JP2018078818A - Agricultural environment control device - Google Patents

Agricultural environment control device Download PDF

Info

Publication number
JP2018078818A
JP2018078818A JP2016222487A JP2016222487A JP2018078818A JP 2018078818 A JP2018078818 A JP 2018078818A JP 2016222487 A JP2016222487 A JP 2016222487A JP 2016222487 A JP2016222487 A JP 2016222487A JP 2018078818 A JP2018078818 A JP 2018078818A
Authority
JP
Japan
Prior art keywords
time
solar radiation
sunrise
control
sunset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016222487A
Other languages
Japanese (ja)
Inventor
中村 新
Shin Nakamura
新 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORGANIC NICO KK
Original Assignee
ORGANIC NICO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORGANIC NICO KK filed Critical ORGANIC NICO KK
Priority to JP2016222487A priority Critical patent/JP2018078818A/en
Priority to CN201710787847.2A priority patent/CN108073204A/en
Publication of JP2018078818A publication Critical patent/JP2018078818A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/247Watering arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an agricultural environment control device that can determine sunrise time, sunset time, before noon, afternoon or the like on the basis of changes of solar radiation quantity in a day, reduce labor due to a change of time setting by a user, and by which even a beginner can perform accurate setting.SOLUTION: An agricultural environment control device of the present invention comprises: solar radiation quantity measuring means 10 for measuring at least solar radiation quantity; and control means 20 for calculating the time of time zones created by dividing a day into plural numbers on the basis of solar radiation quantity measured by the solar radiation quantity measuring means 10 or changes of the solar radiation quantity, in which the control means 20 controls a control element 30 being set according to the time zones on the basis of calculated time.SELECTED DRAWING: Figure 1

Description

本発明は、特に農業用ハウスでの温度制御や潅水時刻制御を行うことができる農業用環境制御装置に関する。   The present invention relates to an agricultural environment control apparatus capable of performing temperature control and irrigation time control particularly in an agricultural house.

農業用ハウス内の温度や湿度等の目標値をユーザーが設定でき、設定された目標値になるように換気窓を開閉したり、加温機や冷房機を動かすことで作物にとって最適な環境制御をする農業用環境制御装置が存在する(例えば特許文献1)。
このような装置では、時間帯ごとに目標値を設定して、時間帯ごとにハウス内の温度を所望の値に制御する。
The user can set target values such as temperature and humidity in the agricultural house, and optimal environmental control for crops by opening and closing the ventilation window and moving the heater and air conditioner to reach the set target values. There is an agricultural environmental control device (for example, Patent Document 1).
In such an apparatus, a target value is set for each time zone, and the temperature in the house is controlled to a desired value for each time zone.

