JP2018076853A - Exhaust system structure for internal combustion engine - Google Patents

Exhaust system structure for internal combustion engine Download PDF

Info

Publication number
JP2018076853A
JP2018076853A JP2016220829A JP2016220829A JP2018076853A JP 2018076853 A JP2018076853 A JP 2018076853A JP 2016220829 A JP2016220829 A JP 2016220829A JP 2016220829 A JP2016220829 A JP 2016220829A JP 2018076853 A JP2018076853 A JP 2018076853A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
internal combustion
combustion engine
upstream end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016220829A
Other languages
Japanese (ja)
Inventor
浩典 猪股
Hironori Inomata
浩典 猪股
浩司 夏目
Koji Natsume
浩司 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016220829A priority Critical patent/JP2018076853A/en
Publication of JP2018076853A publication Critical patent/JP2018076853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust system structure capable of effectively utilizing an exhaust emission control part.SOLUTION: The exhaust system structure for an internal combustion engine includes an exhaust passage provided so that exhaust gas from the internal combustion engine flows along a linear direction, and the exhaust emission control part having an axis inclined to the linear direction for purifying the exhaust gas from the exhaust passage. The upstream side end face in the exhaust gas flowing direction of the exhaust emission control part on which the cross-sectional shape of the exhaust passage can be projected in the linear direction has the same shape as the image of the cross-sectional shape projected on the upstream side end face.SELECTED DRAWING: Figure 2

Description

本開示は、内燃機関の排気系構造に関する。   The present disclosure relates to an exhaust system structure of an internal combustion engine.

従来、内燃機関の排気系に設けられ、内燃機関から排出される排気ガス中の一酸化炭素および未燃焼炭化水素等を除去する触媒を備えた排気浄化装置が知られている。排気浄化装置の触媒を有効に活用するためには、排気ガスを触媒の上流端に均等に流入させることが望まれる。   2. Description of the Related Art Conventionally, there has been known an exhaust purification device that is provided in an exhaust system of an internal combustion engine and includes a catalyst that removes carbon monoxide, unburned hydrocarbons, and the like in exhaust gas discharged from the internal combustion engine. In order to effectively use the catalyst of the exhaust gas purification device, it is desired that the exhaust gas be allowed to uniformly flow into the upstream end of the catalyst.

特許文献1には、排気ガス導管に真っ直ぐな管が設けられ、真っ直ぐな管の軸に対して触媒の上流側端面を傾斜させるとともに、排気ガス導管に、排気ガスを触媒の上流端に均等に流入するための変向手段が設けられた排気浄化装置が開示されている。   In Patent Document 1, a straight pipe is provided in the exhaust gas conduit, the upstream end face of the catalyst is inclined with respect to the straight pipe axis, and the exhaust gas is evenly distributed in the exhaust gas conduit to the upstream end of the catalyst. An exhaust emission control device provided with a turning means for flowing in is disclosed.

また、特許文献2には、排気ガス流入管の軸に対して触媒の上流側端面を傾斜させるとともに、触媒と排気ガス流入管を接続するコーンに、排気ガスを触媒の上流端に均等に流入するための湾曲膨出部が設けられた排気浄化装置が開示されている。   Further, in Patent Document 2, the upstream end face of the catalyst is inclined with respect to the axis of the exhaust gas inflow pipe, and the exhaust gas flows evenly into the upstream end of the catalyst into the cone connecting the catalyst and the exhaust gas inflow pipe. An exhaust emission control device provided with a curved bulging portion is provided.

特表2001−526349号公報JP-T-2001-526349 特開2004−332607号公報JP 2004-332607 A

しかしながら、特許文献1に記載された触媒の上流側端面における排気ガスの流速分布は、中央部の位置、変向手段側の位置、および、その反対側の位置でそれぞれ高くなるが、それ以外の位置で低くなり、触媒を有効に活用することができないという問題があった。   However, the flow velocity distribution of the exhaust gas on the upstream end face of the catalyst described in Patent Document 1 becomes higher at the position of the central portion, the position of the turning means, and the position on the opposite side, but other than that There was a problem that the position of the catalyst was lowered and the catalyst could not be used effectively.

同じく、特許文献2に記載された触媒の上流側端面においても、排気ガスの流速分布の低い場所が存在するため、触媒を有効に活用することができないという問題があった。   Similarly, the upstream end face of the catalyst described in Patent Document 2 also has a problem that the catalyst cannot be used effectively because there are places where the exhaust gas flow velocity distribution is low.

本開示の目的は、排気浄化部を有効に活用することが可能な排気系構造を提供することである。   An object of the present disclosure is to provide an exhaust system structure capable of effectively utilizing an exhaust purification unit.

