JP2018078733A - Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system - Google Patents
Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system Download PDFInfo
- Publication number
- JP2018078733A JP2018078733A JP2016219324A JP2016219324A JP2018078733A JP 2018078733 A JP2018078733 A JP 2018078733A JP 2016219324 A JP2016219324 A JP 2016219324A JP 2016219324 A JP2016219324 A JP 2016219324A JP 2018078733 A JP2018078733 A JP 2018078733A
- Authority
- JP
- Japan
- Prior art keywords
- self
- excited
- power
- separately
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
Description
本発明は,ハイブリッド型電力変換システム,ハイブリッド型直流送電システム及びハイブリッド型電力変換システムの制御方法に係り,特に,自励式変換装置と他励式変換装置を組み合わせて動作させるのに好適なハイブリッド型電力変換システム,ハイブリッド型直流送電システム及びハイブリッド型電力変換システムの制御方法に関する。 The present invention relates to a hybrid power conversion system, a hybrid DC power transmission system, and a control method for a hybrid power conversion system, and more particularly, to a hybrid power suitable for operating a self-excited converter and a separately-excited converter. The present invention relates to a conversion system, a hybrid type DC power transmission system, and a control method for a hybrid type power conversion system.
発電機から出力される発電電力を,遠方需要地に送電する方法として直流送電システム(以下,HVDCと称す)がある。HVDCとして,他励式HVDCは,サイリスタ素子で構成される他励式変換器を用いるものであり,他励式HVDCは国内外で豊富な運転実績がある。他励式変換器は,交流電力を直流電力に,またはその逆に変換する交直電力変換回路の一種であり,数GW級の直流送電システムが実用化されている。これに対して,自励式HVDCは,IGBT (insulated−gate bipolar transistor)など,自己消弧形パワー半導体素子で構成される。自励式HVDCは,ゲート信号によって自己消弧形半導体スイッチング素子のオン・オフを制御可能なため,自ら電圧源として動作できる特長を有する。例えば,自励式HVDCの自励式変換器として,モジュラーマルチレベル変換器(以下,MMCと称す)を用い,各セルが双方向チョッパ回路で構成して,このセルまたはサブモジュールと呼ばれる単位変換器を複数直列接続して構成したアームを,バッファリアクトルを介して三相ブリッジ状に接続する。 There is a direct current power transmission system (hereinafter referred to as HVDC) as a method of transmitting generated power output from a generator to a distant demand place. As the HVDC, the separately-excited HVDC uses a separately-excited converter composed of thyristor elements, and the separately-excited HVDC has abundant operation results both in Japan and overseas. The separately excited converter is a type of AC / DC power conversion circuit that converts AC power into DC power or vice versa, and several GW class DC power transmission systems have been put into practical use. On the other hand, the self-excited HVDC is composed of a self-extinguishing power semiconductor element such as an IGBT (insulated-gate bipolar transistor). The self-excited HVDC has a feature that it can operate as a voltage source by itself because the on / off of the self-extinguishing semiconductor switching element can be controlled by a gate signal. For example, as a self-excited converter for self-excited HVDC, a modular multi-level converter (hereinafter referred to as MMC) is used, each cell is composed of a bi-directional chopper circuit, and a unit converter called this cell or submodule is provided. A plurality of arms connected in series are connected in a three-phase bridge via a buffer reactor.
HVDCは,電力需要拡大による送電容量増強の観点から,2つのHVDCを共通の直流帰線で接続した双極HVDCで運用する形態がある。また,各極の導入・設備更新時期が必ずしも一致しないため,双極HVDCの1極を他励式HVDC,もう1極を自励式HVDCで運用するハイブリッドHVDCとしてシステムが運用される可能性がある。 From the viewpoint of increasing the transmission capacity due to the expansion of power demand, there is a form in which HVDC is operated as a bipolar HVDC in which two HVDCs are connected by a common DC return line. In addition, since the introduction / renewal timings of the respective poles do not necessarily coincide, the system may be operated as a hybrid HVDC in which one pole of the bipolar HVDC is operated as a separately excited HVDC and the other pole is operated as a self-excited HVDC.
また,HVDCは,系統安定化や電力融通などの観点から,連系する各交流系統への電力潮流方向を切り替えながら運転する形態がある。 Further, the HVDC is operated while switching the power flow direction to each AC system connected from the viewpoint of system stabilization and power interchange.
電力潮流方向を切り替えるには,他励式HVDCの場合では,自身の直流電圧極性を切り替え,直流電流極性は一定とすることで,送電電力の潮流方向を決定する手段が用いられる。ここで,潮流方向によっては直流帰線に流れる直流電流に2つのHVDCの和電流が流れてしまう。例えば,双方のHVDCの定格が等しく,定格電力を送電しているとすると,この和電流は定格直流電流の2倍電流となり,帰線の耐電流を超過して,焼損に繋がるおそれがある。 In order to switch the power flow direction, in the case of separately-excited HVDC, means for determining the flow direction of the transmission power is used by switching the direct current voltage polarity and making the direct current polarity constant. Here, depending on the flow direction, the sum current of the two HVDC flows in the direct current flowing in the direct current return line. For example, if both HVDC ratings are equal and the rated power is being transmitted, this sum current will be twice the rated DC current, which may exceed the return current resistance and lead to burnout.
