JP2018073945A - Composite magnetic particle and magnetic component - Google Patents

Composite magnetic particle and magnetic component Download PDF

Info

Publication number
JP2018073945A
JP2018073945A JP2016210800A JP2016210800A JP2018073945A JP 2018073945 A JP2018073945 A JP 2018073945A JP 2016210800 A JP2016210800 A JP 2016210800A JP 2016210800 A JP2016210800 A JP 2016210800A JP 2018073945 A JP2018073945 A JP 2018073945A
Authority
JP
Japan
Prior art keywords
magnetic
alloy powder
crystal layer
examples
columnar crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016210800A
Other languages
Japanese (ja)
Other versions
JP6744534B2 (en
Inventor
吉田 健二
Kenji Yoshida
健二 吉田
高橋 亨
Toru Takahashi
亨 高橋
尾藤 三津雄
Mitsuo Bito
三津雄 尾藤
彰宏 牧野
Akihiro Makino
彰宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Magnet Inst Co Ltd
Tohoku Magnet Institute Co Ltd
Original Assignee
Tohoku Magnet Inst Co Ltd
Tohoku Magnet Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Magnet Inst Co Ltd, Tohoku Magnet Institute Co Ltd filed Critical Tohoku Magnet Inst Co Ltd
Priority to JP2016210800A priority Critical patent/JP6744534B2/en
Publication of JP2018073945A publication Critical patent/JP2018073945A/en
Application granted granted Critical
Publication of JP6744534B2 publication Critical patent/JP6744534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide composite magnetic particles which enable the arrangement of a mold increased in the volume percentage of a soft magnetic material, which can reduce the iron loss Pcv of a mold thereof, and which can increase an initial magnetic permeability μand a saturated magnetic flux density Bs; and a magnetic component.SOLUTION: A composite magnetic particle 1 comprises: soft magnetic alloy powder 11 including at least one of amorphous metal alloy powder and nanocrystal alloy powder; and a columnar crystal layer 12 having a thickness of 1 μm or less on at least a part of the surface of the soft magnetic alloy powder 11.SELECTED DRAWING: Figure 1

Description

本発明は複合磁性粒、及びこの複合磁性粒を含む成形体を用いた磁性部品に関する。   The present invention relates to composite magnetic particles and a magnetic component using a molded body containing the composite magnetic particles.

従来の磁性部品に用いられているアモルファス合金粉末やナノ結晶合金粉末等の軟磁性合金粉末は、高周波励磁される場合において発生する渦電流により鉄損が増大することを防ぐため、軟磁性合金粉末の表面にシリコン酸化膜(SiO),酸化マグネシウム(MgO),アルミナ(Al)などで絶縁層を形成し、鉄損の低減が試みられている。 Soft magnetic alloy powders such as amorphous alloy powders and nanocrystalline alloy powders used in conventional magnetic parts are soft magnetic alloy powders in order to prevent an increase in iron loss due to eddy currents generated when high frequency excitation is performed. An attempt is made to reduce the iron loss by forming an insulating layer with a silicon oxide film (SiO 2 ), magnesium oxide (MgO), alumina (Al 2 O 3 ), or the like on the surface.

例えば、結晶化温度Txが420℃〜600℃にあるFe基アモルファス合金薄帯を粉砕した粉砕粉と、Fe基アモルファス合金アトマイズ球状粉とを混合し、成形し熱処理してなる圧粉磁心(コア)において、粉砕粉が平均厚み20μm〜60μm、平均粒径60μm〜80μmの薄板状でその上にSiO皮膜を形成した粒子構造が提案されている(特許文献1参照。)。 For example, a pulverized powder obtained by pulverizing an Fe-based amorphous alloy ribbon having a crystallization temperature Tx of 420 ° C. to 600 ° C. and an Fe-based amorphous alloy atomized spherical powder are mixed, molded, and heat-treated to form a dust core (core ), A particle structure is proposed in which the pulverized powder is a thin plate having an average thickness of 20 μm to 60 μm and an average particle diameter of 60 μm to 80 μm and an SiO 2 film is formed thereon (see Patent Document 1).

しかし、特許文献1等に記載された従来の軟磁性合金粉末の表面に形成されているSiO,MgO,Al等の絶縁層は磁性を示さないため、成形体を構成して圧粉磁心(コア)とした場合においては、軟磁性材料の体積割合が低く、圧粉磁心の飽和磁束密度Bsや初透磁率μが低いという問題があった。 However, since the insulating layer such as SiO 2 , MgO, Al 2 O 3 formed on the surface of the conventional soft magnetic alloy powder described in Patent Document 1 does not exhibit magnetism, the compact is formed by forming a compact. In the case of the powder magnetic core (core), there is a problem that the volume ratio of the soft magnetic material is low and the saturation magnetic flux density Bs and the initial permeability μ i of the powder magnetic core are low.

特開2016−27656号公報Japanese Patent Laid-Open No. 2016-27656

本発明は、軟磁性材料の体積割合を高めた成形体を構成することが可能で、成形体の鉄損Pcvを低減でき、初透磁率μ及び飽和磁束密度Bsを高めることができる複合磁性粒、及びこの複合磁性粒を含む成形体を用いた磁性部品を提供することを目的とする。 The present invention makes it possible to form a molded body in which the volume ratio of the soft magnetic material is increased, reduce the iron loss Pcv of the molded body, and increase the initial magnetic permeability μ i and the saturation magnetic flux density Bs. It aims at providing the magnetic component using the molded object containing a grain and this composite magnetic grain.

