JP2018076854A - Exhaust system structure for internal combustion engine - Google Patents

Exhaust system structure for internal combustion engine Download PDF

Info

Publication number
JP2018076854A
JP2018076854A JP2016220831A JP2016220831A JP2018076854A JP 2018076854 A JP2018076854 A JP 2018076854A JP 2016220831 A JP2016220831 A JP 2016220831A JP 2016220831 A JP2016220831 A JP 2016220831A JP 2018076854 A JP2018076854 A JP 2018076854A
Authority
JP
Japan
Prior art keywords
exhaust
purification unit
shape
dpf
upstream end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016220831A
Other languages
Japanese (ja)
Other versions
JP6790746B2 (en
Inventor
浩典 猪股
Hironori Inomata
浩典 猪股
浩司 夏目
Koji Natsume
浩司 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016220831A priority Critical patent/JP6790746B2/en
Publication of JP2018076854A publication Critical patent/JP2018076854A/en
Application granted granted Critical
Publication of JP6790746B2 publication Critical patent/JP6790746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust system structure for an internal combustion engine capable of effectively utilizing a downstream side exhaust emission control part for purifying exhaust gas after passing though an upstream side exhaust emission control part.SOLUTION: The exhaust system structure for the internal combustion engine includes a first exhaust emission control part for purifying exhaust gas from the internal combustion engine, and a second exhaust emission control part provided on the downstream side of the first exhaust emission control part. The first axis line of the first exhaust emission control part is inclined to the second axis line of the second exhaust emission control part. When the cross section of the first exhaust emission control part is projected in the direction of the first axis line, the shape of an image projected on the upstream side end face of the second exhaust emission control part is the same as the shape of the upstream side end face of the second exhaust emission control part.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気系構造に関する。   The present invention relates to an exhaust system structure of an internal combustion engine.

従来、内燃機関の排気系に設けられ、内燃機関から排出される排気ガス中の一酸化炭素及び未燃焼炭化水素等を除去する触媒と、排気ガス中の粒子状物質を除去するフィルタと、を備えた排気浄化装置が知られている。   Conventionally, a catalyst that is provided in an exhaust system of an internal combustion engine and removes carbon monoxide and unburned hydrocarbons in exhaust gas discharged from the internal combustion engine, and a filter that removes particulate matter in the exhaust gas. An exhaust emission control device is known.

特許文献1には、触媒(第1の排気浄化部)の下流側にフィルタ(第2の排気浄化部)を設けた排気浄化装置が開示されている。特許文献1に記載の排気浄化装置では、触媒と、フィルタとを互いの中心軸が一致するように直線状に配置するとともに、フィルタの径を触媒の径よりも大きくしている。こうすることで、フィルタの上流側端面の面積を増大させ、集塵能力を向上させている。   Patent Document 1 discloses an exhaust purification device in which a filter (second exhaust purification unit) is provided on the downstream side of a catalyst (first exhaust purification unit). In the exhaust emission control device described in Patent Document 1, the catalyst and the filter are arranged in a straight line so that their center axes coincide with each other, and the diameter of the filter is made larger than the diameter of the catalyst. By doing so, the area of the upstream end face of the filter is increased and the dust collection capability is improved.

特開2014−105664号公報JP 2014-105664 A

ところで、排気浄化装置の排気浄化部(触媒、フィルタ等)を有効に活用するためには、排気ガスを排気浄化部に均等に流入させることが望まれる。   By the way, in order to effectively use the exhaust gas purification unit (catalyst, filter, etc.) of the exhaust gas purification device, it is desired that the exhaust gas flow evenly into the exhaust gas purification unit.

しかしながら、特許文献1に記載の排気浄化装置では、フィルタの上流側端面における外周寄りに排気ガスが流入し難く、フィルタを有効に活用することができないという問題があった。   However, the exhaust gas purification device described in Patent Document 1 has a problem that exhaust gas hardly flows near the outer periphery of the upstream end face of the filter, and the filter cannot be effectively used.

本発明の目的は、第1の排気浄化部を通過した後の排気ガスを浄化する第2の排気浄化部を有効に活用することができる内燃機関の排気系構造を提供することである。   An object of the present invention is to provide an exhaust system structure of an internal combustion engine that can effectively utilize a second exhaust purification unit that purifies exhaust gas after passing through the first exhaust purification unit.

本発明に係る内燃機関の排気系構造は、内燃機関からの排気ガスを浄化する第1の排気浄化部と、前記第1の排気浄化部の下流側に設けられた第2の排気浄化部とを備え、前記第1の排気浄化部の第1の軸線は、前記第2の排気浄化部の第2の軸線に対して傾斜しており、前記第1の排気浄化部の横断面を前記第1の軸線方向に投影した場合に、前記第2の排気浄化部の上流側端面に投影される像の形状が、前記第2の排気浄化部の上流側端面の形状と同一である。   An exhaust system structure of an internal combustion engine according to the present invention includes a first exhaust purification unit that purifies exhaust gas from the internal combustion engine, and a second exhaust purification unit that is provided downstream of the first exhaust purification unit. A first axis of the first exhaust purification unit is inclined with respect to a second axis of the second exhaust purification unit, and a cross-section of the first exhaust purification unit is When projected in the axial direction of 1, the shape of the image projected on the upstream end face of the second exhaust purification unit is the same as the shape of the upstream end face of the second exhaust purification unit.