自励式HVDCの各セルを双方向チョッパ回路で構成すると,各セルにおいて極性を替えられず,自励式HVDCとして直流電流極性を切り替えられない。そのため,自励式HVDCの直流線路に直流断路器で構成された電圧極性反転設備を設置し,連系する各交流系統への電力潮流方向を切り替えの際に,直流線路の回路接続を直流断路器の開閉で変更することで,システム直流電圧の電圧極性を切り替えて潮流制御する手段が知られている。このような技術は,例えば,文献J.P.KJAERGAARD et al.,“Bipolar operation ofan HVDC VSC converter with an LCC converter”,Cigre Colloquium in San Francisco 2012に記載されている。 If each cell of the self-excited HVDC is configured by a bidirectional chopper circuit, the polarity cannot be changed in each cell, and the direct current polarity cannot be switched as the self-excited HVDC. For this reason, a voltage polarity reversal facility consisting of a DC disconnector is installed on the DC line of the self-excited HVDC, and the circuit connection of the DC line is connected to the DC disconnector when switching the direction of power flow to each AC system. There is known a means for controlling the power flow by switching the polarity of the system DC voltage by changing the open / close state. Such a technique is described, for example, in the document J.A. P. KJAERGAARD et al. “Bipolar operation of HVDC VSC converter with an LCC converter”, Cigre Colloquium in San Francisco 2012.
上記従来技術では,連系する各交流系統への電力潮流方向を切り替えるために,自励式HVDCの直流線路に直流断路器で構成された電圧極性反転設備を設置しているので,追加の電圧極性反転設備が必要となる。この電圧極性反転設備に用いられる直流断路器は機械的部品であり,また,直流線路に流れる直流電流が開閉可能電流(概ね零電流)になるまで開閉動作ができない。従って,潮流方向を切り替える際の送電不能期間が長時間化するという課題があった。 In the above prior art, in order to switch the power flow direction to each AC system to be connected, a voltage polarity reversing facility composed of a DC disconnector is installed on the DC line of the self-excited HVDC. Inversion equipment is required. The DC disconnector used in this voltage polarity reversal equipment is a mechanical part, and cannot be opened or closed until the DC current flowing in the DC line reaches a switchable current (approximately zero current). Therefore, there is a problem that the power transmission impossible period becomes long when switching the power flow direction.
本発明の目的は,上記の課題を解決するものであり,潮流方向の切り替え時間を高速化させることが可能なハイブリッド型電力変換システム,ハイブリッド型直流送電システム及びハイブリッド型電力変換システムの制御方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, and to provide a hybrid power conversion system, a hybrid DC power transmission system, and a control method for the hybrid power conversion system that can speed up the switching time in the power flow direction. It is to provide.
上記の目的を達成するために,本発明は,自励式変換装置と,他励式変換装置を有し,前記自励式変換装置と前記他励式変換装置は交流側として共通的な系統に接続され,前記自励式変換装置の直流送電線の一部と前記他励式変換装置の直流送電線の一部が共通的に用いられ,前記自励式変換装置は,自己消弧素子と蓄電素子から構成される単位ユニットを多段に直列することで構成され,前記他励式変換装置は,制御整流素子から構成され,前記自励式変換装置は,前記自己消弧素子の動作を制御することで出力する直流電流極性の切替えが可能に構成される。 In order to achieve the above object, the present invention includes a self-excited conversion device and a separately excited conversion device, and the self-excited conversion device and the separately excited conversion device are connected to a common system as an AC side, A part of the DC power transmission line of the self-excited conversion device and a part of the DC power transmission line of the separately excited conversion device are commonly used, and the self-excited conversion device includes a self-extinguishing element and a storage element. A unit unit is configured in series in multiple stages, and the separately excited conversion device is configured by a control rectifier element, and the self-excited conversion device outputs a direct current polarity by controlling the operation of the self-extinguishing element. Can be switched.
すなわち,自励式変換器と,他励式変換器を備えた双極構成のハイブリッド直流送電システムにおいて,前記自励式変換器を自己消弧素子とエネルギー蓄積要素からなるフルブリッジ回路を複数直列接続したマルチレベル変換器で構成する。 That is, in a hybrid DC power transmission system having a bipolar configuration including a self-excited converter and a separately-excited converter, the self-excited converter is a multi-level circuit in which a plurality of full bridge circuits composed of self-extinguishing elements and energy storage elements are connected in series Consists of a converter.
本発明によれば,連系する各交流系統への電力潮流方向を切り替える際に,送電停止期間が短縮されるという効果を得られる。 According to the present invention, it is possible to obtain an effect that the power transmission stop period is shortened when switching the power flow direction to each AC system to be connected.
本発明を実施するための形態(実施例)を以下に図面を用いて説明する。 EMBODIMENT OF THE INVENTION The form (Example) for implementing this invention is demonstrated below using drawing.