特開平07−23666号公報Japanese Patent Laid-Open No. 07-23666

植物の生理現象は、一日の間で光と温度によって変化する。日の出に伴って光合成が始まり、日中は、光の強さに応じて光合成が行われるのと同時に光合成で作られた炭水化物、及び根から吸収された養分が植物体内に転流される。
一般的に午前が午後よりも光合成能力が高い。夕方になって光が弱くなると次第に光合成の能力は低下する。日没後は、光合成を行わず養分の転流のみがしばらく続き、やがてほとんど全ての光合成の養分が植物体内に行き渡ると転流はほぼ終了し、呼吸と水分吸収のみが行われる。
ハウス内の環境制御において、このような一日の植物の生理現象に合わせた制御を行うことで植物の生育を最適化する方法が知られている。
その一つは「夜間前半の温度補正」と呼ばれる方法である。
日射量が多い昼間には光合成産物の量が多くなるので、転流すべき光合成産物の量も多くなる。一方、転流量は植物体の温度によって変化し、一般的に温度が高いほど転流量は多くなる。
そこで「夜間前半の温度補正」は、昼間の日射量の積算値に応じて夕方から夜間前半にかけての温度を高くすることで、光合成産物を確実に転流する。
また、冬季においては、気温の変化に対して植物体の温度が上昇する時間遅れを考慮して、日の出前からハウス内の温度を昼間の目標温度に上げ、日の出直後には植物体の温度を光合成に最適な温度にすることで光合成量を最大化する方法がある。
これら二つの方法は、現在の日射量だけでなく、日の出、午前、午後、又は夕方をシステムが判断する必要がある。公知の技術では、この判断に時刻を用いているが、太陽の動きは季節によって変化し、時刻での判断では季節の変化に応じて設定を変更する必要がある。
従来の装置は、時刻に応じて目標温度を制御している。
作物の栽培では、作物の生育適温に制御することが重要である。作物の生育適温とは、昼間で日射がある状況においては光合成量が最大になる温度であり、夜間では呼吸量を抑えつつ、生理的に障害が出ず、病害が発生しにくい温度である。
時刻に応じて目標温度を制御する方法では、季節によって日の出や日没の時間が変化するため、頻繁に設定時刻の変更を強いられる。特に、時刻に基づいて制御する項目が多くなると、頻繁に多数の変更が必要となるために煩わしく、また労働生産性を落とす要因となっている。
また、温度制御や潅水制御に関する時間設定の判断は、かなりの熟練が必要であり、初心者には困難である。
Plant physiology changes with light and temperature throughout the day. Photosynthesis begins with sunrise, and during the day, photosynthesis is performed according to the intensity of light, and at the same time, carbohydrates produced by photosynthesis and nutrients absorbed from the roots are translocated into the plant body.
In general, the photosynthetic capacity is higher in the morning than in the afternoon. In the evening, as the light becomes weaker, the ability of photosynthesis gradually decreases. After sunset, only the translocation of nutrients continues without photosynthesis, and when almost all the photosynthetic nutrients reach the plant body, the translocation is almost finished and only respiration and moisture absorption are performed.
In the environmental control in a house, a method for optimizing the growth of a plant by performing the control according to the physiological phenomenon of the plant in one day is known.
One of them is a method called “temperature correction in the first half of the night”.
Since the amount of photosynthetic products increases during the daytime when the amount of solar radiation is large, the amount of photosynthetic products to be translocated also increases. On the other hand, the commutation flow varies depending on the temperature of the plant body, and generally the higher the temperature, the greater the commutation flow.
Therefore, “temperature correction in the first half of the night” increases the temperature from the evening to the first half of the night according to the integrated value of the amount of solar radiation in the daytime, thereby surely commutating the photosynthesis products.
In winter, considering the time delay of the plant temperature rising with respect to changes in temperature, the house temperature is raised to the daytime target temperature before sunrise, and the plant temperature is increased immediately after sunrise. There is a method of maximizing the amount of photosynthesis by setting the temperature optimal for photosynthesis.
These two methods require the system to determine sunrise, morning, afternoon or evening as well as the current amount of solar radiation. In the known technology, time is used for this determination, but the movement of the sun changes depending on the season, and in the determination based on time, it is necessary to change the setting according to the change of the season.
The conventional apparatus controls the target temperature according to the time.
In the cultivation of crops, it is important to control the crop growth temperature. The optimum growth temperature for crops is a temperature at which the amount of photosynthesis is maximized in the daytime when there is solar radiation, and is a temperature at which the respiratory rate is suppressed at night, while physiological damage does not occur and disease is unlikely to occur.
In the method of controlling the target temperature according to the time, the time of sunrise or sunset changes depending on the season, so the set time is frequently changed. In particular, when the number of items to be controlled based on the time increases, a large number of changes are frequently required, which is troublesome and causes labor productivity to decrease.
Moreover, judgment of the time setting regarding temperature control or irrigation control requires considerable skill and is difficult for beginners.

そこで本発明は、一日の日射量の変化によって日の出時間や日没時間、午前、午後、などを判断し、ユーザーの時間設定の変更による労力を低減し、初心者でも的確な設定を行うことができる農業用環境制御装置を提供することを目的とする。   Therefore, the present invention determines the sunrise time, sunset time, morning, afternoon, etc. according to changes in the amount of solar radiation per day, reduces the labor required by changing the user's time setting, and even a beginner can make an accurate setting. An object of the present invention is to provide an agricultural environmental control device.