上記目的を達成するために、本発明の第1の態様は、(a)アモルファス合金粉末及びナノ結晶合金粉末の少なくとも一方を含む軟磁性合金粉末と、(b)この軟磁性合金粉末の表面の少なくとも一部に設けられた厚みが1μm以下の柱状結晶層とを備える複合磁性粒であることを要旨とする。   In order to achieve the above object, the first aspect of the present invention includes (a) a soft magnetic alloy powder containing at least one of an amorphous alloy powder and a nanocrystalline alloy powder, and (b) a surface of the soft magnetic alloy powder. The gist of the present invention is a composite magnetic grain provided with a columnar crystal layer having a thickness of 1 μm or less provided at least in part.

本発明の第2の態様は、第1の態様で述べた複合磁性粒を含む成形体を用いた磁性部品であることを要旨とする。   The gist of the second aspect of the present invention is a magnetic component using a molded body containing the composite magnetic particles described in the first aspect.

本発明によれば、軟磁性材料の体積割合を高めた成形体を構成することが可能で、成形体の鉄損Pcvを低減でき、初透磁率μ及び飽和磁束密度Bsを高めることができる複合磁性粒、及びこの複合磁性粒を含む成形体を用いた磁性部品を提供することができる。 According to the present invention, it is possible to configure a molded body in which the volume ratio of the soft magnetic material is increased, the iron loss Pcv of the molded body can be reduced, and the initial permeability μ i and the saturation magnetic flux density Bs can be increased. It is possible to provide a magnetic component using composite magnetic particles and a molded body containing the composite magnetic particles.