図1を参照して,本発明の第1の実施形態の全体構成を説明する。以降の説明では,前提として,他励・自励HVDCの容量が等しいことを条件とするが,本発明はこの限りではない。本発明の第1の実施形態であるハイブリッドHVDC1000は,2つの交流電力系統母線101,111と連系している。2つの交流電力系統母線101,111は,同一電源を有する交流電力系統でも,別電源を有する交流電力系統でもよい。
With reference to FIG. 1, the overall configuration of the first embodiment of the present invention will be described. In the following description, it is assumed that the capacities of separately excited / self-excited HVDC are equal, but the present invention is not limited to this. The hybrid HVDC 1000 according to the first embodiment of the present invention is linked to two AC
ハイブリッドHVDC1000は,自励式HVDC103と,他励式HVDC104,制御手段105から構成され,2つのHVDCを共通の直流帰線rで接続している。直流帰線rは,送電線,ケーブル等の導体帰路や,地中,海水等の大地帰路が考えられる。
The hybrid HVDC 1000 includes a self-excited HVDC 103, a separately-
自励式HVDC103は,2つの自励式変換器(自励式変換装置とも称する)106a,106bが直流本線p,直流帰線rを介して接続されている。他励式HVDC104は,サイリスタ素子(制御整流素子とも称する)で構成された2つの他励式変換器(他励式変換装置とも称する)107a,107bが2つの直流リアクトル108a,108bを介して直流本線n,もう一端が直流帰線rに接続されている。他励式変換器107a,107bの回路構成としては,例えば6パルス変換器や12パルス変換器が用いられる。
In the self-excited HVDC 103, two self-excited converters (also referred to as self-excited converters) 106a and 106b are connected via a direct current main line p and a direct current return line r. The separately-
電圧検出器109は,システム直流電圧VDCrnを検出し,制御装置105に入力する。電流検出器110a,110bは,それぞれシステム直流電流IDCp,IDCnを検出し,制御装置105に入力する。制御手段105は,両交流系統間で送電する有効電力指令Pref,無効電力指令Qrefと,自励式HVDC103の連系点電圧VgVSC,連系点電流IgVSC,各アーム電流Iarm,システム直流電流IDCp,U相上アームのセルコンデンサ電圧VcellupN,U相下アームのセルコンデンサ電圧VcellurN,V相上アームのセルコンデンサ電圧VcellvpN,V相下アームのセルコンデンサ電圧VcellvrN,W相上アームのセルコンデンサ電圧VcellwpN,W相下アームのセルコンデンサ電圧VcellwrNと,他励式HVDC104の連系点電圧VgLCC,連系点電流IgLCC,システム直流電流VDCrn,システム直流電流IDCnを入力として,MMC上アームゲート信号gVSCupN_XH,gVSCupN_XL,gVSCupN_YH,gVSCupN_YL,MMC下アームゲート信号gVSCurN_XH,gVSCurN_XL,gVSCurN_YH,gVSCurN_YL,他励式変換器ゲート信号gLCCを出力する。なお,各記号のNは,アーム内のN段目のセルを示しており,以降の説明においても同様の意味である。
The
図2を参照して,自励式HVDC103の自励式変換器106aとして用いるMMC片端子の回路構成を示す。なお,図2では106aを例に説明するが,106bに関しても同様の構成である。図2は,セル201がN段直列接続された各相のアーム202up,202ur,202vp,202vr,202wp,202wrと,各相のバッファリアクトル204up,204ur,204vp,204vr,204wp,204wrと,各相のアーム電流Iarmを検出するための電流検出器205と,交流電力系統母線101との連系点電圧VgVSC,連系点電流IgVSCを検出するための電圧検出器206,電流検出器207から構成される。各相アームの出力端子は,バッファリアクトル204up,204ur,204vp,204vr,204wp,204wrを介してu,v,w点に接続されている。それぞれのアームのもう一方の出力端子は,直流本線p,若しくは直流帰線rに接続され,他端の自励式変換器106bに接続している。
Referring to FIG. 2, a circuit configuration of an MMC single terminal used as self-
次に,図3を参照して,自励式HVDC103の自励式変換器106aとして用いるアーム202upを説明する。なお,図3では202upを例に説明するが,その他のアームに関しても同様の構成である。アーム202upは,フルブリッジ回路で構成されたフルブリッジセル201up_1から201up_Nを直列接続したMMC方式で構成される。フルブリッジセル201up_1を例として内部構成を説明する。フルブリッジセル201up_1の主回路は,環流ダイオードが並列接続された自己消弧形半導体スイッチング素子(自己消弧素子とも称する)302XH_1,302XL_1を直列接続した回路と,302YH_1,302YL_1を直列接続した回路と,エネルギー蓄積要素であるコンデンサ303_1と,各セルのコンデンサ電圧VCellupNを検出するための電圧検出器304_1を並列接続した構成である。自己消弧形半導体スイッチング素子302XH_1,302XL_1,302YH_1,302YL_1は,IGBT,GTO(gate turn−off thyristor),MOSFET(metal−oxide−semiconductor field−effect transistor)等が適用可能だが,本実施例ではIGBTを用いる。また,自己消弧形半導体スイッチング素子に入力されるゲート信号gVSCupN_XH,gVSCupN_XL,gVSCupN_YH,gVSCupN_YLに応じて,各スイッチング素子のオン,オフを切り替えながら動作する。
Next, an arm 202up used as the self-
図4を参照して,他励式HVDC104の他励式変換器107a及び107bの回路構成を示す。図4(a)は,交流電力系統母線101側の他励式変換器107aの回路構成を示しており,直流帰線rと接続点5a-inの間にサイリスタユニット50a11,50a12,50a13を並列に接続している。各サイリスタユニット50a11,50a12,50a13は,各々,サイリスタ50a11−1と50a11−2の直列回路,サイリスタ50a12-1と50a12-2の直列回路,サイリスタ50a13-1と50a13-2の直列回路で形成されている。
Referring to FIG. 4, the circuit configuration of separately
接続点5a-inと直流本線nの間にサイリスタユニット50a21,50a22,50a23を並列に接続している。各サイリスタユニット50a21,50a22,50a23は,各々,サイリスタ50a21−1と50a21−2の直列回路,サイリスタ50a22-1と50a22-2の直列回路,サイリスタ50a23-1と50a23-2の直列回路で形成されている。 Thyristor units 50a21, 50a22, 50a23 are connected in parallel between the connection point 5a-in and the DC main line n. Each thyristor unit 50a21, 50a22, 50a23 is formed of a series circuit of thyristors 50a21-1 and 50a21-2, a series circuit of thyristors 50a22-1 and 50a22-2, and a series circuit of thyristors 50a23-1 and 50a23-2. ing.