本発明の内燃機関の排気系構造によれば、第1の排気浄化部を通過した後の排気ガスを第2の排気浄化部に均等に流入させることができ、第2の排気浄化部を有効に活用することができる。   According to the exhaust system structure of the internal combustion engine of the present invention, the exhaust gas after passing through the first exhaust purification unit can be made to uniformly flow into the second exhaust purification unit, and the second exhaust purification unit is effectively used. It can be used for.

本発明の一実施形態に係る排気系を示す概略図Schematic showing an exhaust system according to an embodiment of the present invention. 図1の部分拡大図Partial enlarged view of FIG. 第1の変形例を示す模式図Schematic diagram showing the first modification 第2の変形例を示す模式図Schematic diagram showing a second modification 第3の変形例を示す模式図Schematic diagram showing a third modification

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこの実施形態により限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, embodiment described below is an example and this invention is not limited by this embodiment.

図1は、本発明に係る排気系を示す概略図である。図2は、図1の部分拡大図である。なお、図1及び図2には、X軸、Y軸及びZ軸が描かれている。以下の説明では、図1及び図2における左右方向をX方向又は車両前後方向といい、右方向を「+X方向」又は「車両前側」、左方向を「−X方向」又は「車両後側」という。また、図1及び図2における上下方向をY方向又は車両上下方向といい、上方向を「+Y方向」又は「車両上側」、下方向を「−Y方向」又は「車両下側」という。さらに、図1及び図2において紙面に垂直な方向をZ方向又は車両幅方向といい、手前方向を「+Z方向」又は「車両右側」、奥方向を「−Z方向」又は「車両左側」という。また、排気通路を流れる排気ガスの流れ方向における上流側及び下流側を、単に「上流側」及び「下流側」という。   FIG. 1 is a schematic view showing an exhaust system according to the present invention. FIG. 2 is a partially enlarged view of FIG. 1 and 2, the X axis, the Y axis, and the Z axis are drawn. In the following description, the left-right direction in FIGS. 1 and 2 is referred to as the X direction or the vehicle front-rear direction, the right direction is “+ X direction” or “vehicle front side”, and the left direction is “−X direction” or “vehicle rear side”. That's it. 1 and 2 is referred to as a Y direction or a vehicle vertical direction, an upward direction is referred to as a “+ Y direction” or “vehicle upper side”, and a downward direction is referred to as a “−Y direction” or “vehicle lower side”. 1 and 2, the direction perpendicular to the paper surface is referred to as the Z direction or the vehicle width direction, the front direction is referred to as "+ Z direction" or "vehicle right side", and the back direction is referred to as "-Z direction" or "vehicle left side". . Further, the upstream side and the downstream side in the flow direction of the exhaust gas flowing through the exhaust passage are simply referred to as “upstream side” and “downstream side”.

図1及び図2に示すように、排気系1は、エンジン2の車両右側に設けられた排気マニホールド3と、排気マニホールド3の集合部に連結されたターボ過給機4と、ターボ過給機4から延びる上流側排気通路5、後処理装置6、及び下流側排気通路7と、を備える。なお、本実施形態の場合、上記各部材を、エンジン2の車両右側に配置している。ただし、車両幅方向に関して、上記各部材のエンジン2に対する配置は、図示の構造に限定されるものではない。   As shown in FIGS. 1 and 2, the exhaust system 1 includes an exhaust manifold 3 provided on the right side of the vehicle of the engine 2, a turbocharger 4 connected to a collecting portion of the exhaust manifold 3, and a turbocharger. 4, an upstream exhaust passage 5 extending from 4, an aftertreatment device 6, and a downstream exhaust passage 7. In the case of the present embodiment, the above-described members are arranged on the right side of the engine 2 in the vehicle. However, the arrangement of the above members with respect to the engine 2 in the vehicle width direction is not limited to the illustrated structure.

ターボ過給機4の排気ガス出口4aの方向(開放方向)、大きさ及び形状は、後処理装置6の形状、大きさ及び設置場所などに基づいて総合的に定められる。ここでは、排気ガス出口4aの方向は、−X方向である。排気ガス出口4aの形状は、一般的な円形状である。後処理装置6の設置場所は、ターボ過給機4の−X方向の位置に設定される。   The direction (opening direction), size, and shape of the exhaust gas outlet 4a of the turbocharger 4 are comprehensively determined based on the shape, size, installation location, and the like of the aftertreatment device 6. Here, the direction of the exhaust gas outlet 4a is the -X direction. The shape of the exhaust gas outlet 4a is a general circular shape. The installation location of the post-processing device 6 is set at a position in the −X direction of the turbocharger 4.

