JP2018076813A - Rocket injector - Google Patents

Rocket injector Download PDF

Info

Publication number
JP2018076813A
JP2018076813A JP2016218755A JP2016218755A JP2018076813A JP 2018076813 A JP2018076813 A JP 2018076813A JP 2016218755 A JP2016218755 A JP 2016218755A JP 2016218755 A JP2016218755 A JP 2016218755A JP 2018076813 A JP2018076813 A JP 2018076813A
Authority
JP
Japan
Prior art keywords
injection
fuel
injection plate
rocket
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218755A
Other languages
Japanese (ja)
Other versions
JP6805741B2 (en
Inventor
石川 康弘
Yasuhiro Ishikawa
康弘 石川
流 篠原
Nagare Shinohara
流 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016218755A priority Critical patent/JP6805741B2/en
Publication of JP2018076813A publication Critical patent/JP2018076813A/en
Application granted granted Critical
Publication of JP6805741B2 publication Critical patent/JP6805741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rocket injector which cools an injection surface by using a fuel as a refrigerant and is advantageous for decreasing individual differences and maintaining and improving the quality.SOLUTION: A rocket injector 3 cools an injection surface 7a facing a combustion chamber C with a liquid fuel and includes: an injection plate 7 including the injection surface 7a; an injection element 8 which penetrates through the injection plate 7 and jets at least the fuel into the combustion chamber C; and a fuel supply chamber 12 which is provided at the opposite side of the combustion chamber C across the injection plate 7 and houses the fuel. The injection plate 7 includes: a porous part 71 through which the fuel in the fuel supply chamber 12 penetrates to the injection surface 7a side; and solid parts 72A, 72B having lower liquid penetrability compared to the porous part 71. The porous part 71 and the solid parts 72A, 72B are an integral structure.SELECTED DRAWING: Figure 2

Description

本開示は、ロケット噴射器に関する。   The present disclosure relates to rocket injectors.

特許文献1には、噴射面から推進剤を噴射するロケット噴射器が開示されている。噴射面には、推進剤を噴射する構造が設けられている。この構造には、一般的に同軸エレメントと称される二重管構造のノズルの他、例えば、衝突型やピストル型等の形態がある。推進剤は酸化剤及び燃料からなり、例えば、二重管構造のノズルの場合、ノズルの中心から酸化剤が噴射され、その周りから燃料が噴射される。ノズルから噴射された酸化剤及び燃料は混合され、燃焼室内での点火によって燃焼ガスとなる。この燃焼ガスは、極めて高温であるため、燃焼室に面する噴射面の熱対策が必要となる。   Patent Document 1 discloses a rocket injector that injects a propellant from an injection surface. A structure for injecting a propellant is provided on the injection surface. This structure includes, for example, a collision type, a pistol type and the like in addition to a nozzle having a double tube structure generally called a coaxial element. The propellant is composed of an oxidant and a fuel. For example, in the case of a nozzle having a double tube structure, the oxidant is injected from the center of the nozzle and the fuel is injected from the periphery thereof. The oxidant and fuel injected from the nozzle are mixed and become combustion gas by ignition in the combustion chamber. Since this combustion gas is extremely hot, it is necessary to take measures against heat on the injection surface facing the combustion chamber.

噴射面は焼結金網である多孔板からなり、噴射面に対して反対側となる裏面側は、冷媒として利用される燃料と接している。燃料は多孔板を透過して噴射面から滲み出し、噴射面を含む多孔板の冷却に寄与する。多孔板は、噴射器本体の周壁に溶接等によって固定され、また、多孔板には、燃料や酸化剤を噴射するノズルが溶接等により固定されている。   The injection surface is made of a perforated plate which is a sintered wire mesh, and the back surface side opposite to the injection surface is in contact with fuel used as a refrigerant. The fuel permeates through the perforated plate and exudes from the injection surface, and contributes to cooling of the perforated plate including the injection surface. The perforated plate is fixed to the peripheral wall of the injector body by welding or the like, and a nozzle for injecting fuel or oxidant is fixed to the perforated plate by welding or the like.

特開2013−133711号公報JP 2013-133711 A

噴射面を備えた多孔板は焼結金網によって製造されているので、溶接の際の条件だしが難しく、また、ロー付けでは、ロー材が網内に染み込んでしまって滲みだし量の個体差が大きくなり易かった。また、従来の焼結金網では、冷却量の不足によって局所的に噴射面が損傷等する場合であっても、構造的に焼結金網全体の冷却量を増やすしかなかった。そのため、冷却量の増加によって今度は燃焼効率を低下させる可能性もあり、実質的に冷却量の最適化が難しかった。つまり、従来の多孔板では、製造面や冷却量の最適化という観点で品質の向上を図り難かった。   Since the perforated plate with the injection surface is manufactured by sintered wire mesh, it is difficult to apply the welding conditions.In addition, brazing causes the brazing material to penetrate into the mesh and causes individual differences in the amount of bleeding. It was easy to grow. Further, in the conventional sintered wire mesh, even if the injection surface is locally damaged due to insufficient cooling amount, the cooling amount of the entire sintered wire mesh must be increased structurally. For this reason, there is a possibility that the combustion efficiency may be lowered this time due to the increase in the cooling amount, and it has been substantially difficult to optimize the cooling amount. In other words, it has been difficult to improve the quality of the conventional perforated plate from the viewpoint of optimizing the manufacturing surface and the cooling amount.

本開示は、燃料を冷媒として噴射面を冷却するロケット噴射器において、品質の向上を図るのに有利であるロケット噴射器を提供する。   The present disclosure provides a rocket injector that is advantageous for improving the quality of a rocket injector that cools an injection surface using fuel as a refrigerant.

