperature in the firing step is 450 to 600 ° C, preferably 500 to 550 ° C. When the firing temperature is within the above range, a bismuth iron oxide represented by BiFeO 3 having high crystallinity and few impurity peaks such as Bi 2 Fe 4 O 9 and Bi 2 O 3 in X-ray diffraction is obtained. It is done. The firing time is appropriately selected, but is preferably 3 hours or more, particularly preferably 5 to 30 hours in that a bismuth iron oxide represented by BiFeO 3 having a uniform main phase ratio with a uniform particle size is obtained. is there. The firing atmosphere is not particularly limited, and may be either an air atmosphere or an oxygen atmosphere.
焼成工程では、焼成を複数回行ってもよい。例えば、1回共沈体の焼成を行い、次いで、焼成物を冷却及び粉砕後、再び焼成物の粉砕物を焼成してもよい。 In the firing step, firing may be performed a plurality of times. For example, the coprecipitate may be fired once, and then the fired product may be cooled and ground, and then the fired product may be fired again.
焼成工程を行った後、焼成物を適宜冷却し、必要に応じて、粉砕、解砕、分級等を行い、BiFeO3で表されるビスマス鉄酸化物を得る。 After performing the firing step, the fired product is appropriately cooled and, if necessary, pulverized, crushed, classified, etc., to obtain a bismuth iron oxide represented by BiFeO 3 .
本発明の第一の形態のビスマス鉄酸化物の製造方法又は本発明の第二の形態のビスマス鉄酸化物の製造方法の変形形態として、共沈体調製工程(1)又は(2)を行った後、反応液から共沈体調製工程(1)又は(2)を行い得られた共沈体を一部採取し、採取物を蛍光X線法により分析して、採取物中のビスマスと鉄のモル比を求め、求めたビスマスと鉄のモル比から、共沈体調製工程を行い得られた共沈体のビスマスと鉄のモル比を1.000にするために必要な追加イオン量を算出し、次いで、反応容器内の反応液を撹拌しながら、追加イオン量のイオンを溶解させた水溶液(D液)を、反応容器に供給することにより、ビスマスと鉄のモル比が調節されたモル比調節共沈体を得るモル比調節工程を行い、モル比調節工程を行い得られたモル比調節共沈体を、焼成工程の焼成原料として、焼成工程を行うビスマス鉄酸化物の製造方法が挙げられる。反応スケールが大きくなるほど、共沈体調製工程(1)又は(2)を行い得られる共沈体のビスマスと鉄のモル比がずれ易くなるので、反応スケールが大きい場合に、このような本発明のビスマス鉄酸化物の製造方法の変形形態が、共沈体のビスマスと鉄のモル比を1.000に近くすることができる点で、好ましい。つまり、本発明のビスマス鉄酸化物の製造方法では、共沈体調製工程(1)又は(2)を行った後、あるいは、共沈体調製工程(1)又は(2)に続き熟成を行った後に、反応液から共沈体を一部採取し、採取物の分析を行う。採取物の分析を行っている間、共沈体調製工程(1)又は(2)を行った後の反応液については、撹拌せずに放置しておくか、あるいは、熟成を行う。そして、採取物の分析が終わると、その結果に基づいて、反応液を撹拌しながら、D液を供給して、モル比調節工程を行う。次いで、モル比調節工程を行い得られたモル比調節共沈体を焼成原料として用いて、焼成工程を行う。 The coprecipitate preparation step (1) or (2) is performed as a modification of the method for producing the bismuth iron oxide according to the first aspect of the present invention or the method for producing the bismuth iron oxide according to the second aspect of the present invention. Then, a part of the coprecipitate obtained by performing the coprecipitate preparation step (1) or (2) is collected from the reaction solution, and the collected sample is analyzed by fluorescent X-ray method to obtain bismuth in the collected sample. Obtain the molar ratio of iron, and from the calculated molar ratio of bismuth and iron, the amount of additional ions required to bring the molar ratio of bismuth and iron in the coprecipitate prepared in the coprecipitate preparation step to 1.000 Then, while stirring the reaction solution in the reaction vessel, an aqueous solution (solution D) in which ions of an additional ion amount are dissolved is supplied to the reaction vessel, so that the molar ratio of bismuth and iron is adjusted. The molar ratio adjusting step for obtaining the adjusted molar ratio coprecipitate is performed. The molar ratio adjusting both 沈体, as the firing material of the firing process, and a manufacturing method for the bismuth iron oxide to perform the firing process. The larger the reaction scale, the more easily the molar ratio of bismuth and iron in the coprecipitate obtained by performing the coprecipitate preparation step (1) or (2) becomes larger. This modification of the method for producing bismuth iron oxide is preferable in that the molar ratio of bismuth and iron in the coprecipitate can be close to 1.000. That is, in the method for producing bismuth iron oxide of the present invention, aging is performed after the coprecipitate preparation step (1) or (2) or following the coprecipitate preparation step (1) or (2). After that, a part of the coprecipitate is collected from the reaction solution, and the collected material is analyzed. During the analysis of the collected material, the reaction solution after the coprecipitate preparation step (1) or (2) is left without stirring or is aged. Then, when the analysis of the collected material is finished, based on the result, the liquid D is supplied while stirring the reaction liquid, and the molar ratio adjusting step is performed. Next, the calcining step is performed using the molar ratio adjusting coprecipitate obtained by performing the molar ratio adjusting step as a firing raw material.
