JP2018076112A - Wind resistance reinforcement method for cylindric tank under construction - Google Patents

Wind resistance reinforcement method for cylindric tank under construction Download PDF

Info

Publication number
JP2018076112A
JP2018076112A JP2016220451A JP2016220451A JP2018076112A JP 2018076112 A JP2018076112 A JP 2018076112A JP 2016220451 A JP2016220451 A JP 2016220451A JP 2016220451 A JP2016220451 A JP 2016220451A JP 2018076112 A JP2018076112 A JP 2018076112A
Authority
JP
Japan
Prior art keywords
cylindrical tank
wind
construction
wire
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016220451A
Other languages
Japanese (ja)
Inventor
隼平 安永
Jumpei Yasunaga
隼平 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016220451A priority Critical patent/JP2018076112A/en
Publication of JP2018076112A publication Critical patent/JP2018076112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind resistance reinforcing method which can rationally reinforce cylindrical tanks under construction.SOLUTION: By setting up wires from the outside of a cylindrical tank 10 on the side plate 12 of the cylindrical tank 10 under construction, it is a wind resistance reinforcing method of the cylindrical tank under construction which reinforces the cylindrical tank 10 under construction against prevailing wind. The wind resistance reinforcing method of the cylindrical tank under construction is characterized by setting up wires which do not cover the whole circumference of the side plate 12 and at the same time face the scope of prevailing wind.SELECTED DRAWING: Figure 1

Description

本発明は、構築途中の円筒タンクの耐風補強方法に関する。特に円筒タンクの側板を構築していく途中段階における円筒タンクの耐風補強方法に関する。   The present invention relates to a wind-resistant reinforcing method for a cylindrical tank being constructed. In particular, the present invention relates to a windproof reinforcement method for a cylindrical tank in the middle of constructing a side plate of the cylindrical tank.

従来、浮屋根式円筒石油タンクやドーム型平底円筒タンクを構築する場合、側板を順々に円筒状に立ち上げて溶接、検査等の工事を遂行していく。構築途中の円筒タンクでは、円筒タンクの側板は面外方向への剛性が著しく低く、強風時に側板に対して鉛直な風圧を受けると、側板の座屈が発生し、最悪の場合、倒壊に至る。   Conventionally, when constructing a floating roof type cylindrical oil tank or a dome-type flat bottom cylindrical tank, the side plates are sequentially raised in a cylindrical shape to perform construction such as welding and inspection. In the cylindrical tank in the middle of construction, the side plate of the cylindrical tank has extremely low rigidity in the out-of-plane direction, and if the wind pressure is perpendicular to the side plate during strong winds, the side plate will buckle, and in the worst case, it will collapse. .

そのため、構築途中の円筒タンクには強風対策用の補強が施される。図6は、従来の構築途中の円筒タンクの耐風補強方法の一例を説明する図である。図6(a)は、その平面図であり、図6(b)は、図6(a)のXX線での切断部端面図である。図6(a)に示されるように、かかる従来の構築途中の円筒タンクの耐風補強方法では、構築途中の円筒タンク100(以下、単に、「円筒タンク100」という)の側板102に、反力を確保できる治具や防液堤、地面等の固定物130から平面視放射状にワイヤ120を張り、強風時の面荷重に耐える構造としている。ワイヤ120は、その一端が円筒タンク100の側板102の上端部又はその近傍に連結され、他端が前記固定物130に連結され、前記側板102と前記固定物130との間に張架される(図6(b))。円筒タンク100の内部には構築用の足場が設置されるため、円筒タンク100の外部からワイヤ120を張るのが一般的である(図6(a)、(b))。   Therefore, the cylindrical tank in the middle of construction is reinforced for strong wind measures. FIG. 6 is a diagram for explaining an example of a conventional windproof reinforcement method for a cylindrical tank in the middle of construction. FIG. 6A is a plan view thereof, and FIG. 6B is an end view of a cut portion taken along line XX of FIG. As shown in FIG. 6A, in such a conventional windproof reinforcement method for a cylindrical tank in the middle of construction, a reaction force is applied to the side plate 102 of the cylindrical tank 100 in the middle of construction (hereinafter simply referred to as “cylindrical tank 100”). Wire 120 is radially radiated from a fixed object 130 such as a jig, a breakwater, or the ground so as to withstand a surface load in a strong wind. One end of the wire 120 is connected to or near the upper end of the side plate 102 of the cylindrical tank 100, the other end is connected to the fixed object 130, and is stretched between the side plate 102 and the fixed object 130. (FIG. 6B). Since a scaffold for construction is installed inside the cylindrical tank 100, it is common to stretch the wire 120 from the outside of the cylindrical tank 100 (FIGS. 6A and 6B).