ここで,各サイリスタは,いずれも,直流帰線r側をカソードに直流本線n側をアノード側に構成されている。 Here, each thyristor is configured such that the DC return line r side is the cathode and the DC main line n side is the anode side.
一方,変圧器501a(3巻線変圧器)は,デルタ巻線501a1,Y巻線501a2,デルタ巻線501a3から構成される。デルタ巻線501a1,Y巻線501a2,デルタ巻線501a3は互いに磁気結合されている。交流電力系統母線101のu相,v相,w相の各々はデルタ巻線501a1に接続されている。また,サイリスタ50a11−1と50a11−2の接続点,サイリスタ50a12-1と50a12-2の接続点,サイリスタ50a13-1と50a13-2の接続点の各々はY巻線501a2に接続されている。サイリスタ50a21−1と50a21−2の接続点,サイリスタ50a22-1と50a22-2の接続点,サイリスタ50a23-1と50a23-2の接続点の各々はデルタ巻線501a3に接続されている。
On the other hand, the
交流電力系統母線101との連系点電圧VgLCC,連系点電流IgLCCを検出するための電圧検出器506,電流検出器507から構成される。
It comprises a
他励式変換器107bの回路構成について図4(b)に示されている。他励式変換器107aで各サイリスタにおいて直流帰線r側をカソードに直流本線n側をアノード側に接続して構成されるのに対して,他励式変換器107bでは,各サイリスタは,いずれも,直流帰線r側をアノードに直流本線n側をカソード側に構成されていることが異なっている。他の構成は実質的に同じであるので説明は省略する。
The circuit configuration of the separately
このように,他励式変換器107a,107bは,サイリスタ変換器として,2つの6相サイリスタ整流器と,変圧器501a・501bを組み合わせた12相サイリスタ整流器を用いる。変圧器501a・501bは,一方の6相サイリスタ整流器と接続する変圧器巻線をスター結線,他方の6相サイリスタ整流器と接続する変圧器巻線をデルタ結線とすることで,交流系統に流出する高調波電流を抑制できる。他励式変換器107a,107bは,それぞれ内部のサイリスタ素子の向きが逆方向となるように構成する。他励式変換器107a,107b内のサイリスタ素子のオン/オフが順次切り替わることで,電力変換を実施し,また,直流帰線r側と直流本線n側の極性を替えることができる。
In this way, the separately
次に,図5を参照して,制御手段105で実行されている制御方法を示す。制御手段105は例えば電子計算機で構成され図面で機能的に記載された各手段はソフトウエアを動作させることで実行可能なものである。図5は,2つのHVDCを制御する有効電力指令分配手段(双極共通制御手段)401と,自励式HVDC103を制御する自励式HVDC制御手段402と,他励式HVDC104を制御する他励式HVDC制御手段403で構成される。
Next, referring to FIG. 5, a control method executed by the control means 105 is shown. The control means 105 is composed of, for example, an electronic computer, and each means functionally described in the drawings can be executed by operating software. FIG. 5 shows active power command distribution means (bipolar common control means) 401 for controlling two HVDCs, self-excited HVDC control means 402 for controlling self-excited HVDC 103, and separately-excited HVDC control means 403 for controlling separately-
双極共通制御手段(有効電力指令分配手段)401は,各HVDCに有効電力指令Prefを振り分ける機能と,ハイブリッドHVDC1000が出力する無効電力指令Qrefを決定する機能から構成される。
Bipolar common control means (active power command distribution means) 401 is composed of a function of distributing active power command Pref to each HVDC and a function of determining reactive power command Qref output by
自励式HVDC制御手段402は,システム直流電流制御手段420,MMCのセルコンデンサ電圧制御手段404,有効・無効電力制御手段405,系統電圧位相検出手段407,交流電流制御手段408,循環電流制御手段409,電力指令Prefの極性検出手段411,PWM手段416と,パルス分配手段417と,加算器406,410,413,414,415と,乗算器412で構成されている。
Self-excited HVDC control means 402 includes system DC current control means 420, MMC cell capacitor voltage control means 404, active / reactive power control means 405, system voltage phase detection means 407, AC current control means 408, circulating current control means 409. , Power command Pref polarity detection means 411, PWM means 416, pulse distribution means 417,
システム直流電流制御手段420は,直流本線pに流れる直流電流IDCpを,指令値IDCrefに制御するPI制御演算機能を備えている。コンデンサ電圧制御手段404は,MMCのセル201のコンデンサ303の直流電圧VCellNの全平均値を,指令値VCellrefに制御するPI制御演算機能を備えている。有効・無効電力制御手段405は,自励式HVDCが出力する有効・無効電力を,連系点電圧VgVSC,連系点電流IgVSCから演算して,有効電力指令分配手段(双極共通制御手段)401から得られるPrefVSCと,QrefVSCに一致するよう,有効電流指令値と,無効電流指令値を算出するPI制御演算手段を備える。系統電圧位相検出手段407は,連系する交流電力系統母線101,111の系統電圧VgVSCの位相θを検出する手段を備える。交流電流制御手段408は,交流電力系統母線101,111に流れるd−q座標変換後のd軸電流Id,q軸電流Iqを指令値Idref,q軸電流Iqrefに一致するよう制御するPI制御演算手段機能を備える。循環電流制御手段409は,各相のアーム間に流れる循環電流IzをPI制御演算にて制御し,各セルのコンデンサ303の直流電圧VCellNを安定化させる機能を備える。極性検出手段411は,有効電力指令分配手段(双極共通制御手段)401から得られるPrefVSCの極性を判定し,システム直流電圧極性を変更する手段を備える。PWM手段416は,上アームの電圧指令値であるVref_p,下アームの電圧指令値であるVref_lと,キャリアCarrierを比較し,フルブリッジセル301内の自己消弧形半導体スイッチング素子に入力するゲートパルスを生成する手段を備える。パルス分配手段417は,ゲートパルスをフルブリッジセル201内の4つの半導体スイッチング素子302XH_N,302XL_N,302YH_N,302YL_Nへゲートパルスを分配する手段を備える。