本発明のビスマス鉄酸化物の製造方法を行い得られるビスマス鉄酸化物は、BiFeO3で表されるビスマス鉄酸化物であり、Bi2Fe4O9がX線回折的に観測されず、更にBi2O3が少ないX線回折的に高純度なものであることが特徴の一つである。 The bismuth iron oxide obtained by performing the production method of the bismuth iron oxide of the present invention is a bismuth iron oxide represented by BiFeO 3 , and Bi 2 Fe 4 O 9 is not observed by X-ray diffraction. One of the characteristics is that the Bi 2 O 3 content is low in X-ray diffraction and high purity.
本発明のビスマス鉄酸化物の製造方法を行い得られるBiFeO3で表されるビスマス鉄酸化物は、鉛を含まないPZTの代替材料として、下記一般式(1)で表される圧電セラミックの原料として用いられる。
一般式(1):
xBiFeO3−(1−x)ABO3 (1)
(式中、A及びBは一種または複数の金属イオンで、Aは1価、2価または3価の金属イオン、Bは3価、4価または5価の金属イオンを表す。)
The bismuth iron oxide represented by BiFeO 3 obtained by carrying out the method for producing bismuth iron oxide of the present invention is a piezoelectric ceramic raw material represented by the following general formula (1) as an alternative material for PZT not containing lead. Used as
General formula (1):
xBiFeO 3 - (1-x) ABO 3 (1)
(In the formula, A and B are one or more metal ions, A represents a monovalent, divalent or trivalent metal ion, and B represents a trivalent, tetravalent or pentavalent metal ion.)
一般式(1)において、ABO3は、ペロブスカイト型、もしくはそれに近い構造のセラミックが好ましく、該ペロブスカイト型もしくは類似構造のセラミックの好ましいものとしては、BaTiO3、SrTiO3、CaTiO3、BaZrO3、SrZrO3、CaZrO3、KNbO3、NaNbO3、LiNbO3、KTaO3、NaTaO3、LiTaO3、AgNbO3、BiCrO3、BiMnO3、BiCoO3、BiNiO3、(Bi0.5Na0.5)TiO3、(Bi0.5K0.5)TiO3、Bi(Zn0.5Ti0.5)O3、Bi(Mg0.5Ti0.5)O3、Bi(Ni0.5Ti0.5)O3等が挙げられ、これらは2種以上の混合系であってもよい。 In the general formula (1), ABO 3 is preferably a ceramic having a perovskite type or a structure close thereto. Preferred examples of the ceramic having a perovskite type or a similar structure include BaTiO 3 , SrTiO 3 , CaTiO 3 , BaZrO 3 , SrZrO. 3, CaZrO 3, KNbO 3, NaNbO 3, LiNbO 3, KTaO 3, NaTaO 3, LiTaO 3, AgNbO 3, BiCrO 3, BiMnO 3, BiCoO 3, BiNiO 3, (Bi 0.5 Na 0.5) TiO 3 , (Bi 0.5 K 0.5 ) TiO 3 , Bi (Zn 0.5 Ti 0.5 ) O 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 , Bi (Ni 0.5 Ti 0 .5 ) O 3 and the like may be mentioned, and these may be a mixed system of two or more.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
(実施例1〜6)
<各液の準備>
硝酸ビスマス5水塩と硝酸鉄9水塩を表1に示す所定量秤量し、純水と61質量%硝酸を加えてA液を調製した。
これとは別に、重炭酸アンモニウムを表1に示す所定量秤量し、純水と28質量%アンモニア水を所定量加えてB液を調製した。
また、500mlのガラス容器に表1に示す所定量の純水を仕込み、これをC液とした。
(イ)共沈体調製工程
反応容器内のC液を撹拌しながら、ペリスタリックポンプを用いてA液の流量を6.0mL/分、B液の流量を5.3mL/分に調整し、滴下温度を調節しながら同時に反応容器内に滴下した。
A液及びB液を全量滴下して反応を行い、次いで、30分間、室温で熟成した。滴下の初期から茶色の析出物が確認され、滴下終了まで茶色の状態が続いた。なお、共沈体調製工程中の反応液のpHの推移については、反応前、A液及びB液の滴下開始後5分後と10分後、滴下終了時に、反応液のpHを測定した。
次いで、反応液をろ過し、得られたケーキを120℃で乾燥し、乳鉢で解砕して、これを共沈体試料とした。
(ロ)焼成工程
上記で得られた共沈体試料を500℃で7時間、大気雰囲気で焼成し、焼成物を得た。得られた焼成物について、XRD分析を行い結晶状態の確認をした。結晶相の特徴を表4に記した。また、得られた焼成物のSEM写真とX線回折図を図1〜6に示す。
(ハ)反応分析