本開示の内燃機関の排気系構造は、
内燃機関からの排気ガスが直線方向に沿って流れるように設けられる排気通路と、
前記直線方向に対して傾斜する軸を有し、前記排気通路からの前記排気ガスを浄化する排気浄化部と、
を備え、
前記排気浄化部における排気ガス流れ方向の上流側端面は、前記排気通路の横断面形状を前記直線方向に投影可能な面であって、前記上流側端面に投影される前記横断面形状の像と同じ形状を有する。
The exhaust system structure of the internal combustion engine of the present disclosure is:
An exhaust passage provided such that exhaust gas from the internal combustion engine flows along a linear direction;
An exhaust purification unit that has an axis inclined with respect to the linear direction and purifies the exhaust gas from the exhaust passage;
With
The upstream end surface in the exhaust gas flow direction in the exhaust purification unit is a surface capable of projecting the cross-sectional shape of the exhaust passage in the linear direction, and the image of the cross-sectional shape projected on the upstream end surface Have the same shape.

本開示の内燃機関の排気系構造によれば、排気浄化部を有効に活用することができる。   According to the exhaust system structure of the internal combustion engine of the present disclosure, the exhaust purification unit can be effectively used.

本開示の一実施の形態にかかる排気系を示す概略図Schematic showing an exhaust system according to an embodiment of the present disclosure 図1の部分拡大図Partial enlarged view of FIG. 比較例にかかるDOCの上流側端面を示す図The figure which shows the upstream end surface of DOC concerning a comparative example

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本発明はこの実施形態により限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, embodiment described below is an example and this invention is not limited by this embodiment.

図1は、本発明に係る排気系を示す概略図である。なお、図1及び図2には、X軸、Y軸及びZ軸が描かれている。以下の説明では、図1における左右方向をX方向又は車両前後方向といい、右方向を「+X方向」又は「車両前側」、左方向を「−X方向」又は「車両後側」という。また、図1における上下方向をY方向又は車両上下方向といい、上方向を「+Y方向」又は「車両上側」、下方向を「−Y方向」又は「車両下側」という。さらに、図1において紙面に垂直な方向をZ方向又は車両幅方向といい、手前方向を「+Z方向」又は「車両右側」、奥方向を「−Z方向」又は「車両左側」という。また、排気通路を流れる排気ガスの流れ方向における上流側及び下流側を、単に「上流側」及び「下流側」という。   FIG. 1 is a schematic view showing an exhaust system according to the present invention. 1 and 2, the X axis, the Y axis, and the Z axis are drawn. In the following description, the left-right direction in FIG. 1 is referred to as the X direction or the vehicle front-rear direction, the right direction is referred to as “+ X direction” or “vehicle front side”, and the left direction is referred to as “−X direction” or “vehicle rear side”. Further, the vertical direction in FIG. 1 is referred to as the Y direction or the vehicle vertical direction, the upward direction is referred to as “+ Y direction” or “vehicle upper side”, and the downward direction is referred to as “−Y direction” or “vehicle lower side”. Further, in FIG. 1, a direction perpendicular to the paper surface is referred to as a Z direction or a vehicle width direction, a front direction is referred to as “+ Z direction” or “vehicle right side”, and a back direction is referred to as “−Z direction” or “vehicle left side”. Further, the upstream side and the downstream side in the flow direction of the exhaust gas flowing through the exhaust passage are simply referred to as “upstream side” and “downstream side”.

排気系1は、図1に示すように、エンジン2の車両右側に設けられた排気マニホールド3と、排気マニホールド3の集合部に連結されたターボ過給機4と、ターボ過給機4から延びる上流側排気通路5、後処理装置6、及び下流側排気通路7と、を備える。なお、本実施形態の場合、前記各部材を、エンジン2の車両右側に配置している。ただし、車両幅方向に関して、前記各部材のエンジン2に対する配置は、図示の構造に限定されるものではない。   As shown in FIG. 1, the exhaust system 1 extends from an exhaust manifold 3 provided on the right side of the vehicle of the engine 2, a turbocharger 4 connected to a collecting portion of the exhaust manifold 3, and the turbocharger 4. An upstream exhaust passage 5, a post-treatment device 6, and a downstream exhaust passage 7. In the case of the present embodiment, the respective members are arranged on the right side of the engine 2 in the vehicle. However, the arrangement of the members with respect to the engine 2 in the vehicle width direction is not limited to the illustrated structure.

ターボ過給機4の排気ガス出口4aの方向、大きさ及び形状は、後処理装置6の形状、大きさ及び設置場所などに基づいて総合的に定められる。ここでは、排気ガス出口4aの方向は−X方向である。排気ガス出口4aの形状は一般的な円形状である。後処理装置6の設置場所は、ターボ過給機4の−X方向の位置に設定される。   The direction, size and shape of the exhaust gas outlet 4a of the turbocharger 4 are comprehensively determined based on the shape, size and installation location of the aftertreatment device 6. Here, the direction of the exhaust gas outlet 4a is the -X direction. The shape of the exhaust gas outlet 4a is a general circular shape. The installation location of the post-processing device 6 is set at a position in the −X direction of the turbocharger 4.