上流側排気通路5は、中空管状の直線管8の内部空間により構成されている。直線管8は、内部空間に上流側開口部から流入した排気ガスを、直線管8の延在方向(つまり、軸8aの方向)に沿って直線的に流通させて、下流側開口部から流出させる流路としての機能を有している。なお、本構成例の場合、軸8aは、直線管8の中心軸に相当する。   The upstream exhaust passage 5 is configured by an internal space of a hollow tubular straight tube 8. The straight pipe 8 causes the exhaust gas flowing into the internal space from the upstream opening to flow linearly along the extending direction of the straight pipe 8 (that is, the direction of the axis 8a) and flows out from the downstream opening. It has a function as a flow path. In the case of this configuration example, the shaft 8 a corresponds to the central axis of the straight tube 8.

直線管8の上流側端部は、排気ガス出口4aに接続されている。一方、直線管8の下流側端部は、後処理装置6のケース10(後述する)の上流側端部に固定されている。直線管8の延在方向(つまり、軸8aの方向)、長さ、及び中空断面形状は、排気ガス出口4aの方向、後処理装置6におけるDOC11(後述する)の位置などに基づいて総合的に定められる。   The upstream end of the straight tube 8 is connected to the exhaust gas outlet 4a. On the other hand, the downstream end of the straight pipe 8 is fixed to the upstream end of a case 10 (described later) of the post-processing device 6. The extending direction (that is, the direction of the shaft 8a), the length, and the hollow cross-sectional shape of the straight tube 8 are comprehensive based on the direction of the exhaust gas outlet 4a, the position of the DOC 11 (described later) in the aftertreatment device 6, and the like. Determined.

なお、直線管8の中空断面形状とは、直線管8の内周面により画成される内部空間の横断面(軸8aに直交する仮想平面に関する断面形状)をいう。換言すれば、直線管8の中空断面形状の外形(外周縁の形状)は、軸8aに直交する仮想平面に関する直線管8の内周面の断面形状に一致する。   Note that the hollow cross-sectional shape of the straight tube 8 refers to a transverse cross-section of the internal space defined by the inner peripheral surface of the straight tube 8 (cross-sectional shape related to a virtual plane orthogonal to the axis 8a). In other words, the outer shape (the shape of the outer peripheral edge) of the hollow cross-sectional shape of the straight tube 8 matches the cross-sectional shape of the inner peripheral surface of the straight tube 8 with respect to a virtual plane orthogonal to the axis 8a.

直線管8の延在方向は、例えば、DOC11の位置などに基づいて3次元的に傾けられる。ここでは、説明をわかりやすくするために、直線管8は、図1及び図2に示すように、排気ガス出口4aと同じ−X方向に直線状に延ばされる。また、直線管8の中空断面形状は、排気ガス出口4aの形状と同じ円形状である。   The extending direction of the straight tube 8 is tilted three-dimensionally based on, for example, the position of the DOC 11. Here, in order to make the explanation easy to understand, as shown in FIGS. 1 and 2, the straight tube 8 is extended linearly in the same −X direction as the exhaust gas outlet 4a. Moreover, the hollow cross-sectional shape of the straight tube 8 is the same circular shape as the shape of the exhaust gas outlet 4a.

直線管8の延在方向及び中空断面形状を排気ガス出口4aと同じ方向および形状とした理由は、ターボ過給機4から直線管8に流入した排気ガスの流速を、直線管8でなるべく低下させずに、高い状態に維持しつつDOC11に流出させるためである。また、直線管8の長さは、ターボ過給機4とDOC11との間の放熱を防止するために、また、排気ガスの流速の低下を抑えるために、なるべく短いことが望ましい。   The reason why the extending direction and the hollow cross-sectional shape of the straight tube 8 are the same direction and shape as the exhaust gas outlet 4a is that the flow rate of the exhaust gas flowing into the straight tube 8 from the turbocharger 4 is reduced by the straight tube 8 as much as possible. It is for making it flow out to DOC11, maintaining it in a high state without doing. Further, the length of the straight pipe 8 is preferably as short as possible in order to prevent heat dissipation between the turbocharger 4 and the DOC 11 and to suppress a decrease in the flow rate of the exhaust gas.

上述のとおり、直線管8の下流側端部には、後処理装置6の上流側端部が接続されている。後処理装置6は、管状のケース10に、排気ガスを浄化するためのDOC11(本発明の「第1の排気浄化部」に対応)及びディーゼル・パティキュレート・フィルタ(DPF)12(本発明の「第2の排気浄化部」に対応)が収容されてなる。   As described above, the upstream end of the post-processing device 6 is connected to the downstream end of the straight tube 8. The post-processing device 6 includes a tubular case 10, a DOC 11 for purifying exhaust gas (corresponding to the “first exhaust purification unit” of the present invention), and a diesel particulate filter (DPF) 12 (of the present invention). "Corresponding to the" second exhaust purification unit ") is accommodated.