本発明の一実施形態に係る複合磁性粒の構造の概略を説明する模式的な断面図である。It is typical sectional drawing explaining the outline of the structure of the composite magnetic grain which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複合磁性粒の構造の概略を説明する透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph explaining the outline of the structure of the composite magnetic grain which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複合磁性粒の酸素濃度の分布を説明する元素マッピング図である。It is an element mapping figure explaining distribution of oxygen concentration of the composite magnetic grain concerning one embodiment of the present invention. 本発明の一実施形態に係る複合磁性粒の鉄濃度の分布を説明する元素マッピング図である。It is an element mapping figure explaining distribution of the iron concentration of the composite magnetic grain concerning one embodiment of the present invention. 本発明の一実施形態に係る軟磁性合金粉末の非熱処理状態のX線回折プロファイルを示す図である。It is a figure which shows the X-ray-diffraction profile of the non-heat processing state of the soft magnetic alloy powder which concerns on one Embodiment of this invention. 本発明の一実施形態に係る軟磁性合金粉末の非熱処理状態のTEM写真である。It is a TEM photograph of the non-heat-treated state of the soft magnetic alloy powder which concerns on one Embodiment of this invention. 実施例1〜6の熱処理条件を説明する表である。It is a table | surface explaining the heat processing conditions of Examples 1-6. 本発明の一実施形態に係る軟磁性合金粉末の熱処理後のTEM写真である。It is a TEM photograph after heat processing of the soft magnetic alloy powder which concerns on one Embodiment of this invention. 実施例1〜6の成形後の飽和磁束密度Bs、初透磁率μ、圧粉磁心の鉄損Pcvを説明する表である。It is a table | surface explaining the saturation magnetic flux density Bs after shaping | molding of Examples 1-6, initial permeability (micro | micron | mu) i , and the iron loss Pcv of a powder magnetic core. 比較例1〜3に用いた軟磁性合金粉末の組成等を説明する表である。It is a table | surface explaining the composition etc. of the soft magnetic alloy powder used for Comparative Examples 1-3. 比較例1〜3の成形後の飽和磁束密度Bs、初透磁率μ、圧粉磁心の鉄損Pcvを説明する表である。It is a table | surface explaining the saturation magnetic flux density Bs after shaping | molding of Comparative Examples 1-3, initial permeability (micro | micron | mu) i , and the iron loss Pcv of a powder magnetic core. 実施例7〜9及び比較例4〜15の、それぞれの柱状結晶層の厚さ、柱状結晶層の短軸寸法、柱状結晶層の酸素濃度、軟磁性合金粉末の金属組織の酸素濃度等を絶縁層(SiO層)の厚さと共に示す表である。Insulating the thickness of each columnar crystal layer, the minor axis dimension of the columnar crystal layer, the oxygen concentration of the columnar crystal layer, the oxygen concentration of the metal structure of the soft magnetic alloy powder, etc. in Examples 7 to 9 and Comparative Examples 4 to 15 it is a table showing with the thickness of the layer (SiO 2 layer). 実施例7〜9及び比較例4〜15の成形後の飽和磁束密度Bs、初透磁率μ、圧粉磁心の鉄損Pcvを説明する表である。It is a table | surface explaining the saturation magnetic flux density Bs after shaping | molding of Examples 7-9 and Comparative Examples 4-15, initial permeability (micro | micron | mu) i , and the iron loss Pcv of a powder magnetic core. 実施例7〜9及び比較例4〜15の飽和磁束密度Bsと柱状結晶層の厚さの関係を示す図である。It is a figure which shows the relationship between the saturation magnetic flux density Bs of Examples 7-9 and Comparative Examples 4-15, and the thickness of a columnar crystal layer. 実施例7〜9及び比較例4〜15の初透磁率μと柱状結晶層の厚さの関係を示す図である。It is a figure which shows the relationship between the initial permeability (micro | micron | mu) i of Examples 7-9 and Comparative Examples 4-15, and the thickness of a columnar crystal layer. 実施例7〜9及び比較例4〜15に係る圧粉磁心の鉄損Pcvと柱状結晶層の厚さの関係を5000kW/mの近傍(4500kW/m〜5500kW/m)を拡大して示す図である。The relationship between the iron loss Pcv of the dust cores according to Examples 7 to 9 and Comparative Examples 4 to 15 and the thickness of the columnar crystal layer is enlarged in the vicinity of 5000 kW / m 3 (4500 kW / m 3 to 5500 kW / m 3 ). FIG. 実施例7〜9及び比較例4〜15に係る圧粉磁心の鉄損Pcvと柱状結晶層の厚さの関係を示す図である。It is a figure which shows the relationship between the iron loss Pcv of the powder magnetic core which concerns on Examples 7-9 and Comparative Examples 4-15, and the thickness of a columnar crystal layer. 実施例7〜9及び比較例4〜15の試料について、軟磁性合金粉末の表面に設けられる絶縁層の厚さと柱状結晶層の厚さの関係をマトリクス表示した表である。It is the table | surface which displayed the relationship between the thickness of the insulating layer provided in the surface of soft-magnetic alloy powder, and the thickness of a columnar crystal layer about the sample of Examples 7-9 and Comparative Examples 4-15 in matrix form. 実施例7〜9及び比較例4〜15の試料について、図18のマトリクス表示に対応させて、それぞれの飽和磁束密度Bsの値をマトリクス表示した表である。It is the table | surface which displayed the value of each saturation magnetic flux density Bs by the matrix display corresponding to the matrix display of FIG. 18 about the sample of Examples 7-9 and Comparative Examples 4-15. 図18のマトリクス表示の試料から、柱状結晶層の厚さが200nmの実施例7、比較例7,比較例12の試料を削除したマトリクスに対応した表として、それぞれの飽和磁束密度Bsの値の星取表である。As a table corresponding to the matrix in which the samples of Example 7, Comparative Example 7, and Comparative Example 12 in which the thickness of the columnar crystal layer is 200 nm are deleted from the matrix display sample of FIG. 18, the values of the respective saturation magnetic flux densities Bs are shown. It is a star chart. 実施例7〜9及び比較例4〜15の試料について、図18のマトリクス表示に対応させて、それぞれの初透磁率μの値をマトリクス表示した表である。FIG. 19 is a table in which the values of initial magnetic permeability μ i are displayed in a matrix form for the samples of Examples 7 to 9 and Comparative Examples 4 to 15 corresponding to the matrix display of FIG. 18. 図18のマトリクス表示の試料から実施例7、比較例7,比較例12の試料を削除したマトリクスに対応した表として、それぞれの初透磁率μの値の星取表である。As a table corresponding to the matrix in which the samples of Example 7, Comparative Example 7, and Comparative Example 12 are deleted from the sample of the matrix display of FIG. 18, each of the initial permeability μ i values is a star chart. 実施例7〜9及び比較例4〜15の試料について、図18のマトリクス表示に対応させて、それぞれの圧粉磁心の鉄損Pcvの値をマトリクス表示した表である。It is the table | surface which displayed the value of the iron loss Pcv of each powder magnetic core by the matrix display corresponding to the matrix display of FIG. 18 about the sample of Examples 7-9 and Comparative Examples 4-15. 図18のマトリクス表示の試料から実施例7、比較例7,比較例12の試料を削除したマトリクスに対応した表として、それぞれの圧粉磁心の鉄損Pcvの値の星取表である。The table corresponding to the matrix obtained by deleting the samples of Example 7, Comparative Example 7, and Comparative Example 12 from the sample of the matrix display of FIG. 18 is a star chart of the values of the iron loss Pcv of each dust core.

次に、図面を参照して、本発明の一実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す一実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   In addition, the following embodiment exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The arrangement is not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

(一実施形態)
本発明の一実施形態に係る複合磁性粒1は、図1に示すように、軟磁性合金粉末11の表面の少なくとも一部に厚みが1μm以下の酸化鉄を主成分とする柱状結晶層12を有する複合軟磁性合金粒子である。軟磁性合金粉末11は、アモルファス合金粉末及びナノ結晶合金粉末の少なくとも一方を含む。一実施形態に係る複合磁性粒1の断面をエネルギー分散型X線分光器(EDS)により元素マッピング測定すると、図3に示した酸素(O)のK殻の電子が励起されて放出された特性X線(K線)の2次元画像及び図4に示した鉄(Fe)K線の2次元画像が示すように、柱状結晶層12の酸素濃度が軟磁性合金粉末11の金属組織の酸素濃度よりも高く、柱状結晶層12が酸化鉄を主成分としていることが分かる。
(One embodiment)
As shown in FIG. 1, a composite magnetic grain 1 according to an embodiment of the present invention has a columnar crystal layer 12 mainly composed of iron oxide having a thickness of 1 μm or less on at least a part of the surface of a soft magnetic alloy powder 11. The composite soft magnetic alloy particles. The soft magnetic alloy powder 11 includes at least one of an amorphous alloy powder and a nanocrystalline alloy powder. When element mapping of the cross section of the composite magnetic particle 1 according to one embodiment is measured by an energy dispersive X-ray spectrometer (EDS), the oxygen (O) K-shell electrons shown in FIG. 3 are excited and emitted. As shown in the two-dimensional image of X-rays (K-rays) and the two-dimensional image of iron (Fe) K-rays shown in FIG. 4, the oxygen concentration of the columnar crystal layer 12 is the oxygen concentration of the metal structure of the soft magnetic alloy powder 11. It can be seen that the columnar crystal layer 12 is mainly composed of iron oxide.