上流側排気通路5は、中空管状の直線管8の内部空間により構成されている。直線管8は、内部空間に上流側開口部から流入した排気ガスを、直線管8の延在方向(つまり、軸8a(図2参照)の方向)に沿って直線的に流通させて、下流側開口部から流出させる流路としての機能を有している。なお、本構成例の場合、軸8aは、直線管8の中心軸に相当する。   The upstream exhaust passage 5 is configured by an internal space of a hollow tubular straight tube 8. The straight pipe 8 causes the exhaust gas flowing into the internal space from the upstream opening to flow linearly along the extending direction of the straight pipe 8 (that is, the direction of the axis 8a (see FIG. 2)), and downstream. It has a function as a flow path that flows out from the side opening. In the case of this configuration example, the shaft 8 a corresponds to the central axis of the straight tube 8.

直線管8の上流側端部は、排気ガス出口4aに接続されている。一方、直線管8の下流側端部は、後処理装置6のケース10(後述する)の上流側端部に固定されている。直線管8の延在方向(つまり、軸8aの方向)、長さ及び中空断面形状は、排気ガス出口4aの方向、後処理装置6におけるDOC11(後述する)の位置などに基づいて総合的に定められる。   The upstream end of the straight tube 8 is connected to the exhaust gas outlet 4a. On the other hand, the downstream end of the straight pipe 8 is fixed to the upstream end of a case 10 (described later) of the post-processing device 6. The extending direction of the straight tube 8 (that is, the direction of the shaft 8a), the length, and the hollow cross-sectional shape are comprehensively based on the direction of the exhaust gas outlet 4a, the position of the DOC 11 (described later) in the aftertreatment device 6, and the like. Determined.

なお、直線管8の中空断面形状とは、直線管8の内周面により画成される内部空間の横断面形状(軸8aに直交する仮想平面に関する断面形状)をいう。換言すれば、直線管8の中空断面形状は、軸8aに直交する仮想平面に関する直線管8の内周面の断面形状と一致する。   Note that the hollow cross-sectional shape of the straight tube 8 refers to a cross-sectional shape of the internal space defined by the inner peripheral surface of the straight tube 8 (a cross-sectional shape related to a virtual plane orthogonal to the axis 8a). In other words, the hollow cross-sectional shape of the straight tube 8 matches the cross-sectional shape of the inner peripheral surface of the straight tube 8 with respect to a virtual plane orthogonal to the axis 8a.

直線管8の延在方向は、例えば、DOC11の位置などに基づいて3次元的に傾けられる。ここでは、説明をわかりやすくするために、直線管8は、図1に示すように、排気ガス出口4aと同じ−X方向に直線状に延ばされる。また、直線管8の中空断面形状は、排気ガス出口4aの形状と同じ円形状である。   The extending direction of the straight tube 8 is tilted three-dimensionally based on, for example, the position of the DOC 11. Here, in order to make the explanation easy to understand, as shown in FIG. 1, the straight tube 8 is extended linearly in the same −X direction as the exhaust gas outlet 4 a. Moreover, the hollow cross-sectional shape of the straight tube 8 is the same circular shape as the shape of the exhaust gas outlet 4a.

直線管8の延在方向および中空断面形状を排気ガス出口4aと同じ方向および形状とした理由は、ターボ過給機4から直線管8に流入した排気ガスの流速を、直線管8でなるべく低下させずに、高い状態に維持しつつDOC11に流出させるためである。また、直線管8の長さは、ターボ過給機4とDOC11との間の放熱を防止するために、また、排気ガスの流速の低下を抑えるために、なるべく短いことが望ましい。   The reason why the extending direction and the hollow cross-sectional shape of the straight pipe 8 are the same direction and shape as the exhaust gas outlet 4a is that the flow speed of the exhaust gas flowing into the straight pipe 8 from the turbocharger 4 is reduced by the straight pipe 8 as much as possible. It is for making it flow out to DOC11, maintaining it in a high state without doing. Further, the length of the straight pipe 8 is preferably as short as possible in order to prevent heat dissipation between the turbocharger 4 and the DOC 11 and to suppress a decrease in the flow rate of the exhaust gas.

直線管8の下流側端部8bには、後処理装置6が接続されている。なお、直線管8の下流側端部8bと後処理装置6とを接続する構造の詳細については後述する。   A post-processing device 6 is connected to the downstream end 8 b of the straight tube 8. The details of the structure connecting the downstream end 8b of the straight tube 8 and the post-processing device 6 will be described later.

後処理装置6は、図1に示すように、円管状のケース10に、排気ガスを浄化するための酸化触媒(DOC)11(本発明の「排気浄化部」に対応)及びディーゼルパティキュレートフィルター(DPF)12が収容されてなる。なお、図1では、DOC11等を保持するための後述する無機質マット13(図2参照)およびケース10の板厚を省略して示している。   As shown in FIG. 1, the aftertreatment device 6 includes a cylindrical case 10, an oxidation catalyst (DOC) 11 for purifying exhaust gas (corresponding to the “exhaust purification unit” of the present invention), and a diesel particulate filter. (DPF) 12 is accommodated. In FIG. 1, the inorganic mat 13 (see FIG. 2) described later for holding the DOC 11 and the like and the plate thickness of the case 10 are omitted.