ケース10は、上流側の第1ケース部14と、下流側の第2ケース部15とから構成される。DOC11は、第1ケース部14に収容されている。第1ケース部14は、DOC11の軸11a(後述する)を中心とする管状をなす。また、DPF12は、第2ケース部15に収容されている。第2ケース部15は、DPF12の軸12a(後述する)を中心とする管状をなす。図2に示すように、第2ケース部15は、第1ケース部14に対して屈曲している。DOC11と、DPF12との詳細な位置関係については後述する。   The case 10 includes an upstream first case portion 14 and a downstream second case portion 15. The DOC 11 is accommodated in the first case portion 14. The 1st case part 14 makes | forms the tubular shape centering on the axis | shaft 11a (after-mentioned) of DOC11. Further, the DPF 12 is accommodated in the second case portion 15. The second case portion 15 has a tubular shape centering on a shaft 12a (described later) of the DPF 12. As shown in FIG. 2, the second case portion 15 is bent with respect to the first case portion 14. A detailed positional relationship between the DOC 11 and the DPF 12 will be described later.

DOC11及びDPF12は、無機質マット13で第1ケース部14及び第2ケース部15に保持される(図2参照)。DOC11は、軸11aを有する柱状に形成される。なお、本実施形態の場合、軸11aは、DOC11の中心軸に相当する。軸11aは、DOC11の上流側端面11bの面直方向に延在する。つまり、DOC11の横断面形状(軸11aに直交する仮想平面に関する断面形状)は、上流側端面11bと同じ形状となる。   DOC11 and DPF12 are hold | maintained at the 1st case part 14 and the 2nd case part 15 with the inorganic mat 13 (refer FIG. 2). The DOC 11 is formed in a column shape having an axis 11a. In the present embodiment, the shaft 11a corresponds to the central axis of the DOC 11. The shaft 11a extends in the direction perpendicular to the upstream end surface 11b of the DOC 11. That is, the cross-sectional shape of the DOC 11 (the cross-sectional shape related to the virtual plane orthogonal to the axis 11a) is the same shape as the upstream end surface 11b.

同じく、DPF12は、軸12aを有する柱状に形成される。なお、本実施形態の場合、軸12aは、DPF12の中心軸に相当する。軸12aは、DPF12の上流側端面12bの面直方向に延在する。つまり、DPF12の横断面形状(軸12aに直交する仮想平面に関する断面形状)は、上流側端面12bと同じ形状となる。   Similarly, the DPF 12 is formed in a column shape having a shaft 12a. In this embodiment, the shaft 12a corresponds to the central axis of the DPF 12. The shaft 12a extends in the direction perpendicular to the upstream end surface 12b of the DPF 12. That is, the cross-sectional shape of the DPF 12 (the cross-sectional shape related to the virtual plane orthogonal to the axis 12a) is the same shape as the upstream end surface 12b.

後処理装置6の設置場所は、上述したように、ターボ過給機4の−X方向の位置に設定されている。ここで、DOC11及びDPF12は、設置場所を有効に利用するために、−X方向に直線的に配置されるのではなく、各軸11a及び12aを、X方向、Y方向及びZ方向に対して3次元的に傾けるように配置される。各軸11a及び12aの傾きについての詳細は後述する。   The installation place of the post-processing device 6 is set at the position in the −X direction of the turbocharger 4 as described above. Here, the DOC 11 and the DPF 12 are not arranged linearly in the −X direction in order to effectively use the installation location, but the axes 11a and 12a are arranged with respect to the X direction, the Y direction, and the Z direction. It is arranged so as to be tilted three-dimensionally. Details of the inclinations of the axes 11a and 12a will be described later.

DOC11は、担体としての例えばアルミナに、酸化触媒としての例えば白金、酸化イリジウムまたは酸化コバルトが担持されている。DOC11は、排気ガス中に含まれる炭化水素、一酸化炭素、窒素酸化物などの未燃焼ガスを酸化する機能を有する。なお、DOC11の基本的構造及び機能については、従来から知られているDOCと同様であるため、詳しい説明は省略する。   In DOC11, for example, platinum, iridium oxide or cobalt oxide as an oxidation catalyst is supported on alumina as a carrier. The DOC 11 has a function of oxidizing unburned gases such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas. Note that the basic structure and function of the DOC 11 are the same as those of conventionally known DOCs, and thus detailed description thereof is omitted.

DPF12は、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して構成されている。DPF12は、排気ガス中に含まれる粒子状物質(PM)を捕集する機能を有する。なお、DPF12の基本的構造及び機能については、従来から知られているDPFと同様であるため、詳しい説明は省略する。   The DPF 12 arranges a number of cells forming a grid-like exhaust flow path partitioned by porous ceramic partition walls along the flow direction of the exhaust gas, and alternately seals the upstream and downstream sides of these cells. It is configured to stop. The DPF 12 has a function of collecting particulate matter (PM) contained in the exhaust gas. Since the basic structure and function of the DPF 12 are the same as those of conventionally known DPFs, detailed description thereof is omitted.