The system DC current control means 420 has a PI control calculation function for controlling the DC current IDCp flowing in the DC main line p to the command value IDCref. Capacitor voltage control means 404 has a PI control calculation function for controlling the total average value of DC voltage VCellN of capacitor 303 of cell 201 of MMC to command value VCellref. The active / reactive power control means 405 calculates the active / reactive power output from the self-excited HVDC from the connection point voltage VgVSC and the connection point current IgVSC, and from the active power command distribution means (bipolar common control means) 401. PI control calculation means for calculating an effective current command value and a reactive current command value so as to match the obtained PrefVSC and QrefVSC. The system voltage phase detection means 407 includes means for detecting the phase θ of the system voltage VgVSC of the AC
他励式HVDC制御手段403は,他励式変換器制御手段418と,パルス分配手段419で構成されている。他励式変換器制御手段418は,他励式HVDC104が有効電力指令PrefLCCを出力できるように,他励式変換器107a,107b内のサイリスタ素子の点弧角αを制御する機能を有する。パルス分配手段420は,点弧各αでサイリスタ素子を転流させるためのゲートパルスgLCCを生成する。
The separately excited HVDC control means 403 includes a separately excited converter control means 418 and a pulse distribution means 419. The separately excited converter control means 418 has a function of controlling the firing angle α of the thyristor elements in the separately
図6を参照して,潮流反転時の各波形を示す。また,フルブリッジセル301_Nを用いることで,電圧極性反転が可能な理由を以下に述べる。図6は,上から,アーム202up,202vp,202wpと,バッファリアクトル204up,204vp,204wp間のアーム両端電圧Vuparm,Vvparm,Vwparm,アーム202ur,202vr,202wrと,204ur204vr,204wr間のアーム両端電圧Vurarm,Vvrarm,Vwrarm,システム直流電圧VDCpr,システム直流電圧VDCrnを示す。 With reference to FIG. 6, each waveform at the time of tidal current inversion is shown. The reason why the voltage polarity can be reversed by using the full bridge cell 301_N will be described below. FIG. 6 shows, from the top, the arm 202up, 202vp, 202wp and the arm end-to-end voltage Vuparm, Vvparm, Vwparm, arm 202ur, 202vr, 202wr, and arm end-to-end voltage Vwarm between the buffer reactors 204up, 204vp, 204wp. , Vvrarm, Vwarm, system DC voltage VDCpr, and system DC voltage VDCrn.
一般的に,潮流切り替えの必要性が生じる。例えば,系統電力母線101と系統電力母線111で電力を融通する際に,それぞれの系統の需給バランスが季節等で変動するため,系統安定化をはかるために潮流方向を反転させる必要である。系統安定化のために例えば周波数,電圧を規定値内に維持することが必要となる。
In general, there will be a need for tidal switching. For example, when power is interchanged between the system power bus 101 and the
時刻t1にて,自励式HVDC制御手段402において,システム直流電圧VDCprが正の定格電圧まで立ち上がり運転している。その際,各アーム電圧は,システム直流電圧VDCprの1/2の直流電圧を含んでいる。アーム両端電圧は,セル301_1から301_Nが出力するセル出力電圧を組み合わせることで,階段状のパルス波形を生成し,正弦波に近づけている。U相の場合,システム直流電圧VDCprは(1)で表すことができる。 At time t1, in the self-excited HVDC control means 402, the system DC voltage VDCpr starts up to a positive rated voltage. At this time, each arm voltage includes a DC voltage that is ½ of the system DC voltage VDCpr. The voltage across the arm generates a stepped pulse waveform by combining the cell output voltages output from the cells 301_1 to 301_N, and approaches the sine wave. In the case of the U phase, the system DC voltage VDCpr can be expressed by (1).