DOC11およびDPF12は、無機質マット13でケース10に保持される(図2参照)。DOC11は軸11aを有する柱状に形成される。なお、本実施形態の場合、軸11aは、DOC11の中心軸に相当する。軸11aは、DOC11の上流側端面11bの面直方向に延在する。つまり、DOC11の横断面形状(軸11aに直交する仮想平面に関する断面形状)は、上流側端面11bと同じ形状となる。   The DOC 11 and the DPF 12 are held in the case 10 by the inorganic mat 13 (see FIG. 2). The DOC 11 is formed in a column shape having an axis 11a. In the present embodiment, the shaft 11a corresponds to the central axis of the DOC 11. The shaft 11a extends in the direction perpendicular to the upstream end surface 11b of the DOC 11. That is, the cross-sectional shape of the DOC 11 (the cross-sectional shape related to the virtual plane orthogonal to the axis 11a) is the same shape as the upstream end surface 11b.

同じく、DPF12は、軸12aを有する柱状に形成される。なお、本実施形態の場合、軸12aは、DPF12の中心軸に相当する。軸12aは、DPF12の上流側端面12bの面直方向に延在する。つまり、DPF12の横断面形状(軸12aに直交する仮想平面に関する断面形状)は上流側端面12bと同じ形状となる。   Similarly, the DPF 12 is formed in a column shape having a shaft 12a. In this embodiment, the shaft 12a corresponds to the central axis of the DPF 12. The shaft 12a extends in the direction perpendicular to the upstream end surface 12b of the DPF 12. That is, the cross-sectional shape of the DPF 12 (the cross-sectional shape related to the virtual plane orthogonal to the axis 12a) is the same shape as the upstream end surface 12b.

後処理装置6の設置場所は、前述したように、ターボ過給機4の−X方向の位置に定められている。ここで、DOC11およびDPF12は、設置場所を有効に利用するために、−X方向に直線的に配置されるのではなく、各軸11a,12aをX方向、Y方向およびZ方向に対して3次元的に傾けるように配置される。各軸11a,12aの傾きについての詳細は後述する。   As described above, the installation location of the post-processing device 6 is determined at the position in the −X direction of the turbocharger 4. Here, the DOC 11 and the DPF 12 are not arranged linearly in the −X direction in order to effectively use the installation location, but each of the axes 11a and 12a is 3 in the X direction, the Y direction, and the Z direction. It is arranged to tilt in a dimension. Details of the inclinations of the axes 11a and 12a will be described later.

DOC11は、担体としての例えばアルミナに、酸化触媒としての例えば白金、酸化イリジウムまたは酸化コバルトが担持されている。DOC11は、排気ガス中に含まれる炭化水素、一酸化炭素、窒素酸化物などの未燃焼ガスを酸化する機能を有する。なお、DOC11の基本的構造及び機能については、従来から知られているDOCと同様であるため、詳しい説明は省略する。   In DOC11, for example, platinum, iridium oxide or cobalt oxide as an oxidation catalyst is supported on alumina as a carrier. The DOC 11 has a function of oxidizing unburned gases such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas. Note that the basic structure and function of the DOC 11 are the same as those of conventionally known DOCs, and thus detailed description thereof is omitted.

DPF12は、多孔質セラミックスの隔壁で区画された格子状の排気流路を形成する多数のセルを排気ガスの流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して構成されている。DPF12は、排気ガス中に含まれる粒子状物質(PM)を捕集する機能を有する。なお、DPF12の基本的構造及び機能については、従来から知られているDPFと同様であるため、詳しい説明は省略する。   The DPF 12 arranges a number of cells forming a grid-like exhaust flow path partitioned by porous ceramic partition walls along the flow direction of the exhaust gas, and alternately seals the upstream and downstream sides of these cells. It is configured to stop. The DPF 12 has a function of collecting particulate matter (PM) contained in the exhaust gas. Since the basic structure and function of the DPF 12 are the same as those of conventionally known DPFs, detailed description thereof is omitted.

後処理装置6の下流側の端部には、下流側排気通路7が接続されている。後処理装置6で浄化された排気ガスは、下流側排気通路7を通って外部に導出される。下流側排気通路7における下流側は、−X方向へ直線状に延びており、排気ガスは、下流側排気通路7の後端から、車両後方へ向けて導出される。   A downstream exhaust passage 7 is connected to the downstream end of the aftertreatment device 6. The exhaust gas purified by the post-treatment device 6 is led out through the downstream exhaust passage 7. The downstream side of the downstream side exhaust passage 7 extends linearly in the −X direction, and the exhaust gas is led out from the rear end of the downstream side exhaust passage 7 toward the rear of the vehicle.

