JP2018080086A5 - - Google Patents

Download PDF

Info

Publication number
JP2018080086A5
JP2018080086A5 JP2016223936A JP2016223936A JP2018080086A5 JP 2018080086 A5 JP2018080086 A5 JP 2018080086A5 JP 2016223936 A JP2016223936 A JP 2016223936A JP 2016223936 A JP2016223936 A JP 2016223936A JP 2018080086 A5 JP2018080086 A5 JP 2018080086A5
Authority
JP
Japan
Prior art keywords
titanium oxide
treatment
neutralizing agent
neutralization treatment
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016223936A
Other languages
Japanese (ja)
Other versions
JP6762205B2 (en
JP2018080086A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016223936A priority Critical patent/JP6762205B2/en
Priority claimed from JP2016223936A external-priority patent/JP6762205B2/en
Publication of JP2018080086A publication Critical patent/JP2018080086A/en
Publication of JP2018080086A5 publication Critical patent/JP2018080086A5/ja
Application granted granted Critical
Publication of JP6762205B2 publication Critical patent/JP6762205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

中和剤は、中和剤水溶液の状態で加水分解処理を施した排液の水相と接触させることが好ましく、この場合、中和剤水溶液中の中和剤の濃度は、0.3〜0.7mol/lであることが好ましく、0.35〜0.65mol/lであることがより好ましく、0.40〜0.60mol/lであることがさらに好ましく、0.45〜0.55mol/lであることが一層好ましい。
中和剤水溶液中の中和剤濃度が上記範囲内にあることにより、加水分解処理を施した排液中のpHを容易に所望範囲に制御することができる。中和剤濃度が0.7mol/lを超えると加水分解処理を施した排液中のpHを制御し難くなり、0.3mol/l未満であると、円滑な中和処理を行い難くなる。
The neutralizing agent is preferably brought into contact with the aqueous phase of the effluent subjected to hydrolysis treatment in the state of the neutralizing agent aqueous solution. In this case, the concentration of the neutralizing agent in the aqueous neutralizing agent solution is 0.3 to It is preferably 0.7 mol / l, more preferably 0.35 to 0.65 mol / l, further preferably 0.40 to 0.60 mol / l, and 0.45 to 0.55 mol it is more preferably a / l.
When the neutralizing agent concentration in the neutralizing agent aqueous solution is within the above range, the pH in the drainage subjected to the hydrolysis treatment can be easily controlled within the desired range. When the concentration of the neutralizing agent exceeds 0.7 mol / l, it becomes difficult to control the pH in the drained liquid subjected to the hydrolysis treatment, and when it is less than 0.3 mol / l, it becomes difficult to perform a smooth neutralization treatment.

中和剤は、中和剤水溶液の状態で、一次中和処理を施した処理液と接触させることが好ましく、この場合、中和剤水溶液中の中和剤の濃度は、0.30〜0.70mol/lであることが好ましく、0.40〜0.60mol/lであることがより好ましく、0.45〜0.55mol/lであることがさらに好ましい。
中和剤水溶液中の中和剤の濃度が上記範囲内にあることにより、一次中和処理を施した処理液中のpHを容易に所望範囲に制御することができる。中和剤の濃度が0.70mol/lを超えると一次中和処理を施した処理液中のpHを制御し難くなり、0.30mol/l未満であると、円滑な中和処理を行い難くなる。
The neutralizing agent is preferably brought into contact with the treatment liquid subjected to the primary neutralization treatment in the state of an aqueous neutralizing agent solution. In this case, the concentration of the neutralizing agent in the aqueous neutralizing agent solution is 0.30 to 0. It is preferably .70 mol / l, more preferably 0.40 to 0.60 mol / l, and still more preferably 0.45 to 0.55 mol / l.
When the concentration of the neutralizing agent in the neutralizing agent aqueous solution is within the above range, the pH in the treatment liquid subjected to the primary neutralization treatment can be easily controlled within a desired range. When the concentration of the neutralizing agent exceeds 0.70 mol / l, it becomes difficult to control the pH in the treatment liquid subjected to the primary neutralization treatment, and when it is less than 0.30 mol / l, it is difficult to perform smooth neutralization treatment. Become.