〔数1〕
Vuparm+Vurarm=VDCpr …(1)
例えば双方向チョッパセルの場合,原理的にセル出力電圧が単方向のみ出力可能なため,アーム両端電圧に含有しているシステム直流電圧VDCpr/2の極性を自励式変換器自身で切り替えることができない。しかし,図3のようにセルをフルブリッジ回路で構成することにより,セル出力電圧を正電圧,若しくは,負電圧を半導体スイッチング素子のオン,オフ動作により選択することができる。前述の通り,アーム両端電圧はフルブリッジセル301_1から301_Nの出力電圧を組み合わせることで生成するため,システム直流電圧VDCprの極性を切り替えることが可能となる。
[Equation 1]
Vuparm + Vurarm = VDCpr (1)
For example, in the case of a bidirectional chopper cell, since the cell output voltage can be output only in one direction in principle, the polarity of the system DC voltage VDCpr / 2 contained in the voltage across the arm cannot be switched by the self-excited converter itself. However, by configuring the cell with a full bridge circuit as shown in FIG. 3, the cell output voltage can be selected as the positive voltage or the negative voltage can be selected by the on / off operation of the semiconductor switching element. As described above, since the voltage across the arm is generated by combining the output voltages of the full bridge cells 301_1 to 301_N, the polarity of the system DC voltage VDCpr can be switched.
一方,時刻t1にて,他励式HVDC制御手段403において,システム直流電圧VDCpnが正の定格電圧まで立ち上がり運転している。 On the other hand, at time t1, the separately excited HVDC control means 403 starts up the system DC voltage VDCpn up to a positive rated voltage.
時刻t2からt3にて,自励式HVDC制御手段402において,システム直流電圧極性を切り替えることで,有効電力の潮流方向を切り替える。電圧極性切り替え方法の具体的な手段は,図5に記載の極性検出手段411を用いることで可能となる。自励式HVDC103の有効電力指令PrefVSCについて,正の定格電力(他端子へ送電)の場合は+1,負の定格電力(他端子から受電)の場合は−1に規格化し,電力指令値に応じて+1から−1までの値をPdirとして出力する。これを後段のシステム直流電圧フィードフォワード項VDCpr_ratedに乗算し,直流電圧指令VDCrefを生成することで,各アームに含まれるVDCpr/2の極性を切り替え,システム直流電圧VDCprの電圧極性も切り替える。 From time t2 to t3, the self-excited HVDC control means 402 switches the system DC voltage polarity to switch the flow direction of the active power. Specific means of the voltage polarity switching method can be realized by using the polarity detection means 411 shown in FIG. The active power command PrefVSC of the self-excited HVDC 103 is normalized to +1 in the case of positive rated power (power transmission to other terminals) and -1 in the case of negative rated power (power received from other terminals), depending on the power command value A value from +1 to −1 is output as Pdir. By multiplying this by the system DC voltage feedforward term VDCpr_rated at the subsequent stage and generating a DC voltage command VDCref, the polarity of VDCpr / 2 included in each arm is switched, and the voltage polarity of the system DC voltage VDCpr is also switched.
一方,時刻t2からt3にて,他励式HVDC制御手段403において,各サイリスタ素子に与える点弧角を制御することで,システム直流電圧VDCpnの電圧極性も切り替える。 On the other hand, the voltage polarity of the system DC voltage VDCpn is also switched by controlling the firing angle applied to each thyristor element in the separately excited HVDC control means 403 from time t2 to t3.
本実施例によれば,自励式HVDCの出力直流電圧極性を連続的に切替えることができるため,送電停止期間が短縮されるという効果を得られる。 According to the present embodiment, the output DC voltage polarity of the self-excited HVDC can be continuously switched, so that an effect that the power transmission stop period is shortened can be obtained.
図7を参照して,本発明の第2の実施形態の全体構成を説明する。ただし,実施例1と同じ,または,相当する部分については説明を省略し,異なる部分のみを説明する。 With reference to FIG. 7, the overall configuration of the second embodiment of the present invention will be described. However, description of the same or corresponding parts as in the first embodiment is omitted, and only different parts are described.