次に、直線管8の下流側端部8bと後処理装置6とを接続する構造の詳細について図1および図2を参照して説明する。図2は、図1の部分拡大図である。図2に、軸8a方向から見た排気ガス出口4aの形状(すなわち、直線管8の中空断面形状)としての円Cと、軸11a方向から見た上流側端面11bの形状としての楕円Eとを示す。また、図2に、直線管8およびDOC11における排気ガスの流れを破線で示す。   Next, details of a structure for connecting the downstream end portion 8b of the straight pipe 8 and the post-processing device 6 will be described with reference to FIG. 1 and FIG. FIG. 2 is a partially enlarged view of FIG. FIG. 2 shows a circle C as the shape of the exhaust gas outlet 4a seen from the direction of the axis 8a (that is, the hollow cross-sectional shape of the straight tube 8), and an ellipse E as the shape of the upstream end face 11b seen from the direction of the axis 11a. Indicates. FIG. 2 shows the flow of exhaust gas in the straight tube 8 and the DOC 11 with broken lines.

直線管8の軸8aの方向は、上述するように−X方向である。DOC11の軸11aは、−X方向の軸8aに対して3次元的に傾けられる。ここでは、説明をわかりやすくするために、図2に示すように、軸11aは、−X方向の軸8aに対してZ軸回り(反時計回り)に所定角度αで傾けられる。つまり、DOC11の上流側端面11bは、軸8aに対してZ軸回り(時計回り)に所定角度(π/2−α)で傾けられる。   The direction of the axis 8a of the straight tube 8 is the -X direction as described above. The axis 11a of the DOC 11 is tilted three-dimensionally with respect to the axis 8a in the -X direction. Here, for easy understanding, as shown in FIG. 2, the shaft 11a is inclined at a predetermined angle α about the Z axis (counterclockwise) with respect to the shaft 8a in the −X direction. That is, the upstream end surface 11b of the DOC 11 is inclined at a predetermined angle (π / 2−α) around the Z axis (clockwise) with respect to the shaft 8a.

DOC11の上流側端面11bは、直線管8の中空断面形状(ここでは円C)を直線方向(−X方向)に投影可能な面である。DOC11の上流側端面11bに投影される中空断面形状の像は、楕円Eの長軸と一直線上に位置する長軸を有する楕円(楕円E’)となる。また、図2に示すように、楕円E’における排気ガス出口4a寄りの長軸端は、楕円Eにおける排気ガス出口4a寄りの長軸端と一致している。ここで、「中空断面形状を投影可能な面」とは、中空断面形状の全体を投影可能な面をいい、例えば、面が−X方向(投影方向)から外れて配置されることにより、中空断面形状の一部のみが投影されるような面をいわない。なお、本実施の形態においては、楕円Eおよび楕円E’における短軸同士が一直線上に位置しており、また、短軸端同士が一致しているため、楕円E’が楕円Eと等しい関係にある。   The upstream end surface 11b of the DOC 11 is a surface that can project the hollow cross-sectional shape (here, the circle C) of the straight tube 8 in the linear direction (−X direction). The image of the hollow cross-sectional shape projected on the upstream end surface 11b of the DOC 11 is an ellipse (ellipse E ′) having a long axis that is aligned with the long axis of the ellipse E. Further, as shown in FIG. 2, the major axis end of the ellipse E ′ near the exhaust gas outlet 4 a coincides with the major axis end of the ellipse E near the exhaust gas outlet 4 a. Here, the “surface capable of projecting a hollow cross-sectional shape” refers to a surface capable of projecting the entire hollow cross-sectional shape. For example, when the surface is arranged out of the −X direction (projection direction), the surface is hollow. A surface on which only a part of the cross-sectional shape is projected is not required. In the present embodiment, the short axes of the ellipse E and the ellipse E ′ are positioned on a straight line, and the short axis ends coincide with each other, so that the ellipse E ′ is equal to the ellipse E. It is in.

すなわち、本実施形の態では、上流側端面11bの車両上下方向における下端は、直線管8の内周の車両上下方向における下端と同じ高さに位置している。なお、軸8aに対する上流側端面11bの傾斜角度は、例えば、DOC11の大きさ、形状およびその配置場所に基づいて定められる。   That is, in the present embodiment, the lower end of the upstream end surface 11b in the vehicle vertical direction is located at the same height as the lower end of the inner periphery of the straight pipe 8 in the vehicle vertical direction. In addition, the inclination angle of the upstream end surface 11b with respect to the shaft 8a is determined based on, for example, the size and shape of the DOC 11 and its location.

直線管8の下流側端部8bは、図2に示すように、楕円Eの上流側端面11bの外周縁11cに沿うように形成される。本実施形態では、ケース10の上流側端縁10aに直線管8の下流側端部8bが嵌合され、溶接されることにより、直線管8及びケース10が密閉される。   As shown in FIG. 2, the downstream end portion 8 b of the straight tube 8 is formed along the outer peripheral edge 11 c of the upstream end surface 11 b of the ellipse E. In the present embodiment, the downstream end 8b of the straight pipe 8 is fitted to the upstream end edge 10a of the case 10 and welded, whereby the straight pipe 8 and the case 10 are sealed.