上記反応終了後の液相をサンプリングし、ICP−AESによる溶存のビスマスイオンおよび鉄イオンを定量して反応収率を求めた。また、生成した共沈体を800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めた。得られた結果を表1に示す。また、粉末X線回折スペクトルの解析より、BiFeO3相率を求めた。得られた結果を表4に示す。
(Examples 1-6)
<Preparation of each solution>
A predetermined amount of bismuth nitrate pentahydrate and iron nitrate nonahydrate shown in Table 1 were weighed, and pure water and 61% by mass nitric acid were added to prepare solution A.
Separately, a predetermined amount of ammonium bicarbonate shown in Table 1 was weighed, and a predetermined amount of pure water and 28% by mass ammonia water were added to prepare a liquid B.
A 500 ml glass container was charged with a predetermined amount of pure water shown in Table 1, and this was designated as C solution.
(I) Coprecipitate preparation step While stirring the liquid C in the reaction vessel, adjust the flow rate of liquid A to 6.0 mL / min and the flow rate of liquid B to 5.3 mL / min using a peristaltic pump. It was dripped in reaction container simultaneously, adjusting dripping temperature.
Reaction was carried out by dropping all of the liquid A and liquid B, and then aging was carried out at room temperature for 30 minutes. A brown precipitate was confirmed from the beginning of the dropping, and the brown state continued until the end of the dropping. In addition, about transition of pH of the reaction liquid in the coprecipitate preparation step, the pH of the reaction liquid was measured before the reaction, 5 minutes and 10 minutes after the start of dropping of the liquid A and liquid B, and at the end of the dropping.
Next, the reaction solution was filtered, and the obtained cake was dried at 120 ° C. and crushed in a mortar to obtain a coprecipitate sample.
(B) Firing step The coprecipitate sample obtained above was fired at 500 ° C. for 7 hours in an air atmosphere to obtain a fired product. The obtained fired product was subjected to XRD analysis to confirm the crystal state. The characteristics of the crystal phase are shown in Table 4. Moreover, the SEM photograph and X-ray-diffraction figure of the obtained baked product are shown in FIGS.
(C) Reaction analysis The liquid phase after completion | finish of the said reaction was sampled, the dissolved bismuth ion and iron ion by ICP-AES were quantified, and the reaction yield was calculated | required. Further, the coprecipitate produced was ignited at 800 ° C. for 30 minutes, and a precise composition analysis was performed by a fluorescent X-ray method to obtain a molar ratio of bismuth to iron (bismuth / iron). The obtained results are shown in Table 1. Moreover, BiFeO 3 phase ratio was calculated | required from the analysis of the powder X-ray diffraction spectrum. Table 4 shows the obtained results.