後処理装置6の下流側端部には、下流側排気通路7が接続されている。後処理装置6で浄化された排気ガスは、下流側排気通路7を通過して外部に導出される。下流側排気通路7における下流側は、−X方向へ直線状に延びており、排気ガスは、下流側排気通路7の後端から、車両後方へ向けて導出される。   A downstream exhaust passage 7 is connected to the downstream end of the post-processing device 6. The exhaust gas purified by the post-processing device 6 passes through the downstream exhaust passage 7 and is led out to the outside. The downstream side of the downstream side exhaust passage 7 extends linearly in the −X direction, and the exhaust gas is led out from the rear end of the downstream side exhaust passage 7 toward the rear of the vehicle.

次に、後処理装置6の構造の詳細について説明する。図2には、DOC11及びDPF12を通過する排気ガスの流れが破線で示されている。また、図2には、軸8a方向から見た排気ガス出口4aの形状(すなわち、直線管8の中空断面形状)としての円Pが示されている。   Next, details of the structure of the post-processing device 6 will be described. In FIG. 2, the flow of the exhaust gas passing through the DOC 11 and the DPF 12 is indicated by a broken line. Further, FIG. 2 shows a circle P as the shape of the exhaust gas outlet 4a viewed from the direction of the shaft 8a (that is, the hollow cross-sectional shape of the straight tube 8).

また、図2には、軸11a方向から見たDOC11の上流側端面11bの外形としての楕円Qが示されている。なお、上述のとおり、DOC11の上流側端面11bの形状は、DOC11の横断面形状と同じ形状である。そのため、楕円Qは、DOC11の横断面形状を示している。   FIG. 2 shows an ellipse Q as the outer shape of the upstream end face 11b of the DOC 11 as viewed from the direction of the axis 11a. As described above, the shape of the upstream end surface 11b of the DOC 11 is the same shape as the cross-sectional shape of the DOC 11. Therefore, the ellipse Q has shown the cross-sectional shape of DOC11.

さらに、図2には、軸12a方向から見たDPF12の上流側端面12bの外形としての楕円Rが示されている。なお、上述のとおり、DPF12の上流側端面12bの形状は、DPF12の横断面形状と同じ形状である。そのため、楕円Rは、DPF12の横断面形状を示している。   Further, FIG. 2 shows an ellipse R as an outer shape of the upstream end face 12b of the DPF 12 as viewed from the direction of the axis 12a. As described above, the shape of the upstream end surface 12b of the DPF 12 is the same as the cross-sectional shape of the DPF 12. Therefore, the ellipse R indicates the cross-sectional shape of the DPF 12.

直線管8の軸8aの方向は、上述するように−X方向である。DOC11の軸11aは、−X方向の軸8aに対して3次元的に傾けられる。ここでは、説明をわかりやすくするために、図2に示すように、軸11aは、−X方向の軸8aに対してZ軸回り(反時計回り)にαだけ傾けられる。つまり、DOC11の上流側端面11bは、軸8aに対してZ軸回り(時計回り)に(π/2−α)だけ傾けられる。   The direction of the axis 8a of the straight tube 8 is the -X direction as described above. The axis 11a of the DOC 11 is tilted three-dimensionally with respect to the axis 8a in the -X direction. Here, for easy understanding, as shown in FIG. 2, the axis 11a is tilted by α around the Z axis (counterclockwise) with respect to the axis 8a in the −X direction. That is, the upstream end face 11b of the DOC 11 is inclined by (π / 2−α) around the Z axis (clockwise) with respect to the axis 8a.

また、本実施形態において、DOC11の上流側端面11bの形状である楕円Qは、直線管8の中空断面形状(ここでは、円P)を−X方向に投影した場合に、DOC11の上流側端面11bに投影される像の形状と同一である。   Further, in the present embodiment, the ellipse Q that is the shape of the upstream end surface 11b of the DOC 11 is the upstream end surface of the DOC 11 when the hollow cross-sectional shape (here, circle P) of the straight tube 8 is projected in the −X direction. The shape of the image projected on 11b is the same.

DPF12の軸12aは、軸11aに対して3次元的に傾けられる。ここでは、説明をわかりやすくするために、図2に示すように、軸12aは、軸11aに対してZ軸回り(反時計回り)にβだけ傾けられる。つまり、DPF12の上流側端面12bは、軸11aに対してZ軸回り(時計回り)に(π/2−β)だけ傾けられる。   The shaft 12a of the DPF 12 is tilted three-dimensionally with respect to the shaft 11a. Here, for easy understanding, as shown in FIG. 2, the shaft 12a is tilted by β around the Z axis (counterclockwise) with respect to the shaft 11a. That is, the upstream end surface 12b of the DPF 12 is inclined by (π / 2−β) around the Z axis (clockwise) with respect to the shaft 11a.