図3は、比較例にかかるDOC11の上流側端面11bを示す図である。図3に上流側端面11bの形状としての楕円E、直線管8の中空断面形状としての円C、および、楕円Eの長軸を直径とする円C’を示す。   FIG. 3 is a view showing the upstream end face 11b of the DOC 11 according to the comparative example. FIG. 3 shows an ellipse E as a shape of the upstream end face 11b, a circle C as a hollow cross-sectional shape of the straight tube 8, and a circle C ′ having a major axis of the ellipse E as a diameter.

仮に、上流側端面11b’の形状を円C’とした比較例の場合に、図3に斜線部で示す領域における排気ガスの流速は、楕円Eで示す領域における排気ガスの流速に比較して低下する。排気ガスの流速が低下した分だけ、斜線部の領域における排気浄化能力が低下する。   In the case of the comparative example in which the shape of the upstream end face 11b ′ is a circle C ′, the flow rate of the exhaust gas in the region indicated by the hatched portion in FIG. descend. Exhaust gas purification capacity in the shaded area is reduced by the amount of decrease in the exhaust gas flow rate.

これに対して、本実施形態では、斜線部の領域を削除することにより、上流側端面11bの形状を楕円Eとする。楕円Eの領域は、図2に示すように、直線管8から排気ガスが直線的な流れでかつ高い流速で均一に当たる領域であり、均一に当たった排気ガスがDOC11内に均一に流入するため、DOC11を有効に活用することができる。ここで、均一というときは、本実施形態にかかる上流側端面11bにおける排気ガスの当たり及び流入が、図3に示す比較例にかかる上流側端面11b’における排気ガスの当たり及び流入より均一であるという意味である。   On the other hand, in this embodiment, the shape of the upstream end surface 11b is set to an ellipse E by deleting the shaded area. As shown in FIG. 2, the area of the ellipse E is an area where the exhaust gas uniformly hits the straight pipe 8 at a high flow velocity from the straight pipe 8, and the exhaust gas that hits uniformly flows into the DOC 11 uniformly. , DOC11 can be used effectively. Here, when uniform, the exhaust gas hits and flows in the upstream end face 11b according to the present embodiment is more uniform than the exhaust gas hits and flows in the upstream end face 11b ′ according to the comparative example shown in FIG. It means that.

<本実施形態の効果>
以上のように、本実施形態にかかる内燃機関の排気系構造によれば、DOCの上流側端面11bは、直線管8の中空断面形状が−X方向に投影可能な面であって、上流側端面11bに投影された中空断面形状の像としての楕円Eと同じ形状を有する。これにより、上流側端面11b(楕円Eで示される領域)は、直線管8からの排気ガスが均一に当たる領域となるため、DOC11を有効に活用することができる。
<Effect of this embodiment>
As described above, according to the exhaust system structure of the internal combustion engine according to the present embodiment, the upstream end surface 11b of the DOC is a surface on which the hollow cross-sectional shape of the straight tube 8 can be projected in the −X direction, It has the same shape as the ellipse E as an image of the hollow cross-sectional shape projected on the end surface 11b. As a result, the upstream end face 11b (area indicated by the ellipse E) becomes an area where the exhaust gas from the straight tube 8 uniformly hits, so that the DOC 11 can be used effectively.

また、DOC11の上流側端面11bが直線管8の軸8aに対して傾けられる。これにより、排気ガスが直接的にDOC11に流入するため、直線管8からの排気ガスの流れ方向を上流側端面11bの方向へ変更する変向手段を設ける必要がなく、コストを低減することができる。   Further, the upstream end surface 11 b of the DOC 11 is inclined with respect to the axis 8 a of the straight tube 8. As a result, since the exhaust gas flows directly into the DOC 11, there is no need to provide a turning means for changing the flow direction of the exhaust gas from the straight pipe 8 to the direction of the upstream end face 11b, thereby reducing the cost. it can.

また、DOC11の横断面形状は、上流側端面11bと同じ形状を有する。これにより、DOC11の排気浄化能力を許容範囲内に維持することができる。   Moreover, the cross-sectional shape of DOC11 has the same shape as the upstream end surface 11b. Thereby, the exhaust gas purification capacity of the DOC 11 can be maintained within an allowable range.

また、ターボ過給機4からの排気ガスが直線管8を通ってDOC11の上流側端面11bへ流れる。これにより、直線管8からの排気ガスが高い流速を維持しつつ、軸8aに沿うように整流されて、DOC11の上流側端面11bに均一にかつ直接的に当たるため、DOC11の排気浄化能力を上げることができる。また、DOC11の排気浄化能力が上がる分だけ、DOC11を小型化することが可能となる。また、DOC11を小型化した分だけ、コストを低減することができる。   Further, the exhaust gas from the turbocharger 4 flows through the straight pipe 8 to the upstream end face 11 b of the DOC 11. As a result, the exhaust gas from the straight pipe 8 is rectified along the shaft 8a while maintaining a high flow velocity, and uniformly and directly hits the upstream end surface 11b of the DOC 11, so that the exhaust purification ability of the DOC 11 is increased. be able to. In addition, the DOC 11 can be downsized by the amount that the exhaust purification capacity of the DOC 11 is increased. Further, the cost can be reduced by the amount that the DOC 11 is miniaturized.