図3には色が表示されていないが、カラーマッピングでは色が濃い部分が元素濃度が濃いことを示す。図3で白黒表示された酸素のカラーマッピングでは、酸化鉄を主成分とする柱状結晶層12に対応する帯状の領域の色の方が、柱状結晶層12よりも内部側の軟磁性合金粉末11に相当する領域の色よりも濃くなっていることが分かる。図2及び図8に示した透過型電子顕微鏡(TEM)写真から分かるように、柱状結晶層12の短軸寸法は200nm以下となるアスペクト比の大きな構造体である。   Although no color is displayed in FIG. 3, in the color mapping, a darker portion indicates a higher element concentration. In the color mapping of oxygen displayed in black and white in FIG. 3, the color of the band-shaped region corresponding to the columnar crystal layer 12 containing iron oxide as a main component is the soft magnetic alloy powder 11 on the inner side of the columnar crystal layer 12. It can be seen that it is darker than the color of the area corresponding to. As can be seen from the transmission electron microscope (TEM) photographs shown in FIGS. 2 and 8, the columnar crystal layer 12 is a structure having a large aspect ratio in which the minor axis dimension is 200 nm or less.

本発明の一実施形態に係る複合磁性粒1の形状は球状であってもよいし非球状であってもよい。非球状である場合には、鱗片状、楕円球状、液滴状、針状等の形状異方性を有する形状でもよいし、特段の形状異方性を有しない不定形でもよい。一実施形態に係る複合磁性粒1の形状は、複合磁性粒1を製造する段階で得られる球状、楕円球状、液滴状、針状等の形状であってもよいし、製造された複合磁性粒1を二次加工することにより得られた鱗片状等の形状であってもよい。なお、後述するように、図12等において実施例7〜8に係る複合磁性粒1では、球状の軟磁性合金粉末11の表面に設けられた柱状結晶層の厚さ、柱状結晶層の短軸寸法、柱状結晶層の酸素濃度等を例示している。   The shape of the composite magnetic particle 1 according to an embodiment of the present invention may be spherical or non-spherical. In the case of a non-spherical shape, it may be a shape having a shape anisotropy such as a scale shape, an elliptical sphere shape, a droplet shape, a needle shape, or an indefinite shape having no special shape anisotropy. The shape of the composite magnetic particle 1 according to an embodiment may be a spherical shape, an elliptical spherical shape, a droplet shape, a needle shape, or the like obtained in the stage of manufacturing the composite magnetic particle 1, or the manufactured composite magnetic particle A shape such as a scale obtained by subjecting the grain 1 to secondary processing may be used. As will be described later, in the composite magnetic grains 1 according to Examples 7 to 8 in FIG. 12 and the like, the thickness of the columnar crystal layer provided on the surface of the spherical soft magnetic alloy powder 11, the minor axis of the columnar crystal layer The dimensions, the oxygen concentration of the columnar crystal layer, etc. are illustrated.

本発明の一実施形態に係る複合磁性粒1によれば、酸化鉄を主成分とする柱状結晶層12を軟磁性合金粉末11の表面の少なくとも一部に設けているので、軟磁性材料の体積割合を高めた成形体を構成することが可能で、成形体の鉄損Pcvを低減でき、初透磁率μ及び飽和磁束密度Bsを高めることができる複合磁性粒1、及びこの複合磁性粒1を含む成形体を用いた磁性部品を提供することができる。 According to the composite magnetic particle 1 according to the embodiment of the present invention, the columnar crystal layer 12 mainly composed of iron oxide is provided on at least a part of the surface of the soft magnetic alloy powder 11, so that the volume of the soft magnetic material is increased. A composite magnetic particle 1 capable of forming a molded body with an increased ratio, reducing the iron loss Pcv of the molded body, and increasing the initial magnetic permeability μ i and the saturation magnetic flux density Bs, and the composite magnetic particle 1 The magnetic component using the molded object containing can be provided.

一実施形態に係る複合磁性粒1は、軟磁性合金粉末11を熱処理することにより、軟磁性合金粉末11の表面を酸化して、軟磁性合金粉末11の表面の少なくとも一部に、厚みが1μm以下の酸化鉄を主成分とする柱状結晶層12を形成することができる。   The composite magnetic particle 1 according to an embodiment oxidizes the surface of the soft magnetic alloy powder 11 by heat-treating the soft magnetic alloy powder 11, and has a thickness of 1 μm on at least a part of the surface of the soft magnetic alloy powder 11. The columnar crystal layer 12 mainly composed of the following iron oxide can be formed.