請求項1記載の本発明の農業用環境制御装置は、少なくとも日射量を測定する日射量測定手段と、前記日射量測定手段で測定した前記日射量又は前記日射量の変化から、一日を複数に区分した時間帯の時刻を算出する制御手段とを備え、前記制御手段では、算出した前記時刻によって、前記時間帯に応じて設定している制御要素を制御することを特徴とする。
請求項2記載の本発明は、請求項1に記載の農業用環境制御装置において、前記制御要素を農業用ハウス内の温度としたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の農業用環境制御装置において、前記制御要素を潅水としたことを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載の農業用環境制御装置において、前記制御手段では、測定した前記日射量が第1閾値を超えると日の出時刻と判断し、測定した前記日射量が第2閾値以下に減少すると日没時刻と判断し、前記日の出時刻と前記日没時刻とから前記時間帯の前記時刻を算出することを特徴とする。
請求項5記載の本発明は、請求項4に記載の農業用環境制御装置において、前記制御手段では、前記日の出時刻及び前記日没時刻を、複数日分の平均値又は移動平均値から判断することを特徴とする。
The agricultural environmental control apparatus according to the first aspect of the present invention includes a solar radiation amount measuring unit that measures at least a solar radiation amount, and the solar radiation amount measured by the solar radiation amount measuring unit or a change in the solar radiation amount, so that a plurality of days are obtained. Control means for calculating the time of the divided time zone, wherein the control means controls a control element set according to the time zone according to the calculated time.
According to a second aspect of the present invention, in the agricultural environment control apparatus according to the first aspect, the control element is a temperature in an agricultural house.
According to a third aspect of the present invention, in the agricultural environment control device according to the first or second aspect, the control element is irrigation.
According to a fourth aspect of the present invention, in the agricultural environment control apparatus according to any one of the first to third aspects, the control means determines that the sunrise time is reached when the measured amount of solar radiation exceeds a first threshold value. When the measured amount of solar radiation decreases below a second threshold value, it is determined as a sunset time, and the time of the time zone is calculated from the sunrise time and the sunset time.
According to a fifth aspect of the present invention, in the agricultural environment control apparatus according to the fourth aspect, the control means determines the sunrise time and the sunset time from an average value or a moving average value for a plurality of days. It is characterized by that.

本発明の農業用環境制御装置によれば、季節を問わず、ユーザーは時間設定の手間が省け、ユーザーの熟練度に関わりなく最適な生育環境に制御することが可能となる。   According to the agricultural environment control device of the present invention, the user can save time and effort regardless of the season, and can control to an optimal growing environment regardless of the skill level of the user.

本発明の一実施例による農業用環境制御装置を機能実現手段で表したブロック図The block diagram showing the environmental control apparatus for agriculture by one Example of this invention with the function implementation means 天候の違いによる日射量の変化を示す図Diagram showing changes in solar radiation due to weather differences 日の出前後の日射量の変化を示す図Diagram showing changes in solar radiation before and after sunrise 日没前後の日射量の変化を示す図Diagram showing changes in solar radiation before and after sunset 一日を複数に区分した時間帯の一実施例を示す図The figure which shows one Example of the time slot | zone which divided the day into multiple

本発明の第1の実施の形態による農業用環境制御装置は、少なくとも日射量を測定する日射量測定手段と、日射量測定手段で測定した日射量又は日射量の変化から、一日を複数に区分した時間帯の時刻を算出する制御手段とを備え、制御手段では、算出した時刻によって、時間帯に応じて設定している制御要素を制御するものである。本実施の形態によれば、日射量又は日射量の変化から一日を複数に区分した時間帯の時刻を算出し、これらの時間帯に応じて設定している制御要素を制御することで、季節に応じて時間変更の設定作業を行うことなく、植物の生理現象に合わせた制御を行うことができる。   The agricultural environmental control apparatus according to the first embodiment of the present invention includes at least a solar radiation amount measuring means for measuring the solar radiation amount, and a solar radiation amount measured by the solar radiation amount measuring means or a change in the solar radiation amount, so that a plurality of days are obtained. Control means for calculating the time of the divided time zone, and the control means controls the control element set according to the time zone according to the calculated time. According to the present embodiment, by calculating the time of the time zone divided into a plurality of days from the amount of solar radiation or the amount of solar radiation, by controlling the control elements set according to these time zones, Control according to the physiological phenomenon of a plant can be performed without performing setting work for changing the time according to the season.

