JP2018078170A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2018078170A
JP2018078170A JP2016218246A JP2016218246A JP2018078170A JP 2018078170 A JP2018078170 A JP 2018078170A JP 2016218246 A JP2016218246 A JP 2016218246A JP 2016218246 A JP2016218246 A JP 2016218246A JP 2018078170 A JP2018078170 A JP 2018078170A
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength conversion
conversion layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218246A
Other languages
Japanese (ja)
Other versions
JP6800702B2 (en
Inventor
佳織 立花
Yoshiori Tachibana
佳織 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016218246A priority Critical patent/JP6800702B2/en
Priority to US15/800,495 priority patent/US10971663B2/en
Publication of JP2018078170A publication Critical patent/JP2018078170A/en
Application granted granted Critical
Publication of JP6800702B2 publication Critical patent/JP6800702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve high luminous efficiency and suppression of color unevenness in a luminous surface.SOLUTION: The semiconductor light-emitting device includes: a light-emitting element 10; a wavelength conversion layer 12 for converting the light emitted from the light-emitting element into the light with a predetermined wavelength; a light reflection member 13 covering at least a side face of the wavelength conversion layer; and a thin film 14 provided on an outermost surface from which the light subjected to wavelength conversion in the wavelength conversion layer emits, which has a property of rejecting the uncured light reflection member and whose surface is coarse.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子からの光を波長変換部材により所望の波長の光に変換して照射する半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device that converts light from a light emitting element into light having a desired wavelength by a wavelength conversion member and irradiates the light.

半導体発光素子から発せられた光を波長変換部材により波長変換して白色光を照射する半導体発光装置が知られている。このような半導体発光装置は、一般照明、街路灯、車両用灯具等の照明器具の光源として利用され、特に、車両用灯具等は、高い正面輝度が要求されることから、様々な半導体発光装置が提案されている。   2. Description of the Related Art A semiconductor light emitting device that irradiates white light by converting the wavelength of light emitted from a semiconductor light emitting element by a wavelength conversion member is known. Such a semiconductor light-emitting device is used as a light source for lighting fixtures such as general lighting, street lamps, and vehicular lamps. In particular, since vehicular lamps and the like require high front luminance, various semiconductor light-emitting devices are used. Has been proposed.

例えば、特許文献1には、発光素子と、外部に露出する発光面と発光面から連続する側面とを有し発光素子からの光を波長変換可能な光透過部材と、光透過部材の側面と発光素子の側面を囲繞するように被覆する光反射性材料を含んだ被覆部材とを備え、実質的に上面の発光面のみを発光装置における光の放出領域とすることで、正面輝度を向上させた発光装置が開示されている。   For example, Patent Document 1 discloses a light-emitting element, a light-transmitting member that has a light-emitting surface exposed to the outside and a side surface continuous from the light-emitting surface, and that can convert the wavelength of light from the light-emitting element, and a side surface of the light-transmitting member. And a covering member containing a light-reflective material that covers the side surface of the light-emitting element, and substantially only the light-emitting surface on the upper surface serves as a light emission region in the light-emitting device, thereby improving the front luminance. A light emitting device is disclosed.

特許第552682号公報Japanese Patent No. 552682

ところで、上述した特許文献1に開示された半導体発光装置等に適用される光透過部材は、発光面表面が平坦な無機材料で構成されているため、発光素子から出射した光が発光面表面において反射されて発光面から外部に出射することができず、発光効率が低下する。一方、これを改善するために発光面表面を粗面にした、すなわち発光面表面に凹凸面を形成した半導体発光装置がある。ところが、発光面表面を粗面にすることで、半導体発光装置の製造工程中の光反射材料を含む被覆部材を塗布する際に、被覆部材が発光面に這い上がる問題が生じる。特に、被覆部材として樹脂を使用した場合には、発光面表面の粗面において毛細管現象が生じ、樹脂が塗れ広がりやすい。また、発光面表面の角部に丸みがある場合には、表面張力による樹脂の止まりが弱く、発光面表面に樹脂が塗れ広がりやすい。このように、樹脂が発光面表面に這い上がり、濡れ広がることにより、発光面の表面面積が狭められ、発光効率が低下する虞がある。   By the way, since the light transmissive member applied to the semiconductor light emitting device disclosed in Patent Document 1 described above is composed of an inorganic material having a flat light emitting surface, light emitted from the light emitting element is reflected on the light emitting surface. It is reflected and cannot be emitted to the outside from the light emitting surface, and the light emission efficiency is lowered. On the other hand, in order to improve this, there is a semiconductor light emitting device in which the surface of the light emitting surface is roughened, that is, an uneven surface is formed on the surface of the light emitting surface. However, when the surface of the light emitting surface is roughened, a problem arises that the covering member crawls up to the light emitting surface when a covering member containing a light reflecting material during the manufacturing process of the semiconductor light emitting device is applied. In particular, when a resin is used as the covering member, a capillary phenomenon occurs on the rough surface of the light emitting surface, and the resin is easily spread. In addition, when the corner of the light emitting surface is rounded, the resin stops due to surface tension is weak, and the resin tends to spread and spread on the light emitting surface. As described above, the resin crawls up on the surface of the light emitting surface and spreads wet, so that the surface area of the light emitting surface is narrowed and the light emission efficiency may be reduced.

本発明は、上記事情に鑑みてなされたものであり、発光面表面への被覆部材の這い上がりを抑制し、発光効率を向上させることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress the creeping of the covering member on the light emitting surface and to improve the light emission efficiency.

本発明の一態様は、発光素子と、該発光素子から出射される光を所定波長の光に変換する波長変換層と、少なくとも前記波長変換層の側面を覆う光反射部材と、前記波長変換層の波長変換された光が出射する最表面に設けられた、未硬化の前記光反射部材をはじく性質を有する薄膜と、を備えた半導体発光装置を提供する。   One embodiment of the present invention includes a light emitting element, a wavelength conversion layer that converts light emitted from the light emitting element into light having a predetermined wavelength, a light reflecting member that covers at least a side surface of the wavelength conversion layer, and the wavelength conversion layer. And a thin film having a property of repelling the uncured light reflecting member provided on the outermost surface from which the wavelength-converted light is emitted.

また、本発明の他の態様は、発光素子と、該発光素子から出射される光を所定波長の光に変換する波長変換層と、該波長変換層によって波長変換された光を透過する光透過性基板と、少なくとも該光透過性基板の側面を覆う光反射部材と、前記光透過性基板の、前記波長変換層によって波長変換された光が出射する最表面に設けられた、未硬化の前記光反射部材をはじく性質を有する薄膜と、を備えた半導体発光装置を提供する。   In another aspect of the present invention, a light-emitting element, a wavelength conversion layer that converts light emitted from the light-emitting element into light having a predetermined wavelength, and light transmission that transmits light converted in wavelength by the wavelength conversion layer An uncured, provided on the outermost surface of the light transmitting substrate, the light reflecting member that covers at least the side surface of the light transmitting substrate, and the light that is wavelength-converted by the wavelength conversion layer of the light transmitting substrate. There is provided a semiconductor light emitting device including a thin film having a property of repelling a light reflecting member.

上記各態様において、薄膜の表面が粗面であること、薄膜上の、未硬化の被覆部材に対する接触角が、波長変換層及び光透過性基板上の接触角よりも大きいこと、薄膜がフッ素樹脂であること、が好ましく、薄膜の厚さが1nm〜10μm、より好ましくは50nm〜1μmであることが好ましい。また薄膜の接触角が40°以上であることが好ましい。   In each of the above embodiments, the surface of the thin film is rough, the contact angle with respect to the uncured coating member on the thin film is larger than the contact angle on the wavelength conversion layer and the light-transmitting substrate, and the thin film is a fluororesin It is preferable that the thickness of the thin film is 1 nm to 10 μm, more preferably 50 nm to 1 μm. Moreover, it is preferable that the contact angle of a thin film is 40 degrees or more.

本発明によれば、発光面表面への被覆部材の這い上がりを抑制し、発光効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the climbing of the coating | coated member to the light emission surface surface can be suppressed, and luminous efficiency can be improved.

本発明の第1の実施形態に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure of the semiconductor light-emitting device concerning the 1st Embodiment of this invention is shown, (A) is sectional drawing, (B) is a top view. 本発明の第1の実施形態の他の例に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。1 shows a schematic configuration of a semiconductor light emitting device according to another example of the first embodiment of the present invention, in which (A) is a cross-sectional view and (B) is a top view. 本発明の第1の実施形態の他の例に係る半導体発光装置の概略構成を示し、(A)は断面図であり、(B)は上面図である。1 shows a schematic configuration of a semiconductor light emitting device according to another example of the first embodiment of the present invention, in which (A) is a cross-sectional view and (B) is a top view. 本発明の第2の実施形態に係る半導体発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the semiconductor light-emitting device concerning the 2nd Embodiment of this invention. 本発明の第1の実施形態に係る半導体発光装置において、ワイヤボンディング型の発光素子を適用した場合の概略構成を示す上面図である。1 is a top view showing a schematic configuration when a wire bonding type light emitting element is applied to a semiconductor light emitting device according to a first embodiment of the present invention.

以下、本発明の一実施形態について図面を参照して説明する。なお、以下に示す図面において、理解の容易及び視認性向上のため、断面図であってもハッチングを適宜省略している。また、半導体発光装置の上面図において、本来上面視では視認できない構成については破線で示すと共に、説明の便宜上ハッチング等を付している。さらに、以下の説明において、異なる実施形態や変形例である場合にも、同一の構成には同一の符号を付し、その説明を省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings shown below, hatching is appropriately omitted even in a cross-sectional view for easy understanding and improved visibility. Further, in the top view of the semiconductor light emitting device, components that are not originally visible in the top view are indicated by broken lines and hatched for convenience of explanation. Further, in the following description, even in the case of different embodiments and modifications, the same components are denoted by the same reference numerals, and the description thereof is omitted.

(第1の実施形態)
本発明の第1の実施形態に係る半導体発光装置について説明する。
本実施形態に係る半導体発光装置は、発光素子10と、発光素子から出射される光を所定波長の光に変換する波長変換層12と、少なくとも波長変換層の側面を覆う光反射部材と、波長変換層によって波長変換された光が出射する最表面に設けられ、表面が粗面であり波長変換層よりも接触角が大きい薄膜とを備えている。
(First embodiment)
A semiconductor light emitting device according to a first embodiment of the present invention will be described.
The semiconductor light emitting device according to this embodiment includes a light emitting element 10, a wavelength conversion layer 12 that converts light emitted from the light emitting element into light of a predetermined wavelength, a light reflecting member that covers at least a side surface of the wavelength conversion layer, a wavelength The thin film is provided on the outermost surface from which the light whose wavelength has been converted by the conversion layer is emitted, and has a rough surface and a contact angle larger than that of the wavelength conversion layer.

より具体的には、図1(A)は半導体発光装置1の断面図、図1(B)は半導体発光装置1の上面図であり、図1に示すように、半導体発光装置1は、発光素子10と、発光素子10を実装する実装基板11と、波長変換層12と、光反射部材13と、薄膜14とを備えている。   More specifically, FIG. 1A is a cross-sectional view of the semiconductor light emitting device 1, FIG. 1B is a top view of the semiconductor light emitting device 1, and the semiconductor light emitting device 1 emits light as shown in FIG. An element 10, a mounting substrate 11 on which the light emitting element 10 is mounted, a wavelength conversion layer 12, a light reflecting member 13, and a thin film 14 are provided.

発光素子10は、上面視で矩形状であり、発する光に対して透明な基板上に半導体層及び発光層を積層し、給電用の電極を形成したものを反転させたフリップチップ構造を成している。発光素子10は、発光層から照射された光を外部へ照射する。従って、発光素子10は、上面及び側面が発光面となる。なお、発光素子10の電極は、図示しないバンプ等により実装基板11上の配線パターンに導通している。   The light-emitting element 10 has a rectangular shape in a top view, and has a flip chip structure in which a semiconductor layer and a light-emitting layer are stacked on a substrate transparent to light to be emitted and a power supply electrode is inverted. ing. The light emitting element 10 irradiates light emitted from the light emitting layer to the outside. Therefore, the upper surface and the side surface of the light emitting element 10 are light emitting surfaces. The electrode of the light emitting element 10 is electrically connected to the wiring pattern on the mounting substrate 11 by a bump or the like (not shown).

実装基板11は、本実施形態において、セラミックス材料で形成された板状体であり、窒化アルミニウムで形成された板状の基板を適用している。なお、基板は、一般に、ガラスエポキシ、樹脂、セラミックス等の絶縁性材料、又は絶縁性材料と金属部材との複合材料等によって形成される。基板としては、耐熱性及び耐候性の高いセラミックス又は樹脂を利用したものが好ましい。
なお、実装基板11には、図示しない配線パターンが形成されている。配線パターンは、主に、発光素子10の実装パターン及び発光素子10への電源供給のための電流引き回しパターンとして、実装基板11の表面に形成されている。配線パターンとしては、Al,Ni,Cu,Ag,Au等の導電性材料を用いることができる。
In the present embodiment, the mounting substrate 11 is a plate-like body made of a ceramic material, and a plate-like substrate made of aluminum nitride is applied. In general, the substrate is formed of an insulating material such as glass epoxy, resin, or ceramic, or a composite material of an insulating material and a metal member. As the substrate, those using ceramics or resin having high heat resistance and high weather resistance are preferable.
Note that a wiring pattern (not shown) is formed on the mounting substrate 11. The wiring pattern is mainly formed on the surface of the mounting substrate 11 as a mounting pattern of the light emitting element 10 and a current routing pattern for supplying power to the light emitting element 10. As the wiring pattern, a conductive material such as Al, Ni, Cu, Ag, or Au can be used.

波長変換層12は、発光素子10から照射された光を所望波長の光に変換する蛍光体を含み、発光素子10の上面に設けられている。より具体的には、波長変換層12には、例えば、セラミックと蛍光体の混合物や焼結体、ガラスと蛍光体の混合物、蛍光体膜を配置したセラミック、蛍光体膜を形成したガラス、蛍光体分散ガラスや蛍光体セラミックプレートなどを適用することができる。本実施形態において、波長変換層12は、発光素子10の上面の発光面と略同一の大きさであり、上面は粗面となっている。波長変換層の厚みは、例えば、10μm〜500μm程度、特に30μm〜250μm程度とすることが好ましい。   The wavelength conversion layer 12 includes a phosphor that converts light emitted from the light emitting element 10 into light having a desired wavelength, and is provided on the upper surface of the light emitting element 10. More specifically, the wavelength conversion layer 12 includes, for example, a ceramic and phosphor mixture or sintered body, a glass and phosphor mixture, a ceramic having a phosphor film disposed thereon, a glass on which a phosphor film is formed, a phosphor A body-dispersed glass or a phosphor ceramic plate can be applied. In the present embodiment, the wavelength conversion layer 12 has substantially the same size as the light emitting surface on the upper surface of the light emitting element 10, and the upper surface is a rough surface. The thickness of the wavelength conversion layer is preferably, for example, about 10 μm to 500 μm, particularly about 30 μm to 250 μm.

光反射部材13は、波長変換層12の側面を覆い、かつ、波長変換層12の上面を外部に露出させるように設けられている。光反射部材13としては、例えば、シリコーン樹脂に光反射性フィラー(例えば酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛など)を所定量混合したものを適用することができる。   The light reflecting member 13 is provided so as to cover the side surface of the wavelength conversion layer 12 and to expose the upper surface of the wavelength conversion layer 12 to the outside. As the light reflecting member 13, for example, a silicone resin mixed with a light reflecting filler (for example, titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, etc.) in a predetermined amount can be applied.

薄膜14は、半導体発光装置の最表面に設けられる。本実施形態においては波長変換層12の上面に設けられており、波長変換層12の上面の粗面に均一の膜厚で設けられている。従って、薄膜14の表面は粗面となっている。また、薄膜14としては、波長変換層12よりも未硬化の前記光反射部材に対する接触角の大きくなる材料を選択して適用する。より具体的には、薄膜14として、硬化する前の液体の状態の光反射部材13をはじく材料を適用する。また薄膜14の水に対する接触角が40°以上であることが好ましい。例えば、フッ素樹脂等の非粘着性及びすべり性が優れた材料を適用することで水の接触角40°以上を保持することができる。この他、薄膜14として、オルガノエポキシ等の有機物を適用することもできる。   The thin film 14 is provided on the outermost surface of the semiconductor light emitting device. In this embodiment, it is provided on the upper surface of the wavelength conversion layer 12, and is provided on the rough surface of the upper surface of the wavelength conversion layer 12 with a uniform film thickness. Therefore, the surface of the thin film 14 is a rough surface. Further, as the thin film 14, a material having a larger contact angle with respect to the uncured light reflecting member than the wavelength conversion layer 12 is selected and applied. More specifically, a material that repels the light reflecting member 13 in a liquid state before being cured is applied as the thin film 14. Moreover, it is preferable that the contact angle with respect to the water of the thin film 14 is 40 degrees or more. For example, the contact angle of water of 40 ° or more can be maintained by applying a material excellent in non-adhesiveness and slipperiness such as a fluororesin. In addition, as the thin film 14, an organic substance such as an organoepoxy can be applied.

また、薄膜の膜厚は、1nm〜10μm、より好ましくは50nm〜1μm、さらに好ましくは50nm〜100nmとすることが好ましい。本実施形態においては、波長変換層12の上面が粗面であるため、薄膜14を波長変換層12上に均一の膜厚で儲けることで、波長変換層12の凹凸に追随し、薄膜14の上面も凹凸を維持した粗面となる。なお、薄膜14は、予め波長変換層12の上面に、例えばスピンコーターやスプレーで形成しておくことが好ましい。   The thickness of the thin film is preferably 1 nm to 10 μm, more preferably 50 nm to 1 μm, and still more preferably 50 nm to 100 nm. In the present embodiment, since the upper surface of the wavelength conversion layer 12 is rough, by depositing the thin film 14 on the wavelength conversion layer 12 with a uniform film thickness, the unevenness of the wavelength conversion layer 12 is followed. The top surface is also a rough surface with irregularities maintained. The thin film 14 is preferably formed in advance on the upper surface of the wavelength conversion layer 12 by, for example, a spin coater or spray.

このように構成された半導体発光装置は以下のように製造される。
半導体発光装置の製造に先立って、波長変換層12となる蛍光体セラミックプレート上に、フッ素樹脂からなる薄膜14を形成しておく。なお、蛍光体セラミックプレートは、予め蛍光体濃度および厚みが調整されており、薄膜14が形成された後に所望の大きさに切断されている。本実施形態では、波長変換層12となる蛍光体セラミックプレートは、発光素子10の上面と略同サイズに切断されている。
The semiconductor light emitting device configured as described above is manufactured as follows.
Prior to the manufacture of the semiconductor light emitting device, a thin film 14 made of a fluororesin is formed on the phosphor ceramic plate that becomes the wavelength conversion layer 12. The phosphor ceramic plate has a phosphor concentration and thickness adjusted in advance, and is cut into a desired size after the thin film 14 is formed. In the present embodiment, the phosphor ceramic plate serving as the wavelength conversion layer 12 is cut to approximately the same size as the upper surface of the light emitting element 10.

そして、予め配線パターン(図示せず)が形成された実装基板11に発光素子10を図示しないバンプを介して実装する。次に、予め薄膜14が形成され発光素子10の上面と略同サイズに切断された蛍光体セラミックプレートを蛍光体セラミックプレート接着用の樹脂を塗布し発光素子10上面に搭載して、樹脂を加熱硬化させ波長変換層12及び薄膜14とする。   Then, the light emitting element 10 is mounted on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance via bumps (not shown). Next, a phosphor ceramic plate on which the thin film 14 has been formed in advance and cut to approximately the same size as the upper surface of the light emitting element 10 is coated with a resin for adhering the phosphor ceramic plate, mounted on the upper surface of the light emitting element 10, and the resin is heated. Curing is performed to obtain the wavelength conversion layer 12 and the thin film 14.

次に、予め未硬化のシリコーン樹脂に光反射性フィラーを所定量混合した光反射部材を実装基板11上に、発光素子10及び波長変換層12の側面を完全に囲繞するまで流し込む。このとき、流し込まれた光反射部材13は、波長変換層12と光反射部材13の境界部が最も高く、波長変換層12から離れるにつれ徐々に低くなる。半導体発光装置がキャビティのある場合は、低くなった部分からキャビティ上面に向かって高くなり、波長変換層よりキャビティ上面が高い場合は、被覆部材の高さはキャビティと接続部が最も高くなる。   Next, a light reflecting member in which a predetermined amount of a light reflecting filler is mixed with uncured silicone resin in advance is poured onto the mounting substrate 11 until the side surfaces of the light emitting element 10 and the wavelength conversion layer 12 are completely surrounded. At this time, the poured light reflection member 13 has the highest boundary between the wavelength conversion layer 12 and the light reflection member 13 and gradually decreases as the distance from the wavelength conversion layer 12 increases. When the semiconductor light emitting device has a cavity, the height increases from the lowered portion toward the upper surface of the cavity, and when the upper surface of the cavity is higher than the wavelength conversion layer, the height of the covering member is highest at the cavity and the connection portion.

このように、光反射部材13は、光反射部材13が波長変換層12側へ這い上がり、波長変換層12の粗面において毛細管現象を生じて濡れ広がろうとする。ところが、波長変換層12の上面に未硬化の光反射部材13をはじく薄膜14が形成されているので、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制される。この状態で、光反射部材13を加熱又は紫外線照射等の適切な硬化方法により硬化させ、所定サイズにダイシングカットすることで、光反射部材13が波長変換層12の側面を覆う構造として個片化された半導体発光装置を製造することができる。
このように、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制されるので、波長変換層12の上面の粗面形状を維持し、光反射部材の這い上がりに起因した発光効率の低下や明るさの低下を抑制することができる。
As described above, the light reflecting member 13 rises toward the wavelength conversion layer 12, and causes a capillary phenomenon on the rough surface of the wavelength conversion layer 12 so as to be wet and spread. However, since the thin film 14 that repels the uncured light reflecting member 13 is formed on the upper surface of the wavelength conversion layer 12, the light reflecting member 13 is prevented from creeping up and spreading over the wavelength conversion layer 12. In this state, the light reflecting member 13 is cured by an appropriate curing method such as heating or ultraviolet irradiation, and diced to a predetermined size so that the light reflecting member 13 covers the side surface of the wavelength conversion layer 12 as a piece. The manufactured semiconductor light emitting device can be manufactured.
In this way, the light reflecting member 13 is suppressed from creeping and spreading on the wavelength conversion layer 12, so that the rough surface shape of the upper surface of the wavelength conversion layer 12 is maintained, and the light emission efficiency resulting from the creeping of the light reflecting member is maintained. Reduction in brightness and brightness can be suppressed.