[軟磁性合金粉末の作製]
本発明の一実施形態に係る複合磁性粒1に用いる軟磁性合金粉末11の製造に際しては、先ず、純鉄(Fe)、金属シリコン(Si)、フェロボロン(Fe−B)、りん鉄(Fe−P)、純銅(Cu)、グラファイト(C)等の原料を秤量する。そして、目的の合金組成になるように調製された原材料を、高周波誘導加熱法により、アルミナルツボの中で1400℃で溶解して溶融金属(合金溶湯)を生成する。この溶融金属を銅の金型に鋳込むことで冷却し母合金を得る。
[Production of soft magnetic alloy powder]
In producing the soft magnetic alloy powder 11 used for the composite magnetic grain 1 according to the embodiment of the present invention, first, pure iron (Fe), metallic silicon (Si), ferroboron (Fe-B), phosphorous iron (Fe--). Weigh raw materials such as P), pure copper (Cu), and graphite (C). And the raw material prepared so that it may become the target alloy composition is melt | dissolved at 1400 degreeC in an alumina crucible by a high frequency induction heating method, and a molten metal (alloy molten metal) is produced | generated. The molten metal is cast into a copper mold and cooled to obtain a mother alloy.

そして、例えば、水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法、スプレー法、キャビテーション法、スパークエロージョン法等の各種粉末化法により一実施形態に係る軟磁性合金粉末11が製造される。水アトマイズ法、ガスアトマイズ法、回転水流アトマイズ法等のアトマイズ法は、母合金を高周波誘導加熱装置で溶解し、母合金の溶湯をノズルから高速で噴射してできた合金溶湯の流れに冷却媒体(液体又は気体)を衝突させて、合金溶湯を微細化すると共に急冷し、金属粉末として軟磁性合金粉末11を得る方法である。   Then, the soft magnetic alloy powder 11 according to the embodiment is manufactured by various powdering methods such as a water atomizing method, a gas atomizing method, a rotating water atomizing method, a spray method, a cavitation method, and a spark erosion method. Atomizing methods such as the water atomizing method, gas atomizing method, and rotating water atomizing method are used to melt the mother alloy with a high-frequency induction heating device and spray the molten mother alloy at a high speed from the nozzle into the molten alloy flow. In this method, the molten alloy is refined and rapidly cooled to make the soft magnetic alloy powder 11 as a metal powder.

一実施形態に係る軟磁性合金粉末11をこのようなアトマイズ法によって製造することにより、極めて微小な軟磁性合金粉末11を効率よく製造することができる。又、アトマイズ法によれば、得られる軟磁性合金粉末11の粒子形状が表面張力の作用により球形状に近くなる。このため、軟磁性合金粉末11を用いて圧粉磁心を製造したとき充填率の高いものが得られる。すなわち、アトマイズ法によれば、透磁率μ及び飽和磁束密度Bsの高い圧粉磁心を製造可能な軟磁性合金粉末11を得ることができる。   By producing the soft magnetic alloy powder 11 according to one embodiment by such an atomizing method, it is possible to efficiently produce a very small soft magnetic alloy powder 11. Further, according to the atomizing method, the particle shape of the obtained soft magnetic alloy powder 11 becomes close to a spherical shape due to the action of surface tension. For this reason, when a soft magnetic core is manufactured using the soft magnetic alloy powder 11, a product with a high filling rate is obtained. That is, according to the atomization method, it is possible to obtain the soft magnetic alloy powder 11 capable of producing a dust core having a high magnetic permeability μ and a saturation magnetic flux density Bs.

アトマイズ法のうち、水アトマイズ法を採用すれば、製造装置の大型化が可能で、合金溶湯の出湯レートを上げることが可能であるので量産性を向上でき、又、一般的に水アトマイズ法では、アルゴンなどの不活性ガスや窒素及び空気などの各種気体を用いるガスアトマイズ法と比べて冷却速度が高いので、アモルファス化しやすい。更には、微細化と急冷とに異なる媒体を用いて実施してもよい。なお、液体急冷法により製造された急冷薄帯であると、アモルファス合金を得やすい半面、薄帯を均一微細な扁平粉に粉砕することが困難であるのでアトマイズ法を使用し、最初から球状粉末状で一実施形態に係る軟磁性合金粉末11を製造することが好適である。   Among the atomization methods, if the water atomization method is adopted, it is possible to increase the size of the production equipment and increase the tapping rate of the molten alloy, so that mass productivity can be improved. Since the cooling rate is higher than the gas atomization method using an inert gas such as argon or various gases such as nitrogen and air, it is easily amorphized. Further, different media may be used for miniaturization and rapid cooling. In addition, it is easy to obtain an amorphous alloy in the case of a quenched ribbon manufactured by the liquid quenching method, but it is difficult to pulverize the ribbon into a uniform fine flat powder. It is preferable to manufacture the soft magnetic alloy powder 11 according to an embodiment in the form of a plate.

以下の実施例1〜6では、回転水流アトマイズ法(高速回転水流アトマイズ法)により、メディアン径d50=11.0μmの軟磁性合金粉末11を作製した。回転水流アトマイズ法によれば、溶湯を極めて高速で冷却することができるので、溶融金属における無秩序な原子配置が高度に維持された状態で固化に至らせることができ、非晶質化度の特に高い軟磁性合金粉末11を効率よく製造することができる。 In the following Examples 1 to 6, soft magnetic alloy powder 11 having a median diameter d 50 = 11.0 μm was produced by the rotating water atomizing method (high-speed rotating water atomizing method). According to the rotating water atomization method, the molten metal can be cooled at an extremely high speed, so that the disordered atomic arrangement in the molten metal can be solidified and maintained in a highly maintained state. High soft magnetic alloy powder 11 can be produced efficiently.