さらに、従来の構築途中の円筒タンクの耐風補強方法として、特許文献1には、仮設足場をリング状に設置して強め輪として機能させ、また構築済みの側板の外面に外周歩廊兼テンションリングを暫定的に組付ける方法が開示されている。   Furthermore, as a conventional wind resistant reinforcement method for a cylindrical tank in the middle of construction, Patent Document 1 discloses that a temporary scaffolding is installed in a ring shape to function as a strong wheel, and an outer peripheral walkway / tension ring is provided on the outer surface of the constructed side plate. A provisional assembly method is disclosed.

特開2000−120276号公報JP 2000-120276 A

図6に示される従来の構築途中の円筒タンクの耐風補強方法では、ワイヤ120が円筒タンク100の側板102の全周にわたって張られる。そのため、例えば円筒タンク100を構築するために使用されるクレーン等の重機とワイヤ120が干渉する領域が広く、円筒タンク100の構築に支障をきたすという問題がある。また、円筒タンク100に張るワイヤ120の数や配置は厳密に定められておらず、風圧に対して過不足のない効果的な補強が施されていない。   In the conventional windproof reinforcement method for a cylindrical tank in the middle of construction shown in FIG. 6, the wire 120 is stretched over the entire circumference of the side plate 102 of the cylindrical tank 100. Therefore, for example, there is a large area where heavy equipment such as a crane used for constructing the cylindrical tank 100 and the wire 120 interfere with each other, and there is a problem that the construction of the cylindrical tank 100 is hindered. Further, the number and arrangement of the wires 120 stretched on the cylindrical tank 100 are not strictly determined, and effective reinforcement without excess or deficiency with respect to the wind pressure is not performed.

また、特許文献1に開示される補強方法では、仮設足場に対して風圧に耐えられるだけの十分な面外剛性を持たせる必要がある。そのため、暫定的に取り付けられる仮設足場に対して、必要以上の強度を持たせることになり経済的ではない。また、前記仮設足場は複数の部材から形成されており、かかる複数の部材から形成される仮設足場の強度や変形特性を把握するには別途構造計算が必要になる。   Further, in the reinforcing method disclosed in Patent Document 1, it is necessary to provide the temporary scaffold with sufficient out-of-plane rigidity that can withstand wind pressure. For this reason, the temporary scaffold that is temporarily attached is not economical because the strength is higher than necessary. The temporary scaffold is formed of a plurality of members, and a separate structural calculation is required to grasp the strength and deformation characteristics of the temporary scaffold formed of the plurality of members.

円筒タンクの建設場所は一般に海岸地域であり、年間あるいは季節を通して、卓越風向が限定される場合がほとんどである。すなわち、強風時に倒壊するのは円筒タンク全体の一部であり、上記従来技術のように、円筒タンクの全体を均一に補強するのは合理的ではない。   Cylindrical tanks are generally constructed in coastal areas, and in most cases, the prevailing wind direction is limited throughout the year or season. That is, it is a part of the entire cylindrical tank that collapses in a strong wind, and it is not reasonable to reinforce the entire cylindrical tank uniformly as in the prior art.

本発明は、かかる事情に鑑みてなされたものであり、構築途中の円筒タンクを合理的に補強できる耐風補強方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the wind-resistant reinforcement method which can reinforce the cylindrical tank in the middle of a construction reasonably.

本発明の構築途中の円筒タンクの耐風補強方法は、以下の構成を有する。
[1]構築途中の円筒タンクの側板に、該円筒タンクの外部からワイヤを張ることで、卓越風に対して構築途中の円筒タンクを補強する構築途中の円筒タンクの耐風補強方法であって、前記側板の全周にわたらない範囲で、かつ、卓越風に面する範囲にワイヤを張ることを特徴とする構築途中の円筒タンクの耐風補強方法。
[2]前記側板の周方向に複数本のワイヤを張ることを特徴とする[1]に記載の構築途中の円筒タンクの耐風補強方法。
[3]少なくとも3本のワイヤを張り、平面視で、前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して0°〜±22.5°の方向に張り、前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して45°〜90°の方向に張り、前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して−45°〜−90°の方向に張ることを特徴とする[2]に記載の構築途中の円筒タンクの耐風補強方法。
[4]前記ワイヤを前記側板の周方向に略等間隔で張ることを特徴とする[2]または[3]に記載の構築途中の円筒タンクの耐風補強方法。
The windproof reinforcement method for a cylindrical tank in the middle of construction of the present invention has the following configuration.
[1] A wind-resistant reinforcement method for a cylindrical tank in the middle of construction in which a cylindrical tank in the middle of construction is reinforced against a prevailing wind by stretching a wire from the outside of the cylindrical tank to a side plate of the cylindrical tank in the middle of construction, A wind resistant reinforcement method for a cylindrical tank in the middle of construction, characterized in that a wire is stretched in a range not extending over the entire circumference of the side plate and facing the prevailing wind.
[2] The windproof reinforcement method for a cylindrical tank in the middle of construction according to [1], wherein a plurality of wires are stretched in the circumferential direction of the side plate.
[3] At least three wires are stretched, and in plan view, one of the at least three wires is stretched in a direction of 0 ° to ± 22.5 ° with respect to the prevailing wind direction, and the at least three wires One of the wires is stretched in a direction of 45 ° to 90 ° with respect to the prevailing wind direction, and one wire of the at least three wires is −45 ° to −90 ° with respect to the prevailing wind direction. The windproof reinforcement method for a cylindrical tank in the middle of construction according to [2], characterized by stretching in a direction.
[4] The wind resistant reinforcement method for a cylindrical tank in the middle of construction according to [2] or [3], wherein the wire is stretched at substantially equal intervals in the circumferential direction of the side plate.