ハイブリッドHVDC1000は,実施例1の各構成部品のほかに,システム直流帰線電流IDCrを検出する直流電流センサ601を備えており,その検出値は制御手段105へ入力される。
The
次に,図8を参照して,本実施例における制御手段105内の有効電力指令分配手段(双極共通制御手段)を説明する。図8は,システム直流帰線電流制御手段701と,Prefを自励式HVDC103,他励式HVDC104へ分配する分配器702と,分配された有効電力指令と,システム直流帰線電流制御手段701の補正電力指令Pcを減算する減算器703,若しくは,加算する加算器704から構成される。システム直流帰線電流制御手段701は,PI制御演算手段を用いることで,システム直流帰線電流IDCrを直流帰線電流指令値IDCrrefに追従させるような補正電力指令Pcを出力する。
Next, the active power command distribution means (bipolar common control means) in the control means 105 in this embodiment will be described with reference to FIG. FIG. 8 shows system DC retrace current control means 701,
次に,図9を参照して,本実施例のシステム直流帰線電流制御手段701を導入した場合の各波形を説明する。なお,図9は,ハイブリッドHVDC103が定常運転している場合の動作波形を例として用いているが,本実施例は定常運転のみに限定するものではなく,潮流反転動作やHVDC起動,停止等の過渡運転においても同様の効果を得ることができる。図9は,上から図8の自励式HVDCのPrefVSC,他励式HVDCのPrefLCC,補正電力指令Pc,直流帰線rに流れるシステム直流帰線電流IDCrである。 Next, with reference to FIG. 9, each waveform when the system DC retrace current control means 701 of the present embodiment is introduced will be described. Note that FIG. 9 uses an operation waveform when the hybrid HVDC 103 is in steady operation as an example, but this embodiment is not limited to only steady operation, and power flow reversal operation, HVDC start and stop, etc. Similar effects can be obtained in transient operation. FIG. 9 shows PrefVSC of self-excited HVDC, PrerefLCC of separately-excited HVDC, correction power command Pc, and system DC retrace current IDCr flowing in the DC retrace r of FIG.
時刻t1で,各HVDCの有効電力指令PrefVSC,PrefLCが,Pref/2ずつ与えられているとする。両有効電力指令が同値の場合,理想的にはそれぞれの直流本線p,nに流れるシステム直流電流IDCp,IDCnが同じであるため,直流帰線rに流れるIDCrはキャンセルされ零となる。しかし,自励式HVDC制御手段402,他励式HVDC制御手段403の制御アルゴリズムの相違や,各制御応答の相違・制御線の伝送遅延等に起因して,双方の電流がキャンセルされずにIDCrに電流が流れてしまう可能性が考えられる。時刻t2で,システム直流帰線電流制御手段701を動作させたとき,IDCrがIDCrref(図9ではIDCrref=零電流)となるようにPref/2にPcを加減算し,PrefVSC,PrefLCCを生成する。そして,時刻t3で,各HVDCから出力されるシステム直流電流がキャンセルされ,IDCrが零に制御される。 Assume that the active power commands PrefVSC and PrefLC of each HVDC are given by Pref / 2 at time t1. When both active power commands are the same value, ideally, the system DC currents IDCp and IDCn flowing through the respective DC main lines p and n are the same, so IDCr flowing through the DC return line r is canceled and becomes zero. However, due to differences in the control algorithms of the self-excited HVDC control means 402 and the separately-excited HVDC control means 403, differences in each control response, transmission delay of the control line, etc., both currents are not canceled by the IDCr. Is likely to flow. When the system DC retrace current control means 701 is operated at time t2, Pc is added to or subtracted from Pref / 2 so that IDCr becomes IDCrref (IDCrref = zero current in FIG. 9), and PrefVSC and PrefLCC are generated. At time t3, the system direct current output from each HVDC is canceled and IDCr is controlled to zero.
本実施例によれば,実施例1と同様の効果が得られる他,実施例1とは異なり,システム直流帰線電流IDCrの定常・過渡的な増加を抑制しつつハイブリッドHVDCを運転することができる。 According to the present embodiment, the same effects as in the first embodiment can be obtained, and unlike the first embodiment, the hybrid HVDC can be operated while suppressing the steady and transient increase of the system DC retrace current IDCr. it can.
101,111・・・交流電力系統母線
1000・・・ハイブリッドHVDC
103・・・自励式HVDC
104・・・他励式HVDC
105・・・制御手段
106a,106b・・・自励式変換器
107a,107b・・・他励式変換器
108a,108b・・・直流リアクトル
109,206,304_1〜304_N・・・電圧検出器
110a,110b,205,207,601・・・電流検出器
201p,201r・・・アーム変換器
202up,202vp,202wp,202ur,202vr,202wr・・・アーム
204up,204vp,204wp,204ur,204vr,204wr・・・バッファリアクトル
301up_1〜301up_N,301vp_1〜301vp_N,301wp_1〜301wp_N,301ur_1〜301ur_N,301vr_1〜301vr_N,301wr_1〜301wr_N・・・フルブリッジセル
302XH_1〜302XH_N,302XL_1〜302XL_N,302YH_1〜302YH_N,302YL_1〜302YL_N・・・環流ダイオードが並列接続された自己消弧形半導体スイッチング素子
303_1〜303_N・・・コンデンサ
401・・・双極共通制御手段
402・・・自励式HVDC制御手段
403・・・他励式HVDC制御手段
404・・・コンデンサ電圧制御手段
405・・・有効・無効電力制御手段
406,410,413,414,415,704・・・加算器
407・・・系統電圧位相検出手段
408・・・交流電流制御手段
409・・・循環電流制御手段
411・・・極性検出手段
412・・・乗算器
416・・・PWM手段
417・・・自励式変換器パルス分配手段
418・・・他励式変換器制御手段
419・・・他励式変換器パルス分配手段
420・・・システム直流帰線電流制御手段
701・・・システム直流帰線電流制御手段
702・・・分配器
703・・・減算器
101, 111 ... AC
103 ... Self-excited HVDC
104 ... Separately-excited HVDC
105 ... Control means 106a, 106b ... Self-
Claims (8)
A self-excited conversion device and a separately-excited conversion device, wherein the self-excited conversion device and the separately-excited conversion device are connected to a common system as an AC side, and a part of a DC transmission line of the self-excited conversion device and the A part of the DC power transmission line of the separately excited conversion device is commonly used, and the self-excited conversion device is configured by serially connecting unit units each including a self-extinguishing element and a storage element. An excitation converter is a control method for a hybrid power conversion system including control rectifier elements, and the self-excitation converter has a direct current polarity output by controlling the operation of the self-extinguishing element. A control method for a hybrid power conversion system that converts power between alternating current and direct current in response to switching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219324A JP2018078733A (en) | 2016-11-10 | 2016-11-10 | Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219324A JP2018078733A (en) | 2016-11-10 | 2016-11-10 | Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018078733A true JP2018078733A (en) | 2018-05-17 |