(実施例1)
図1に示す処理フローを用いて、チタン化合物を含む排液から酸化チタンを得た。
すなわち、チーグラーナッタ触媒の製造工場において、オレフィン類重合用固体触媒成分を調製した際に発生する、四塩化チタン、ジエトキシマグネシウム、トルエンおよびヘプタンを含む液温25℃の排液を処理対象とし、当該排液Dを容量250mの受水槽1に送入することで混合し、加水分解を施した。このとき、受水槽中の排液のpHが1になるように受水槽中に加水分解用の水Wを送入した。
上記加水分解処理された排液の水相を、10m/hの速度で容量10mの一次中和処理槽2に送入し、液温25℃の12.5g/l水酸化ナトリウム水溶液を用いて、一次中和処理槽2内に送入された排液のpHが2になるように一次中和処理を施した。
次いで、上記一次中和処理を施した排液の水相を、10m/hの速度で容量10mの二次中和処理槽3に送入し、液温25℃の12.5g/l水酸化ナトリウム水溶液を用いて、二次中和処理槽3内に送入された排液のpHが6.5になるように二次中和処理を施した。
二次中和処理を施した液温25℃の処理液は、10m/hの速度で容量10mの凝集槽4内に送入して、凝集剤(クリタ・ケミカル北陸(株)製クリファームPA−833)を用いて凝集させた後、シックナー5に送入してプレスケーキ化した沈殿物を抜き出し、目的とする酸化チタンを得た。
得られた酸化チタンの結晶構造を、X’PERT−PRO−MPD多目的X線回析装置(PANalytical製)を用いて測定した。得られたX線回折図を図2に示す。図2より、得られた酸化チタンはルチル型であることが確認できた。
Example 1
Using the treatment flow shown in FIG. 1, titanium oxide was obtained from the effluent containing the titanium compound.
That is, in the Ziegler-Natta catalyst manufacturing plant, the waste liquid having a liquid temperature of 25 ° C. containing titanium tetrachloride, diethoxymagnesium, toluene and heptane generated when the solid catalyst component for olefin polymerization is prepared is treated. The drainage D was mixed by being fed into a water receiving tank 1 having a capacity of 250 m 3 and subjected to hydrolysis. At this time, water W for hydrolysis was fed into the water receiving tank so that the pH of the drainage in the water receiving tank was 1.
The aqueous phase of the hydrolyzed effluent is fed to the primary neutralization tank 2 having a capacity of 10 m 3 at a speed of 10 m 3 / h, and a 12.5 g / l sodium hydroxide aqueous solution having a liquid temperature of 25 ° C. The primary neutralization treatment was performed so that the pH of the effluent fed into the primary neutralization treatment tank 2 was 2.
Next, the aqueous phase of the effluent subjected to the primary neutralization treatment is fed into the secondary neutralization treatment tank 3 having a capacity of 10 m 3 at a speed of 10 m 3 / h, and 12.5 g / l Using a sodium hydroxide aqueous solution, the secondary neutralization treatment was performed so that the pH of the drained liquid fed into the secondary neutralization treatment tank 3 was 6.5.
The treatment liquid having a temperature of 25 ° C. subjected to the secondary neutralization treatment is fed into the agglomeration tank 4 having a capacity of 10 m 3 at a speed of 10 m 3 / h, and a flocculant (made by Kurita Chemical Hokuriku Corp. After agglomerating using Farm PA-833), it was fed into thickener 5 and the press cake-formed precipitate was extracted to obtain the intended titanium oxide.
The crystal structure of the obtained titanium oxide was measured using an X′PERT-PRO-MPD multipurpose X-ray diffraction apparatus (manufactured by PANaltical). The obtained X-ray diffraction pattern is shown in FIG. From FIG. 2, it was confirmed that the obtained titanium oxide was a rutile type.