本発明の構築途中の円筒タンクの耐風補強方法によれば、構築途中の円筒タンクに対して合理的な補強を施すことができる。   According to the wind-resistant reinforcing method for a cylindrical tank in the middle of construction of the present invention, it is possible to provide reasonable reinforcement to the cylindrical tank in the middle of construction.

図1は、本発明の構築途中の円筒タンクの耐風補強方法の説明図である。FIG. 1 is an explanatory view of a wind-resistant reinforcing method for a cylindrical tank in the middle of construction of the present invention. 図2は、本発明の構築途中の円筒タンクの耐風補強方法の一実施形態を説明する平面図である。FIG. 2 is a plan view for explaining an embodiment of a wind-resistant reinforcing method for a cylindrical tank in the course of construction of the present invention. 図3は、図2の実施形態の一具体例を示す平面図である。FIG. 3 is a plan view showing a specific example of the embodiment of FIG. 図4は、図2の実施形態の一具体例を示す平面図である。FIG. 4 is a plan view showing a specific example of the embodiment of FIG. 図5は、構築中の円筒タンクの側板に働く風圧を測定した風洞実験の説明図である。FIG. 5 is an explanatory diagram of a wind tunnel experiment in which the wind pressure acting on the side plate of the cylindrical tank under construction is measured. 図6は、従来の構築途中の円筒タンクの耐風補強方法の一例を説明する説明図である。FIG. 6 is an explanatory view illustrating an example of a conventional wind-resistant reinforcing method for a cylindrical tank in the middle of construction.

以下、本発明の構築途中の円筒タンクの耐風補強方法の一実施形態について図面を参照しながら説明する。ただし、本発明は、以下に示す実施形態に限定されない。   Hereinafter, an embodiment of a wind-resistant reinforcing method for a cylindrical tank in the middle of construction of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments shown below.

本発明の構築途中の円筒タンクの耐風補強方法は、構築途中の円筒タンクの側板の全周にわたらない範囲で、かつ、卓越風に面する範囲に、ワイヤを張るものである。   The wind-resistant reinforcing method for a cylindrical tank in the middle of construction of the present invention is to stretch the wire in a range that does not cover the entire circumference of the side plate of the cylindrical tank that is in the middle of construction and that faces a prevailing wind.

本発明者らは、構築中の円筒タンクの側板に働く風圧を風洞実験により測定している(安永ら、「連棟配置されたオープントップオイルタンクの設計用風荷重」,日本風工学会論文集,Vol.39, No3, pp53-62, 2014)。   The present inventors have measured the wind pressure acting on the side plate of the cylindrical tank under construction by wind tunnel experiments (Yasunaga et al., “Wind load for design of open-top oil tanks arranged in series”, Japanese Wind Engineering Society paper. Vol.39, No3, pp53-62, 2014).