本開示の一態様は、燃焼室に面する噴射面を流体状の燃料によって冷却するロケット噴射器であって、噴射面を備えた噴射板と、噴射板を貫通し、少なくとも燃料を燃焼室内に噴射するノズルと、噴射板を挟んで燃焼室とは反対側に設けられると共に、燃料を収容する燃料室と、を備え、噴射板は、燃料室内の燃料が噴射面側に向けて透過可能な多孔部と、多孔部に比べて流体の透過性が低い中実部とを備え、多孔部と中実部とは一体構造である。なお、「流体の透過性が低い」とは中実部において流体の透過性が無い場合も含まれる。   One aspect of the present disclosure is a rocket injector that cools an injection surface facing a combustion chamber with a fluid fuel, the injection plate having the injection surface, and the injection plate penetrating at least the fuel into the combustion chamber A nozzle that injects, and a fuel chamber that is provided on the opposite side of the combustion chamber across the injection plate and that contains fuel, and the injection plate is permeable to the fuel in the fuel chamber toward the injection surface side A porous part and a solid part having a lower fluid permeability than the porous part are provided, and the porous part and the solid part have an integral structure. “Low fluid permeability” includes the case where there is no fluid permeability in the solid portion.

このロケット噴射器では、燃料が多孔部を透過して噴射面から滲み出すことで、噴射板の冷却が可能になる。一方、中実部は、多孔部に比べて流体の透過性が低いので、少なくとも、多孔部に比べて溶接時の条件だしは容易であり、また、ロー付けしたとしてもロー材の染み込みは少ない。したがって、例えば、中実部を溶接等するようにすれば、容易かつ個体差が小さくでき、更に、多孔部と中実部とは一体構造であるため、多孔部と中実部とを溶接等で固定する必要は無く、品質の維持、向上に有利である。また、例えば、冷却量の不足による溶損等の生じ易い箇所を設計段階或いは、試作試験段階で特定できるのであれば、そのような箇所の透過率を、それ以外の部位より優先的に高くすることで冷却量の最適化を図り易くなる。以上より、このロケット噴射器によれば、品質の向上を図るのに有利となる。   In this rocket injector, the fuel permeates through the porous portion and oozes out from the injection surface, whereby the injection plate can be cooled. On the other hand, since the solid part has a lower fluid permeability than the porous part, at least the welding conditions are easier than the porous part, and even if brazed, the penetration of the brazing material is small . Therefore, for example, if the solid part is welded or the like, the individual difference can be easily and small, and further, since the porous part and the solid part have an integral structure, the porous part and the solid part are welded or the like. It is not necessary to fix with, and it is advantageous for quality maintenance and improvement. In addition, for example, if a location that is likely to cause melting damage due to an insufficient cooling amount can be specified at the design stage or the prototype test stage, the transmittance at such a location is preferentially made higher than other portions. This makes it easy to optimize the cooling amount. As described above, this rocket injector is advantageous for improving the quality.

いくつかの態様において、中実部は多孔部よりも密度が大きいロケット噴射器とすることができる。中実部の密度を多孔部よりも大きくすることで、結果的に多孔部よりも空隙の小さい中実部を実現し易くなり、その結果、多孔部に比べて流体の透過性が低い中実部を実現し易くなる。   In some embodiments, the solid portion can be a rocket injector having a higher density than the porous portion. By making the density of the solid part larger than that of the porous part, as a result, it becomes easier to realize a solid part having a smaller void than the porous part. As a result, the solid part has lower fluid permeability than the porous part. It becomes easy to realize the part.

いくつかの態様において、燃料室が設けられた噴射器本体を備え、噴射器本体に接続された噴射板の外縁領域は中実部であるロケット噴射器とすることができる。噴射器本体と噴射板とを溶接等して固定する場合において、中実部を溶接等することになるため品質が安定し、更に作業性も向上する。   In some embodiments, a rocket injector may be provided that includes an injector body provided with a fuel chamber and the outer edge region of the injector plate connected to the injector body is a solid part. When the injector main body and the injection plate are fixed by welding or the like, the solid portion is welded or the like, so that the quality is stabilized and the workability is further improved.

いくつかの態様の噴射面において、ノズルを囲んでノズルに接続された領域は中実部であるロケット噴射器とすることができる。ノズルと噴射板とを溶接等して固定する場合において、中実部を溶接等することになるため品質が安定し、更に作業性も向上する。   In some aspects of the injection surface, the area surrounding the nozzle and connected to the nozzle may be a solid rocket injector. When the nozzle and the injection plate are fixed by welding or the like, the solid portion is welded or the like, so that the quality is stabilized and the workability is further improved.

また、本開示の一態様は、上記のロケット噴射器と、ロケット噴射器に接続された燃焼室ライナーと、を備えたロケット燃焼器とすることができる。   One embodiment of the present disclosure may be a rocket combustor including the rocket injector described above and a combustion chamber liner connected to the rocket injector.

本開示のいくつかの態様によれば、燃料を冷媒として噴射面を冷却するロケット噴射器において、品質の向上を図るのに有利となる。   According to some aspects of the present disclosure, it is advantageous to improve the quality of a rocket injector that cools an injection surface using fuel as a refrigerant.