また、DPF12の上流側端面12bの形状である楕円Rは、DOC11の横断面形状(ここでは、楕円Q)を軸11aの方向に投影した場合に、DPF12の上流側端面11bに投影される像の形状と同一である。   Further, the ellipse R, which is the shape of the upstream end face 12b of the DPF 12, is an image projected on the upstream end face 11b of the DPF 12 when the cross-sectional shape of the DOC 11 (here, the ellipse Q) is projected in the direction of the axis 11a. The shape is the same.

<本実施形態の効果>
以上のように、本実施形態に係る内燃機関の排気系構造によれば、DPF12の上流側端面12bの形状は、DOC11の横断面形状が軸11aの方向に投影された場合に、上流側端面12bに投影される像の形状と同一である。これにより、DPF12の上流側端面12bには、外周寄りの領域も含めて、DOC11からの排気ガスが均等に流入する。そのため、DPF12を有効に活用することができる。
<Effect of this embodiment>
As described above, according to the exhaust system structure of the internal combustion engine according to the present embodiment, the shape of the upstream end surface 12b of the DPF 12 is the upstream end surface when the cross-sectional shape of the DOC 11 is projected in the direction of the axis 11a. The shape of the image projected onto 12b is the same. As a result, the exhaust gas from the DOC 11 flows evenly into the upstream end surface 12b of the DPF 12, including the region near the outer periphery. Therefore, the DPF 12 can be used effectively.

また、本実施形態に係る内燃機関の排気系構造によれば、DPF12を有効に活用することができるため、DPF12の浄化能力を上げることができる。また、DPF12の浄化能力が上げる分だけ、DPF12を小型化することが可能となる。また、DPF12を小型化した分だけ、排気系構造を省スペース化できるとともに、コストを低減することができる。   Moreover, according to the exhaust system structure of the internal combustion engine according to the present embodiment, the DPF 12 can be used effectively, and thus the purification ability of the DPF 12 can be increased. Further, the DPF 12 can be downsized by the amount that the purification ability of the DPF 12 is increased. Further, the exhaust system structure can be saved in space and the cost can be reduced by the size of the DPF 12.

また、本実施の形態に係る内燃機関の排気系構造によれば、DPF12の上流側端面12bがDOC11の軸11aに対して傾けられる。これにより、DOC11を通過して直線的に流れる排気ガスがDPF12の上流側端面12bに均等に流入するため、DOC11からの排気ガスの流れ方向をDPF12の上流側端面12bの方向へ変更する変向手段を設けることなく、DPF12を有効に活用することができる。   Further, according to the exhaust system structure of the internal combustion engine according to the present embodiment, the upstream end surface 12b of the DPF 12 is inclined with respect to the shaft 11a of the DOC 11. As a result, the exhaust gas that flows linearly through the DOC 11 flows evenly into the upstream end surface 12b of the DPF 12, so that the flow direction of the exhaust gas from the DOC 11 is changed to the direction of the upstream end surface 12b of the DPF 12. The DPF 12 can be effectively used without providing any means.

さらに、本実施形態では、DOC11の上流側端面11bの形状は、直線管8の中空断面形状が軸8aの方向に投影された場合に、上流側端面11bに投影される像の形状と同一である。これにより、ターボ過給機4の排気ガス出口4aから流出した高速の排気ガスを、DOC11の上流側端面11bに均一に流入させることができる。そのため、DOC11から流出する排気ガスも、流速が高く、均一な流れとなる。本実施形態によれば、DOC11から流出した、流速が高く、均一な流れの排気ガスを、DPF12の上流側端面12bに均一に流入させることができる。   Furthermore, in the present embodiment, the shape of the upstream end surface 11b of the DOC 11 is the same as the shape of the image projected on the upstream end surface 11b when the hollow cross-sectional shape of the straight tube 8 is projected in the direction of the axis 8a. is there. Thereby, the high-speed exhaust gas which flowed out from the exhaust-gas outlet 4a of the turbocharger 4 can be made to flow uniformly into the upstream end surface 11b of the DOC11. Therefore, the exhaust gas flowing out from the DOC 11 also has a high flow rate and a uniform flow. According to the present embodiment, the exhaust gas having a high flow velocity and flowing uniformly from the DOC 11 can be uniformly introduced into the upstream end face 12 b of the DPF 12.

これにより、DPF12の浄化能力をさらに上げることができる。また、DPF12の浄化能力が上げる分だけ、DPF12をさらに小型化することが可能となる。また、DPF12を小型化した分だけ、さらに排気系構造を省スペース化できるとともに、コストを低減することができる。   Thereby, the purification | cleaning capability of DPF12 can further be raised. Further, the DPF 12 can be further downsized by the amount that the purification capability of the DPF 12 is increased. Further, the exhaust system structure can be further reduced in space and the cost can be reduced by the size of the DPF 12.

<変形例1>
上述の実施形態では、DOC11の横断面形状及びDPF12の横断面形状をともに楕円としたが、これに限定されない。例えば、図3に示すように、DOC11の横断面形状を円とし、DPF12の横断面形状を楕円としてもよい。
<Modification 1>
In the above-described embodiment, the cross-sectional shape of the DOC 11 and the cross-sectional shape of the DPF 12 are both elliptical, but the present invention is not limited to this. For example, as shown in FIG. 3, the cross-sectional shape of the DOC 11 may be a circle, and the cross-sectional shape of the DPF 12 may be an ellipse.