例えば、一実施形態に係る軟磁性合金粉末11としてFe、Si、B、P、Cu、Cを含む合金粉末が回転水流アトマイズ法により製造できる。軟磁性合金粉末11内の元素分布に関わらず、一実施形態に係る軟磁性合金粉末11の集合体としてFeSiCuの組成式で表したときに、

79≦a≦86at%、
5≦b≦13at%、
0<c≦8at%、
0<x≦10at%、
0≦y≦5at%、
0.4≦z≦1.4at%、
0.08≦z/x≦1.2

を満たすことが一実施形態に係るとして好ましい。一実施形態に係る実施例1〜6においては、粉末組成a=85.7at%、b=9.5at%、c=0.5at%、x=3.5at%、y=1at%、z=0.8at%、z/x=0.23として(Fe85.7Si0.59.53.5Cu0.899の軟磁性合金粉末11を作製した。
For example, as the soft magnetic alloy powder 11 according to one embodiment, an alloy powder containing Fe, Si, B, P, Cu, and C can be manufactured by a rotating water atomization method. Regardless element distribution in the soft magnetic alloy powder 11, when expressed by the composition formula of Fe a B b Si c P x C y Cu z as an aggregate of the soft magnetic alloy powder 11 according to one embodiment,

79 ≦ a ≦ 86 at%,
5 ≦ b ≦ 13 at%,
0 <c ≦ 8 at%,
0 <x ≦ 10 at%,
0 ≦ y ≦ 5 at%,
0.4 ≦ z ≦ 1.4 at%,
0.08 ≦ z / x ≦ 1.2

It is preferable as satisfying one embodiment. In Examples 1 to 6 according to an embodiment, the powder composition a = 85.7 at%, b = 9.5 at%, c = 0.5 at%, x = 3.5 at%, y = 1 at%, z = Soft magnetic alloy powder 11 of (Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 was prepared at 0.8 at % and z / x = 0.23.

回転水流アトマイズ法では、冷却用筒体の内周面に沿って冷却液を噴出供給し、冷却用筒体の内周面に沿って旋回させることにより、内周面に冷却液層を形成する。一方、非晶質合金の原材料を溶融し、得られた溶融金属を自然落下させつつ、これに液体又は気体のジェットを吹き付ける。これにより溶融金属が飛散させ、飛散した溶融金属は冷却液層に取り込まれる。その結果、飛散して微粉化した溶融金属が急速冷却されて固化し、軟磁性合金粉末11が得られる。   In the rotating water flow atomization method, a coolant is ejected and supplied along the inner peripheral surface of the cooling cylinder, and the cooling liquid layer is formed on the inner peripheral surface by swirling along the inner peripheral surface of the cooling cylinder. . On the other hand, a raw material of an amorphous alloy is melted, and a liquid or gas jet is sprayed on the obtained molten metal while naturally dropping the molten metal. Thereby, the molten metal is scattered, and the scattered molten metal is taken into the coolant layer. As a result, the molten metal which has been scattered and pulverized is rapidly cooled and solidified to obtain the soft magnetic alloy powder 11.

示差走査熱量分析(DSC)による測定では、非熱処理状態(as−Q)の軟磁性合金粉末11のアモルファス化度は83.0〜84.5%であった。図5に示すように、非熱処理状態の軟磁性合金粉末11のX線回折測定結果によれば、軟磁性合金粉末11には非晶質相とαFe相が混在していることを確認できる。又、図6に示すように、非熱処理状態粉末のTEM観察結果によれば、粒径10μm,20μmいずれの軟磁性合金粉末11もデンドライト状の結晶組織とアモルファス組織の混相であった。   In the measurement by differential scanning calorimetry (DSC), the degree of amorphization of the soft magnetic alloy powder 11 in the non-heat treated state (as-Q) was 83.0 to 84.5%. As shown in FIG. 5, according to the X-ray diffraction measurement result of the soft magnetic alloy powder 11 in the non-heat treated state, it can be confirmed that the soft magnetic alloy powder 11 contains an amorphous phase and an αFe phase. Further, as shown in FIG. 6, according to the TEM observation result of the non-heat treated powder, the soft magnetic alloy powder 11 having a particle size of 10 μm or 20 μm was a mixed phase of dendritic crystal structure and amorphous structure.

[熱処理工程]
図1に示した本発明の一実施形態に係る複合磁性粒1に用いる柱状結晶層12は、軟磁性合金粉末11を350〜600℃で熱処理することにより、軟磁性合金粉末11の表面を酸かして、酸化鉄を主成分とする柱状結晶層12を形成できる。軟磁性合金粉末11の熱処理においては、この軟磁性粉末11を赤外線ランプ加熱装置にてアルゴン雰囲気中にて、実施例1〜6の試料について、図7に示すような加熱温度(℃)、保持時間(分)で実施し、ナノ結晶化させた。
[Heat treatment process]
The columnar crystal layer 12 used for the composite magnetic grain 1 according to one embodiment of the present invention shown in FIG. 1 is obtained by heat-treating the soft magnetic alloy powder 11 at 350 to 600 ° C., so that the surface of the soft magnetic alloy powder 11 is acidified. Thus, the columnar crystal layer 12 mainly composed of iron oxide can be formed. In the heat treatment of the soft magnetic alloy powder 11, the heating temperature (° C.) as shown in FIG. 7 is maintained for the samples of Examples 1 to 6 in an argon atmosphere with an infrared lamp heating device. Performed in minutes (minutes) to allow nanocrystallization.