<本実施形態の変形例>
なお、上記実施の形態では、直線管8が車両後側に延ばされたが、本発明はこれに限らず、例えば、後処理装置6の設置場所等に応じて、車両前側に延ばされてもよい。
<Modification of this embodiment>
In the above embodiment, the straight tube 8 is extended to the rear side of the vehicle. However, the present invention is not limited to this, and is extended to the front side of the vehicle, for example, depending on the installation location of the post-processing device 6. May be.

また、上記実施形態では、DOC11の軸11aは上流側端面11bの面直方向に延在される。つまり、DOC11の横断面形状と上流側端面11bと同じ形状となる。しかし、本発明はこれに限らず、例えば、軸11aは上流側端面11bの面直方向に対して傾斜する方向に延在されてもよい。DOC11の軸11aが傾斜する方向に延在されることで、DOC11の横断面形状と上流側端面11bと同じ形状とならない。この場合に、軸11aは、DOC11の排気処理能力を許容範囲に維持するために、DOC11の断面積が直線管8の中空部の断面積より大きい範囲の中で傾斜させることが好ましい。   Moreover, in the said embodiment, the axis | shaft 11a of DOC11 is extended in the surface orthogonal | vertical direction of the upstream end surface 11b. That is, it becomes the same shape as the cross-sectional shape of DOC11 and the upstream end surface 11b. However, the present invention is not limited to this. For example, the shaft 11a may extend in a direction inclined with respect to the direction perpendicular to the upstream end surface 11b. Since the shaft 11a of the DOC 11 extends in a direction in which the shaft 11a is inclined, the cross-sectional shape of the DOC 11 and the upstream end surface 11b are not the same shape. In this case, the shaft 11a is preferably inclined in a range where the cross-sectional area of the DOC 11 is larger than the cross-sectional area of the hollow portion of the straight tube 8 in order to maintain the exhaust processing capacity of the DOC 11 within an allowable range.

また、上記実施形態では、DPF12の軸12aは、図2に示すように、DOC11の軸11aに対してZ軸回りに所定角度βで2次元的に傾けられるが、例えば、DPF12の大きさ、形状およびその配置場所等に応じて、軸11aに対して3次元的に傾けられてもよい。   In the above embodiment, the shaft 12a of the DPF 12 is tilted two-dimensionally at a predetermined angle β around the Z axis with respect to the shaft 11a of the DOC 11, as shown in FIG. It may be tilted three-dimensionally with respect to the shaft 11a depending on the shape and the arrangement location thereof.

また、上記実施形態では、DPF12の上流側にDOC11を設けたものを説明したが、これに限定されない。DPF12の上流側に、DOC11に代えて、他の触媒としてのリーンNOxトラップ触媒(LNT)、選択接触還元触媒(SCR)等、排気ガスを浄化する様々な触媒を設けるようにしてもよいし、DOC11に加えて、他の触媒を設けるようにしてもよい。この構成に本発明を適用した場合に、LNTの軸は、直線管8の軸8aに対して所定角度で傾けられる。   Moreover, although the said embodiment demonstrated what provided DOC11 in the upstream of DPF12, it is not limited to this. Various catalysts for purifying exhaust gas such as a lean NOx trap catalyst (LNT) and a selective catalytic reduction catalyst (SCR) as other catalysts may be provided on the upstream side of the DPF 12, In addition to DOC11, another catalyst may be provided. When the present invention is applied to this configuration, the axis of the LNT is inclined at a predetermined angle with respect to the axis 8 a of the straight tube 8.

本開示の内燃機関の排気系構造は、排気浄化部を有効に活用することが要求される排気ガスの後処理装置として有用である。   The exhaust system structure of the internal combustion engine of the present disclosure is useful as an exhaust gas aftertreatment device that requires effective use of an exhaust purification unit.

1 排気系
2 エンジン
3 排気マニホールド
4 ターボ過給機
4a 排気ガス出口
5 上流側排気通路
6 後処理装置
7 下流側排気通路
8 直線管
8a 軸
8b 下流側端部
10 ケース
11 DOC
11a 軸
11b 上流側端面
12 DPF
12a 軸
12b 上流側端面
DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Engine 3 Exhaust manifold 4 Turbocharger 4a Exhaust gas outlet 5 Upstream exhaust passage 6 Post-processing device 7 Downstream exhaust passage 8 Straight pipe 8a Shaft 8b Downstream end 10 Case 11 DOC
11a shaft 11b upstream end face 12 DPF
12a shaft 12b upstream end face

Claims (6)