本開示の一実施形態に係るロケット噴射器を備えたロケット燃焼器の断面図である。It is sectional drawing of the rocket combustor provided with the rocket injector which concerns on one Embodiment of this indication. 図1のII−II線に沿った断面図であり、噴射器本体に溶接された噴射板の噴射面を一部破断して示している。It is sectional drawing along the II-II line | wire of FIG. 1, and has shown partially the injection | spray surface of the injection plate welded to the injector main body broken. 主として噴射板の断面を示し、(a)の図は図2のa−a線に沿った断面図、(b)の図は図2のb−b線に沿った断面図である。FIG. 2A is a sectional view taken along line aa in FIG. 2, and FIG. 2B is a sectional view taken along line bb in FIG. 噴射板の多孔部の透過性を示すグラフである。It is a graph which shows the permeability | transmittance of the porous part of an injection plate.

以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺などを適宜変更している。また、図面を参照しながら実施形態を説明する場合において、同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size. Further, when embodiments are described with reference to the drawings, the same reference numerals are given to the same elements, and duplicate descriptions are omitted.

図1及び図2を参照して、一実施形態に係るロケット燃焼器1について説明する。ロケット燃焼器1は、燃焼室Cを内部に形成する燃焼室ライナー2と、燃焼室ライナー2に接続されたロケット噴射器3とを備えている。ロケット噴射器3は、噴射器本体5と、噴射器本体5に固定され、燃焼室Cと噴射器本体5とを区画する噴射板7と、噴射板7に取り付けられ、燃焼室Cに向けて推進剤を噴射する複数の噴射エレメント(ノズル)8とを備えている。噴射板7は、燃焼室Cに面する噴射面7aを備えている。   With reference to FIG.1 and FIG.2, the rocket combustor 1 which concerns on one Embodiment is demonstrated. The rocket combustor 1 includes a combustion chamber liner 2 that forms a combustion chamber C therein, and a rocket injector 3 connected to the combustion chamber liner 2. The rocket injector 3 is fixed to the injector body 5, the injector body 5, the injection plate 7 partitioning the combustion chamber C and the injector body 5, and attached to the injection plate 7, toward the combustion chamber C. And a plurality of injection elements (nozzles) 8 for injecting the propellant. The injection plate 7 includes an injection surface 7 a that faces the combustion chamber C.

推進剤は、例えば、酸化剤および燃料からなる。噴射エレメント8は二重管構造となっており、酸化剤を噴射する中心側の内管部8aと、内管部8aの周りから燃料を噴射する外管部8bとを備えている。酸化剤としては液体酸素が用いられ、燃料としてはメタン、液体水素、ケロシン等が用いられる。   The propellant includes, for example, an oxidant and a fuel. The injection element 8 has a double-pipe structure and includes an inner tube portion 8a on the center side for injecting an oxidant and an outer tube portion 8b for injecting fuel from around the inner tube portion 8a. Liquid oxygen is used as the oxidant, and methane, liquid hydrogen, kerosene, or the like is used as the fuel.

噴射エレメント8は、噴射板7を貫通し、溶接によって噴射板7に固定されている。なお、噴射板7に対する噴射エレメント8の取り付けは、ロー付けやその他の方法であってもよく、隙間を閉塞できれば噴射板7に固定されていなくてもよい。複数の噴射エレメント8は、噴射板7の中心に対して同心円となる複数の仮想円上に、均等間隔になるように設けられているが、ロケットの仕様等により、適宜に配置することができる。   The injection element 8 penetrates the injection plate 7 and is fixed to the injection plate 7 by welding. The injection element 8 may be attached to the injection plate 7 by brazing or other methods, and may not be fixed to the injection plate 7 as long as the gap can be closed. The plurality of injection elements 8 are provided at equal intervals on a plurality of virtual circles that are concentric with the center of the injection plate 7, but can be appropriately arranged according to the specifications of the rocket or the like. .

噴射器本体5の内部には、酸化剤を供給する酸化剤供給室11と燃料を供給する燃料供給室12とが設けられている。酸化剤供給室11は、ドーム状の空間であり、酸化剤は、酸化剤入口11aを介して酸化剤供給室11に導入される。酸化剤供給室11は、各噴射エレメント8の内管部8a内に連通可能に接続されている。酸化剤供給室11に導入された酸化剤は、各噴射エレメント8の内管部8aを通って燃焼室C内に噴射される。   An oxidant supply chamber 11 for supplying an oxidant and a fuel supply chamber 12 for supplying fuel are provided inside the injector body 5. The oxidant supply chamber 11 is a dome-shaped space, and the oxidant is introduced into the oxidant supply chamber 11 through the oxidant inlet 11a. The oxidant supply chamber 11 is connected to the inner pipe portion 8a of each injection element 8 so as to communicate therewith. The oxidant introduced into the oxidant supply chamber 11 is injected into the combustion chamber C through the inner pipe portion 8 a of each injection element 8.

燃料供給室12は、隔壁部9によって酸化剤供給室11から区画されており、流体状の燃料を収容するドーム状の空間を有している。流体状とは気体状、液体状、または気体と液体との混合状態を含む。燃料供給室12は、各噴射エレメント8の外管部8b内に連通可能に接続されている。燃料は、燃料入口12aを介して燃料供給室12に導入され、燃料供給室12に導入された燃料は、各噴射エレメント8の外管部8bを通って燃焼室C内に噴射される。   The fuel supply chamber 12 is partitioned from the oxidant supply chamber 11 by the partition wall portion 9, and has a dome-shaped space for containing fluid fuel. The fluid state includes a gaseous state, a liquid state, or a mixed state of a gas and a liquid. The fuel supply chamber 12 is connected to the outer pipe portion 8b of each injection element 8 so as to communicate therewith. The fuel is introduced into the fuel supply chamber 12 through the fuel inlet 12a, and the fuel introduced into the fuel supply chamber 12 is injected into the combustion chamber C through the outer pipe portion 8b of each injection element 8.