本発明の第2の実施の形態は、第1の実施の形態による農業用環境制御装置において、制御要素を農業用ハウス内の温度としたものである。本実施の形態によれば、作物の生育適温に制御することができる。   In the second embodiment of the present invention, in the agricultural environment control apparatus according to the first embodiment, the control element is the temperature in the agricultural house. According to the present embodiment, it is possible to control the crop growth temperature.

本発明の第3の実施の形態は、第1又は第2の実施の形態による農業用環境制御装置において、制御要素を潅水としたものである。本実施の形態によれば、植物の生理現象に合わせて潅水を行うことができる。   The third embodiment of the present invention is such that the control element is irrigated in the agricultural environment control apparatus according to the first or second embodiment. According to the present embodiment, irrigation can be performed in accordance with the physiological phenomenon of the plant.

本発明の第4の実施の形態は、第1から第3のいずれかの実施の形態による農業用環境制御装置において、制御手段では、測定した日射量が第1閾値を超えると日の出時刻と判断し、測定した日射量が第2閾値以下に減少すると日没時刻と判断し、日の出時刻と日没時刻とから時間帯の時刻を算出するものである。本実施の形態によれば、作物の生育環境を、日の出と日没の時刻に応じて制御することができる。   According to a fourth embodiment of the present invention, in the agricultural environment control apparatus according to any one of the first to third embodiments, the control means determines that the sunrise time is reached when the measured solar radiation amount exceeds the first threshold. When the measured amount of solar radiation decreases below the second threshold, it is determined that the time is sunset, and the time of the time zone is calculated from the sunrise time and sunset time. According to the present embodiment, the growing environment of the crop can be controlled according to the times of sunrise and sunset.

本発明の第5の実施の形態は、第4の実施の形態による農業用環境制御装置において、制御手段では、日の出時刻及び日没時刻を、複数日分の平均値又は移動平均値から判断するものである。本実施の形態によれば、日の出と日没との時刻精度を高めることができる。   According to a fifth embodiment of the present invention, in the agricultural environment control apparatus according to the fourth embodiment, the control means determines the sunrise time and the sunset time from an average value or a moving average value for a plurality of days. Is. According to the present embodiment, the time accuracy between sunrise and sunset can be improved.

図1は、本発明の一実施例による農業用環境制御装置を機能実現手段で表したブロック図である。
本実施例による農業用環境制御装置は、少なくとも日射量を測定する日射量測定手段10と、日射量測定手段10で測定した日射量又は日射量の変化から、一日を複数に区分した時間帯の時刻を算出する制御手段20とを備え、制御手段20では、算出した時刻によって、時間帯に応じて設定している制御要素30を制御する。
FIG. 1 is a block diagram showing an agricultural environment control apparatus according to an embodiment of the present invention by function realizing means.
The agricultural environmental control apparatus according to the present embodiment includes at least a solar radiation amount measuring unit 10 that measures the solar radiation amount, and a time period in which the day is divided into a plurality of times based on the solar radiation amount measured by the solar radiation amount measuring unit 10 or a change in the solar radiation amount. And control means 20 for calculating the control time 30. The control means 20 controls the control element 30 set according to the time zone according to the calculated time.

制御手段20は、現在時刻を認識する計時手段21と、一日を複数に区分した時間帯を記憶する時間帯記憶部22と、それぞれの時間帯ごとに設定した制御パラメータを記憶する制御要素記憶部23とを有している。
また、制御手段20は、日の出時刻及び日没時刻を判断する日の出/日没時刻判断手段24と、それぞれの時間帯の開始時刻を算出する時間帯時刻算出手段25と、制御要素30に対して制御パラメータを出力する出力手段26とを有している。
The control unit 20 includes a time measuring unit 21 that recognizes the current time, a time zone storage unit 22 that stores a time zone in which a day is divided into a plurality of times, and a control element storage that stores control parameters set for each time zone. Part 23.
Further, the control means 20 has a sunrise / sunset time judgment means 24 for judging the sunrise time and sunset time, a time zone time calculation means 25 for calculating the start time of each time zone, and the control element 30. Output means 26 for outputting control parameters.

設定手段40は、時間帯記憶部22に記憶する時間帯を設定し、制御要素記憶部23に記憶する制御パラメータを設定する。設定手段40で設定された、複数に区分された時間帯は時間帯記憶部22に記憶される。設定手段4で設定された、それぞれの時間帯ごとの制御パラメータは制御要素記憶部23に記憶される。   The setting means 40 sets a time zone stored in the time zone storage unit 22 and sets control parameters stored in the control element storage unit 23. A plurality of time zones set by the setting means 40 are stored in the time zone storage unit 22. The control parameters for each time zone set by the setting means 4 are stored in the control element storage unit 23.

計時手段21は、時間を計時するタイマー機能、又は電波で送信される時刻情報を受信する受信機能を備え、計時された現在時刻を出力する。
日の出/日没時刻判断手段24は、日射量測定手段10で測定した日射量又は日射量の変化から日の出又は日没を判断し、計時手段21から出力される現在時刻によって日の出又は日没の時刻を決定する。例えば、日の出/日没時刻判断手段24では、測定した日射量が第1閾値を超えると日の出時刻と判断し、測定した日射量が第2閾値以下に減少すると日没時刻と判断する。ここで第1閾値と第2閾値とは同じ値でもよい。また、これら第1閾値や第2閾値とともに、日射量の変化を判断することで更に精度を高めることができる。
時間帯時刻算出手段25は、日の出/日没時刻判断手段24で決定した日の出又は日没の時刻を元に、それぞれの時間帯の開始時刻を算出する。
出力手段26は、時間帯時刻算出手段25で算出した時間帯の開始時刻になったタイミングで、対応するその時間帯における制御パラメータを出力する。
出力手段26は、制御要素30を農業用ハウス内の温度としている場合には、例えば温度制御装置31を動作させ、制御要素30を潅水としている場合には、例えば潅水装置32を動作させる。
The time measuring means 21 has a timer function for measuring time or a reception function for receiving time information transmitted by radio waves, and outputs the current time measured.
The sunrise / sunset time judging means 24 judges the sunrise or sunset from the solar radiation amount or the change in the solar radiation amount measured by the solar radiation amount measuring means 10, and the sunrise or sunset time according to the current time outputted from the time measuring means 21. To decide. For example, the sunrise / sunset time determination means 24 determines the sunrise time when the measured amount of solar radiation exceeds a first threshold, and determines the sunset time when the measured amount of solar radiation decreases below the second threshold. Here, the first threshold value and the second threshold value may be the same value. Further, the accuracy can be further improved by determining the change in the amount of solar radiation together with the first threshold value and the second threshold value.
The time zone time calculation means 25 calculates the start time of each time zone based on the sunrise or sunset time determined by the sunrise / sunset time judgment means 24.
The output unit 26 outputs the corresponding control parameter in the time zone at the timing when the start time of the time zone calculated by the time zone time calculation unit 25 is reached.
The output means 26 operates, for example, the temperature control device 31 when the control element 30 is at the temperature in the agricultural house, and operates the irrigation device 32 when, for example, the control element 30 is irrigated.

図2に、天候の違いによる日射量の変化を示す。
図2は、北緯36度、東経134度付近の現場で、10月下旬の連続した3日間の日射量の変化を測定したものである。横軸は時刻、縦軸は日射量(単位:W/m)である。
10月27日は晴れ、10月28日は曇り、10月29日は曇りで時々晴れであった。
測定した3日を比較すると、日中の日射量は大幅に異なるが、ゼロに近い低日射量に閾値を設定すると日の出及び日没の時刻を高い精度で特定できることがわかる。
FIG. 2 shows changes in the amount of solar radiation depending on the weather.
FIG. 2 shows the measurement of changes in the amount of solar radiation for three consecutive days in late October at a site near 36 degrees north latitude and 134 degrees east longitude. The horizontal axis represents time, and the vertical axis represents the amount of solar radiation (unit: W / m 2 ).
It was sunny on October 27th, cloudy on October 28th, and cloudy on October 29th.
Comparing the three measured days, the amount of solar radiation during the day is significantly different, but it can be seen that the sunrise and sunset times can be identified with high accuracy by setting a threshold value for the low solar radiation amount close to zero.

図3は日の出前後の日射量の変化、図4は日没前後の日射量の変化を示している。
およそ1〜2W/m(照度で表現するとおよそ250Lx〜500Lx)付近に閾値を引くと、±15分程度の精度で日の出及び日没の時刻を推定できることがわかる。
FIG. 3 shows changes in solar radiation before and after sunrise, and FIG. 4 shows changes in solar radiation before and after sunset.
It can be seen that sunrise and sunset times can be estimated with an accuracy of about ± 15 minutes when a threshold value is drawn in the vicinity of approximately 1 to 2 W / m 2 (approximately 250 Lx to 500 Lx in terms of illuminance).

図5は一日を複数に区分した時間帯の一実施例を示している。
図5で示す時間帯は、一日の温度管理の一例として、日の出時刻と日没時刻をもとに、日の出と日没の中間を南中時刻、日没と日の出の中間を深夜と仮定し、1日を8つの時間帯に分割している。
FIG. 5 shows an embodiment of a time zone in which a day is divided into a plurality of times.
In the time zone shown in Fig. 5, as an example of the temperature management of the day, it is assumed that the middle of sunrise and sunset is south-central time and the middle of sunset and sunrise is midnight based on the sunrise time and sunset time. 1 day is divided into 8 time zones.

これらの時間帯の開始時間は、時間帯時刻算出手段25で算出するため、1年を通してユーザ−は設定変更を行う必要がなく、植物の1日の生理現象のリズムに基づいた最適な温度条件を設定することができる。
なお、日の出時刻、日没時刻、及び南中時刻を推定する場合には、過去何日分かの平均値をとることで、より精度の高い時間推定を行うことができる。季節変化による1日あたりの日の出時刻及び日没時刻の変化は、中緯度地域においては概ね1日1分程度であり、一方で施設園芸における温度制御のタイミングに必要な精度は30分程度であるので、過去の平均化日数としては2日から30日の移動平均値とする。
Since the start times of these time zones are calculated by the time zone time calculation means 25, the user does not need to change the settings throughout the year, and the optimum temperature conditions based on the rhythm of the daily physiological phenomenon of the plant Can be set.
When estimating the sunrise time, sunset time, and south-south time, it is possible to perform more accurate time estimation by taking an average value for the past several days. The change in sunrise and sunset times per day due to seasonal changes is approximately 1 minute per day in mid-latitude areas, while the accuracy required for temperature control timing in facility horticulture is approximately 30 minutes. Therefore, the average number of days in the past is a moving average value from 2 days to 30 days.

また、ハウス及び露地栽培では、自動的に潅水を行う潅水装置32が存在する。潅水時間は、日の出直後に植物体内に十分に光合成のための水分を行き渡らせるとともに、夜間の徒長を抑えるために日の出前1〜2時間に行うのが最適である。そこで、本発明によって算出された日の出時刻の1時間前というような時間帯を設定することで、季節によって設定時間を変更することなく、年中最適な潅水状態を作り出すことができる。また、土中の水分量センサと組み合わせることで、土中水分が一定値以上ある場合は本発明による潅水を行わない、などのインタロック動作を行うことでさらに最適な制御ができる。   In house and outdoor cultivation, there is an irrigation device 32 that automatically performs irrigation. The irrigation time is optimally 1 to 2 hours before sunrise in order to allow the water for photosynthesis to be sufficiently distributed in the plant immediately after sunrise and to suppress the length of the night. Therefore, by setting a time zone such as one hour before the sunrise time calculated according to the present invention, an optimal irrigation state can be created throughout the year without changing the set time according to the season. In combination with a moisture sensor in the soil, more optimal control can be performed by performing an interlock operation such as not performing irrigation according to the present invention when the moisture in the soil is above a certain value.

以上のように本発明によれば、日射量又は日射量の変化から一日を複数に区分した時間帯の開始時刻を算出し、これらの時間帯に応じて設定している制御要素30を制御することで、季節に応じて時間変更の設定作業を行うことなく、植物の生理現象に合わせた制御を行うことができる。   As described above, according to the present invention, the start time of the time zone in which the day is divided into a plurality of days is calculated from the solar radiation amount or the change in the solar radiation amount, and the control element 30 set according to these time zones is controlled. By doing so, control according to the physiological phenomenon of a plant can be performed, without performing the setting work of time change according to a season.

本発明による農業用環境制御装置は、農業用ハウスにおける換気や遮熱制御や、露地栽培における潅水時刻の制御にも適している。   The agricultural environment control device according to the present invention is also suitable for ventilation and heat shielding control in agricultural houses and control of irrigation time in outdoor cultivation.

10 日射量測定手段
20 制御手段
21 計時手段
22 時間帯記憶部
23 制御要素記憶部
24 日の出/日没時刻判断手段
25 時間帯時刻算出手段
26 出力手段
30 制御要素
40 設定手段
DESCRIPTION OF SYMBOLS 10 Solar radiation amount measurement means 20 Control means 21 Timekeeping means 22 Time zone memory | storage part 23 Control element memory | storage part 24 Sunrise / sunset time judgment means 25 Time zone time calculation means 26 Output means 30 Control element 40 Setting means

Claims (5)

少なくとも日射量を測定する日射量測定手段と、
前記日射量測定手段で測定した前記日射量又は前記日射量の変化から、一日を複数に区分した時間帯の時刻を算出する制御手段と
を備え、
前記制御手段では、算出した前記時刻によって、前記時間帯に応じて設定している制御要素を制御する
ことを特徴とする農業用環境制御装置。
A solar radiation measuring means for measuring at least solar radiation;
From the solar radiation amount measured by the solar radiation amount measuring means or a change in the solar radiation amount, the control means for calculating the time of the time zone divided into a plurality of days,
The agricultural environment control apparatus according to claim 1, wherein the control means controls a control element set in accordance with the time zone according to the calculated time.
前記制御要素を農業用ハウス内の温度とした
ことを特徴とする請求項1に記載の農業用環境制御装置。
The agricultural environment control device according to claim 1, wherein the control element is a temperature in an agricultural house.
前記制御要素を潅水とした
ことを特徴とする請求項1又は請求項2に記載の農業用環境制御装置。
The agricultural environment control device according to claim 1 or 2, wherein the control element is irrigation.
前記制御手段では、
測定した前記日射量が第1閾値を超えると日の出時刻と判断し、
測定した前記日射量が第2閾値以下に減少すると日没時刻と判断し、
前記日の出時刻と前記日没時刻とから前記時間帯の前記時刻を算出する
ことを特徴とする請求項1から請求項3のいずれかに記載の農業用環境制御装置。
In the control means,
When the measured amount of solar radiation exceeds the first threshold, it is determined as the sunrise time,
When the measured amount of solar radiation decreases below the second threshold, it is determined as sunset time,
The agricultural environment control device according to any one of claims 1 to 3, wherein the time of the time zone is calculated from the sunrise time and the sunset time.
前記制御手段では、
前記日の出時刻及び前記日没時刻を、複数日分の平均値又は移動平均値から判断する
ことを特徴とする請求項4に記載の農業用環境制御装置。

In the control means,
The agricultural environment control apparatus according to claim 4, wherein the sunrise time and the sunset time are determined from an average value or a moving average value for a plurality of days.

JP2016222487A 2016-11-15 2016-11-15 Agricultural environment control device Pending JP2018078818A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016222487A JP2018078818A (en) 2016-11-15 2016-11-15 Agricultural environment control device
CN201710787847.2A CN108073204A (en) 2016-11-15 2017-09-04 Agricultural environment control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222487A JP2018078818A (en) 2016-11-15 2016-11-15 Agricultural environment control device

Publications (1)

Publication Number Publication Date
JP2018078818A true JP2018078818A (en) 2018-05-24

Family

ID=62159451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222487A Pending JP2018078818A (en) 2016-11-15 2016-11-15 Agricultural environment control device

Country Status (2)

Country Link
JP (1) JP2018078818A (en)
CN (1) CN108073204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154353A (en) * 2019-03-18 2020-09-24 株式会社オーガニックnico Method for generating environment data in house

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195373A2 (en) * 1985-03-21 1986-09-24 Dansk Gartneri-Teknik A/S A method and an apparatus for climatic regulation in connection with the pollination of hothouse plants
JPH0471429A (en) * 1990-07-13 1992-03-06 Taiyo:Kk Temperature controller for greenhouse
JPH09273748A (en) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd Control device for burner
JP2005117999A (en) * 2003-10-20 2005-05-12 Kazuo Matsuura Full automatic apparatus for controlling plant culture
JP2009013703A (en) * 2007-07-06 2009-01-22 Msk Corp Snow melting method
JP2015223118A (en) * 2014-05-28 2015-12-14 こもろ布引いちご園株式会社 Control method of plant growth environment, control device, and program for control
JP2016154448A (en) * 2015-02-23 2016-09-01 株式会社ニッポー Growth management system, and growth management method of plant
JP2018038288A (en) * 2016-09-05 2018-03-15 パナソニックIpマネジメント株式会社 Lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098674B (en) * 2013-01-30 2015-03-04 万贤能 Plant cultivation system
CN203454046U (en) * 2013-07-09 2014-02-26 顺美科技有限公司 LED light-quality adjustment device in plant factory

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195373A2 (en) * 1985-03-21 1986-09-24 Dansk Gartneri-Teknik A/S A method and an apparatus for climatic regulation in connection with the pollination of hothouse plants
JPH0471429A (en) * 1990-07-13 1992-03-06 Taiyo:Kk Temperature controller for greenhouse
JPH09273748A (en) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd Control device for burner
JP2005117999A (en) * 2003-10-20 2005-05-12 Kazuo Matsuura Full automatic apparatus for controlling plant culture
JP2009013703A (en) * 2007-07-06 2009-01-22 Msk Corp Snow melting method
JP2015223118A (en) * 2014-05-28 2015-12-14 こもろ布引いちご園株式会社 Control method of plant growth environment, control device, and program for control
JP2016154448A (en) * 2015-02-23 2016-09-01 株式会社ニッポー Growth management system, and growth management method of plant
JP2018038288A (en) * 2016-09-05 2018-03-15 パナソニックIpマネジメント株式会社 Lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154353A (en) * 2019-03-18 2020-09-24 株式会社オーガニックnico Method for generating environment data in house

Also Published As

Publication number Publication date
CN108073204A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
JP2004000146A (en) Method and apparatus for cultivating vegetable
CN108617355B (en) Irrigation decision method and system for cluster greenhouse
KR20200122612A (en) Crop growth control system and controlling method of thereof
CN105494033B (en) A kind of intelligent water-saving irrigation method based on crop demand
KR101762757B1 (en) A method for estimating factors affecting the yield of the crop
CN104750146A (en) Plant growing regulating method and device
JP2015173653A (en) Supply control method of watering in plant cultivation, and controller of the same
JP6785902B2 (en) Crop activity index-based facility Horticulture complex environmental control system and method
CN110432046B (en) Intelligent irrigation system in greenhouse
CN116362578A (en) Determination method and device of irrigation strategy
JP6715475B2 (en) Irrigation system, irrigation system controller, farm house
JP6654966B2 (en) Irrigation control system for cultivating high sugar content fruits, irrigation control device and irrigation control method used therefor
JPWO2018021142A1 (en) Carbon dioxide application support device and carbon dioxide application support program
KR101031820B1 (en) System for automatic control of a greenhouse
JP2018078818A (en) Agricultural environment control device
JP6045480B2 (en) Watering method and apparatus in hydroponics
JP2016154448A (en) Growth management system, and growth management method of plant
JP6651191B1 (en) Cultivation support system, controller and control method
CN108170189A (en) A kind of intelligent crop implant system
JP2019017350A (en) Plant raising system, plant raising method, and program for plant raising system
KR101566445B1 (en) multiplex environment control system of green house and control method thereof
KR20120106009A (en) Highland crop method that grow low temperature in flatland
CN115562400A (en) Intelligent fish shoal feeding method and device
KR101772121B1 (en) Apparatus and Method for controlling plant growth in city farm control system
KR102154390B1 (en) System and method for irrigation control based on sap flow rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224