(実施例7)
実施例7では、実施例1〜6の約150倍スケールで実施した。
<各液の準備>
硝酸ビスマス5水塩と硝酸鉄9水塩を表1に示す所定量秤量し、純水と70質量%硝酸を加えてA液を調製した。
これとは別に、重炭酸アンモニウムを表1に示す所定量秤量し、純水と29質量%アンモニア水を所定量加えてB液を調製した。
また、75Lの反応容器に表1に示す所定量の純水を仕込み、これをC液とした。
(イ)共沈体調製工程
反応容器内のC液を撹拌しながら、マスターフレックスポンプを用いてA液とB液とを同時に1125mL/分の流量で、滴下温度を調節しながら反応容器内に滴下した。
A液及びB液を全量滴下して反応を行い、次いで、30分間、室温で熟成した。なお、共沈体調製工程中の反応液のpHの推移については、反応前、A液及びB液の滴下開始後5分後と10分後、滴下終了時に、反応液のpHを測定した。
次いで、生成した共沈体の一部を採取し、濾過乾燥後にこれを解砕し、800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めたところ1.002であった。この結果より、追加イオン量は、硝酸鉄9水和物で6.8g分と算出された。
次いで、硝酸鉄9水和物を6.8g秤量し、これを100gの水に溶解してD液とし、反応容器内の熟成後の反応液を撹拌しながら、反応容器内にペリスタリックポンプを用いて約10間かけて添加した。更に室温で30分間熟成して撹拌を停止した。反応液をろ過し、得られたケーキを120℃で乾燥し、ロールミルで解砕して、これを共沈体試料とした。組成が調節された共沈体試料のモル比(ビスマス/鉄)は1.000であった。
(ロ)焼成工程
上記で得られた共沈体試料を535℃で15時間、大気雰囲気で焼成し、焼成物を得た。更に焼成物に対してジェットミルを用いて粉砕を行い粉末状のビスマス鉄酸化物を得た。このビスマス鉄酸化物のモル比(ビスマス/鉄)は1.000であり、比表面積は4.86m2/g、粒度分布指標であるD10、D50、D90はそれぞれ、0.38μm、0.50μm、0.71μmであった。得られた粉末状の試料について、XRD分析を行い結晶状態の確認をした。結晶相の特徴を表4に記した。また、得られた粉末状のビスマス鉄酸化物のSEM写真とX線回折図を図7に示す。
(ハ)反応分析
上記反応終了後の液相をサンプリングし、ICP−AESによる溶存のビスマスイオンおよび鉄イオンを定量して反応収率を求めた。また、生成した共沈体および組成を微調整された共沈体を800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めた。得られた結果を表1に示す。
(Example 7)
In Example 7, it carried out on the scale of about 150 times of Examples 1-6.
<Preparation of each solution>
A predetermined amount of bismuth nitrate pentahydrate and iron nitrate nonahydrate shown in Table 1 were weighed, and pure water and 70% by mass nitric acid were added to prepare solution A.
Separately, a predetermined amount of ammonium bicarbonate shown in Table 1 was weighed, and a predetermined amount of pure water and 29% by mass ammonia water were added to prepare a liquid B.
A 75 L reaction vessel was charged with a predetermined amount of pure water shown in Table 1, and this was designated as C solution.
(A) Coprecipitate preparation step While stirring the liquid C in the reaction vessel, the liquid A and the liquid B are simultaneously added at a flow rate of 1125 mL / min using a master flex pump and the dropping temperature is adjusted in the reaction vessel. It was dripped.
Reaction was carried out by dropping all of the liquid A and liquid B, and then aging was carried out at room temperature for 30 minutes. In addition, about transition of pH of the reaction liquid in the coprecipitate preparation step, the pH of the reaction liquid was measured before the reaction, 5 minutes and 10 minutes after the start of dropping of the liquid A and liquid B, and at the end of the dropping.
Next, a part of the produced coprecipitate was collected, pulverized after filtration and drying, ignited at 800 ° C. for 30 minutes, and subjected to precise composition analysis by fluorescent X-ray method, and the molar ratio of bismuth to iron (bismuth) / Iron) was 1.002. From this result, the amount of additional ions was calculated to be 6.8 g for iron nitrate nonahydrate.
Next, 6.8 g of iron nitrate nonahydrate is weighed, dissolved in 100 g of water to form solution D, and a peristaltic pump is placed in the reaction vessel while stirring the reaction solution after aging in the reaction vessel. And added over about 10 minutes. Further, the mixture was aged for 30 minutes at room temperature and the stirring was stopped. The reaction solution was filtered, and the resulting cake was dried at 120 ° C. and crushed with a roll mill to obtain a coprecipitate sample. The molar ratio (bismuth / iron) of the coprecipitate sample whose composition was adjusted was 1.000.
(B) Firing step The coprecipitate sample obtained above was fired at 535 ° C. for 15 hours in an air atmosphere to obtain a fired product. Further, the fired product was pulverized using a jet mill to obtain powdered bismuth iron oxide. The molar ratio of this bismuth iron oxide (bismuth / iron) is 1.000, the specific surface area is 4.86 m 2 / g, and the particle size distribution indices D10, D50, and D90 are 0.38 μm and 0.50 μm, respectively. 0.71 μm. The obtained powder sample was subjected to XRD analysis to confirm the crystal state. The characteristics of the crystal phase are shown in Table 4. Moreover, the SEM photograph and X-ray diffraction diagram of the obtained powdery bismuth iron oxide are shown in FIG.