<変形例2>
また、DOC11の横断面形状及びDPF12の横断面形状については、図4に示すように、DOC11の横断面形状を楕円とし、DPF12の横断面形状を円としてもよい。
<Modification 2>
As for the cross-sectional shape of the DOC 11 and the cross-sectional shape of the DPF 12, as shown in FIG. 4, the cross-sectional shape of the DOC 11 may be an ellipse, and the cross-sectional shape of the DPF 12 may be a circle.

<変形例3>
さらに、DOC11の横断面形状及びDPF12の横断面形状については、図5に示すように、楕円形状の長軸の延在方向を、軸11a及び軸12aを含む平面に対して傾斜させてもよい。
<Modification 3>
Further, regarding the cross-sectional shape of the DOC 11 and the cross-sectional shape of the DPF 12, as shown in FIG. 5, the extending direction of the elliptical long axis may be inclined with respect to the plane including the shaft 11a and the shaft 12a. .

<その他の変形例>
なお、上記実施の形態では、直線管8が車両後側に延ばされたが、本発明はこれに限らず、例えば、後処理装置6の設置場所等に応じて、車両前側に延ばされてもよい。
<Other variations>
In the above embodiment, the straight tube 8 is extended to the rear side of the vehicle. However, the present invention is not limited to this, and is extended to the front side of the vehicle, for example, depending on the installation location of the post-processing device 6. May be.

また、上記実施の形態では、DPF12の上流側にDOC11を設けたものを説明したが、これに限定されない。DPF12の上流側に、DOC11に代えて他の触媒としてのリーンNOxトラップ触媒(LNT)、選択接触還元触媒(SCR)等、排気ガスを浄化する様々な触媒を設けても良いし、DOC11に加えて、他の触媒を設けるようにしてもよい。この構成に本発明を適用した場合に、LNTの上流側端面は、直線管8の軸8aに対して所定角度で傾けられる。   Moreover, although the said embodiment demonstrated what provided DOC11 in the upstream of DPF12, it is not limited to this. Various catalysts for purifying exhaust gas such as a lean NOx trap catalyst (LNT) and a selective catalytic reduction catalyst (SCR) as other catalysts may be provided on the upstream side of the DPF 12, in addition to the DOC 11. Thus, another catalyst may be provided. When the present invention is applied to this configuration, the upstream end face of the LNT is inclined at a predetermined angle with respect to the axis 8a of the straight tube 8.

また、上記実施の形態では、DOC11の軸11aを、DOC11の上流側端面11bに対して面直方向に延びるものとし、DOC11の横断面形状を上流側端面11bの形状と同一としたが、これに限定されない。上流側端面11bを、DOC11の横断面に対して傾斜させるようにしてもよい。   In the above embodiment, the shaft 11a of the DOC 11 extends in a direction perpendicular to the upstream end surface 11b of the DOC 11, and the cross-sectional shape of the DOC 11 is the same as the shape of the upstream end surface 11b. It is not limited to. You may make it incline the upstream end surface 11b with respect to the cross section of DOC11.

また、上記実施の形態では、DPF12の軸12aを、DPF12の上流側端面12bに対して面直方向に延びるものとし、DPF12の横断面形状を上流側端面12bの形状と同一としたが、これに限定されない。上流側端面12bを、DPF12の横断面に対して傾斜させるようにしてもよい。   In the above embodiment, the shaft 12a of the DPF 12 extends in a direction perpendicular to the upstream end surface 12b of the DPF 12, and the cross-sectional shape of the DPF 12 is the same as the shape of the upstream end surface 12b. It is not limited to. The upstream end face 12b may be inclined with respect to the transverse section of the DPF 12.

本発明の内燃機関の排気系構造は、排気浄化部を有効に活用することが要求される排気ガスの後処理装置として有用である。   The exhaust system structure of the internal combustion engine of the present invention is useful as an exhaust gas aftertreatment device that requires effective use of the exhaust purification unit.

1 排気系
2 エンジン
3 排気マニホールド
4 ターボ過給機
4a 排気ガス出口
5 上流側排気通路
6 後処理装置
7 下流側排気通路
8 直線管
8a、11a、12a 軸
10 ケース
11 DOC
11b、12b 上流側端面
12 DPF
13 無機質マット
14 第1ケース部
15 第2ケース部
DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Engine 3 Exhaust manifold 4 Turbocharger 4a Exhaust gas outlet 5 Upstream exhaust passage 6 Post-processing device 7 Downstream exhaust passage 8 Straight pipe 8a, 11a, 12a Shaft 10 Case 11 DOC
11b, 12b Upstream end face 12 DPF
13 Inorganic mat 14 First case part 15 Second case part

Claims (4)