図5(a)に前記風洞実験の座標系、図5(b)に前記風洞実験で検討した円筒タンクの配置ケース、図5(c)に前記風洞実験で得られた測定結果のグラフの一部を示す。図5中のθは風向に対する圧力測定点の角度を示す。前記圧力測定点は、周方向には外壁面で15°間隔、内壁面で30°間隔、高さ方向ζには6レベルまたは4レベルに設けられた。そして、これら圧力測定点に作用する風圧を、サンプリング周波数1kHzで約33秒間、全点同時測定した。さらに、図5(b)に示すように、円筒タンクと同形のダミータンク(Dummy model)を作製し、円筒タンクと共に配置して連棟モデルとした。前記連棟モデルの配置ケースとして、直線配置(配置2−P、3−E、3−C)、及び二次元的な広がりを持つ配置(配置4−S、3−T)について検討を行った。図5(b)に示される連棟モデルにおける風向角β並びにβの設定は15°間隔(配置3−Eのみ45°間隔)とした。隣棟間隔Sは、S=1.0D、0.5D、0.25D、0.125Dの場合について検討した。 FIG. 5 (a) shows the coordinate system of the wind tunnel experiment, FIG. 5 (b) shows an arrangement case of the cylindrical tank examined in the wind tunnel experiment, and FIG. 5 (c) shows a graph of measurement results obtained in the wind tunnel experiment. Indicates the part. In FIG. 5, θ represents the angle of the pressure measurement point with respect to the wind direction. The pressure measurement points were provided at 15 ° intervals on the outer wall surface in the circumferential direction, 30 ° intervals on the inner wall surface, and 6 or 4 levels in the height direction ζ. The wind pressure acting on these pressure measurement points was measured simultaneously at all points for about 33 seconds at a sampling frequency of 1 kHz. Furthermore, as shown in FIG. 5 (b), a dummy tank having the same shape as the cylindrical tank (Dummy model) was produced and arranged together with the cylindrical tank to form a continuous building model. As the arrangement case of the continuous building model, a linear arrangement (arrangement 2-P, 3-E, 3-C) and an arrangement having a two-dimensional expansion (arrangement 4-S, 3-T) were examined. . The setting of the wind direction angles β and β * in the continuous building model shown in FIG. 5B was set at 15 ° intervals (45 ° only for the arrangement 3-E). The adjacent building spacing S was examined for S = 1.0D, 0.5D, 0.25D, and 0.125D.

図5(c)は、円筒タンク単体(isolated)の場合と、前記連棟モデルの配置2−Pの場合(S/D=0.125)について、平均外圧係数(Cpe)の周方向分布の風向角βによる変化を示したグラフである。前記グラフにおいて、Cpeが正の範囲は、正の風圧が生じる範囲である。正の風圧は、円筒タンクの側板の座屈現象に支配的な影響を及ぼす。 FIG. 5 (c) shows the distribution of the average external pressure coefficient (C pe ) in the circumferential direction in the case of a single cylindrical tank (isolated) and in the case of arrangement 2-P (S / D = 0.125) of the continuous building model. It is the graph which showed the change by the wind direction angle (beta). In the graph, a range where C pe is positive is a range where a positive wind pressure is generated. The positive wind pressure has a dominant influence on the buckling phenomenon of the side plate of the cylindrical tank.

上記グラフに示されるように、βの値に応じてCpeの周方向分布は異なるものの、円筒タンクの側板に働く正の風圧の範囲は、風向に対して0°〜±60°の範囲であることがわかる。なお、この範囲は、図5(b)に示される連棟モデルの他の配置ケースでも同様となる。すなわち、特定風向に対して円筒タンクの側板の座屈現象に支配的な影響を及ぼす正の風圧が生じる範囲は、該風向に対して0〜±60°の範囲である。 As shown in the graph, although the circumferential distribution of C pe varies depending on the value of β, the positive wind pressure range acting on the side plate of the cylindrical tank is in the range of 0 ° to ± 60 ° with respect to the wind direction. I know that there is. Note that this range is the same for the other arrangement cases of the continuous building model shown in FIG. That is, a range in which a positive wind pressure that has a dominant influence on the buckling phenomenon of the side plate of the cylindrical tank with respect to a specific wind direction is in a range of 0 to ± 60 ° with respect to the wind direction.

上述したとおり、円筒タンクの建設場所は一般に海岸地域であり、年間あるいは季節を通して、卓越風向が限定される場合がほとんどである。このような特定風向に対して円筒タンクを補強する場合、円筒タンクの全体を均一に補強するのは合理的ではない。すなわち、構築途中の円筒タンクを補強するためには、卓越風向を考慮に入れ、該円筒タンクの側板のうち座屈現象に支配的な範囲を部分的に補強することで十分な面外剛性を得ることができる。   As described above, the construction site of the cylindrical tank is generally a coastal region, and in most cases, the prevailing wind direction is limited throughout the year or season. When the cylindrical tank is reinforced with respect to such a specific wind direction, it is not reasonable to uniformly reinforce the entire cylindrical tank. In other words, in order to reinforce the cylindrical tank in the middle of construction, sufficient out-of-plane rigidity is obtained by partially reinforcing the range dominant in the buckling phenomenon among the side plates of the cylindrical tank, taking into account the prevailing wind direction. Can be obtained.

図1を用いて、本発明の構築途中の円筒タンクの耐風補強方法を説明する。図1は、本発明の構築途中の円筒タンクの耐風補強方法の説明図であり、図1(a)、(b)は、その平面図であり、図1(c)は、図1(b)のYY線での切断部端面図である。   A wind-resistant reinforcing method for a cylindrical tank during the construction of the present invention will be described with reference to FIG. FIG. 1 is an explanatory view of a wind-resistant reinforcing method for a cylindrical tank in the middle of construction of the present invention, FIGS. 1 (a) and 1 (b) are plan views thereof, and FIG. 1 (c) is a plan view of FIG. It is a cut part end view in the YY line.

本発明において、構築途中の円筒タンクの側板の全周にわたらない範囲で、かつ、卓越風に面する範囲とは、平面視で、卓越風向に対して0°〜±90°の範囲である(図1(a))。   In the present invention, the range that does not cover the entire circumference of the side plate of the cylindrical tank that is being constructed and that faces the prevailing wind is a range of 0 ° to ± 90 ° with respect to the prevailing wind direction in plan view. (FIG. 1 (a)).

なお、本発明において、卓越風向とは、平面視で、構築途中の円筒タンク10(以下、単に、「円筒タンク10」という)の中心Oに対して卓越風の吹いてくる方向である。卓越風向に対して角度αの方向とは、円筒タンク10の中心Oにおいて卓越風向と角度αをなす方向である。例えば、図1(b)では、卓越風向に対して角度αの方向にワイヤ20を張ることを示している。また、本発明においては、平面視で、卓越風向に対して時計回りの角度を正、反時計回りの角度を負とする。また、特に断らない限り、以下に記載する角度は、平面視での角度である。 In the present invention, the prevailing wind direction is the direction in which the prevailing wind blows with respect to the center O of the cylindrical tank 10 being constructed (hereinafter simply referred to as “cylindrical tank 10”) in plan view. The direction of the angle α with respect to the prevailing wind direction is a direction that forms an angle α with the prevailing wind direction at the center O of the cylindrical tank 10. For example, FIG. 1B shows that the wire 20 is stretched in the direction of the angle α 1 with respect to the prevailing wind direction. In the present invention, in a plan view, the clockwise angle with respect to the prevailing wind direction is positive, and the counterclockwise angle is negative. Further, unless otherwise specified, the angles described below are angles in plan view.

卓越風向は、特に限定されないが、気象観測データに基づき決定してもよいし、円筒タンクが建設される地域の気象環境等に応じて経験的に決定してもよい。前記気象観測データとしては、例えば、気象庁から公開される気象観測データ、建設現場近くの気象観測台において得られた年間の風況観測データ、建設現場に設置した風向風速計により得られた風況観測データ等を用いることができる。   The prevailing wind direction is not particularly limited, but may be determined based on meteorological observation data, or may be determined empirically according to the weather environment in the area where the cylindrical tank is constructed. Examples of the meteorological observation data include meteorological observation data released by the Japan Meteorological Agency, annual wind observation data obtained at a meteorological observation stand near the construction site, and wind conditions obtained by an anemometer installed at the construction site. Observation data can be used.

図1(a)に示されるように、本発明の構築途中の円筒タンクの耐風補強方法は、円筒タンク10の側板12のうち、円筒タンク10の側板12の全周にわたらない範囲で、かつ、卓越風に面する範囲(Aで示される範囲、以下、「範囲A」という)に、少なくとも1本のワイヤ20を張る。ここで、前記範囲Aは、卓越風向に対して0°〜±90°(図1中の角度αが0°〜±90°)の範囲である。   As shown in FIG. 1 (a), the wind-resistant reinforcement method for a cylindrical tank in the middle of construction of the present invention is within a range that does not cover the entire circumference of the side plate 12 of the cylindrical tank 10 among the side plates 12 of the cylindrical tank 10, and At least one wire 20 is stretched in a range facing the prevailing wind (a range indicated by A, hereinafter referred to as “range A”). Here, the range A is a range of 0 ° to ± 90 ° (angle α in FIG. 1 is 0 ° to ± 90 °) with respect to the prevailing wind direction.

この範囲Aには、上述した円筒タンクの側板の座屈現象に支配的な影響を及ぼす正の風圧が生じる範囲が含まれる。本発明においては、円筒タンク10の全体を均一に補強するのではなく、卓越風向を考慮した上で円筒タンク10の側板12のうち前記範囲Aを部分的に補強することで、十分な面外剛性が得られ合理的な耐風補強が可能となる。   This range A includes a range in which positive wind pressure that has a dominant effect on the buckling phenomenon of the side plate of the cylindrical tank described above occurs. In the present invention, the entire cylindrical tank 10 is not uniformly reinforced, but the range A of the side plate 12 of the cylindrical tank 10 is partially reinforced in consideration of the prevailing wind direction. Rigidity is obtained and rational windproof reinforcement is possible.

円筒タンク10の側板12に、円筒タンク10の外部からワイヤ20を張る方法は、特に限定されず、例えば従来の方法と同様に行うことができる。すなわち、図1(a)、(b)に示されるように、円筒タンク10の側板12に、円筒タンク10の外部の固定物30からワイヤ20を張る。好ましくは、円筒タンク10の外部の固定物30からワイヤ20を円筒タンク10の中心Oの方向に向けて張る。その際、ワイヤ20の一端を円筒タンク10の側板12の上端部又はその近傍に連結し、他端を固定物30に連結して、前記側板12と前記固定物30との間にワイヤ20を張架すればよい(図1(c))。   The method of stretching the wire 20 from the outside of the cylindrical tank 10 to the side plate 12 of the cylindrical tank 10 is not particularly limited, and can be performed, for example, in the same manner as a conventional method. That is, as shown in FIGS. 1A and 1B, the wire 20 is stretched from the fixed object 30 outside the cylindrical tank 10 to the side plate 12 of the cylindrical tank 10. Preferably, the wire 20 is stretched from the fixed object 30 outside the cylindrical tank 10 toward the center O of the cylindrical tank 10. At that time, one end of the wire 20 is connected to the upper end of the side plate 12 of the cylindrical tank 10 or the vicinity thereof, the other end is connected to the fixed object 30, and the wire 20 is connected between the side plate 12 and the fixed object 30. What is necessary is just to stretch (FIG.1 (c)).

好ましくは、前記範囲Aの周方向に複数本のワイヤを張る。より好ましくは、前記複数本のワイヤを前記範囲Aの周方向に略等間隔(各ワイヤを円筒タンク10の側板12と連結した連結点の周方向の間隔が略等しい)となるように張る。   Preferably, a plurality of wires are stretched in the circumferential direction of the range A. More preferably, the plurality of wires are stretched at substantially equal intervals in the circumferential direction of the range A (the circumferential intervals at the connection points where the wires are connected to the side plates 12 of the cylindrical tank 10 are substantially equal).

図2は、本発明の構築途中の円筒タンクの耐風補強方法の一実施形態を説明する平面図である。   FIG. 2 is a plan view for explaining an embodiment of a wind-resistant reinforcing method for a cylindrical tank in the course of construction of the present invention.

図2に示される耐風補強方法においては、ワイヤ20、ワイヤ22、ワイヤ24の少なくとも3本のワイヤを用いる。そして、ワイヤ20を卓越風向に対して0°〜±22.5°の方向(図2中の範囲A)に張り、ワイヤ22を卓越風向に対して45°〜90°の方向(同範囲A)に張り、ワイヤ24を卓越風向に対して−45°〜−90°の方向(同範囲A)に張る。 In the wind-resistant reinforcing method shown in FIG. 2, at least three wires of wire 20, wire 22, and wire 24 are used. The wire 20 is stretched in the direction of 0 ° to ± 22.5 ° with respect to the prevailing wind direction (range A 1 in FIG. 2), and the wire 22 is stretched in the direction of 45 ° to 90 ° with respect to the prevailing wind direction (same range). tension in a 2), stretched in the direction of -45 ° ~-90 ° the wire 24 against the prevailing wind direction (the range a 3).

上記範囲Aの中でも、ワイヤ20を卓越風向(卓越風向に対して0°)に張ることが好ましい。また、上記範囲Aの中でも、ワイヤ22を卓越風向に対して45°〜75°の方向に張り、上記範囲Aの中でも、ワイヤ24を卓越風向に対して−45°〜−75°の方向に張るようにすることが好ましい。さらに、ワイヤ20、22、24を円筒タンク10の側板12の周方向に略等間隔(ワイヤ20を円筒タンク10の側板12に連結した連結点20aと、ワイヤ22を円筒タンク10の側板12に連結した連結点22aとの周方向の間隔と、前記連結点20aと、ワイヤ24を円筒タンク10の側板12に連結した連結点24aとの周方向の間隔が、略等しい)で張ることがより好ましい。 Among the range A 1, it is preferable to tension the wire 20 to prominence wind direction (0 ° with respect to prevailing wind direction). Among the above-mentioned range A 2, tension in the direction of 45 ° to 75 ° with respect to the wire 22 excellence wind direction, among the above-mentioned range A 3, of -45 ° to 75 ° the wire 24 against the prevailing wind direction It is preferable to stretch in the direction. Further, the wires 20, 22, 24 are arranged at approximately equal intervals in the circumferential direction of the side plate 12 of the cylindrical tank 10 (the connection point 20 a connecting the wire 20 to the side plate 12 of the cylindrical tank 10 and the wire 22 to the side plate 12 of the cylindrical tank 10. The circumferential distance between the connected connecting points 22a and the distance between the connecting points 20a and the connecting points 24a connecting the wires 24 to the side plates 12 of the cylindrical tank 10 are substantially equal. preferable.

図3は、図2に示される実施形態の一具体例を示す平面図である。図3に示される耐風補強方法は、ワイヤ20を卓越風向に張り、ワイヤ22を卓越風向に対して45°の方向に張り、ワイヤ24を卓越風向に対して−45°の方向に張ったものである。この耐風補強方法では、さらに卓越風向に対して90°の方向にワイヤ23を張り、卓越風向に対して−90°の方向にワイヤ25を張っている。   FIG. 3 is a plan view showing a specific example of the embodiment shown in FIG. The wind-resistant reinforcing method shown in FIG. 3 is obtained by stretching the wire 20 in the prevailing wind direction, stretching the wire 22 in the direction of 45 ° with respect to the prevailing wind direction, and stretching the wire 24 in the direction of −45 ° with respect to the prevailing wind direction. It is. In this wind-resistant reinforcing method, the wire 23 is stretched in the direction of 90 ° with respect to the prevailing wind direction, and the wire 25 is stretched in the direction of −90 ° with respect to the prevailing wind direction.

図4は、図2に示される実施形態の一具体例を示す平面図である。図4に示される耐風補強方法は、ワイヤ20を卓越風向に張り、ワイヤ22を卓越風向に対して60°の方向に張り、ワイヤ24を卓越風向に対して−60°の方向に張ったものである。   FIG. 4 is a plan view showing a specific example of the embodiment shown in FIG. The wind-resistant reinforcing method shown in FIG. 4 is obtained by stretching the wire 20 in the prevailing wind direction, stretching the wire 22 in the direction of 60 ° with respect to the prevailing wind direction, and stretching the wire 24 in the direction of −60 ° with respect to the prevailing wind direction. It is.

上記のようにワイヤを張ることで、円筒タンクの側板の座屈現象に支配的な範囲を、より少ない本数のワイヤでより効果的に補強することができ、経済性にも優れた、より合理的な耐風補強が可能となる。上記に示した実施形態の中でも、図4に示される耐風補強方法が特に好ましい。   By stretching the wire as described above, the range dominant to the buckling phenomenon of the side plate of the cylindrical tank can be reinforced more effectively with a smaller number of wires, and it is more economical and more rational. Wind-proof reinforcement is possible. Among the above-described embodiments, the wind-resistant reinforcing method shown in FIG. 4 is particularly preferable.

以上説明した本発明の構築途中の円筒タンクの耐風補強方法によれば、卓越風向を考慮に入れ、円筒タンクの側板を部分的に補強することで十分な面外剛性を得ることができ、従来技術のように構築途中の円筒タンクの全周にワイヤを張る等して円筒タンク全体を均一に補強する必要がなく、構築途中の円筒タンクに対して合理的な耐風補強を施すことができる。   According to the wind-resistant reinforcement method of the cylindrical tank in the middle of the construction of the present invention described above, it is possible to obtain sufficient out-of-plane rigidity by partially reinforcing the side plate of the cylindrical tank in consideration of the prevailing wind direction. Unlike the technology, it is not necessary to uniformly reinforce the entire cylindrical tank by, for example, extending a wire around the entire circumference of the cylindrical tank in the middle of construction, and rational wind-resistant reinforcement can be applied to the cylindrical tank in the middle of construction.

本発明の構築途中の円筒タンクの耐風補強方法によれば、円筒タンクの側板に対してワイヤが張られる範囲が限定されるため、作業スペースを広く確保することができ、円筒タンクを効率良く構築できる。さらに、ワイヤが張られる箇所が特定されることで、効率的な製作工程を計画することができる。   According to the wind resistant reinforcement method for a cylindrical tank in the middle of the construction of the present invention, the range in which the wire is stretched to the side plate of the cylindrical tank is limited, so that a wide working space can be secured and the cylindrical tank is efficiently constructed. it can. Furthermore, an efficient manufacturing process can be planned by specifying the place where a wire is stretched.

本発明の構築途中の円筒タンクの耐風補強方法によれば、補強する風向を明確にすることで、強風時にワイヤ1本に作用する張力が明確になる。そのため、複雑な構造計算を必要とせずに、容易にワイヤの必要断面を算定できる。   According to the wind resistant reinforcement method for a cylindrical tank in the middle of the construction of the present invention, the tension acting on one wire in a strong wind is clarified by clarifying the wind direction to be reinforced. Therefore, the necessary cross section of the wire can be easily calculated without requiring a complicated structural calculation.

これらの効果をより享受できる点から、図4に示される耐風補強方法が特に好ましい。   The wind-resistant reinforcing method shown in FIG. 4 is particularly preferable because these effects can be enjoyed more.

10、100 構築途中の円筒タンク
20、22〜25、120 ワイヤ
30、130固定物
10, 100 Cylindrical tank 20, 22-25, 120 Wire 30, 130 fixed object in the middle of construction

Claims (4)

構築途中の円筒タンクの側板に、該円筒タンクの外部からワイヤを張ることで、卓越風に対して構築途中の円筒タンクを補強する構築途中の円筒タンクの耐風補強方法であって、
前記側板の全周にわたらない範囲で、かつ、卓越風に面する範囲にワイヤを張ることを特徴とする構築途中の円筒タンクの耐風補強方法。
A wind-resistant reinforcing method for a cylindrical tank in the middle of construction that reinforces the cylindrical tank in the middle of construction against the prevailing wind by stretching a wire from the outside of the cylindrical tank to the side plate of the cylindrical tank in the middle of construction,
A wind resistant reinforcement method for a cylindrical tank in the middle of construction, characterized in that a wire is stretched in a range not extending over the entire circumference of the side plate and facing the prevailing wind.
前記側板の周方向に複数本のワイヤを張ることを特徴とする請求項1に記載の構築途中の円筒タンクの耐風補強方法。   The wind resistant reinforcement method for a cylindrical tank in the middle of construction according to claim 1, wherein a plurality of wires are stretched in a circumferential direction of the side plate. 少なくとも3本のワイヤを張り、
平面視で、前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して0°〜±22.5°の方向に張り、
前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して45°〜90°の方向に張り、
前記少なくとも3本のワイヤのうち1本のワイヤを卓越風向に対して−45°〜−90°の方向に張ることを特徴とする請求項2に記載の構築途中の円筒タンクの耐風補強方法。
Stretch at least three wires,
In plan view, one of the at least three wires is stretched in a direction of 0 ° to ± 22.5 ° with respect to the prevailing wind direction,
One of the at least three wires is stretched in a direction of 45 ° to 90 ° with respect to the prevailing wind direction,
The wind resistant reinforcement method for a cylindrical tank in the middle of construction according to claim 2, wherein one of the at least three wires is stretched in a direction of -45 ° to -90 ° with respect to a prevailing wind direction.
前記ワイヤを前記側板の周方向に略等間隔で張ることを特徴とする請求項2または3に記載の構築途中の円筒タンクの耐風補強方法。   The wind resistant reinforcement method for a cylindrical tank in the middle of construction according to claim 2 or 3, wherein the wire is stretched at substantially equal intervals in the circumferential direction of the side plate.
JP2016220451A 2016-11-11 2016-11-11 Wind resistance reinforcement method for cylindric tank under construction Pending JP2018076112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220451A JP2018076112A (en) 2016-11-11 2016-11-11 Wind resistance reinforcement method for cylindric tank under construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220451A JP2018076112A (en) 2016-11-11 2016-11-11 Wind resistance reinforcement method for cylindric tank under construction

Publications (1)

Publication Number Publication Date
JP2018076112A true JP2018076112A (en) 2018-05-17

Family

ID=62150254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220451A Pending JP2018076112A (en) 2016-11-11 2016-11-11 Wind resistance reinforcement method for cylindric tank under construction

Country Status (1)

Country Link
JP (1) JP2018076112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367724B2 (en) 2021-03-31 2023-10-24 Jfeスチール株式会社 Reinforcement structure for cylindrical structure and reinforced cylindrical structure equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367724B2 (en) 2021-03-31 2023-10-24 Jfeスチール株式会社 Reinforcement structure for cylindrical structure and reinforced cylindrical structure equipped with the same

Similar Documents

Publication Publication Date Title
EP1561883B1 (en) Tower for a wind turbine, prefabricated metal wall part for use in tower for a wind turbine and method for constructing a tower for a wind turbine
CA2713368C (en) Tower element
JP5146580B2 (en) Steel pipe column structure and manufacturing method thereof
CN104251066B (en) Steel tube tower column with reinforcing structures on inner wall and manufacturing method thereof
CN110847169B (en) Construction method of steel pipe pile steel trestle
CN110630009A (en) Arc concrete structure formwork reinforcing construction method
JP6619510B2 (en) Offshore wind farm
JP2017089134A (en) Cutoff method and water cutoff wall structure
US9719269B2 (en) Prefabricated pool
EP2857614A1 (en) Concrete tower formed with precast pieces
CN107849864B (en) Tower of a wind power plant
JP2018076112A (en) Wind resistance reinforcement method for cylindric tank under construction
US20170016242A1 (en) Wind towers construction system
CN204139694U (en) Inner wall belt strengthens the steel pipe king-post of structure
JP6324165B2 (en) Photovoltaic generator and its basics
RU106912U1 (en) THREE-SIDED LATTICE TOWER
CN110700545A (en) Lightning protection grounding connection method for climbing frame
CN215442386U (en) Irregular special-shaped air film reinforced concrete structure
EP3246493A1 (en) A method for construction of a mast for a windmill
JP2012250712A (en) Reinforcing structure of tank side plate and construction method of the same
JP7367724B2 (en) Reinforcement structure for cylindrical structure and reinforced cylindrical structure equipped with the same
EP3401445B1 (en) Anchoring section for a foundation structure
JP5902233B2 (en) Architectural member of multi-story type vinyl house and multi-story type vinyl house using the same
KR20170038328A (en) Grating using with glass reinforced plastic material
CN113513077A (en) Irregular special-shaped air film reinforced concrete structure and construction method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327