(C) Reaction analysis The liquid phase after completion | finish of the said reaction was sampled, the dissolved bismuth ion and iron ion by ICP-AES were quantified, and the reaction yield was calculated | required. In addition, the coprecipitate produced and the coprecipitate whose composition is finely tuned are ignited at 800 ° C. for 30 minutes, and a precise composition analysis is performed by a fluorescent X-ray method to obtain a molar ratio of bismuth to iron (bismuth / iron). It was. The obtained results are shown in Table 1.
*2)28質量%アンモニア水に代えて、29質量%アンモニア水を使用
*3)「M」はBiイオンとFeイオンの合計のモル数
(比較例1)
<各液の準備>
500mlのガラス容器に硝酸ビスマス5水和物と硝酸鉄9水和物を表2に示す所定量秤量し、純水と61質量%硝酸を加えてA液を調製した。
これとは別に、重炭酸アンモニウムを表2に示す所定量秤量し、純水と28質量%アンモニア水を所定量加えてB液を調製した。
(イ)共沈体の調製
反応容器内のA液を撹拌しながら、ペリスタリックポンプを用いてB液を10.1mL/分の流量で、滴下温度を調節しながら反応容器内に滴下した。
B液を全量滴下して反応を行い、次いで、30分間、室温で熟成した。滴下初期には白色析出物が認められ、滴下が進むにつれ茶色の析出へと変化した。なお、共沈体調製工程中の反応液のpHの推移については、反応前、B液の滴下開始後5分後と10分後、滴下終了時に、反応液のpHを測定した。
次いで、反応液をろ過し、得られたケーキを120℃で乾燥し、乳鉢で解砕して、これを共沈体試料とした。
(ロ)焼成
上記で得られた共沈体試料を500℃で7時間、大気雰囲気で焼成し、焼成物を得た。得られた焼成物について、XRD分析を行い結晶状態の確認をした。結晶相の特徴を表4に記した。また、得られた焼成物のSEM写真とX線回折図を図8に示す。
(ハ)反応分析
上記反応終了後の液相をサンプリングし、ICP−AESによる溶存のビスマスイオンおよび鉄イオンを定量して反応収率を求めた。また、生成した共沈体を800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めた。得られた結果を表2に示す。
(Comparative Example 1)
<Preparation of each solution>
A predetermined amount of bismuth nitrate pentahydrate and iron nitrate nonahydrate shown in Table 2 was weighed in a 500 ml glass container, and pure water and 61% by mass nitric acid were added to prepare solution A.
Separately, a predetermined amount of ammonium bicarbonate shown in Table 2 was weighed, and a predetermined amount of pure water and 28% by mass ammonia water was added to prepare a liquid B.
(I) Preparation of coprecipitate While solution A in the reaction vessel was stirred, solution B was dropped into the reaction vessel at a flow rate of 10.1 mL / min while adjusting the dropping temperature using a peristaltic pump.
The reaction was carried out by dropping the entire amount of solution B, and then aged for 30 minutes at room temperature. A white precipitate was observed at the beginning of the dropping, and changed into a brown precipitate as the dropping proceeded. In addition, about transition of pH of the reaction liquid in the coprecipitate preparation step, the pH of the reaction liquid was measured before the reaction, 5 minutes and 10 minutes after the start of dropping of the liquid B, and at the end of dropping.
Next, the reaction solution was filtered, and the obtained cake was dried at 120 ° C. and crushed in a mortar to obtain a coprecipitate sample.
(B) Firing The coprecipitate sample obtained above was fired at 500 ° C. for 7 hours in an air atmosphere to obtain a fired product. The obtained fired product was subjected to XRD analysis to confirm the crystal state. The characteristics of the crystal phase are shown in Table 4. Moreover, the SEM photograph and X-ray diffraction pattern of the obtained fired product are shown in FIG.
(C) Reaction analysis The liquid phase after completion | finish of the said reaction was sampled, the dissolved bismuth ion and iron ion by ICP-AES were quantified, and the reaction yield was calculated | required. Further, the coprecipitate produced was ignited at 800 ° C. for 30 minutes, and a precise composition analysis was performed by a fluorescent X-ray method to obtain a molar ratio of bismuth to iron (bismuth / iron). The obtained results are shown in Table 2.