内燃機関からの排気ガスを浄化する第1の排気浄化部と、前記第1の排気浄化部の下流側に設けられる第2の排気浄化部とを備え、
前記第1の排気浄化部の第1の軸線は、前記第2の排気浄化部の第2の軸線に対して傾斜しており、
前記第1の排気浄化部の横断面を前記第1の軸線方向に投影した場合に、前記第2の排気浄化部の上流側端面に投影される像の形状が、前記第2の排気浄化部の上流側端面の形状と同一である、
内燃機関の排気系構造。
A first exhaust gas purification unit that purifies exhaust gas from the internal combustion engine; and a second exhaust gas purification unit that is provided downstream of the first exhaust gas purification unit;
A first axis of the first exhaust purification unit is inclined with respect to a second axis of the second exhaust purification unit;
When a cross section of the first exhaust purification unit is projected in the first axial direction, the shape of the image projected on the upstream end face of the second exhaust purification unit is the second exhaust purification unit. The shape of the upstream end face of
The exhaust system structure of an internal combustion engine.
前記第2の排気浄化部の横断面形状が、前記第2の排気浄化部の上流側端面の形状と同一である、
請求項1に記載の内燃機関の排気系構造。
The cross-sectional shape of the second exhaust purification unit is the same as the shape of the upstream end surface of the second exhaust purification unit.
The exhaust system structure of the internal combustion engine according to claim 1.
前記第1の排気浄化部の横断面形状及び前記第2の排気浄化部の上流側端面の形状は、楕円である、
請求項1又は2に記載の内燃機関の排気系構造。
The cross-sectional shape of the first exhaust purification unit and the shape of the upstream end face of the second exhaust purification unit are elliptical.
The exhaust system structure of the internal combustion engine according to claim 1 or 2.
前記楕円の長軸の延在方向は、前記第1の排気浄化部の軸線及び前記第2の排気浄化部の軸線を含む平面に対して傾斜している、
請求項3に記載の内燃機関の排気系構造。
The extending direction of the major axis of the ellipse is inclined with respect to a plane including the axis of the first exhaust purification unit and the axis of the second exhaust purification unit.
An exhaust system structure for an internal combustion engine according to claim 3.
JP2016220831A 2016-11-11 2016-11-11 Exhaust system structure of internal combustion engine Active JP6790746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220831A JP6790746B2 (en) 2016-11-11 2016-11-11 Exhaust system structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220831A JP6790746B2 (en) 2016-11-11 2016-11-11 Exhaust system structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018076854A true JP2018076854A (en) 2018-05-17
JP6790746B2 JP6790746B2 (en) 2020-11-25

Family

ID=62150484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220831A Active JP6790746B2 (en) 2016-11-11 2016-11-11 Exhaust system structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP6790746B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121945A (en) * 1996-10-11 1998-05-12 Nissan Motor Co Ltd Exhaust emission control catalyst device for internal combustion engine
JP2003307128A (en) * 2002-02-18 2003-10-31 Aisin Takaoka Ltd Converter case and manufacturing method thereof
JP2007146681A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Exhaust system of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121945A (en) * 1996-10-11 1998-05-12 Nissan Motor Co Ltd Exhaust emission control catalyst device for internal combustion engine
JP2003307128A (en) * 2002-02-18 2003-10-31 Aisin Takaoka Ltd Converter case and manufacturing method thereof
JP2007146681A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Exhaust system of internal combustion engine

Also Published As

Publication number Publication date
JP6790746B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US9458750B2 (en) Integrated exhaust treatment device having compact configuration
JP5114219B2 (en) Exhaust gas purification device for internal combustion engine
CN103306784B (en) Exhaust after treatment system and method for exhaust aftertreatment
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
JP2008138654A (en) Exhaust emission control device
JP2016188579A (en) Exhaust emission control unit
JP2012149535A (en) Exhaust emission control device
JP2009133228A (en) Exhaust gas aftertreatment device
JP6790746B2 (en) Exhaust system structure of internal combustion engine
JP2016205188A (en) Exhaust emission control unit
WO2017150582A1 (en) Exhaust gas purification device for internal combustion engine
JP2018076853A (en) Exhaust system structure for internal combustion engine
JP2018123788A (en) Exhaust emission control device
JP2018076852A (en) Exhaust system structure for internal combustion engine
JP2018115586A (en) Exhaust emission control device
JP2013087745A (en) Reducing agent supply device and exhaust gas purifying apparatus including the same
JP2018076851A (en) Exhaust system structure for internal combustion engine
JP2018091152A (en) Exhaust system structure for internal combustion engine
JP6816457B2 (en) Exhaust system structure of internal combustion engine
JP2012092746A (en) Exhaust emission control device
JP6728782B2 (en) Exhaust gas purification device for internal combustion engine
JP6816458B2 (en) Exhaust system structure of internal combustion engine
JP2018071353A (en) Exhaust system structure for internal combustion engine
WO2017150513A1 (en) Exhaust gas purification device for internal combustion engine
JP2018091146A (en) bracket

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150