(実施例3)
一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度を25g/lとした以外は実施例1と同様の条件で酸化チタンを得た。実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、同一重量(100)であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、ルチル型であることが確認できた。
(Example 3)
Titanium oxide was obtained under the same conditions as in Example 1 except that the concentration of the aqueous sodium hydroxide solution used for the primary neutralization treatment and the secondary neutralization treatment was 25 g / l . When the relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was determined, it was the same weight (100). Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was a rutile type.

(実施例4)
一次中和槽のpHを1.5とし、一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度を25g/lとした以外は、実施例1と同様の条件で酸化チタンを得た。実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、同一重量(100)であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、ルチル型であることが確認できた。
Example 4
Oxidation was performed under the same conditions as in Example 1 except that the pH of the primary neutralization tank was 1.5 and the concentration of the aqueous sodium hydroxide solution used for the primary and secondary neutralization treatments was 25 g / l. Titanium was obtained. When the relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was determined, it was the same weight (100). Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was a rutile type.

(実施例7)
一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度6.5g/lとした以外は実施例1と同様の条件で酸化チタンを得た。実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、同一重量(100)であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、ルチル型であることが確認できた。
(Example 7)
Titanium oxide was obtained under the same conditions as in Example 1 except that the concentration of the aqueous sodium hydroxide solution used for the primary neutralization treatment and the secondary neutralization treatment was 6.5 g / l . When the relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was determined, it was the same weight (100). Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was a rutile type.

(比較例3)
一次中和槽のpHを4とし、一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度を25g/lにした以外は実施例1と同様の条件で酸化チタンを得た。
実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、50.5であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、アナターゼ型であることが確認できた。
(Comparative Example 3)
Titanium oxide was obtained under the same conditions as in Example 1, except that the pH of the primary neutralization tank was 4, and the concentration of the aqueous sodium hydroxide solution used for the primary and secondary neutralization treatments was 25 g / l. It was.
The relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was 50.5. Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was anatase type.

(比較例4)
一次中和槽のpHを4とし、二次中和槽のpHを7.5とし、一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度を25g/lにした以外は実施例1と同様の条件で酸化チタンを得た。
実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、50.5であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、アナターゼ型であることが確認できた。
(Comparative Example 4)
The pH of the primary neutralization tank is set to 4, the pH of the secondary neutralization tank is set to 7.5, and the concentration of the sodium hydroxide aqueous solution used for the primary neutralization treatment and the secondary neutralization treatment is 25 g / l. Obtained titanium oxide under the same conditions as in Example 1.
The relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was 50.5. Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was anatase type.

(比較例5)
一次中和槽のpHを4とし、一次中和処理および二次中和処理に使用する水酸化ナトリウム水溶液の濃度を6.5g/lにした以外は実施例1と同様の条件で酸化チタンを得た。
実施例1で得られた酸化チタンの重量を100としたときの相対重量を求めたところ、50.5であった。また、実施例1と同様の方法で得られた酸化チタンをX線解析装置を用いて測定したところ、アナターゼ型であることが確認できた。
(Comparative Example 5)
Titanium oxide under the same conditions as in Example 1, except that the pH of the primary neutralization tank was set to 4 and the concentration of the sodium hydroxide aqueous solution used for the primary neutralization treatment and the secondary neutralization treatment was 6.5 g / l. Got.
The relative weight when the weight of the titanium oxide obtained in Example 1 was taken as 100 was 50.5. Moreover, when the titanium oxide obtained by the method similar to Example 1 was measured using the X-ray analyzer, it was confirmed that it was anatase type.

Figure 2018080086
Figure 2018080086

JP2016223936A 2016-11-17 2016-11-17 Titanium compound recovery method, titanium oxide production method and alkali titanate production method Active JP6762205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223936A JP6762205B2 (en) 2016-11-17 2016-11-17 Titanium compound recovery method, titanium oxide production method and alkali titanate production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223936A JP6762205B2 (en) 2016-11-17 2016-11-17 Titanium compound recovery method, titanium oxide production method and alkali titanate production method

Publications (3)

Publication Number Publication Date
JP2018080086A JP2018080086A (en) 2018-05-24
JP2018080086A5 true JP2018080086A5 (en) 2018-07-05
JP6762205B2 JP6762205B2 (en) 2020-09-30

Family

ID=62198563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223936A Active JP6762205B2 (en) 2016-11-17 2016-11-17 Titanium compound recovery method, titanium oxide production method and alkali titanate production method

Country Status (1)

Country Link
JP (1) JP6762205B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979145B1 (en) * 2021-04-30 2021-12-08 東邦チタニウム株式会社 Titanium component recovery method and titanium oxide manufacturing method
JP6959471B1 (en) * 2021-06-30 2021-11-02 東邦チタニウム株式会社 Titanium component recovery method, titanium oxide manufacturing method and alkali metal titanate manufacturing method
JP7430164B2 (en) 2021-10-18 2024-02-09 東邦チタニウム株式会社 Method for recovering titanium components, method for producing titanium oxide, and method for producing alkali metal titanate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434293A1 (en) * 1974-07-17 1976-02-05 Hoechst Ag METHOD FOR PURIFYING WASTE WATER
JP3651690B2 (en) * 1993-12-28 2005-05-25 株式会社カネカ Method for removing catalyst in purification step of cationic polymer
JPH09272815A (en) * 1996-04-02 1997-10-21 Merck Japan Kk Composite metal oxide fine particle and production of the same
JP2001261340A (en) * 2000-03-22 2001-09-26 Mitsui Chemicals Inc Method of recovering titanium compound and method of utilizing titanium thus recovered
JP2003230888A (en) * 2002-02-08 2003-08-19 Sumitomo Metal Ind Ltd Method for treating aqueous solution containing metal fluoride
WO2010004925A1 (en) * 2008-07-09 2010-01-14 Kiya Shigeru Method of recovering silicon, titanium, and fluorine
JP5228980B2 (en) * 2009-02-17 2013-07-03 住友大阪セメント株式会社 Rutile composite fine particles, rutile composite fine particle dispersion, and method for producing rutile composite fine particles
JP5676888B2 (en) * 2010-02-05 2015-02-25 株式会社東芝 Drug injection system and drug injection method

Similar Documents

Publication Publication Date Title
JP2018080086A5 (en)
Chekli et al. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and iron salts in humic acid–kaolin synthetic water treatment
CN103864991A (en) Preparation method of chitosan grafted copolymer flocculation-bactericide
CN104193043B (en) A kind of high concentration alkaline waste water containing arsenic dearsenification treatment process and method
TWI507363B (en) Treatment of Copper Etching Waste
CN105645545A (en) Preparation method and application of polyferric silicate coagulant
JP2017512241A (en) Novel polyelectrolyte polymer, its production process and its use
CN108996647A (en) Preparation method of magnetic coupling flocculant and products thereof and application
CN110482789A (en) A kind of steel acid waste water processing equipment and its processing method
Yang et al. Species distribution of ferric hydrolysates in microwave enhanced Fenton-like process and possible mechanism
CN107445276A (en) Composite environment-friendly type flocculant and its preparation method and application
JP4954131B2 (en) Treatment method of water containing borofluoride
JP6762205B2 (en) Titanium compound recovery method, titanium oxide production method and alkali titanate production method
JP2010207755A5 (en)
CN110615485B (en) Continuous production method and application of polyferric chloride
JP4338705B2 (en) Method for treating waste liquid containing borofluoride ions
JP2014028356A (en) Method for treating effluent including water-soluble iron-cyano complex, method for preparing insolubilized liquid used for the treating method, and method for preparing flocculated and precipitated sludge
KR20150103939A (en) A inorganic coagulant of fluoride ion in water treatment and the preparation method thereof
CN109516537A (en) Medicament, preparation method and the sewage water treatment method of fluoride in a kind of removal sewage
CN108033534A (en) A kind of preparation method of fluorine removal solution and the technique for removing fluorine ion in water removal
KR20150103940A (en) A inorganic coagulant of fluoride ion in water treatment and the preparation method thereof
CN105814216B (en) The recovery method of palladium
JP5965164B2 (en) Cadmium-containing wastewater treatment method
JP4210509B2 (en) Method for treating boron-containing water
Kaur et al. Degradation of ofloxacin in aqueous phase using TiO2/ZnO