(比較例2)
<各液の準備>
500mlのガラス容器に重炭酸アンモニウムを表2に示す所定量秤量し、純水と28質量%アンモニア水を所定量加えてB液を調製した。
これとは別に、硝酸ビスマス5水和物と硝酸鉄9水和物を表2に示す所定量秤量し、純水と61質量%硝酸を加えてA液を調製した。
(イ)共沈体の調製
反応容器内のB液を撹拌しながら、ペリスタリックポンプを用いてA液を6.0mL/分の流量で、滴下温度を調節しながら反応容器内に滴下した。
A液を全量滴下して反応を行い、次いで、30分間、室温で熟成した。滴下初期より終始茶色の析出物が確認され、添加終盤では激しく泡発生が確認された。なお、共沈体調製工程中の反応液のpHの推移については、反応前、A液の滴下開始後5分後と10分後、滴下終了時に、反応液のpHを測定した。
次いで、反応液をろ過し、得られたケーキを120℃で乾燥し、乳鉢で解砕して、これを共沈体試料とした。
(ロ)焼成
上記で得られた共沈体試料を500℃で7時間、大気雰囲気で焼成し、焼成物を得た。得られた焼成物について、XRD分析を行い結晶状態の確認をした。結晶相の特徴を表4に記した。また、得られた焼成物のSEM写真とX線回折図を図9に示す。
(ハ)反応分析
上記反応終了後の液相をサンプリングし、ICP−AESによる溶存のビスマスイオンおよび鉄イオンを定量して反応収率を求めた。また、生成した共沈体を800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めた。得られた結果を表2に示す。
(Comparative Example 2)
<Preparation of each solution>
A predetermined amount of ammonium bicarbonate shown in Table 2 was weighed into a 500 ml glass container, and a predetermined amount of pure water and 28% by mass ammonia water were added to prepare a liquid B.
Separately, bismuth nitrate pentahydrate and iron nitrate nonahydrate were weighed in predetermined amounts shown in Table 2, and pure water and 61% by mass nitric acid were added to prepare solution A.
(I) Preparation of coprecipitate While liquid B in the reaction vessel was stirred, liquid A was dropped into the reaction vessel at a flow rate of 6.0 mL / min while adjusting the dropping temperature using a peristaltic pump.
The reaction was carried out by dropping the entire amount of solution A, and then aged for 30 minutes at room temperature. From the beginning of the dropping, a brown precipitate was confirmed throughout, and at the end of the addition, generation of bubbles was confirmed. In addition, about transition of pH of the reaction liquid in the coprecipitate preparation step, the pH of the reaction liquid was measured before the reaction, 5 minutes and 10 minutes after the start of dropping of the liquid A, and at the end of the dropping.
Next, the reaction solution was filtered, and the obtained cake was dried at 120 ° C. and crushed in a mortar to obtain a coprecipitate sample.
(B) Firing The coprecipitate sample obtained above was fired at 500 ° C. for 7 hours in an air atmosphere to obtain a fired product. The obtained fired product was subjected to XRD analysis to confirm the crystal state. The characteristics of the crystal phase are shown in Table 4. Moreover, the SEM photograph and X-ray diffraction diagram of the obtained fired product are shown in FIG.
(C) Reaction analysis The liquid phase after completion | finish of the said reaction was sampled, the dissolved bismuth ion and iron ion by ICP-AES were quantified, and the reaction yield was calculated | required. Further, the coprecipitate produced was ignited at 800 ° C. for 30 minutes, and a precise composition analysis was performed by a fluorescent X-ray method to obtain a molar ratio of bismuth to iron (bismuth / iron). The obtained results are shown in Table 2.
(実施例8)
<各液の準備>
硝酸ビスマス5水和物と硝酸鉄9水和物を表2に示す所定量秤量し、純水と61質量%硝酸を加えてA液を調製した。
これとは別に、重炭酸アンモニウムを表2に示す所定量秤量し、純水と28質量%アンモニア水を所定量加えてB液を調製した。
また、500mlのガラス容器に表2に示す所定量の純水を仕込み、これをC液とした。
(イ)共沈体調製工程
反応容器内のC液を撹拌しながら、ペリスタリックポンプを用いてA液を5mL/分、B液を2.5mL/分の流量で、滴下温度を調節しながら反応容器内に同時に滴下した。
A液及びB液を全量滴下して反応を行い、次いで、30分間、室温で熟成した。なお、共沈体調製工程中の反応液のpHの推移については、反応前、A液及びB液の滴下開始後5分後と10分後、滴下終了時に、反応液のpHを測定した。
次いで、反応液をろ過し、得られたケーキを120℃で乾燥し、乳鉢で解砕して、これを共沈体試料とした。
(ロ)焼成工程
上記で得られた共沈体試料を500℃で7時間、大気雰囲気で焼成し、焼成物を得た。得られた焼成物について、XRD分析を行い結晶状態の確認をした。結晶相の特徴を表4に記した。また、得られた焼成物のSEM写真とX線回折図を図10に示す。
(ハ)反応分析
上記反応終了後の液相をサンプリングし、ICP−AESによる溶存のビスマスイオンおよび鉄イオンを定量して反応収率を求めた。また、生成した共沈体を800℃で30分強熱し、蛍光X線法による精密組成分析を行い、ビスマスと鉄のモル比(ビスマス/鉄)を求めた。得られた結果を表3に示す。
(Example 8)
<Preparation of each solution>
Bismuth nitrate pentahydrate and iron nitrate nonahydrate were weighed in predetermined amounts as shown in Table 2, and pure water and 61% by mass nitric acid were added to prepare solution A.