内燃機関からの排気ガスが直線方向に沿って流れるように設けられる排気通路と、
前記直線方向に対して傾斜する軸を有し、前記排気通路からの前記排気ガスを浄化する排気浄化部と、
を備え、
前記排気浄化部における排気ガス流れ方向の上流側端面は、前記排気通路の横断面形状を前記直線方向に投影可能な面であって、前記上流側端面に投影される前記横断面形状の像と同じ形状を有する内燃機関の排気系構造。
An exhaust passage provided such that exhaust gas from the internal combustion engine flows along a linear direction;
An exhaust purification unit that has an axis inclined with respect to the linear direction and purifies the exhaust gas from the exhaust passage;
With
The upstream end surface in the exhaust gas flow direction in the exhaust purification unit is a surface capable of projecting the cross-sectional shape of the exhaust passage in the linear direction, and the image of the cross-sectional shape projected on the upstream end surface An exhaust system structure of an internal combustion engine having the same shape.
前記排気浄化部の横断面形状は、前記上流側端面と同じ形状を有する請求項1に記載の内燃機関の排気系構造。   The exhaust system structure of the internal combustion engine according to claim 1, wherein a cross-sectional shape of the exhaust purification unit has the same shape as the upstream end surface. 前記排気通路は、ターボ過給機から車両後側に延ばされる請求項1または2に記載の内燃機関の排気系構造。   The exhaust system structure of the internal combustion engine according to claim 1 or 2, wherein the exhaust passage extends from a turbocharger to a vehicle rear side. 前記排気通路は、ターボ過給機から車両前側に延ばされる請求項1または2に記載の内燃機関の排気系構造。   The exhaust system structure of the internal combustion engine according to claim 1 or 2, wherein the exhaust passage extends from the turbocharger to the front side of the vehicle. 前記排気通路は、直線状の軸を有する直線管を備える請求項1から4のいずれか一項に記載の内燃機関の排気系構造。   The exhaust system structure of an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust passage includes a straight pipe having a straight shaft. 前記上流側端面の形状は、楕円である請求項1から5のいずれか一項に記載の内燃機関の排気系構造。   The exhaust system structure for an internal combustion engine according to any one of claims 1 to 5, wherein a shape of the upstream end face is an ellipse.
JP2016220829A 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine Pending JP2018076853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220829A JP2018076853A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220829A JP2018076853A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018076853A true JP2018076853A (en) 2018-05-17

Family

ID=62150442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220829A Pending JP2018076853A (en) 2016-11-11 2016-11-11 Exhaust system structure for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018076853A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123820U (en) * 1985-01-22 1986-08-04
JPS61128328U (en) * 1985-01-30 1986-08-12
EP0420462A2 (en) * 1989-09-28 1991-04-03 Rover Group Limited A catalytic converter
JPH1054229A (en) * 1996-05-23 1998-02-24 Scambia Ind Dev Ag Exhaust manifold
JPH10121945A (en) * 1996-10-11 1998-05-12 Nissan Motor Co Ltd Exhaust emission control catalyst device for internal combustion engine
JP2015523490A (en) * 2012-05-18 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG Collision-resistant system placement in the car engine room

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123820U (en) * 1985-01-22 1986-08-04
JPS61128328U (en) * 1985-01-30 1986-08-12
EP0420462A2 (en) * 1989-09-28 1991-04-03 Rover Group Limited A catalytic converter
JPH1054229A (en) * 1996-05-23 1998-02-24 Scambia Ind Dev Ag Exhaust manifold
JPH10121945A (en) * 1996-10-11 1998-05-12 Nissan Motor Co Ltd Exhaust emission control catalyst device for internal combustion engine
JP2015523490A (en) * 2012-05-18 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG Collision-resistant system placement in the car engine room

Similar Documents

Publication Publication Date Title
US9458750B2 (en) Integrated exhaust treatment device having compact configuration
JP2009167806A (en) Exhaust emission control device for internal combustion engine
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
JP5664259B2 (en) Exhaust purification device
JP2016188579A (en) Exhaust emission control unit
CN105143629A (en) Catalytic converter
JP2009133228A (en) Exhaust gas aftertreatment device
JP2018076853A (en) Exhaust system structure for internal combustion engine
KR20120056602A (en) Exhaust gas filtering device
JP2016205188A (en) Exhaust emission control unit
JP6790746B2 (en) Exhaust system structure of internal combustion engine
JP2018076851A (en) Exhaust system structure for internal combustion engine
JP2018123788A (en) Exhaust emission control device
JP2014231803A (en) Exhaust gas purification device
JP2018076852A (en) Exhaust system structure for internal combustion engine
JP2013087745A (en) Reducing agent supply device and exhaust gas purifying apparatus including the same
JP2017155695A (en) Exhaust emission control device of internal combustion engine
JP6729721B2 (en) Engine exhaust system
JP2018091152A (en) Exhaust system structure for internal combustion engine
JP6816457B2 (en) Exhaust system structure of internal combustion engine
JP6916624B2 (en) Exhaust gas purification device and catalyst for exhaust gas purification
JP6816458B2 (en) Exhaust system structure of internal combustion engine
JP2015209799A (en) Internal combustion engine exhaust emission control system
JP2018071353A (en) Exhaust system structure for internal combustion engine
JP2015098796A (en) Exhaust gas emission control system for internal combustion engine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201013