Family
ID=62149414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016219324A Pending JP2018078733A (en) | 2016-11-10 | 2016-11-10 | Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018078733A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110095688A (en) * | 2019-05-08 | 2019-08-06 | 国网河南省电力公司电力科学研究院 | LCC-MMC mixes three end DC transmission system fault detection methods and device |
CN110824275A (en) * | 2019-11-13 | 2020-02-21 | 国网山西省电力公司电力科学研究院 | Micro-grid AC/DC bus interface converter demonstration test platform |
CN110912175A (en) * | 2019-12-03 | 2020-03-24 | 国网河南省电力公司电力科学研究院 | Hybrid four-terminal high-voltage direct-current transmission system |
JP6873352B1 (en) * | 2020-11-11 | 2021-05-19 | 三菱電機株式会社 | Power conversion system and its control device |
JP6910579B1 (en) * | 2020-11-11 | 2021-07-28 | 三菱電機株式会社 | Power conversion system and its control device |
JP2022077493A (en) * | 2020-11-11 | 2022-05-23 | 三菱電機株式会社 | Power conversion system and control device thereof |
US12068679B2 (en) | 2019-08-08 | 2024-08-20 | Mitsubishi Electric Corporation | Power conversion device preventing overcurrent at the time of starting |
-
2016
- 2016-11-10 JP JP2016219324A patent/JP2018078733A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110095688A (en) * | 2019-05-08 | 2019-08-06 | 国网河南省电力公司电力科学研究院 | LCC-MMC mixes three end DC transmission system fault detection methods and device |
US12068679B2 (en) | 2019-08-08 | 2024-08-20 | Mitsubishi Electric Corporation | Power conversion device preventing overcurrent at the time of starting |
CN110824275A (en) * | 2019-11-13 | 2020-02-21 | 国网山西省电力公司电力科学研究院 | Micro-grid AC/DC bus interface converter demonstration test platform |
CN110912175A (en) * | 2019-12-03 | 2020-03-24 | 国网河南省电力公司电力科学研究院 | Hybrid four-terminal high-voltage direct-current transmission system |
JP6873352B1 (en) * | 2020-11-11 | 2021-05-19 | 三菱電機株式会社 | Power conversion system and its control device |
JP6910579B1 (en) * | 2020-11-11 | 2021-07-28 | 三菱電機株式会社 | Power conversion system and its control device |
WO2022102027A1 (en) | 2020-11-11 | 2022-05-19 | 三菱電機株式会社 | Power conversion system and control device for same |
WO2022102028A1 (en) | 2020-11-11 | 2022-05-19 | 三菱電機株式会社 | Power conversion system and control device for same |
JP2022077493A (en) * | 2020-11-11 | 2022-05-23 | 三菱電機株式会社 | Power conversion system and control device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018078733A (en) | Hybrid power conversion system, hybrid dc transmission system and method for controlling hybrid power conversion system | |
US10326355B2 (en) | Power conversion device | |
JP5993675B2 (en) | Power converter, power conversion system, and control method for power converter | |
US7577009B2 (en) | PWM cycloconverter and control method for PWM cycloconverter | |
US11936306B2 (en) | Power conversion device | |
AU2009348270B2 (en) | An arrangement for exchanging power | |
US6977449B2 (en) | Frequency converter and drive for electric motor | |
US9252681B2 (en) | Power converter with a first string having controllable semiconductor switches and a second string having switching modules | |
US20140198533A1 (en) | Bidirectional Power Conversion with Fault-Handling Capability | |
WO2011129222A1 (en) | Power converter | |
KR20130100285A (en) | Hvdc converter with neutral-point connected zero-sequence dump resistor | |
EP3093976B1 (en) | Electric power conversion system | |
JPWO2016147935A1 (en) | Power converter | |
JP2018129963A (en) | Controller of power converter | |
US20230369956A1 (en) | Power Conversion Device | |
CA2900194A1 (en) | Multilevel converter | |
JP7168189B2 (en) | Power converters, power generation systems, load systems and power transmission and distribution systems | |
US11677335B2 (en) | Method for operating a power converter | |
US9325273B2 (en) | Method and system for driving electric machines | |
EP3063866A2 (en) | A controller for a power converter | |
JP2015095926A (en) | Power conversion system and first charging method therefor | |
JP6342233B2 (en) | Power converter | |
JP5752580B2 (en) | Power converter | |
JP2014054152A (en) | Power conversion device and power control device | |
JP6941185B2 (en) | Power conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170126 |