Separately, a predetermined amount of ammonium bicarbonate shown in Table 2 was weighed, and a predetermined amount of pure water and 28% by mass ammonia water was added to prepare a liquid B.
A 500 ml glass container was charged with a predetermined amount of pure water shown in Table 2, and this was designated as C solution.
(A) Coprecipitate preparation step While stirring the liquid C in the reaction vessel, using a peristaltic pump, adjusting the dropping temperature at a flow rate of liquid A of 5 mL / min and liquid B of 2.5 mL / min. It was dripped simultaneously in reaction container.
Reaction was carried out by dropping all of the liquid A and liquid B, and then aging was carried out at room temperature for 30 minutes. In addition, about transition of pH of the reaction liquid in the coprecipitate preparation step, the pH of the reaction liquid was measured before the reaction, 5 minutes and 10 minutes after the start of dropping of the liquid A and liquid B, and at the end of the dropping.
Next, the reaction solution was filtered, and the obtained cake was dried at 120 ° C. and crushed in a mortar to obtain a coprecipitate sample.
(B) Firing step The coprecipitate sample obtained above was fired at 500 ° C. for 7 hours in an air atmosphere to obtain a fired product. The obtained fired product was subjected to XRD analysis to confirm the crystal state. The characteristics of the crystal phase are shown in Table 4. Moreover, the SEM photograph and X-ray diffraction pattern of the obtained fired product are shown in FIG.
(C) Reaction analysis The liquid phase after completion | finish of the said reaction was sampled, the dissolved bismuth ion and iron ion by ICP-AES were quantified, and the reaction yield was calculated | required. Further, the coprecipitate produced was ignited at 800 ° C. for 30 minutes, and a precise composition analysis was performed by a fluorescent X-ray method to obtain a molar ratio of bismuth to iron (bismuth / iron). The obtained results are shown in Table 3.
Claims (12)
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、該反応容器への該A液及び該B液の供給速度を調節することにより、該反応容器内の反応液のpHを、5.5〜8.5の範囲に制御しつつ反応を行い、共沈体を得る共沈体調製工程(1)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法。 A method for producing a bismuth iron oxide represented by BiFeO 3 ,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. This is a step of supplying and reacting, and the pH of the reaction solution in the reaction vessel is adjusted to 5.5 to 8.5 by adjusting the supply rate of the solution A and the solution B to the reaction vessel. A coprecipitate preparation step (1) for obtaining a coprecipitate by carrying out the reaction while controlling within the range of
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
The manufacturing method of the bismuth iron oxide characterized by having.
反応容器に、ビスマスイオンと、鉄イオンと、酸イオンと、を含有する水溶液(A液)を供給しつつ、重炭酸イオン又は炭酸イオンと、アンモニウムイオンと、を含有する水溶液(B液)を供給して、反応を行う工程であり、少なくとも、該反応容器に該A液及び該B液の全量を供給した後の該反応容器内の反応液のpHが5.5〜8.5の範囲になるように、該A液及び該B液の供給量を調節して、反応を行い、共沈体を得る共沈体調製工程(2)と、
該共沈体を焼成原料として、450〜600℃で焼成することにより、BiFeO3で表されるビスマス鉄酸化物を得る焼成工程と、
を有することを特徴とするビスマス鉄酸化物の製造方法。 A method for producing a bismuth iron oxide represented by BiFeO 3 ,
While supplying an aqueous solution (liquid A) containing bismuth ions, iron ions, and acid ions to the reaction vessel, an aqueous solution (liquid B) containing bicarbonate ions or carbonate ions and ammonium ions is supplied. The step of supplying and reacting, and at least the pH of the reaction liquid in the reaction container after supplying the entire amount of the liquid A and the liquid B to the reaction container is in the range of 5.5 to 8.5. The coprecipitate preparation step (2) for adjusting the supply amount of the liquid A and the liquid B and performing a reaction to obtain a coprecipitate,
Using the coprecipitate as a firing material, firing at 450 to 600 ° C. to obtain a bismuth iron oxide represented by BiFeO 3 ;
The manufacturing method of the bismuth iron oxide characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016224148A JP6721490B2 (en) | 2016-11-17 | 2016-11-17 | Method for producing bismuth iron oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016224148A JP6721490B2 (en) | 2016-11-17 | 2016-11-17 | Method for producing bismuth iron oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018080090A true JP2018080090A (en) | 2018-05-24 |
JP6721490B2 JP6721490B2 (en) | 2020-07-15 |