図7に示すように、加熱温度は実施例1及び実施例4が450℃、実施例2及び実施例5が460℃、実施例3及び実施例6が470℃である。又、保持時間は実施例1〜3が1分、実施例4〜6が10分である。   As shown in FIG. 7, the heating temperatures are 450 ° C. in Example 1 and Example 4, 460 ° C. in Example 2 and Example 5, and 470 ° C. in Example 3 and Example 6. The holding time is 1 minute for Examples 1 to 3, and 10 minutes for Examples 4 to 6.

図8に示すように、一実施形態に係る軟磁性合金粉末11の熱処理後のTEM観察結果によれば、60nm以下の結晶粒と100nm以上の結晶粒の両方の存在が確認できる。又、軟磁性合金粉末11の表面に酸化鉄を主成分とする柱状結晶層12が存在することが確認できる。   As shown in FIG. 8, according to the TEM observation result after the heat treatment of the soft magnetic alloy powder 11 according to one embodiment, the presence of both crystal grains of 60 nm or less and crystal grains of 100 nm or more can be confirmed. It can also be confirmed that the columnar crystal layer 12 mainly composed of iron oxide is present on the surface of the soft magnetic alloy powder 11.

[圧粉磁心の成形]
本発明の一実施形態に係る圧粉磁心の形状としては、トロイダル型、FT型、ET型、EI型、UU型、EE型、EER型、UI型、ドラム型、ポット型、カップ型等が例示できるが、これらの圧粉磁心の製造方法は、上記のように、軟磁性合金粉末11を作製する粉末作製工程と、軟磁性合金粉末11を熱処理して複合磁性粒1を作製する熱処理工程の後、複合磁性粒1を用いて圧粉磁心を作製するコア成形工程とを含む。すなわち、一実施形態に係る圧粉磁心は、一実施形態に係る複合磁性粒1と結着材(バインダ)と有機溶媒とを混合し、得られた混合物を成形金型に供給するとともに、加圧・成形して得られる。
[Molding of dust core]
Examples of the shape of the powder magnetic core according to one embodiment of the present invention include a toroidal type, an FT type, an ET type, an EI type, a UU type, an EE type, an EER type, a UI type, a drum type, a pot type, and a cup type. As described above, these powder magnetic cores can be manufactured by a powder production process for producing the soft magnetic alloy powder 11 and a heat treatment process for producing the composite magnetic grain 1 by heat treating the soft magnetic alloy powder 11 as described above. Thereafter, a core forming step of producing a dust core using the composite magnetic particles 1 is included. That is, the powder magnetic core according to one embodiment mixes the composite magnetic particles 1 according to one embodiment, the binder (binder), and the organic solvent, and supplies the obtained mixture to the molding die, Obtained by pressing and molding.

圧粉磁心の作製に用いられる結着材(バインダ樹脂)の構成材料としては、例えば、シリコーン系樹脂、エポキシ系樹脂、フェノール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンサルファイド系樹脂等の有機材料、リン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸マンガン、リン酸カドミウムのようなリン酸塩、ケイ酸ナトリウムのようなケイ酸塩(水ガラス)等の熱硬化性無機材料等が挙げられるが、以下の実施例ではフェノール系樹脂を3wt%となるように混合し、造粒粉を得る。これらの結着材樹脂材料は、圧粉磁心の製造容易性及び耐熱性を高めることができる。   Examples of the constituent material of the binder (binder resin) used in the production of the dust core include organic resins such as silicone resins, epoxy resins, phenol resins, polyamide resins, polyimide resins, and polyphenylene sulfide resins. Examples include materials, thermosetting inorganic materials such as magnesium phosphate, calcium phosphate, zinc phosphate, manganese phosphate, phosphate such as cadmium phosphate, and silicate (water glass) such as sodium silicate. However, in the following examples, the phenolic resin is mixed so as to be 3 wt% to obtain granulated powder. These binder resin materials can improve the manufacturability and heat resistance of the dust core.

又、複合磁性粒1に対する結着材の割合は、作製する圧粉磁心の目的とする飽和磁束密度Bsや機械的特性、許容される鉄損Pcv等に応じて若干異なるが、0.5質量%以上5質量%以下程度であるのが好ましく、1質量%以上3質量%以下程度であるのがより好ましい。これにより、複合磁性粒1の各粒子同士を確実に絶縁しつつ、圧粉磁心の密度をある程度確保して、圧粉磁心の飽和磁束密度Bsや透磁率μが著しく低下するのを防止することができる。その結果、より飽和磁束密度Bs及び透磁率μが高く、且つ、より低い鉄損Pcvの圧粉磁心が得られる。   Further, the ratio of the binder to the composite magnetic particle 1 is slightly different depending on the intended saturation magnetic flux density Bs, mechanical characteristics, allowable iron loss Pcv, etc. of the produced dust core, but 0.5 mass % Or more and preferably 5% by mass or less, more preferably 1% by mass or more and 3% by mass or less. Thereby, while reliably insulating the particles of the composite magnetic particle 1, the density of the dust core is ensured to some extent, and the saturation magnetic flux density Bs and the permeability μ of the dust core are prevented from significantly decreasing. Can do. As a result, a dust core having a higher saturation magnetic flux density Bs and permeability μ and a lower iron loss Pcv can be obtained.