各噴射エレメント8から噴射された酸化剤及び燃料は燃焼室C内で混合され、不図示の点火器によって燃焼し、燃焼ガスとなる。燃焼室Cを形成する燃焼室ライナー2及びロケット噴射器3の噴射面7aは、燃焼室Cに面して燃焼ガスに晒されるので、噴射面7aを冷却する冷却構造が必要となる。本実施形態に係る冷却構造では、冷媒として機能する燃料が滲み出して噴射面7aを冷却する滲み出し冷却方式が採用されている。以下、この冷却構造について具体的に説明する。   The oxidant and fuel injected from each injection element 8 are mixed in the combustion chamber C, burned by an igniter (not shown), and become combustion gas. Since the combustion chamber liner 2 forming the combustion chamber C and the injection surface 7a of the rocket injector 3 face the combustion chamber C and are exposed to the combustion gas, a cooling structure for cooling the injection surface 7a is required. In the cooling structure according to the present embodiment, a bleed-out cooling method is employed in which fuel that functions as a refrigerant oozes out and cools the injection surface 7a. Hereinafter, this cooling structure will be specifically described.

噴射器本体5内には、隔壁部9によって隔てられた酸化剤供給室11と燃料供給室(燃料室)12とが設けられている。燃料供給室12は隔壁部9を挟んで噴射板7に近い側に配置され、酸化剤供給室11は遠い側に配置されている。また、燃料供給室12は、噴射板7を挟んで燃焼室Cとは反対側に配置されており、噴射板7の裏面7b、つまり噴射面7aに対して反対側の面は燃料供給室12内に露出している。燃料供給室12内に収容されている燃料の一部は、噴射板7の冷媒として機能し、噴射板7の裏面7bから染み込み、噴射板7を透過して噴射面7aから滲み出る。なお、本実施形態では、噴射板7の裏面7bが燃料供給室12内に露出しているが、噴射板7の裏面7bを、燃料が透過可能な層で覆う態様であってもよい。   An oxidant supply chamber 11 and a fuel supply chamber (fuel chamber) 12 separated by a partition wall 9 are provided in the injector body 5. The fuel supply chamber 12 is disposed on the side close to the injection plate 7 with the partition wall 9 interposed therebetween, and the oxidant supply chamber 11 is disposed on the far side. The fuel supply chamber 12 is disposed on the opposite side of the combustion chamber C with the injection plate 7 interposed therebetween, and the back surface 7b of the injection plate 7, that is, the surface opposite to the injection surface 7a is the fuel supply chamber 12. It is exposed inside. Part of the fuel accommodated in the fuel supply chamber 12 functions as a refrigerant for the injection plate 7, soaks from the back surface 7 b of the injection plate 7, penetrates the injection plate 7, and oozes out from the injection surface 7 a. In addition, in this embodiment, although the back surface 7b of the injection plate 7 is exposed in the fuel supply chamber 12, the aspect which covers the back surface 7b of the injection plate 7 with the layer which can permeate | transmit a fuel may be sufficient.

噴射板7は、燃料が透過可能な多孔部71と、多孔部71よりも流体の透過性が低い中実部72A,72Bとを備えている。噴射板7はニッケル合金、ステンレス(SUS)または銅合金等から成り、多孔部71と中実部72A,72Bとは3D積層造形により一体構造として製造されている。中実部72A,72Bは多孔部71よりも密度が大きく、多孔部71の方が中実部72A,72Bよりも空隙率が高くなるように設計されている。以下、3D積層造形による噴射板7の製造方法について説明する。   The injection plate 7 includes a porous portion 71 through which fuel can permeate and solid portions 72A and 72B having a lower fluid permeability than the porous portion 71. The injection plate 7 is made of nickel alloy, stainless steel (SUS), copper alloy, or the like, and the porous portion 71 and the solid portions 72A and 72B are manufactured as an integral structure by 3D additive manufacturing. The solid portions 72A and 72B have a higher density than the porous portion 71, and the porous portion 71 is designed to have a higher porosity than the solid portions 72A and 72B. Hereinafter, the manufacturing method of the injection plate 7 by 3D additive manufacturing is demonstrated.

本実施形態に係る噴射板7は、例えばレーザーや電子ビーム等を用いたパウダーベット方式によって造形されるが、デポジション方式であってもよい。パウダーベット方式の場合、多孔部71と中実部72A,72Bとを備えた噴射板7の3次元データを3Dプリンターの制御装置に入力する。3Dプリンターは、例えば、造形側の造形用チャンバーと材料となる金属粉末を貯留する材料貯留チャンバーとを備える。材料貯留チャンバー内の金属粉末は造形用チャンバーに供給され、均等な厚さにならされる。その結果、造形用チャンバー内には所定厚さの金属粉末層が形成される。   The injection plate 7 according to the present embodiment is formed by a powder bed method using, for example, a laser or an electron beam, but may be a deposition method. In the case of the powder bed method, three-dimensional data of the ejection plate 7 having the porous portion 71 and the solid portions 72A and 72B is input to the control device of the 3D printer. The 3D printer includes, for example, a modeling chamber on the modeling side and a material storage chamber that stores metal powder as a material. The metal powder in the material storage chamber is supplied to the modeling chamber and is made uniform. As a result, a metal powder layer having a predetermined thickness is formed in the modeling chamber.

この状態で、金属粉末層に対してレーザーが照射される。レーザーは、噴射板7の3次元データを複数層に分割した一層分の形状に倣って照射される。レーザーの照射によって金属粉末は溶融固化され、噴射板7の一層分の形状が形成される。次に、この層の上に再び金属粉末が積層されて均等厚さにならされ、再びレーザーが照射されて次の一層分の形状が形成される。このプロセスが繰り返されることで、最終的に、所定形状の噴射板7が形成される。   In this state, the metal powder layer is irradiated with laser. The laser is irradiated following the shape of one layer obtained by dividing the three-dimensional data of the ejection plate 7 into a plurality of layers. The metal powder is melted and solidified by laser irradiation, and a shape corresponding to one layer of the injection plate 7 is formed. Next, the metal powder is laminated again on this layer so as to have a uniform thickness, and the laser is irradiated again to form the next layer of shape. By repeating this process, the injection plate 7 having a predetermined shape is finally formed.

本実施形態では、3D積層造形によって多孔部71と中実部72A,72Bとを一体構造として容易に製造でき、特に再現性の観点で有利である。また、多孔部71における燃料の透過性の程度は、多孔部71の空隙率に依存するが、3次元データに基づいて造形される3D積層造形によれば多孔部71の空隙率の調整も容易である。一方、中実部72A,72Bには、燃料などの流体が透過する空隙は形成されておらず、基本的に燃料などの流体が透過しない不透過構造である。3D積層造形によれば、一体構造であるにもかかわらず、空隙率の異なる多孔部71の領域と中実部72A,72Bの領域とをすみ分けながら容易に製造できる。   In the present embodiment, the porous portion 71 and the solid portions 72A and 72B can be easily manufactured as an integrated structure by 3D additive manufacturing, which is particularly advantageous from the viewpoint of reproducibility. Further, the degree of fuel permeability in the porous portion 71 depends on the porosity of the porous portion 71, but the porosity of the porous portion 71 can be easily adjusted by 3D additive manufacturing modeled based on three-dimensional data. It is. On the other hand, the solid portions 72A and 72B are not formed with a gap through which a fluid such as fuel passes, and basically have a non-permeable structure through which a fluid such as fuel does not pass. According to 3D additive manufacturing, although it is an integral structure, it can be easily manufactured while separating the region of the porous portion 71 and the regions of the solid portions 72A and 72B having different porosity.

なお、多孔部71と中実部72A,72Bとが一体構造であるとは、内部まで含めて物理的に一体であることを意味し、例えば、溶接などによって複数の部材を接合した態様、または部材同士の境界が明確に残る態様は除かれる。なお、一体構造である場合については、同一の材料となることが多いが、異なる材料であってもよい。本実施形態のように、3D積層造形によって造形された噴射板7は、一体構造に係る噴射板の代表例である。   The porous part 71 and the solid parts 72A and 72B having an integral structure means that the porous part 71 and the solid part are physically integrated including the inside, for example, an aspect in which a plurality of members are joined by welding or the like, or The mode in which the boundary between members remains clearly is excluded. In the case of an integral structure, the same material is often used, but different materials may be used. Like this embodiment, the injection plate 7 modeled by 3D additive manufacturing is a representative example of the injection plate according to an integral structure.

噴射板7には、噴射エレメント8が貫通する複数の貫通孔7dが形成されており、噴射エレメント8は噴射板7に溶接等されている。噴射板7において、各貫通孔7dの周りの領域は中実部72Bである。また、中実部72Bは、噴射面7a側の一部の領域に形成されているが(図3の(b)参照)、噴射板7の厚さ方向の全領域に形成されていてもよい。   A plurality of through holes 7 d through which the injection element 8 passes are formed in the injection plate 7, and the injection element 8 is welded to the injection plate 7. In the injection plate 7, the area around each through hole 7d is a solid portion 72B. The solid portion 72B is formed in a partial region on the ejection surface 7a side (see FIG. 3B), but may be formed in the entire region in the thickness direction of the ejection plate 7. .

噴射板7の周縁に沿った端面7eは、噴射器本体5の周壁の内面に接し、溶接されている。噴射板7の噴射器本体5への取り付けは、ロー付けやその他の方法であってもよい。噴射板7において、周縁に沿った外縁領域は中実部72Aである。噴射板7は、噴射器本体5と接する厚さ方向の全領域で溶接されており、噴射板7と噴射器本体5との強固な固定を実現している。そのため、本実施形態に係る噴射板7の外縁領域は、厚さ方向の全領域が中実部72Aになっている(図3の(a)参照)。しかしながら、噴射板7の外縁領域は、ロケットの仕様等により、噴射面7a側の一部が中実部72Aであってもよい。   An end surface 7e along the periphery of the injection plate 7 is in contact with and welded to the inner surface of the peripheral wall of the injector body 5. Attachment of the injection plate 7 to the injector body 5 may be brazing or other methods. In the ejection plate 7, the outer edge region along the periphery is a solid portion 72A. The injection plate 7 is welded in the entire region in the thickness direction in contact with the injector main body 5, thereby realizing strong fixation between the injection plate 7 and the injector main body 5. Therefore, the outer edge region of the injection plate 7 according to the present embodiment has a solid region 72A in the entire region in the thickness direction (see FIG. 3A). However, the outer edge region of the injection plate 7 may be partly solid 72A on the injection surface 7a side depending on the specifications of the rocket.

次に、図4を参照し、噴射板7の透過性について説明する。図4は、燃料供給室12内における外部との差圧を横軸とし、噴射面7aからの滲み出し流量を縦軸としたグラフであり、多孔部71が異なる三種類の噴射板7のサンプルを用いた実験結果を示している。三種類のサンプルは3D積層造形によって造形され、第3のサンプルの空隙率が最も大きく、第2のサンプルの空隙率が最も小さくなるように設計されている。   Next, the permeability of the injection plate 7 will be described with reference to FIG. FIG. 4 is a graph in which the abscissa indicates the pressure difference with the outside in the fuel supply chamber 12, and the effusion flow rate from the injection surface 7a indicates the ordinate, and three samples of the injection plate 7 having different porous portions 71. The experimental result using is shown. The three types of samples are modeled by 3D additive manufacturing, and are designed so that the porosity of the third sample is the largest and the porosity of the second sample is the smallest.

図4に示されるように、差圧が同じ場合、噴射面7aからの燃料の滲み出し流量は第3のサンプルが最も大きく、第1のサンプルが次に大きく、第2のサンプルは最も小さい。   As shown in FIG. 4, when the differential pressure is the same, the third sample has the largest fuel exudation flow rate from the injection surface 7a, the first sample has the second largest, and the second sample has the smallest.

本実施形態では、3D積層造形にて噴射板7を製造しているため、例えば焼結金網からなる噴射板7に比べて再現性が高く、個体差を小さくできる。つまり、第1のサンプル用の設計データに基づいて第1のサンプルを製造した場合には、上記同様の燃料の透過性を得やすい。その結果、ロケットの仕様が決まり、燃料供給室12内における外部との差圧及び冷却に必要となる燃料の滲み出し量が決まれば、この仕様値に沿った精度の高い噴射板7を製造できる。   In this embodiment, since the injection plate 7 is manufactured by 3D additive manufacturing, for example, the reproducibility is higher than that of the injection plate 7 made of a sintered wire net, and individual differences can be reduced. That is, when the first sample is manufactured based on the design data for the first sample, it is easy to obtain the same fuel permeability as described above. As a result, if the specifications of the rocket are determined, and the differential pressure with the outside in the fuel supply chamber 12 and the amount of fuel oozing required for cooling are determined, it is possible to manufacture a highly accurate injection plate 7 in accordance with this specification value. .

以上、本実施形態に係るロケット噴射器3では、燃料が多孔部71を透過して噴射面7aから滲み出すことで、噴射板7の冷却が可能になる。特に、本実施形態では、3D積層造形によって多孔部71を形成しているので、所定の設計データに基づく再現性が高く、多孔部71を介しての燃料の透過流量として最適化を図り易い。   As described above, in the rocket injector 3 according to the present embodiment, the fuel penetrates the porous portion 71 and oozes out from the injection surface 7a, whereby the injection plate 7 can be cooled. In particular, in the present embodiment, since the porous portion 71 is formed by 3D additive manufacturing, the reproducibility based on predetermined design data is high, and it is easy to optimize the fuel permeation flow rate through the porous portion 71.

また、噴射板7は中実部72A,72Bを備えており、特に製造時に溶接等が必要となる領域に中実部72A,72Bが配置されている。中実部72A,72Bは、多孔部71に比べて流体の透過性が低く、多孔部71に比べて溶接時の条件だしは容易であり、また、ロー付けしたとしてもロー材の染み込みは少ない。更に、多孔部71と中実部72A,72Bとは一体構造であるため、多孔部71と中実部72A,72Bとを溶接等で固定する必要は無い。   Further, the injection plate 7 includes solid portions 72A and 72B, and the solid portions 72A and 72B are disposed particularly in an area where welding or the like is required at the time of manufacture. The solid portions 72A and 72B have a lower fluid permeability than the porous portion 71, and the welding conditions are easier than the porous portion 71, and even if brazed, the penetration of the brazing material is small . Furthermore, since the porous portion 71 and the solid portions 72A and 72B have an integral structure, there is no need to fix the porous portion 71 and the solid portions 72A and 72B by welding or the like.

以上より、上記の実施形態に係るロケット噴射器3によれば、個体差を小さくして品質の維持、向上を図るのに有利となる。特に、本実施形態では、3D積層造形によって噴射板7を製造しているので再現性が高く、個体差を小さくするという観点で、更に有利である。また、3D積層造形によって製造することで製造期間や製造コストを大幅に削減できる。   As described above, the rocket injector 3 according to the above embodiment is advantageous for maintaining and improving quality by reducing individual differences. In particular, in the present embodiment, since the injection plate 7 is manufactured by 3D additive manufacturing, it is more advantageous from the viewpoint of high reproducibility and small individual differences. Moreover, a manufacturing period and manufacturing cost can be reduced significantly by manufacturing by 3D additive manufacturing.

また、本実施形態では、中実部72A,72Bの密度が多孔部71の密度よりも大きくなるように設計されている。その結果、中実部72A,72B内の形態として、多孔部71よりも空隙の小さい形態を実現し易くなり、その結果、多孔部71に比べて流体の透過性が低い中実部72A,72Bを実現し易くなる。   In the present embodiment, the density of the solid portions 72A and 72B is designed to be larger than the density of the porous portion 71. As a result, it becomes easier to realize a form having a smaller gap than the porous part 71 as a form in the solid parts 72A and 72B, and as a result, the solid parts 72A and 72B having a lower fluid permeability than the porous part 71. It becomes easy to realize.

また、本実施形態では、噴射器本体5に接続される噴射板7の外縁領域は中実部72Aであり、噴射板7は、中実部72Aが噴射器本体5に溶接されているので、品質が安定し、更に作業性も向上する。   Moreover, in this embodiment, since the outer edge area | region of the injection plate 7 connected to the injector main body 5 is the solid part 72A, the solid part 72A of the injection plate 7 is welded to the injector main body 5, Quality is stable and workability is improved.

また、本実施形態では、噴射エレメント8を囲んで噴射エレメント8に接続された領域は中実部72Bであり、中実部72Bが噴射エレメント8に溶接されているので、品質が安定し、更に作業性も向上する。   In the present embodiment, the region surrounding the injection element 8 and connected to the injection element 8 is the solid portion 72B, and the solid portion 72B is welded to the injection element 8, so that the quality is stable, Workability is also improved.

本開示は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、各実施例の変形例を構成することも可能である。   The present disclosure can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments. Moreover, it is also possible to configure a modification of each example by using the technical matters described in the above-described embodiments.

例えば、上記の実施形態では、噴射器本体に接続される領域、及び噴射エレメントに接続される領域の両方を中実部としているが、どちらか一方、例えば、噴射器本体に接続される領域のみを中実部とし、その他を全て多孔部とすることもできる。また、噴射板に点火器を設置する態様では、点火器を装着するための筒状の支持材を噴射板に接続する場合がある。このような部材を噴射板に溶接等で接続する場合、各種部材に接続される噴射板の一部分を中実部とし、その他を多孔部としてもよい。   For example, in the above embodiment, both the region connected to the injector main body and the region connected to the injection element are solid parts, but only one of them, for example, the region connected to the injector main body Can be a solid part, and all others can be a porous part. Moreover, in the aspect which installs an igniter in an injection plate, the cylindrical support material for mounting | wearing an igniter may be connected to an injection plate. When such a member is connected to the injection plate by welding or the like, a part of the injection plate connected to various members may be a solid part and the others may be a porous part.

また、溶接などによる接合とは関係なく、例えば、冷却量の不足による溶損等の生じ易い箇所を設計段階或いは、試作試験段階で特定できるのであれば、そのような箇所の透過率を、それ以外の部位より優先的に高くすることで冷却量の最適化を図ることも可能である。その結果、過度の冷却量の増加による燃焼効率の低下を防ぐことができ、燃焼効率の面においても品質の向上を図るのに有利となる。   In addition, regardless of joining by welding or the like, for example, if it is possible to identify a location that is prone to melting damage due to an insufficient cooling amount at the design stage or prototype test stage, the transmittance of such a location is It is also possible to optimize the amount of cooling by preferentially increasing the temperature over other parts. As a result, it is possible to prevent a decrease in combustion efficiency due to an excessive increase in the cooling amount, which is advantageous for improving quality in terms of combustion efficiency.

1 ロケット燃焼器
3 ロケット噴射器
5 噴射器本体
7 噴射板
7a 噴射面
8 噴射エレメント(ノズル)
12 燃料供給室(燃料室)
71 多孔部
72A,72B 中実部
C 燃焼室
DESCRIPTION OF SYMBOLS 1 Rocket combustor 3 Rocket injector 5 Injector body 7 Injection plate 7a Injection surface 8 Injection element (nozzle)
12 Fuel supply chamber (fuel chamber)
71 Porous part 72A, 72B Solid part C Combustion chamber

Claims (5)

燃焼室に面する噴射面を流体状の燃料によって冷却するロケット噴射器であって、
前記噴射面を備えた噴射板と、
前記噴射板を貫通し、少なくとも前記燃料を前記燃焼室内に噴射するノズルと、
前記噴射板を挟んで前記燃焼室とは反対側に設けられると共に、前記燃料を収容する燃料室と、を備え、
前記噴射板は、前記燃料室内の前記燃料が前記噴射面側に向けて透過可能な多孔部と、前記多孔部に比べて流体の透過性が低い中実部とを備え、前記多孔部と前記中実部とは一体構造である、ロケット噴射器。
A rocket injector for cooling the injection surface facing the combustion chamber with a fluid fuel,
An injection plate provided with the injection surface;
A nozzle that penetrates the injection plate and injects at least the fuel into the combustion chamber;
A fuel chamber that is provided on the opposite side of the combustion chamber across the injection plate, and that contains the fuel,
The injection plate includes a porous portion through which the fuel in the fuel chamber can permeate toward the injection surface, and a solid portion having a lower fluid permeability than the porous portion. The solid part is a one-piece rocket injector.
前記中実部は、前記多孔部よりも密度が大きい、請求項1記載のロケット噴射器。   The rocket injector according to claim 1, wherein the solid portion has a density higher than that of the porous portion. 前記燃料室が設けられた噴射器本体を備え、
前記噴射器本体に接続された前記噴射板の外縁領域は前記中実部である、請求項1または2記載のロケット噴射器。
An injector body provided with the fuel chamber;
The rocket injector according to claim 1 or 2, wherein an outer edge region of the injection plate connected to the injector main body is the solid portion.
前記噴射面において、前記ノズルを囲んで前記ノズルに接続された領域は前記中実部である請求項1〜3のいずれか一項記載のロケット噴射器。   The rocket injector according to any one of claims 1 to 3, wherein a region surrounding the nozzle and connected to the nozzle on the injection surface is the solid portion. 請求項1〜4のいずれか一項記載の前記ロケット噴射器と、前記ロケット噴射器に接続された燃焼室ライナーと、を備えたロケット燃焼器。   A rocket combustor comprising: the rocket injector according to any one of claims 1 to 4; and a combustion chamber liner connected to the rocket injector.
JP2016218755A 2016-11-09 2016-11-09 Rocket injector Active JP6805741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218755A JP6805741B2 (en) 2016-11-09 2016-11-09 Rocket injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218755A JP6805741B2 (en) 2016-11-09 2016-11-09 Rocket injector

Publications (2)

Publication Number Publication Date
JP2018076813A true JP2018076813A (en) 2018-05-17
JP6805741B2 JP6805741B2 (en) 2020-12-23

Family

ID=62150394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218755A Active JP6805741B2 (en) 2016-11-09 2016-11-09 Rocket injector

Country Status (1)

Country Link
JP (1) JP6805741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190299290A1 (en) * 2018-04-01 2019-10-03 Masten Space Systems, Inc. Additively manufactured non-uniform porous materials and components in-situ with fully material, and related methods, systems and computer program product
CN114087089A (en) * 2021-11-19 2022-02-25 北京航天试验技术研究所 High-efficiency ignition conical surface injector
WO2022219082A1 (en) 2021-04-15 2022-10-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Power plant unit for a rocket drive and combustion chamber device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2495280A1 (en) * 1980-12-01 1982-06-04 Deutsche Forsch Luft Raumfahrt Steam generating system for driving turbine - uses hydrogen and oxygen fed into combustion chamber and having water injection
JP2000503094A (en) * 1997-07-17 2000-03-14 ドイチェス ツェントルム フューア ルフト ウント ラウムファールト エー.ファウ. Combustion chamber and method of manufacturing combustion chamber
JP2003114023A (en) * 2001-08-21 2003-04-18 General Electric Co <Ge> Combustor liner provided with selective multi-aperture
JP2005042721A (en) * 2003-07-22 2005-02-17 Boeing Co:The Cooling medium and method of cooling device having porous member surface, sweated cooling device and structure cooling method
JP2008101534A (en) * 2006-10-19 2008-05-01 Japan Aerospace Exploration Agency Effusion cooling rocket combustor
JP2013133711A (en) * 2011-12-26 2013-07-08 Ihi Corp Rocket injector and rocket combustor
JP2016521840A (en) * 2013-06-05 2016-07-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Asymmetric baseplate cooling with alternating swivel main burner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2495280A1 (en) * 1980-12-01 1982-06-04 Deutsche Forsch Luft Raumfahrt Steam generating system for driving turbine - uses hydrogen and oxygen fed into combustion chamber and having water injection
JP2000503094A (en) * 1997-07-17 2000-03-14 ドイチェス ツェントルム フューア ルフト ウント ラウムファールト エー.ファウ. Combustion chamber and method of manufacturing combustion chamber
JP2003114023A (en) * 2001-08-21 2003-04-18 General Electric Co <Ge> Combustor liner provided with selective multi-aperture
JP2005042721A (en) * 2003-07-22 2005-02-17 Boeing Co:The Cooling medium and method of cooling device having porous member surface, sweated cooling device and structure cooling method
JP2008101534A (en) * 2006-10-19 2008-05-01 Japan Aerospace Exploration Agency Effusion cooling rocket combustor
JP2013133711A (en) * 2011-12-26 2013-07-08 Ihi Corp Rocket injector and rocket combustor
JP2016521840A (en) * 2013-06-05 2016-07-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Asymmetric baseplate cooling with alternating swivel main burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190299290A1 (en) * 2018-04-01 2019-10-03 Masten Space Systems, Inc. Additively manufactured non-uniform porous materials and components in-situ with fully material, and related methods, systems and computer program product
US11998984B2 (en) * 2018-04-01 2024-06-04 Astrobotic Technology, Inc. Additively manufactured non-uniform porous materials and components in-situ with fully material, and related methods, systems and computer program product
WO2022219082A1 (en) 2021-04-15 2022-10-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Power plant unit for a rocket drive and combustion chamber device
CN114087089A (en) * 2021-11-19 2022-02-25 北京航天试验技术研究所 High-efficiency ignition conical surface injector

Also Published As

Publication number Publication date
JP6805741B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP2018076813A (en) Rocket injector
CN107208893B (en) Combustor for a gas turbine engine
US5363645A (en) Enclosure containing hot gases cooled by transpiration, in particular the thrust chamber of a rocket engine
CN102012043B (en) Monolithic fuel injector and related manufacturing method
US9163841B2 (en) Cast manifold for dry low NOx gas turbine engine
EP2762784A1 (en) Damping device for a gas turbine combustor
US9108282B2 (en) Method of manufacturing heat exchanger cooling passages in aero propulsion structure
US20170211807A1 (en) A burner tip and a burner for a gas turbine
JP2011226773A (en) Apparatus and method for fuel nozzle
DE112011103621T5 (en) Gas turbine burner with attachment for Helmholtz resonators
JP2013133711A (en) Rocket injector and rocket combustor
JP2009052859A (en) Gas turbine combustor
US11199328B2 (en) Method for manufacturing a burner assembly for a gas turbine combustor and burner assembly for a gas turbine combustor
JP2019100607A (en) Fuel injector, combustor, and gas turbine
EP1262715A2 (en) Pilot nozzle for a gas turbine combustor and supply path converter
US20180214954A1 (en) Turbomachine component and method of manufacturing of such component with an incorporated fluid channel
JP6633982B2 (en) Gas turbine combustor and method for manufacturing fuel nozzle of gas turbine combustor
US5501011A (en) Method of manufacture of an enclosure containing hot gases cooled by transportation, in particular the thrust chamber of a rocket engine
US9631813B2 (en) Insert element for closing an opening inside a wall of a hot gas path component of a gas turbine and method for enhancing operational behaviour of a gas turbine
WO2019163488A1 (en) Burner device
JP6100295B2 (en) Fuel nozzle, combustor equipped with the same, and gas turbine
JP7502376B2 (en) ROCKET ENGINE SECTION HAVING POROUS INTERIOR WALL PORTION AND METHOD FOR MANUFACTURING ROCKET ENGINE SECTION - Patent application
JP5762481B2 (en) Fuel nozzle, combustor equipped with the same, and gas turbine
US20230125860A1 (en) Combustor for rocket engine and method for manufacturing it
KR100638112B1 (en) Temporary device for test of baffle for liquid rocket engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151