Family
ID=62198061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016224148A Active JP6721490B2 (en) | 2016-11-17 | 2016-11-17 | Method for producing bismuth iron oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6721490B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111410237A (en) * | 2020-05-09 | 2020-07-14 | 中南林业科技大学 | Resource utilization method for waste polluted biomass |
CN114392750A (en) * | 2022-02-17 | 2022-04-26 | 齐鲁工业大学 | Bismuth/bismuth ferrite visible-light-induced photocatalyst material and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011213581A (en) * | 2010-03-15 | 2011-10-27 | Canon Inc | Bismuth iron oxide powder, method of producing the same, dielectric ceramics, piezoelectric element, liquid ejection head and ultrasonic motor |
-
2016
- 2016-11-17 JP JP2016224148A patent/JP6721490B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011213581A (en) * | 2010-03-15 | 2011-10-27 | Canon Inc | Bismuth iron oxide powder, method of producing the same, dielectric ceramics, piezoelectric element, liquid ejection head and ultrasonic motor |
Non-Patent Citations (2)
Title |
---|
BULLETIN OF MATERIALS SCIENCE, vol. 35, no. 2, JPN6020019121, 2012, pages 157 - 161, ISSN: 0004278676 * |
JOURNAL OF EXPERIMENTAL NANOSCIENCE, vol. 8, no. 3, JPN6020019119, 2013, pages 341 - 346, ISSN: 0004278675 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111410237A (en) * | 2020-05-09 | 2020-07-14 | 中南林业科技大学 | Resource utilization method for waste polluted biomass |
CN111410237B (en) * | 2020-05-09 | 2023-07-14 | 中南林业科技大学 | Method for recycling waste polluted biomass |
CN114392750A (en) * | 2022-02-17 | 2022-04-26 | 齐鲁工业大学 | Bismuth/bismuth ferrite visible-light-induced photocatalyst material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6721490B2 (en) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210403340A1 (en) | Synthesis of nanosized cubic lithium lanthanum zirconate fast ion conductor | |
KR102611412B1 (en) | Method for producing zirconium tungstate phosphate | |
TWI568678B (en) | Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same | |
RU2530126C2 (en) | Production of iron orthophosphate | |
JP6565950B2 (en) | Method for producing garnet-type oxide solid electrolyte | |
Sardar et al. | Hydrothermal synthesis map of bismuth titanates | |
US20160293947A1 (en) | Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/electrode-active-material complex | |
US11811056B2 (en) | One-pot synthesis for LiNbO3 coated spinel | |
US11377364B2 (en) | Process for preparing doped lithium lanthanum zirconium oxide | |
KR20050029239A (en) | Alkali metal hydrogen phosphates as precursors for phosphate-containing electrochemical active materials | |
JP2003252623A (en) | Method of manufacturing composite oxide powder and composite oxide powder | |
CN113348148B (en) | Method for producing lithium titanium phosphate | |
JP6721490B2 (en) | Method for producing bismuth iron oxide | |
JPH08208226A (en) | Production of complex metal oxide powder | |
KR100955802B1 (en) | Process for preparing fine barium titanate based composite oxide | |
JPS6153113A (en) | Production of powdery raw material of easily sintering perovskite and its solid solution by wet process | |
US10189719B1 (en) | Process for the manufacture of lithium metal oxide cathode materials | |
JP6707401B2 (en) | Method for producing complex oxide precursor | |
TW202128554A (en) | Amorphous lithium ion conducting oxide powder and method for production thereof, and method for production of lithium ion conducting oxide powder having nasicon-type crystal structure | |
JPH06144837A (en) | Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt | |
JPH05221795A (en) | Production of monoclinic plate crystal having layer structure represented by axmyti2-yo4 | |
WO2023095548A1 (en) | Transition metal-containing hydroxide, positive electrode active material obtained using transition metal-containing hydroxide as precursor, and method for producing transition metal-containing hydroxide | |
WO2018092796A1 (en) | Method for producing bismuth iron oxide | |
JPH01294527A (en) | Production of metallic oxide of perovskite type of abo3 type | |
JPS61251516A (en) | Production of perovskite type oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190805 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6721490 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |