JP2018076991A - Operation method of refrigerator - Google Patents

Operation method of refrigerator Download PDF

Info

Publication number
JP2018076991A
JP2018076991A JP2016218173A JP2016218173A JP2018076991A JP 2018076991 A JP2018076991 A JP 2018076991A JP 2016218173 A JP2016218173 A JP 2016218173A JP 2016218173 A JP2016218173 A JP 2016218173A JP 2018076991 A JP2018076991 A JP 2018076991A
Authority
JP
Japan
Prior art keywords
temperature
defrosting
refrigerator
compressor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016218173A
Other languages
Japanese (ja)
Inventor
加賀 進一
Shinichi Kaga
進一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2016218173A priority Critical patent/JP2018076991A/en
Publication of JP2018076991A publication Critical patent/JP2018076991A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator which can surely perform defrosting of a cooling part by a defrosting heater even in the case where an ambient temperature surrounding the refrigerator is low, which can lower a refrigerant pressure in a refrigeration circuit even in the case where the ambient temperature is high, which can deal with a compressor whose starting torque is small, and which has suppressed manufacturing cost and power consumption cost low.SOLUTION: A refrigerator 10 comprises: a compressor 32 for compressing a refrigerant; a condenser 34 for condensing the refrigerant from the compressor 32; expansion means 36 for expanding the volume of the refrigerant from the condenser 34; an evaporator 18 for evaporating the refrigerant from the expansion means 36; an article storage chamber 14 cooled by the evaporator 18; a defrosting heater 22 for removing the frost which has grown in the evaporator 18; and a defrosting completion detection sensor 24 for detecting the completion of defrosting in the evaporator 18 by the defrosting heater 22. The defrosting completion detection temperature by the defrosting completion detection sensor 24 is varied according to an ambient temperature.SELECTED DRAWING: Figure 4

Description

この発明は冷蔵庫の運転方法に関し、更に詳しくは、除霜運転に際し蒸発器の霜取りを電気ヒーターで行う冷蔵庫において、圧縮機の起動トルクが小さくても、外気温度の変動に影響されることのない冷蔵庫の運転制御方法に関するものである。   The present invention relates to a refrigerator operation method, and more particularly, in a refrigerator in which an evaporator is defrosted by an electric heater during a defrosting operation, even if the starting torque of the compressor is small, it is not affected by fluctuations in the outside air temperature. The present invention relates to an operation control method for a refrigerator.

業務用の冷蔵庫は、一般に物品収納室の内部容積が大きく、また大量の要冷蔵品が貯蔵されることが多い。このため、冷蔵庫における冷凍回路の圧縮機に冷却負荷が大きく加わり、該圧縮機の起動性が悪くなることがある。従って、定常の冷却運転に入ってしまえば、それほど起動トルクは大きくなくても良いにも拘わらず、大きな冷却負荷を収納した冷蔵庫を円滑に起動させるため起動トルクの大きい圧縮機を採用する必要がある。   A commercial refrigerator generally has a large internal volume of an article storage room and often stores a large amount of refrigerated goods. For this reason, a cooling load is greatly applied to the compressor of the refrigeration circuit in the refrigerator, and the startability of the compressor may deteriorate. Therefore, once a steady cooling operation is started, it is necessary to employ a compressor having a large starting torque in order to smoothly start a refrigerator storing a large cooling load, although the starting torque may not be so large. is there.

本発明は、蒸発器により冷却される冷却部の霜取りを電気ヒーター(以下「除霜ヒーター」という)で行う冷蔵庫に適用されるものであるので、この冷蔵庫の概略構造を先に説明する。なお、本発明における冷蔵庫は、物品収納室で物品を冷蔵する機種だけでなく、庫内に物品を冷凍保管する冷凍庫も、該収納庫の内部を区画して夫々を冷凍室および冷蔵室として使用し得る冷凍・冷蔵庫も含むものとする。   Since the present invention is applied to a refrigerator in which the defrosting of the cooling section cooled by the evaporator is performed by an electric heater (hereinafter referred to as “defrosting heater”), the schematic structure of the refrigerator will be described first. Note that the refrigerator in the present invention is not only a model that refrigerates articles in the article storage room, but also a freezer that stores articles in a refrigerator in a freezer compartment, and uses the compartment as a freezer compartment and a refrigerator compartment, respectively. Also includes freezing and refrigerators that can be used.

図4は、業務用に使用される大容量の冷蔵庫10の概略断面図であって、筐体12の内部に物品収納室14が画成されている。前記物品収納室14の上方には、冷却部19が配設されると共に、該冷却部19に冷凍回路16(後述)の一部をなす蒸発器18が配設されている。また、前記冷却部19に近接して、庫内空気を撹拌する庫内ファン20が配置されている。更に、前記蒸発器18により冷却される冷却部19には、冷却運転中に庫内空気に含まれる湿分が凍結して霜が成長するので、この霜を除去する除霜ヒーター22が設けられている。そして除霜運転に入って前記除霜ヒーター22に通電され、前記冷却部19に付着した霜が除去されると、該冷却部19に近接して設けた除霜完了検知センサー24がこの除霜完了を検知する。除霜完了検知センサー24は、バイメタルや形状記憶合金による機械式検知手段や、サーミスタ、熱電対等の電気式検知手段が採用される。更に、前記物品収納室14において冷却部19の近傍には、庫内の温度を検知する庫内温度検知センサー26が配設されている。   FIG. 4 is a schematic cross-sectional view of a large-capacity refrigerator 10 used for business purposes, and an article storage chamber 14 is defined inside the housing 12. A cooling unit 19 is disposed above the article storage chamber 14, and an evaporator 18 forming a part of a refrigeration circuit 16 (described later) is disposed in the cooling unit 19. In addition, an internal fan 20 for agitating the internal air is disposed in the vicinity of the cooling unit 19. Further, the cooling unit 19 cooled by the evaporator 18 is provided with a defrosting heater 22 for removing the frost because moisture contained in the internal air freezes and frost grows during the cooling operation. ing. Then, when the defrosting operation is started and the defrost heater 22 is energized and the frost attached to the cooling unit 19 is removed, the defrosting completion detection sensor 24 provided in the vicinity of the cooling unit 19 detects the defrosting. Detect completion. The defrosting completion detection sensor 24 employs mechanical detection means such as bimetal or shape memory alloy, or electrical detection means such as a thermistor or a thermocouple. Further, in the article storage chamber 14, an internal temperature detection sensor 26 that detects the internal temperature is disposed in the vicinity of the cooling unit 19.

前記筐体12の上方に設けた機械室28には、前記冷凍回路16が収められている。この冷凍回路16は、冷媒を圧縮する圧縮機32と、圧縮されて高温になっている冷媒を冷却して凝縮させる凝縮器34と、凝縮された冷媒を体積膨張させる膨張手段36と、前記蒸発器18とからなり、これらの部材は前記の順序で管路38により連続されて冷媒の循環系を構成している。なお、参照符号40は、前記凝縮器34を空冷するファンモーターを示している。また、前記膨張手段36は、図示例ではキャピラリーチューブを使用しているが、開閉弁からなる膨張弁であってもよい。   The refrigeration circuit 16 is housed in a machine room 28 provided above the housing 12. The refrigeration circuit 16 includes a compressor 32 that compresses the refrigerant, a condenser 34 that cools and condenses the compressed high-temperature refrigerant, expansion means 36 that expands the volume of the condensed refrigerant, and the evaporation. These members are connected by the pipe line 38 in the above-described order to constitute a refrigerant circulation system. Reference numeral 40 indicates a fan motor for air-cooling the condenser 34. The expansion means 36 uses a capillary tube in the illustrated example, but may be an expansion valve composed of an on-off valve.

前記冷凍回路16において圧縮機32を起動すると、該圧縮機32で圧縮されて液化した高温の冷媒は前記管路38を流れて前記凝縮器34へ流入し、ここで冷却された後に前記膨張手段36へ流入する。この膨張手段36の出口で冷媒は体積膨張して気化冷媒となり、前記蒸発器18で熱交換を行って前記冷却部19を冷却し、これにより前記物品収納室14の庫内が冷却される。   When the compressor 32 is started in the refrigeration circuit 16, the high-temperature refrigerant compressed and liquefied by the compressor 32 flows through the pipe line 38 and flows into the condenser 34, where it is cooled and then expanded. 36. The refrigerant expands in volume at the outlet of the expansion means 36 to become a vaporized refrigerant, and heat exchange is performed by the evaporator 18 to cool the cooling unit 19, thereby cooling the interior of the article storage chamber 14.

特許第5008348号公報Japanese Patent No. 5008348

図4に示す業務用の冷蔵庫10では、前述したように蒸発器18で冷却される冷却部19への霜付きが多いため前記除霜ヒーター22を使用している。この除霜ヒーター22で霜取りを強制的に行う所謂ヒーターデフロスト方式では、該除霜ヒーター22による霜取りの完了を、前記除霜完了検知センサー24が検出する前記冷却部19の温度変化により判断している。そして前記ヒーターデフロスト方式の場合、除霜完了検知センサー24による除霜完了検知温度は高く設定されている。しかし、除霜完了検知センサー24の除霜完了検知温度を高くすると、除霜運転中に前記冷却部19の温度が上昇するために、前記冷凍回路16における冷媒の圧力が高くなる。このことは、冷凍回路16の圧縮機32に大きな冷却負荷が加わることを意味し、従って該圧縮機32の起動トルクを大きくする必要があった。すなわち、定常的な冷凍運転に入っているときは起動トルクの大きな圧縮機32を必要としないにも拘わらず、ヒーターデフロスト方式を採用した冷蔵庫10で除霜運転に移行すると、大きい起動トルクが必要になるため、容量の大きな圧縮機32を備え付ける要請があり、製造コストおよびランニングコストの点で不経済であった。   In the commercial refrigerator 10 shown in FIG. 4, the defrost heater 22 is used because there is much frost on the cooling unit 19 cooled by the evaporator 18 as described above. In the so-called heater defrost method in which defrosting is forcibly performed by the defrosting heater 22, the completion of defrosting by the defrosting heater 22 is determined by the temperature change of the cooling unit 19 detected by the defrosting completion detection sensor 24. Yes. In the case of the heater defrost method, the defrost completion detection temperature by the defrost completion detection sensor 24 is set high. However, if the defrost completion detection temperature of the defrost completion detection sensor 24 is increased, the temperature of the cooling unit 19 rises during the defrosting operation, so that the refrigerant pressure in the refrigeration circuit 16 increases. This means that a large cooling load is applied to the compressor 32 of the refrigeration circuit 16, and therefore it is necessary to increase the starting torque of the compressor 32. That is, when the compressor 10 having a large starting torque is not required during the steady refrigeration operation, a large starting torque is required when the refrigerator 10 adopting the heater defrost method is shifted to the defrosting operation. Therefore, there is a request to provide a compressor 32 having a large capacity, which is uneconomical in terms of manufacturing cost and running cost.

本発明は、前述した従来技術の課題に鑑み提案されたものであって、ヒーターデフロスト方式を採用した例えば業務用の冷蔵庫において、除霜ヒーターに設定される除霜完了検知センサー24により検出される除霜完了検知温度を、該冷蔵庫の外気温度に応じて変動させることで前記課題を解決したものである。   The present invention has been proposed in view of the above-described problems of the prior art, and is detected by a defrosting completion detection sensor 24 set in a defrosting heater, for example, in a commercial refrigerator that employs a heater defrost system. The said subject is solved by changing defrost completion detection temperature according to the external temperature of this refrigerator.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
冷媒を圧縮する圧縮機と、前記圧縮機からの冷媒を凝縮する凝縮器と、前記凝縮器からの冷媒を体積膨張させる膨張手段と、前記膨張手段からの冷媒を蒸発させる蒸発器と、前記蒸発器により冷却される物品収納室と、前記蒸発器に成長した霜を取る除霜ヒーターと、前記除霜ヒーターによる蒸発器の除霜完了を検知する除霜完了検知センサーとからなる冷蔵庫において、
前記除霜完了検知センサーにおける除霜完了検知温度を、外気温度に応じて変動させるようにしたことを要旨とする。
請求項1に係る発明によれば、圧縮機の起動トルクが小さくても冷蔵庫の運転をなし得るので、大容量の圧縮機とする必要がなく、製造コストと電力消費コストとを抑えることができる。
In order to solve the problem and achieve the intended object, the invention according to claim 1
A compressor for compressing the refrigerant; a condenser for condensing the refrigerant from the compressor; an expansion means for volume expansion of the refrigerant from the condenser; an evaporator for evaporating the refrigerant from the expansion means; and the evaporation In a refrigerator comprising an article storage room cooled by a vessel, a defrost heater that removes frost grown on the evaporator, and a defrost completion detection sensor that detects completion of defrosting of the evaporator by the defrost heater,
The gist of the invention is that the defrost completion detection temperature in the defrost completion detection sensor is changed according to the outside air temperature.
According to the first aspect of the present invention, since the refrigerator can be operated even when the starting torque of the compressor is small, it is not necessary to use a large capacity compressor, and the manufacturing cost and the power consumption cost can be suppressed. .

請求項2に記載の発明では、前記外気温度が低い場合は、前記除霜完了検知センサーの除霜完了検知温度を高く設定するようにしたことを要旨とする。   The gist of the invention described in claim 2 is that when the outside air temperature is low, the defrost completion detection temperature of the defrost completion detection sensor is set high.

請求項3に記載の発明では、前記外気温度は、前記冷蔵庫に設けた外気温度検知センサーにより検知されることを要旨とする。   The gist of the invention described in claim 3 is that the outside air temperature is detected by an outside air temperature detection sensor provided in the refrigerator.

請求項4に記載の発明では、前記凝縮器の温度を監視する凝縮器温度検知センサーが前記圧縮機の停止中に検知した該凝縮器の温度を以て、前記外気温度と見なすようにしたことを要旨とする。
請求項4に係る発明によれば、外気温度検知センサーを設けなくても、凝縮器に必ず設けられる凝縮器温度検知センサーを使用して制御をなし得るため、製造コストを低く抑えることができる。
According to a fourth aspect of the present invention, the condenser temperature detection sensor for monitoring the temperature of the condenser regards the temperature of the condenser detected while the compressor is stopped as the outside air temperature. And
According to the invention which concerns on Claim 4, since it can control using the condenser temperature detection sensor always provided in a condenser, without providing an outside temperature detection sensor, manufacturing cost can be held down low.

請求項5に記載の発明では、前記冷蔵庫は前記凝縮器を冷却するファンモーターを備え、前記外気温度が充分に低い場合は前記蒸発器の除霜中も前記凝縮器のファンモーターを運転するようにしたことを要旨とする。
請求項5に係る発明によれば、外気温度がかなり低い場合であっても、凝縮器を冷却するファンモーターを回転させることで起動トルクが小さい圧縮機で対応することができる。
According to a fifth aspect of the present invention, the refrigerator includes a fan motor that cools the condenser, and when the outside air temperature is sufficiently low, the condenser fan motor is operated even during defrosting of the evaporator. The summary is as follows.
According to the invention which concerns on Claim 5, even if it is a case where outside temperature is quite low, it can respond with the compressor with small starting torque by rotating the fan motor which cools a condenser.

本発明によれば、冷蔵庫を取り巻く外気の温度が低い場合であっても、除霜ヒーターによる冷却部の霜取りを確実に行うことができるため、より良い顧客サービスに繋げることができる。また、外気温度が高い場合であっても、冷凍回路における冷媒圧力を下げることができ、従って起動トルクの小さい圧縮機で対応することができる。このため、製造コストと電力消費コストとを低く抑制することができる。   According to the present invention, even when the temperature of the outside air surrounding the refrigerator is low, defrosting of the cooling unit by the defrosting heater can be reliably performed, which can lead to better customer service. Further, even when the outside air temperature is high, the refrigerant pressure in the refrigeration circuit can be lowered, and accordingly, a compressor with a small starting torque can be handled. For this reason, manufacturing cost and power consumption cost can be suppressed low.

図4に示す冷蔵庫による実施例1および実施例2の除霜運転のグラフ図であって、除霜完了検知温度と外気温度との関係を示している。It is a graph of the defrost operation of Example 1 and Example 2 by the refrigerator shown in FIG. 4, Comprising: The relationship between defrost completion detection temperature and outside temperature is shown. 図4に示す冷蔵庫による実施例3の除霜運転のグラフ図であって、除霜完了検知温度と外気温度との関係を示している。It is a graph of the defrost operation of Example 3 by the refrigerator shown in FIG. 4, Comprising: The relationship between defrost completion detection temperature and external temperature is shown. 実施例1に係る冷蔵庫の運転方法による不具合を示す除霜運転のグラフ図であって、除霜完了検知温度と外気温度との関係を示している。It is a graph of the defrost operation which shows the malfunction by the operation method of the refrigerator which concerns on Example 1, Comprising: The relationship between defrost completion detection temperature and external temperature is shown. ヒーターデフロスト方式を採用した業務用冷蔵庫の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the commercial refrigerator which employ | adopted the heater defrost system. 図4に示す冷蔵庫において従来実施されている除霜運転のグラフ図であって、除霜完了検知温度と外気温度との関係を示している。It is a graph of the defrost operation conventionally implemented in the refrigerator shown in FIG. 4, Comprising: The relationship between defrost completion detection temperature and external temperature is shown. 図4に示す冷蔵庫の運転方法を実施する際に、圧縮機の起動から一定時間が経過した後に庫内ファンを起動させることを示すタイムチャートである。It is a time chart which shows starting the fan in a store | warehouse | chamber after carrying out the operating method of the refrigerator shown in FIG. 4 after a fixed time passes since starting of a compressor. 図6に示す運転方法を踏襲しながらも、庫内ファンを徐々に大きく起動させるようにすることを示すタイムチャートである。FIG. 7 is a time chart showing that the internal fan is gradually activated while following the driving method shown in FIG. 6. FIG. 図4に示す冷蔵庫の運転方法を実施する際に、庫内ファンが圧縮機と同期して起動されることを示すタイムチャートである。It is a time chart which shows that the internal fan is started synchronizing with a compressor when implementing the operating method of the refrigerator shown in FIG. 図7に示す運転方法において、更に冷却部の温度を制御要素に加えた場合のタイムチャートである。8 is a time chart when the temperature of the cooling unit is further added to the control element in the operation method shown in FIG.

次に、本発明に係る冷蔵庫の運転方法について、好適な実施例1〜3を挙げて以下に説明する。なお、各実施例が適用されるヒーターデフロスト方式の冷蔵庫は、図4に関して説明した通りであるので、同じ部材については同一の参照符号で示して説明は省略する。   Next, the operation method of the refrigerator which concerns on this invention is given below, giving suitable Examples 1-3. In addition, since the heater defrost type refrigerator to which each embodiment is applied is as described with reference to FIG. 4, the same members are denoted by the same reference numerals and description thereof is omitted.

〔実施例1〕
図4に示す冷蔵庫10における筐体12の適所には、外部の気温を監視する外気温度検知センサー30が配設されて、その検知部を該筐体12の外面に露出させている。実施例1では、前記除霜完了検知センサー24により検出される除霜完了検知温度を、前記外気温度検知センサー30により検出される外気温度に応じて変動させるものである。具体的には、外気温度検知センサー30により検出した外気温度が低い場合は、前記除霜完了検知センサー24により検知されるべき除霜完了検知温度を高く設定する。この除霜完了検知温度の変動は、線形または放物線状に連続的に変化させても、また段階的に変化させるようにしてもよい。
[Example 1]
In the refrigerator 10 shown in FIG. 4, an outside air temperature detection sensor 30 that monitors the outside air temperature is disposed at an appropriate position of the housing 12, and the detection unit is exposed on the outer surface of the housing 12. In the first embodiment, the defrosting completion detection temperature detected by the defrosting completion detection sensor 24 is changed according to the outside air temperature detected by the outside air temperature detection sensor 30. Specifically, when the outside air temperature detected by the outside air temperature detection sensor 30 is low, the defrosting completion detection temperature to be detected by the defrosting completion detection sensor 24 is set high. The variation in the defrosting completion detection temperature may be continuously changed linearly or parabolically, or may be changed stepwise.

なお、冷凍回路16の内圧(冷媒圧力)は、該冷凍回路16における一番温度の低い部分(凝縮器34)の飽和圧力より以下になるので、除霜完了検知温度を高くすると、それだけ凝縮器34の温度が低い状態が続く。このため、冷凍回路16における冷媒の圧力が高くなり、前記圧縮機32を起動するに要するトルクが大きくなる。これを逆に云うと、前記除霜完了検知センサー24に設定した除霜完了検知温度が同じであれば、外気温度が高い場合の方が前記冷凍回路16の内圧が高くなる。そこで本発明の実施例では、圧縮機32の起動トルクが小さくても良いようにするために、外気温度が低い場合は除霜完了検知センサー24の除霜完了検知温度をより高くし、また外気温度が高い場合は除霜完了検知温度をより低くするものである。   Since the internal pressure (refrigerant pressure) of the refrigeration circuit 16 is lower than the saturation pressure of the lowest temperature part (condenser 34) in the refrigeration circuit 16, the higher the defrosting completion detection temperature, the more the condenser. The temperature of 34 continues to be low. For this reason, the pressure of the refrigerant in the refrigeration circuit 16 increases, and the torque required to start the compressor 32 increases. In other words, if the defrosting completion detection temperature set in the defrosting completion detection sensor 24 is the same, the internal pressure of the refrigeration circuit 16 becomes higher when the outside air temperature is higher. Therefore, in the embodiment of the present invention, in order to allow the starting torque of the compressor 32 to be small, when the outside air temperature is low, the defrosting completion detection temperature of the defrosting completion detection sensor 24 is increased, and the outside air When temperature is high, defrost completion detection temperature is made lower.

前述した関係を、図1および図5を参照して説明する。図5は、ヒーターデフロスト方式を採用した冷蔵庫における従来の運転方法を、除霜完了検知温度(℃)と外気温度(℃)との関係で示すグラフ図である。すなわち従来は、図5に示すように、前記除霜完了検知センサー24の制御回路(図示せず)で設定される除霜完了検知温度は、外気温度と関係なく一定であった。このため、図5に2点鎖線で示す冷凍回路16の内圧(圧縮機の起動前の圧力)は外気温度の上昇に伴って大きくなり、前述した圧縮機の起動トルクが大きくなるという課題を生んでいた。   The relationship described above will be described with reference to FIGS. FIG. 5 is a graph showing the conventional operation method in the refrigerator employing the heater defrost method in relation to the defrost completion detection temperature (° C.) and the outside air temperature (° C.). That is, conventionally, as shown in FIG. 5, the defrosting completion detection temperature set by the control circuit (not shown) of the defrosting completion detection sensor 24 is constant regardless of the outside air temperature. For this reason, the internal pressure (pressure before starting the compressor) of the refrigeration circuit 16 indicated by a two-dot chain line in FIG. 5 increases as the outside air temperature rises, resulting in an increase in the starting torque of the compressor described above. It was.

しかし実施例1では、図1に示すように、外気温度が低い場合に除霜完了検知温度を高くし、この外気温度が高くなるに伴い除霜完了検知温度が低くなるように設定している。これにより、図1に2点鎖線で示す冷凍回路16の内圧(冷媒圧力)は、全体に亘り低く抑えることができる。なお、図1の実施例では、除霜完了検知温度は外気温度の上昇に伴い段階的に低くなるよう設定されているが、先に述べたように、この除霜完了検知温度を線形または放物線状に連続して変化させるようにしてもよい。   However, in Example 1, as shown in FIG. 1, when the outside air temperature is low, the defrosting completion detection temperature is increased, and the defrosting completion detection temperature is set lower as the outside air temperature becomes higher. . As a result, the internal pressure (refrigerant pressure) of the refrigeration circuit 16 indicated by a two-dot chain line in FIG. 1 can be kept low throughout. In the embodiment of FIG. 1, the defrosting completion detection temperature is set so as to decrease stepwise as the outside air temperature increases. As described above, this defrosting completion detection temperature is linear or parabolic. It may be changed continuously.

実施例1の発明によれば、ヒーターデフロスト方式の冷蔵庫において外気温度が低い場合は、除霜完了検知センサー24の除霜完了検知温度を高くすることにより、確実に冷却部19の霜取りを行うことができる。また、図1に示すように、外気温度が高い場合は除霜完了検知センサー24の除霜完了検知温度を低くすることで、同じく冷凍回路16の内圧を抑制することができ、従って起動トルクの小さい圧縮機32で済ませることができる。すなわち、容量の大きな圧縮機32を使用しなくても、起動トルクの小さい圧縮機32を採用できて製造コストが低減されると共に、電力コストが抑えられ省エネ化が達成される。   According to the invention of Example 1, when the outside air temperature is low in the heater defrost type refrigerator, the defrosting completion detection temperature of the defrosting completion detection sensor 24 is increased to surely defrost the cooling unit 19. Can do. Further, as shown in FIG. 1, when the outside air temperature is high, the internal pressure of the refrigeration circuit 16 can be similarly suppressed by lowering the defrosting completion detection temperature of the defrosting completion detection sensor 24. A small compressor 32 can be used. That is, even if the compressor 32 having a large capacity is not used, the compressor 32 having a small starting torque can be adopted, the manufacturing cost is reduced, the power cost is suppressed, and the energy saving is achieved.

〔実施例2〕
実施例1に係る運転方法の提案は、圧縮機の起動性を改善して起動トルクの大きな圧縮機に変える必要がない点で極めて優れている。但し、実施例1の発明は、外気温度を検出するために前述した外気温度検知センサー30が必要であり、その分だけ製造コストが高くなる。そこで実施例2の発明では、この外気温度検知センサー30を不要として製造コストを低減させる技術に関するものである。
[Example 2]
The proposal of the operation method according to the first embodiment is very excellent in that it is not necessary to improve the startability of the compressor and change to a compressor having a large starting torque. However, the invention of Embodiment 1 requires the above-described outside temperature detection sensor 30 in order to detect the outside temperature, and the manufacturing cost increases accordingly. Therefore, the invention of the second embodiment relates to a technique for reducing the manufacturing cost by eliminating the need for the outside air temperature detection sensor 30.

図4に関して説明したように、前記冷蔵庫10には、冷凍回路16を保護するため凝縮器温度検知センサー31が前記凝縮器34に設けられ、該凝縮器34の温度を常に監視している。しかし、除霜運転の如く前記冷凍回路16における圧縮機32の停止中は、前記凝縮器34のファンモーター40も停止するので、該凝縮器34の表面温度は略外気温度に等しくなる。このため、凝縮器温度検知センサー31が検出する温度は、外気温度と略同じであると考えてよい。すなわち、圧縮機32の停止中における凝縮器温度検知センサー31による検出温度を以て、外気温度と見做すことができる。そこで、実施例1の外気温度検知センサー30による外気温度の検出に代え、実施例2では凝縮器温度検知センサー31による検出温度を以て、制御回路を介して前記冷凍回路16の運転制御を行うものである。このため、実施例2における運転方法が示す挙動は、図1のグラフと同じになる。この実施例2の発明によれば、外気温度検知センサー30を使う必要がないため製造コストを抑えることができる。   As described with reference to FIG. 4, in the refrigerator 10, a condenser temperature detection sensor 31 is provided in the condenser 34 to protect the refrigeration circuit 16, and the temperature of the condenser 34 is constantly monitored. However, while the compressor 32 is stopped in the refrigeration circuit 16 as in the defrosting operation, the fan motor 40 of the condenser 34 is also stopped, so that the surface temperature of the condenser 34 becomes substantially equal to the outside air temperature. For this reason, it may be considered that the temperature detected by the condenser temperature detection sensor 31 is substantially the same as the outside air temperature. That is, the temperature detected by the condenser temperature detection sensor 31 when the compressor 32 is stopped can be regarded as the outside air temperature. Therefore, in place of the detection of the outside temperature by the outside temperature detection sensor 30 of the first embodiment, the operation control of the refrigeration circuit 16 is performed via the control circuit with the temperature detected by the condenser temperature detection sensor 31 in the second embodiment. is there. For this reason, the behavior which the driving method in Example 2 shows is the same as the graph of FIG. According to the invention of the second embodiment, since it is not necessary to use the outside air temperature detection sensor 30, the manufacturing cost can be reduced.

〔実施例3〕
前述した実施例1の発明は、ヒーターデフロスト方式の冷蔵庫における圧縮機の起動性を改善する点で極めて優れている。しかし、実施例1の発明であっても、外気温度がかなり低い場合には次の課題がある。すなわち、外気温度が低いときは、冷却部19の霜取りに長い時間を要してしまう。このとき、確実に冷却部19の除霜を行うため、図1に示す除霜完了検知温度を高くするのが実施例1の発明である。しかし、この除霜完了検知温度を高く設定し過ぎると、図3に示すように冷凍回路16の冷媒圧力が極めて高くなってしまい、圧縮機32の起動トルクを大きくしなければならないことがある。
Example 3
The invention of Example 1 described above is extremely excellent in that the startability of the compressor in the heater defrost type refrigerator is improved. However, even if it is invention of Example 1, when outside temperature is quite low, there exists the following subject. That is, when the outside air temperature is low, it takes a long time to defrost the cooling unit 19. At this time, in order to surely defrost the cooling unit 19, the defrost completion detection temperature shown in FIG. However, if the defrosting completion detection temperature is set too high, the refrigerant pressure in the refrigeration circuit 16 becomes extremely high as shown in FIG. 3, and the starting torque of the compressor 32 may have to be increased.

実施例3は、前記欠点を克服するためのものであって、基本的には実施例1の発明をベースとするが、前記外気温度が充分に低い場合は、前記凝縮器34のファンモーター40を除霜運転中も運転するようにしたものである。すなわち、図3に示す実施例1の場合、除霜運転中は凝縮器34のファンモーター40は停止させている。しかし、図2に示す実施例3では、除霜運転時の外気温度がかなり低い場合は、凝縮器34のファンモーター40を回転させる。これにより前記冷凍回路16における内圧は、該冷凍回路16内の一番温度が低い部分の飽和圧力より以下になるため、外気温度が低い場合であっても除霜運転中の冷凍回路16における冷媒力を低く抑えることができる。従って、外気温度が低いときの除霜完了検知温度を更に高くでき、確実に除霜ができて取引先からの苦情を減らすことができる。また、冷凍回路16の圧力がより下がるので、圧縮機32の起動トルクを小さくでき、より低廉な圧縮機を採用できて、コストダウンと省エネ化とが可能となった。   The third embodiment is for overcoming the above-mentioned drawbacks and is basically based on the invention of the first embodiment. However, when the outside air temperature is sufficiently low, the fan motor 40 of the condenser 34 is used. Is operated during the defrosting operation. That is, in the case of Example 1 shown in FIG. 3, the fan motor 40 of the condenser 34 is stopped during the defrosting operation. However, in Example 3 shown in FIG. 2, the fan motor 40 of the condenser 34 is rotated when the outside air temperature during the defrosting operation is considerably low. As a result, the internal pressure in the refrigeration circuit 16 is lower than the saturation pressure at the lowest temperature in the refrigeration circuit 16, so that the refrigerant in the refrigeration circuit 16 during the defrosting operation can be obtained even when the outside air temperature is low. Power can be kept low. Therefore, the defrost completion detection temperature when the outside air temperature is low can be further increased, and defrosting can be reliably performed, and complaints from suppliers can be reduced. Further, since the pressure of the refrigeration circuit 16 is further reduced, the starting torque of the compressor 32 can be reduced, and a cheaper compressor can be employed, thereby reducing costs and saving energy.

先に述べた如く、業務用の冷蔵庫10は、冷却負荷が大きい要冷蔵品を物品収納室14に収容することが多い。例えば、ビールサーバーに接続する前の生ビール樽は、冷却負荷が極めて大きい要冷蔵品である。このように、冷却負荷の大きい要冷蔵品を物品収納室14に収納した状態で冷蔵庫10の冷却運転を開始すると、圧縮機32が起動し冷凍回路16の冷媒圧力を低下させようとしても、前記冷却負荷が大き過ぎて冷媒圧力が下がり難いときがある。この圧縮機32に対する冷却負荷が大きい状態が続くと、該圧縮機32の駆動モータに過電流が流れ続け、遂には過電流検知センサ(図示せず)が作動して圧縮機32を停止させることになる。例えば図8に示すように、圧縮機32の起動により庫内温度は次第に低下するが、生ビール樽のような冷却負荷の大きい要冷蔵品があると、庫内温度は中々低下しない。この冷媒圧力が低下しない状態が一定時間続くと、前記の如く過電流検知センサが作動して該圧縮機32は停止してしまう。従って、冷蔵庫10に収納する要冷蔵品の冷却負荷が大きい場合であっても、冷凍回路16の冷媒圧力を速やかに下げることができるようにするには、圧縮機32として容量のより大きなものを採用する必要がある。しかしこれは、製造コストの上昇を招くと共に電力消費が大きく不経済であった。なお、前記冷却部19による冷気を物品収納室14に拡散するための前記庫内ファン20は、圧縮機32と同期して起動するようになっている。   As described above, the commercial refrigerator 10 often stores refrigerated items having a large cooling load in the article storage chamber 14. For example, a draft beer barrel before being connected to a beer server is a refrigerated product having a very large cooling load. Thus, when the cooling operation of the refrigerator 10 is started in a state where the refrigerated product having a large cooling load is stored in the article storage chamber 14, the compressor 32 is activated and the refrigerant pressure of the refrigeration circuit 16 is reduced. There are times when the cooling load is too large to reduce the refrigerant pressure. If the cooling load on the compressor 32 continues to be large, overcurrent continues to flow to the drive motor of the compressor 32, and finally an overcurrent detection sensor (not shown) is activated to stop the compressor 32. become. For example, as shown in FIG. 8, the internal temperature gradually decreases as the compressor 32 starts, but if there is a refrigerated product having a large cooling load such as a draft beer barrel, the internal temperature does not decrease moderately. If the state in which the refrigerant pressure does not decrease continues for a certain period of time, the overcurrent detection sensor operates as described above and the compressor 32 stops. Therefore, in order to quickly reduce the refrigerant pressure of the refrigeration circuit 16 even when the cooling load of the refrigerated product stored in the refrigerator 10 is large, a compressor 32 having a larger capacity is used. It is necessary to adopt. However, this causes an increase in manufacturing cost and power consumption is large and uneconomical. The internal fan 20 for diffusing the cold air from the cooling unit 19 into the article storage chamber 14 is activated in synchronization with the compressor 32.

そこで図6に示すように、前記圧縮機32を起動しても庫内ファン20は、一定時間が経過するまで回転させないでおく。すると物品収納室14の庫内空気は撹拌されないので、生ビール樽のような大きな冷却負荷の物品は徐々に冷やされる。そして、所定時間が経過して前記冷却負荷が小さくなってから、前記庫内ファン20を回転させることにより、前記冷凍回路16の低圧が下がらず圧縮機32の負荷が重い状態が続くことがなくなった。   Therefore, as shown in FIG. 6, even if the compressor 32 is started, the internal fan 20 is not rotated until a predetermined time has elapsed. Then, since the air in the store | warehouse | chamber interior of the article | item storage chamber 14 is not stirred, articles | goods with a big cooling load like a draft beer barrel are cooled gradually. Then, after the cooling load becomes small after a predetermined time has elapsed, the low pressure of the refrigeration circuit 16 does not decrease and the load of the compressor 32 does not continue to be heavy by rotating the internal fan 20. It was.

前述した図6に示す提案では、より小さな圧縮機32を採用できる点で大きな利点がある。しかし、庫内ファン20を動かさずに圧縮機32だけを起動させ、一定時間が経過して生ビール樽などの冷却負荷が小さくなってから該庫内ファン20を動かそうとしても、未だ冷却負荷が大きいために冷凍回路16の低圧が下がらず、圧縮機32の負荷が重い状態が続き運転不能になることがある。そこで、図7に示すように、図6に示す制御を踏襲しつつも、庫内ファン20を間欠的に起動させると共にその風量が増加するようにした。すなわち、庫内ファン20を動かさずに圧縮機32を先に動かし、決められた時間毎に、冷却負荷が徐々に少しずつ大きくなるよう該庫内ファン20を起動する。庫内ファン20による冷却負荷の増やし方は、間欠運転でも、台数制御(複数台あるときに運転する台数を制御する)でも、回転数制御でも、ダンパー制御でもよい。   The proposal shown in FIG. 6 described above has a great advantage in that a smaller compressor 32 can be adopted. However, even if only the compressor 32 is started without moving the internal fan 20 and the internal fan 20 is moved after a certain time has passed and the cooling load of the draft beer barrel is reduced, the cooling load is still Since it is large, the low pressure of the refrigeration circuit 16 does not drop, and the compressor 32 may continue to be heavily loaded and become inoperable. Therefore, as shown in FIG. 7, while following the control shown in FIG. 6, the internal fan 20 is started intermittently and the air volume is increased. That is, the compressor 32 is moved first without moving the internal fan 20, and the internal fan 20 is activated so that the cooling load is gradually increased every predetermined time. The method for increasing the cooling load by the internal fan 20 may be intermittent operation, unit control (control the number of units to be operated when there are a plurality of units), rotational speed control, or damper control.

図7の運転制御方法では、庫内ファン20を停止させたまま圧縮機32を動かし、決められた時間毎に、冷却負荷が少しずつ大きくなるよう該庫内ファン20を動かすようにしたものである。しかし、物品収納室14における冷却負荷が極端に大きかったり、負荷容量の異なる物品が混在していたりすると、冷凍回路16の低圧が下がらず、圧縮機32の負荷が重い状態が続いて運転不能になることが発生した。そこで図9に示すように、庫内ファン20を起動せずに圧縮機32だけを動かし、冷却部19の温度を検知して該冷却部19の温度が低くなったら、冷却負荷が少しずつ大きくなるように庫内ファン20を動かすようにする。すなわち、冷却部19等の温度を制御系数に加えるものである。庫内ファン20による冷却負荷の増やし方は、前述したように間欠運転でも、台数制御でも、回転数制御でも、ダンパー制御でもよい。また冷却部19の温度は、これに代えて庫内温度でもよい。庫内の冷却負荷が小さくなると、冷却部19の温度も下がるので、冷凍回路16の低圧が下がらず、圧縮機32の負荷が重い状態が続くことがなくなる。   In the operation control method of FIG. 7, the compressor 32 is moved while the internal fan 20 is stopped, and the internal fan 20 is moved so that the cooling load increases little by little at a predetermined time. is there. However, if the cooling load in the article storage chamber 14 is extremely large or articles having different load capacities are mixed, the low pressure of the refrigeration circuit 16 does not decrease, and the heavy load on the compressor 32 continues and the operation becomes impossible. It happened to be. Therefore, as shown in FIG. 9, if only the compressor 32 is moved without starting the internal fan 20 to detect the temperature of the cooling unit 19 and the temperature of the cooling unit 19 decreases, the cooling load increases little by little. The internal fan 20 is moved so that That is, the temperature of the cooling unit 19 or the like is added to the control system number. As described above, the method of increasing the cooling load by the internal fan 20 may be intermittent operation, number control, rotation speed control, or damper control. Moreover, the temperature of the cooling unit 19 may be the internal temperature instead of this. When the cooling load in the refrigerator is reduced, the temperature of the cooling unit 19 is also lowered, so that the low pressure of the refrigeration circuit 16 is not lowered, and the heavy load on the compressor 32 does not continue.

10 冷蔵庫,14 物品収納室,18 蒸発器,22 除霜ヒーター,
24 除霜完了検知センサー,30 外気温度検知センサー,
31 凝縮器温度検知センサー,32 圧縮機,34 凝縮器,36 膨張手段,
40 ファンモーター
10 refrigerator, 14 article storage room, 18 evaporator, 22 defrost heater,
24 Defrosting completion detection sensor, 30 Outside air temperature detection sensor,
31 condenser temperature detection sensor, 32 compressor, 34 condenser, 36 expansion means,
40 fan motor

Claims (5)

冷媒を圧縮する圧縮機(32)と、前記圧縮機(32)からの冷媒を凝縮する凝縮器(34)と、前記凝縮器(34)からの冷媒を体積膨張させる膨張手段(36)と、前記膨張手段(36)からの冷媒を蒸発させる蒸発器(18)と、前記蒸発器(18)により冷却される物品収納室(14)と、前記蒸発器(18)に成長した霜を取る除霜ヒーター(22)と、前記除霜ヒーター(22)による蒸発器(18)の除霜完了を検知する除霜完了検知センサー(24)とからなる冷蔵庫(10)において、
前記除霜完了検知センサー(24)における除霜完了検知温度を、外気温度に応じて変動させるようにした
ことを特徴とする冷蔵庫の運転方法。
A compressor (32) for compressing the refrigerant, a condenser (34) for condensing the refrigerant from the compressor (32), and an expansion means (36) for volume expansion of the refrigerant from the condenser (34), An evaporator (18) for evaporating the refrigerant from the expansion means (36), an article storage chamber (14) cooled by the evaporator (18), and removing frost grown on the evaporator (18). In the refrigerator (10) comprising the frost heater (22) and the defrost completion detection sensor (24) for detecting the defrost completion of the evaporator (18) by the defrost heater (22),
A method for operating a refrigerator, characterized in that the defrost completion detection temperature in the defrost completion detection sensor (24) is varied according to the outside air temperature.
前記外気温度が低い場合は、前記除霜完了検知センサー(24)の除霜完了検知温度を高く設定するようにした請求項1記載の冷蔵庫の運転方法。   The method of operating a refrigerator according to claim 1, wherein when the outside air temperature is low, the defrosting completion detection temperature of the defrosting completion detection sensor (24) is set high. 前記外気温度は、前記冷蔵庫(10)に設けた外気温度検知センサー(30)により検知される請求項1または2に記載の冷蔵庫の運転方法。   The method of operating a refrigerator according to claim 1 or 2, wherein the outside air temperature is detected by an outside air temperature detection sensor (30) provided in the refrigerator (10). 前記凝縮器(34)の温度を監視する凝縮器温度検知センサー(31)が前記圧縮機(32)の停止中に検知した該凝縮器(34)の温度を以て、前記外気温度と見なすようにした請求項1または2に記載の冷蔵庫の運転方法。   The condenser temperature detection sensor (31) for monitoring the temperature of the condenser (34) is regarded as the outside air temperature based on the temperature of the condenser (34) detected while the compressor (32) is stopped. The operation method of the refrigerator according to claim 1 or 2. 前記冷蔵庫(10)は前記凝縮器(34)を冷却するファンモーター(40)を備え、前記外気温度が充分に低い場合は前記蒸発器(18)の除霜中も前記凝縮器(34)のファンモーター(40)を運転するようにした請求項1〜4の何れか一項に記載の冷蔵庫の運転方法。   The refrigerator (10) includes a fan motor (40) for cooling the condenser (34), and when the outside air temperature is sufficiently low, the condenser (34) is defrosted even during the defrosting of the evaporator (18). The method for operating a refrigerator according to any one of claims 1 to 4, wherein the fan motor (40) is operated.
JP2016218173A 2016-11-08 2016-11-08 Operation method of refrigerator Pending JP2018076991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218173A JP2018076991A (en) 2016-11-08 2016-11-08 Operation method of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218173A JP2018076991A (en) 2016-11-08 2016-11-08 Operation method of refrigerator

Publications (1)

Publication Number Publication Date
JP2018076991A true JP2018076991A (en) 2018-05-17

Family

ID=62149053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218173A Pending JP2018076991A (en) 2016-11-08 2016-11-08 Operation method of refrigerator

Country Status (1)

Country Link
JP (1) JP2018076991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822767A (en) * 2019-09-30 2020-02-21 西安交通大学 Heat pump system for performing air suction preheating and defrosting by utilizing expansion machine and internal heat exchanger
CN113606847A (en) * 2021-08-10 2021-11-05 合肥美菱物联科技有限公司 Defrosting device for refrigerator evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110822767A (en) * 2019-09-30 2020-02-21 西安交通大学 Heat pump system for performing air suction preheating and defrosting by utilizing expansion machine and internal heat exchanger
CN113606847A (en) * 2021-08-10 2021-11-05 合肥美菱物联科技有限公司 Defrosting device for refrigerator evaporator

Similar Documents

Publication Publication Date Title
JP5608356B2 (en) Cargo chilled state control
JP5483995B2 (en) Control of cargo refrigeration
JP4068390B2 (en) Defrosting operation method of refrigerator equipped with two evaporators
US20150184926A1 (en) Cooling apparatus for refrigerator and control method thereof
US20100095691A1 (en) Cooling storage and method of operating the same
JP2013228130A (en) Freezer
JP4575281B2 (en) refrigerator
JP2013092291A (en) Refrigerator and freezer device
JP2018076991A (en) Operation method of refrigerator
US20070137226A1 (en) Refrigerator and method for controlling the refrigerator
WO2021070758A1 (en) Refrigerator, cooling control method, and program
JP4021209B2 (en) refrigerator
JP3746753B2 (en) Refrigeration apparatus for vehicle having two cold storages, and control method thereof
JP2006125843A (en) Cooling cycle and refrigerator
JP2008232530A (en) Refrigerator
CN105466115B (en) Refrigerator and control method thereof
JP4702101B2 (en) Refrigerator and vending machine
JP4984770B2 (en) refrigerator
JP2013053801A (en) Refrigerator
JP2005016777A (en) Refrigerator
US20140284025A1 (en) Refrigerator
JP2005337677A (en) Refrigerator
JP2003207250A (en) Refrigerator
JP2012255601A (en) Refrigerator-freezer
JP2012087952A (en) Refrigerator freezer