本実施形態においては、波長変換層12が発光素子10の上面と略同サイズである例について説明したが、例えば、図2(A)及び(B)に示すように、波長変換層12が発光素子10の上面よりも小さいサイズであってもよい。また、図3(A)及び(B)に示すように、波長変換層12が発光素子10の上面よりも大きいサイズであってもよい。
さらに、波長変換層12の表面が粗面ではなく平坦面である場合には、薄膜14の表面を粗面とすることにより、同様に光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制され、発光効率の低下や明るさの低下を抑制することができる。
In the present embodiment, the example in which the wavelength conversion layer 12 is approximately the same size as the upper surface of the light emitting element 10 has been described. For example, as illustrated in FIGS. 2A and 2B, the wavelength conversion layer 12 emits light. The size may be smaller than the upper surface of the element 10. 3A and 3B, the wavelength conversion layer 12 may be larger than the upper surface of the light emitting element 10.
Furthermore, when the surface of the wavelength conversion layer 12 is not a rough surface but a flat surface, the surface of the thin film 14 is made rough so that the light reflecting member 13 rises and spreads on the wavelength conversion layer 12 in the same manner. Is suppressed, and a decrease in luminous efficiency and a decrease in brightness can be suppressed.

なお、薄膜14を波長変換層12の上面に形成する際に、薄膜14が粗面における凹部に厚く、凸部に薄く形成され、凹凸形状がわずかになだらかになることが考えられるが、このような場合にも粗面が完全に平坦になることはなく、粗面の凹凸形状を維持することができるため、発光効率を維持することができる。   In addition, when forming the thin film 14 on the upper surface of the wavelength conversion layer 12, it is possible that the thin film 14 is thick on the concave portion on the rough surface and thin on the convex portion, and the uneven shape is slightly smooth. In this case, the rough surface is not completely flat, and the uneven shape of the rough surface can be maintained, so that the light emission efficiency can be maintained.

(第2の実施形態)
次に、本発明の第2の実施形態に係る半導体発光装置について説明する。
上述した本発明の第1の実施形態では、波長変換層12の上面に薄膜を形成する例について説明した。本実施形態では、半導体発光装置が、光透過性基板を備えており、光透過性基板に薄膜14を形成する例について説明する。図4は、本実施形態に係る半導体発光装置の断面図である。以下の説明において、上述した第1の実施形態と同一の構成には同符号を付し、その説明を省略する。
(Second Embodiment)
Next, a semiconductor light emitting device according to a second embodiment of the present invention will be described.
In the above-described first embodiment of the present invention, the example in which the thin film is formed on the upper surface of the wavelength conversion layer 12 has been described. In the present embodiment, an example in which a semiconductor light emitting device includes a light transmissive substrate and the thin film 14 is formed on the light transmissive substrate will be described. FIG. 4 is a cross-sectional view of the semiconductor light emitting device according to this embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る半導体発光装置は、発光素子10と、発光素子10から出射される光を所定波長の光に変換する波長変換層12と、波長変換層12によって波長変換された光を透過する光透過性基板15と、少なくとも光透過性基板15の側面を覆う光反射部材13と、波長変換層12によって波長変換された光が出射する最表面に設けられ、表面が粗面であり光透過性基板15よりも接触角が大きい薄膜と、を備えている。   The semiconductor light emitting device according to this embodiment transmits a light emitting element 10, a wavelength conversion layer 12 that converts light emitted from the light emitting element 10 into light having a predetermined wavelength, and light that has been wavelength converted by the wavelength conversion layer 12. The light-transmitting substrate 15, the light reflecting member 13 that covers at least the side surface of the light-transmitting substrate 15, and the outermost surface from which the light whose wavelength has been converted by the wavelength conversion layer 12 is emitted. And a thin film having a larger contact angle than the conductive substrate 15.

光透過性基板15は、例えばガラス、サファイア、シリコーン樹脂などからなり、本実施形態においては波長変換層12とほぼ同じ面積を有し、波長変換層12の上面に配置される。
薄膜14は、上述した第1の実施形態と同様に、半導体発光装置の最表面に設けられる。従って、本実施形態においては光透過性基板15の上面に設けられており、光透過性基板15の上面の粗面に均一の膜厚で設けられている。従って、薄膜14の表面は粗面となっている。また、薄膜14としては、光透過性基板15よりも未硬化の前記光反射部材に対する接触角の大きくなる材料を選択して適用する。より具体的には、薄膜14として、硬化する前の液体の状態の光反射部材13をはじき、水に対する接触角が40°以上となる材料を適用する。例えば、フッ素樹脂等の非粘着性及びすべり性が優れた材料を適用することで水の接触角40°以上を保持することができる。
The light transmissive substrate 15 is made of, for example, glass, sapphire, silicone resin, or the like, and has substantially the same area as the wavelength conversion layer 12 in the present embodiment, and is disposed on the upper surface of the wavelength conversion layer 12.
The thin film 14 is provided on the outermost surface of the semiconductor light emitting device, as in the first embodiment described above. Therefore, in the present embodiment, the light-transmitting substrate 15 is provided on the upper surface, and the light-transmitting substrate 15 is provided on the rough surface of the light-transmitting substrate 15 with a uniform film thickness. Therefore, the surface of the thin film 14 is a rough surface. Further, as the thin film 14, a material having a larger contact angle with respect to the uncured light reflecting member than the light transmissive substrate 15 is selected and applied. More specifically, as the thin film 14, a material that repels the light reflecting member 13 in a liquid state before being cured and has a contact angle with water of 40 ° or more is applied. For example, the contact angle of water of 40 ° or more can be maintained by applying a material excellent in non-adhesiveness and slipperiness such as a fluororesin.

また、薄膜の膜厚は、1nm〜10μmであることが好ましく、特に50nm〜1μmがより好ましい。本実施形態においては、光透過性基板15の上面が粗面であるため、薄膜14を波長変換層12上に均一の膜厚で儲けることで、光透過性基板15の凹凸に追随し、薄膜14の上面も凹凸を維持した粗面となる。なお、薄膜14は、予め光透過性基板15の上面に、例えばスピンコーターやスプレーで形成しておくことが好ましい。   The thickness of the thin film is preferably 1 nm to 10 μm, and more preferably 50 nm to 1 μm. In the present embodiment, since the upper surface of the light transmissive substrate 15 is rough, the thin film 14 is spread on the wavelength conversion layer 12 with a uniform film thickness to follow the unevenness of the light transmissive substrate 15, and the thin film The upper surface of 14 is also a rough surface with unevenness maintained. The thin film 14 is preferably formed in advance on the upper surface of the light transmissive substrate 15 by, for example, a spin coater or spray.

このように構成された半導体発光装置は、以下のように製造される。
半導体発光装置の製造に先立って、光透過性基板15となるガラス等の板状部材に、フッ素樹脂からなる薄膜14を形成しておく。なお、光透過性基板15は、薄膜14が形成された後に所望の大きさに切断されている。本実施形態では、光透過性基板15は、発光素子10及び波長変換層12の上面と略同サイズに切断されている。
そして、予め配線パターン(図示せず)が形成された実装基板11に発光素子10を図示しないバンプを介して実装する。次に、蛍光体セラミックプレートを蛍光体セラミックプレート接着用の樹脂を塗布し発光素子10上面に搭載して、蛍光体セラミックプレート接着用の樹脂を塗布して波長変換層12とする。続いて、波長変換層12の上面に薄膜14が形成された光透過性基板15を搭載し固着させる。
The semiconductor light emitting device configured as described above is manufactured as follows.
Prior to the manufacture of the semiconductor light emitting device, a thin film 14 made of a fluororesin is formed on a plate-like member such as glass that becomes the light transmissive substrate 15. The light transmissive substrate 15 is cut into a desired size after the thin film 14 is formed. In the present embodiment, the light transmissive substrate 15 is cut to approximately the same size as the upper surfaces of the light emitting element 10 and the wavelength conversion layer 12.
Then, the light emitting element 10 is mounted on a mounting substrate 11 on which a wiring pattern (not shown) is formed in advance via bumps (not shown). Next, the phosphor ceramic plate is coated with a phosphor ceramic plate bonding resin and mounted on the upper surface of the light emitting element 10, and the phosphor ceramic plate bonding resin is coated to form the wavelength conversion layer 12. Subsequently, a light transmitting substrate 15 having a thin film 14 formed on the upper surface of the wavelength conversion layer 12 is mounted and fixed.

次に、予めシリコーン樹脂に光反射性フィラーを所定量混合した光反射部材を実装基板11上に、発光素子10及び光透過性基板15の側面を完全に囲繞するまで流し込む。このとき、流し込まれた光反射部材13は、光透過性基板15と光反射部材13の境界部が最も高く、光透過性基板15から離れるにつれ徐々に低くなる。   Next, a light reflecting member in which a predetermined amount of a light reflecting filler is mixed with silicone resin is poured onto the mounting substrate 11 until the side surfaces of the light emitting element 10 and the light transmitting substrate 15 are completely surrounded. At this time, the poured light reflecting member 13 has the highest boundary between the light transmitting substrate 15 and the light reflecting member 13 and gradually decreases as the distance from the light transmitting substrate 15 increases.

光反射部材13は光透過性基板15側へ這い上がり、光透過性基板15の粗面において毛細管現象を生じて濡れ広がろうとする。ところが、光透過性基板15の上面に光反射部材をはじく薄膜14が形成されているので、光反射部材13が波長変換層12に這い上がり濡れ広がることが抑制される。この状態で、加熱硬化させ、所定サイズにダイシングカットすることで、光反射部材13が光透過性基板15の側面を覆う構造として個片化された半導体発光装置を製造することができる。
このように、光反射部材13が光透過性基板15に這い上がり濡れ広がることが抑制されるので、光反射部材の這い上がりに起因した発光効率の低下や明るさの低下を抑制することができる。
The light reflecting member 13 crawls up toward the light transmissive substrate 15, and causes a capillary phenomenon on the rough surface of the light transmissive substrate 15 to try to spread. However, since the thin film 14 that repels the light reflecting member is formed on the upper surface of the light transmissive substrate 15, the light reflecting member 13 is suppressed from creeping up and spreading to the wavelength conversion layer 12. In this state, by heating and curing and dicing cutting to a predetermined size, it is possible to manufacture a semiconductor light emitting device in which the light reflecting member 13 is separated as a structure covering the side surface of the light transmissive substrate 15.
As described above, since the light reflecting member 13 is suppressed from creeping and spreading on the light-transmitting substrate 15, it is possible to suppress a decrease in light emission efficiency and a decrease in brightness due to the light reflecting member scooping up. .

なお、図5に、発光素子の上面に接続されたボンディングワイヤを介して給電を行うワイヤボンディング型の発光素子を適用した例を示した。図5では、発光素子10の上面、すなわち発光面側に波長変換層12を配置している。この例では、発光素子10上面にワイヤを配置するため、波長変換層12にワイヤを逃がすための切欠き12Aを形成している。図では、波長変換層12の任意の一辺の中央部に切欠きを設けているが、切欠きの位置は素子中央、角、辺など適宜定めることができ、また、ワイヤの数も1本、複数本等適宜定めることができる。   Note that FIG. 5 shows an example in which a wire bonding type light emitting element that supplies power via a bonding wire connected to the upper surface of the light emitting element is applied. In FIG. 5, the wavelength conversion layer 12 is disposed on the upper surface of the light emitting element 10, that is, on the light emitting surface side. In this example, in order to dispose the wire on the upper surface of the light emitting element 10, a notch 12 </ b> A for allowing the wire to escape is formed in the wavelength conversion layer 12. In the figure, a notch is provided at the center of any one side of the wavelength conversion layer 12, but the position of the notch can be determined as appropriate, such as the element center, corner, and side, and the number of wires is one, Multiple lines can be determined as appropriate.

上述した各実施形態に係る半導体発光装置は、ヘッドランプやADB(Adaptive Driving Beam)型の車両用灯具の光源に適用することができる他、照明用等の一般的な灯具に適用することもできる。
なお、光反射部材13の高さは、波長変換層12又は光透過性基板15から離れるに従って低下する傾向にあり、これが顕著になると、波長変換層12又は光透過性基板15の側面からの光漏れが大きくなり、半導体発光装置を、例えば、車両用灯具に適用した場合にはグレアの問題が発生する。上述した各実施形態における薄膜14を設けることにより、光反射部材13の高さを高くすることができるので、光反射部材13の形状を波長変換層12又は光透過性基板15に対して略平坦に広がる形状とすることができる。これにより、車両用前照灯に用いたときのグレアの問題を回避することができる。
The semiconductor light emitting device according to each embodiment described above can be applied to a light source of a headlamp or an ADB (Adaptive Driving Beam) type vehicle lamp, and can also be applied to a general lamp for illumination or the like. .
The height of the light reflecting member 13 tends to decrease as the distance from the wavelength conversion layer 12 or the light transmissive substrate 15 increases. When this becomes significant, light from the side surface of the wavelength conversion layer 12 or the light transmissive substrate 15 is observed. When the semiconductor light-emitting device is applied to, for example, a vehicular lamp, the problem of glare occurs. By providing the thin film 14 in each of the above-described embodiments, the height of the light reflecting member 13 can be increased, so that the shape of the light reflecting member 13 is substantially flat with respect to the wavelength conversion layer 12 or the light transmissive substrate 15. It can be made into the shape which spreads. Thereby, the problem of glare when used for a vehicle headlamp can be avoided.

10・・・発光素子、11・・・実装基板、12・・・波長変換層、13・・・光反射部材、14・・・薄膜、15・・・光透過性基板 DESCRIPTION OF SYMBOLS 10 ... Light emitting element, 11 ... Mounting board, 12 ... Wavelength conversion layer, 13 ... Light reflection member, 14 ... Thin film, 15 ... Light transmissive board | substrate

Claims (10)

発光素子と、
該発光素子から出射される光を所定波長の光に変換する波長変換層と、
少なくとも前記波長変換層の側面を覆う光反射部材と、
前記波長変換層の波長変換された光が出射する最表面に設けられ、未硬化の前記光反射部材をはじく性質を有し、表面が粗面である薄膜と、を備えた半導体発光装置。
A light emitting element;
A wavelength conversion layer that converts light emitted from the light emitting element into light of a predetermined wavelength;
A light reflecting member covering at least a side surface of the wavelength conversion layer;
A semiconductor light emitting device comprising: a thin film provided on the outermost surface from which the wavelength-converted light of the wavelength conversion layer is emitted, repels the uncured light reflecting member, and has a rough surface.
発光素子と、
該発光素子から出射される光を所定波長の光に変換する波長変換層と、
該波長変換層によって波長変換された光を透過する光透過性基板と、
少なくとも該光透過性基板の側面を覆う光反射部材と、
前記光透過性基板の、前記波長変換層によって波長変換された光が出射する最表面に設けられ、未硬化の前記光反射部材をはじく性質を有し、表面が粗面である薄膜と、を備えた半導体発光装置。
A light emitting element;
A wavelength conversion layer that converts light emitted from the light emitting element into light of a predetermined wavelength;
A light transmissive substrate that transmits the light wavelength-converted by the wavelength conversion layer;
A light reflecting member covering at least a side surface of the light transmissive substrate;
A thin film having a property of repelling the uncured light reflecting member and having a rough surface provided on the outermost surface of the light transmissive substrate from which the light wavelength-converted by the wavelength conversion layer is emitted. A semiconductor light emitting device provided.
前記薄膜は、前記波長変換層よりも未硬化の前記光反射部材に対する接触角が大きい請求項1記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the thin film has a larger contact angle with respect to the uncured light reflecting member than the wavelength conversion layer. 前記薄膜は、前記光透過性基板よりも未硬化の前記光反射部材に対する接触角が大きい請求項2記載の半導体発光装置。   The semiconductor light emitting device according to claim 2, wherein the thin film has a larger contact angle with respect to the uncured light reflecting member than the light transmissive substrate. 前記波長変換層の上面が粗面である請求項1乃至請求項4の何れか1項記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein an upper surface of the wavelength conversion layer is a rough surface. 前記光透過性基板の上面が粗面である請求項2又は請求項4記載の半導体発光装置。   The semiconductor light emitting device according to claim 2, wherein an upper surface of the light transmissive substrate is a rough surface. 前記薄膜が有機物からなる請求項1乃至請求項6の何れか1項記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the thin film is made of an organic material. 前記薄膜がフッ素樹脂からなる請求項1乃至請求項6の何れか1項記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the thin film is made of a fluororesin. 前記薄膜の厚さが1nm〜10μmである請求項1乃至請求項8の何れか1項記載の半導体発光装置。
体発光装置。
The semiconductor light emitting device according to claim 1, wherein the thin film has a thickness of 1 nm to 10 μm.
Body light emitting device.
前記薄膜が、水に対する接触角が40°以上である請求項1乃至請求項9の何れか1項記載の半導体発光装置。   The semiconductor light emitting device according to any one of claims 1 to 9, wherein the thin film has a contact angle with water of 40 ° or more.
JP2016218246A 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method Active JP6800702B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016218246A JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method
US15/800,495 US10971663B2 (en) 2016-11-08 2017-11-01 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218246A JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018078170A true JP2018078170A (en) 2018-05-17
JP6800702B2 JP6800702B2 (en) 2020-12-16

Family

ID=62151002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218246A Active JP6800702B2 (en) 2016-11-08 2016-11-08 Semiconductor light emitting device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6800702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002632A (en) * 2019-06-25 2021-01-07 豊田合成株式会社 Light-emitting device and method for manufacturing the same
KR20210092265A (en) * 2018-11-20 2021-07-23 오스람 옵토 세미컨덕터스 게엠베하 Ceramic transformation element and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041844A (en) * 2006-08-03 2008-02-21 Toyoda Gosei Co Ltd Optical apparatus and manufacturing method thereof
JP2008288409A (en) * 2007-05-18 2008-11-27 Toshiba Corp Light-emitting device, and manufacturing method thereof
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012503876A (en) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Coated light emitting device and method for coating light emitting device
JP2012079840A (en) * 2010-09-30 2012-04-19 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
JP2012129237A (en) * 2010-12-13 2012-07-05 Stanley Electric Co Ltd Light-emitting device and method for manufacturing the same
US20120205695A1 (en) * 2011-02-16 2012-08-16 Tzu-Han Lin Light-emitting diode device
JP2013105877A (en) * 2011-11-14 2013-05-30 Koito Mfg Co Ltd Light-emitting device
JP2014067876A (en) * 2012-09-26 2014-04-17 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
WO2015019532A1 (en) * 2013-08-09 2015-02-12 ソニー株式会社 Display device and electronic apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041844A (en) * 2006-08-03 2008-02-21 Toyoda Gosei Co Ltd Optical apparatus and manufacturing method thereof
JP2008288409A (en) * 2007-05-18 2008-11-27 Toshiba Corp Light-emitting device, and manufacturing method thereof
JP2012503876A (en) * 2008-09-25 2012-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Coated light emitting device and method for coating light emitting device
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012079840A (en) * 2010-09-30 2012-04-19 Stanley Electric Co Ltd Light-emitting device and manufacturing method thereof
JP2012129237A (en) * 2010-12-13 2012-07-05 Stanley Electric Co Ltd Light-emitting device and method for manufacturing the same
US20120205695A1 (en) * 2011-02-16 2012-08-16 Tzu-Han Lin Light-emitting diode device
JP2013105877A (en) * 2011-11-14 2013-05-30 Koito Mfg Co Ltd Light-emitting device
JP2014067876A (en) * 2012-09-26 2014-04-17 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
WO2015019532A1 (en) * 2013-08-09 2015-02-12 ソニー株式会社 Display device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092265A (en) * 2018-11-20 2021-07-23 오스람 옵토 세미컨덕터스 게엠베하 Ceramic transformation element and method for producing same
KR102568746B1 (en) * 2018-11-20 2023-08-22 에이엠에스-오스람 인터내셔널 게엠베하 Ceramic conversion elements and methods for producing them
JP2021002632A (en) * 2019-06-25 2021-01-07 豊田合成株式会社 Light-emitting device and method for manufacturing the same
JP7226131B2 (en) 2019-06-25 2023-02-21 豊田合成株式会社 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP6800702B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5526232B2 (en) Light emitting diode with molded reflective sidewall coating
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4771179B2 (en) Lighting device
JP6215525B2 (en) Semiconductor light emitting device
WO2010123059A1 (en) Method for manufacturing led light emitting device
JP6982233B2 (en) Light emitting device and its manufacturing method
US20120299463A1 (en) Light emitting device and illumination apparatus using same
KR20060048617A (en) Light-emitting apparatus and illuminating apparatus
KR20090002835A (en) Nitride light emitting device and method of making the same
WO2007114306A1 (en) Light emitting device
JP6065408B2 (en) Light emitting device and manufacturing method thereof
JP2018049875A (en) Semiconductor light-emitting device and lamp for vehicle
JP2008147610A (en) Light emitting device
US10991859B2 (en) Light-emitting device and method of manufacturing the same
US20210296541A1 (en) Light emitting device with high near-field contrast ratio
JP2017152475A (en) Light-emitting device
JP5374332B2 (en) Lighting device
JP6800703B2 (en) Semiconductor light emitting device
JP6116228B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6800702B2 (en) Semiconductor light emitting device and its manufacturing method
JP6097040B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2024050890A (en) Light emitting device and method for manufacturing the same
JP2018190771A (en) Light-emitting device and method for manufacturing the same
US10971663B2 (en) Semiconductor light emitting device
JP5781409B2 (en) Semiconductor light emitting element array and vehicle lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250