又、結着材を溶解させる有機溶媒としては、結着材を溶解し得るものであれば特に限定されないが、例えば、エタノール、イソプロピルアルコール、アセトン、メチルエチルケトン、トルエン、クロロホルム、酢酸エチル等の各種溶媒が挙げられる。   The organic solvent for dissolving the binder is not particularly limited as long as it can dissolve the binder. For example, various solvents such as ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, toluene, chloroform, ethyl acetate and the like. Is mentioned.

金型からの脱型性を高めるため潤滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム及びステアリン酸ストロンチウム等のステアリン酸金属塩が挙げられる。これらのステアリン酸金属塩は、1種を単独で又は2種以上を組み合わせて潤滑剤として用いることができる。   Examples of the lubricant for enhancing mold release from the mold include metal stearates such as zinc stearate, aluminum stearate, barium stearate, magnesium stearate, calcium stearate and strontium stearate. These metal stearates can be used alone or in combination of two or more as a lubricant.

一実施形態に係る実施例では、いわゆるスプリングバックが小さいという観点から、ステアリン酸亜鉛を潤滑剤として用いる。潤滑剤を用いる場合には、その添加量は、好ましくは複合磁性粒1の100重量部に対して、0.1〜0.9重量部であり、より好ましくは複合磁性粒1の100重量部に対して、0.3〜0.7重量部である。潤滑剤が少なすぎると、成形後の金型からの脱型が困難となり、成形クラックが生じやすい傾向にある。   In an example according to one embodiment, zinc stearate is used as a lubricant from the viewpoint of a small so-called spring back. When a lubricant is used, the amount added is preferably 0.1 to 0.9 parts by weight, more preferably 100 parts by weight of the composite magnetic grains 1 with respect to 100 parts by weight of the composite magnetic grains 1. Is 0.3 to 0.7 parts by weight. When the amount of the lubricant is too small, it is difficult to remove the mold from the mold after molding, and molding cracks tend to occur.

一方、潤滑剤が多すぎると、成形密度の低下を招き、透磁率μが減少してしまう。潤滑剤としてステアリン酸亜鉛を用いる場合には、得られる圧粉磁心中の、亜鉛(Zn)の含有量が、0.004〜0.2質量%の範囲内となる、添加量を調整することが好ましい。Znの含有量が多すぎると、圧粉磁心としての十分な強度が得られない傾向にある傾向がある。   On the other hand, when there is too much lubricant, the molding density is lowered, and the magnetic permeability μ is reduced. When zinc stearate is used as the lubricant, the amount of zinc (Zn) in the obtained powder magnetic core is adjusted within the range of 0.004 to 0.2% by mass, and the addition amount is adjusted. Is preferred. When there is too much content of Zn, there exists a tendency which sufficient intensity | strength as a dust core cannot be acquired.

本発明の一実施形態に係る実施例では、乳鉢に複合磁性粒1とエタノールで溶解させたフェノール樹脂を入れ、乳鉢混合により均一に混合し、フェノール系樹脂3wt%の造粒粉を得た後に、エタノールを乾燥させる。なお、金型への充填性を高めるために、粗大な凝集物を乳棒で解砕する。一実施形態に係る実施例では以下の条件で造粒粉を形成した:

合金粉末: 10g
結着材: 0.53g
潤滑剤: 0.30g

混錬時間: 10分
乾燥温度: 100℃
溶剤揮発時間:30分
In the Example which concerns on one Embodiment of this invention, after putting the phenol resin melt | dissolved with the composite magnetic particle 1 and ethanol in the mortar and mixing uniformly by mortar mixing, after obtaining granulated powder of 3 wt% of phenol-type resin, Dry the ethanol. In addition, in order to improve the filling property to a metal mold | die, a coarse aggregate is crushed with a pestle. In an example according to one embodiment, granulated powder was formed under the following conditions:

Alloy powder: 10g
Binder: 0.53g
Lubricant: 0.30g

Kneading time: 10 minutes Drying temperature: 100 ° C
Solvent evaporation time: 30 minutes

そして、造粒粉を内径8mm,外径13mm,高さ3mmのトロイダル形状の金型に充填し、油圧ハンドプレス装置で1.5GPaの圧力を加えることで圧粉磁心の形状に成形し、磁心厚さ3.5mmの成形体を得た。   Then, the granulated powder is filled in a toroidal mold having an inner diameter of 8 mm, an outer diameter of 13 mm, and a height of 3 mm, and is formed into a dust core shape by applying a pressure of 1.5 GPa with a hydraulic hand press device. A molded body having a thickness of 3.5 mm was obtained.

次に、得られた成形体を加熱することにより、結着材を硬化させ、圧粉磁心を得る。このとき、加熱温度は、結着材の組成等に応じて若干異なるものの、結着材が有機材料で構成されている場合、好ましくは100℃以上500℃以下程度とされ、より好ましくは120℃以上250℃以下程度とされる。一実施形態に係る実施例では加熱温度160℃とした。又、加熱時間は、加熱温度に応じて異なるものの、0.5時間以上5時間以下程度とされるが、一実施形態に係る実施例では加熱時間1時間とした。   Next, the obtained molded body is heated to cure the binder and obtain a dust core. At this time, although the heating temperature varies slightly depending on the composition of the binder, etc., when the binder is composed of an organic material, it is preferably about 100 ° C. or more and 500 ° C. or less, more preferably 120 ° C. The temperature is about 250 ° C. or lower. In the example according to one embodiment, the heating temperature was set to 160 ° C. Further, although the heating time varies depending on the heating temperature, it is about 0.5 hours or more and 5 hours or less, but in the example according to one embodiment, the heating time is 1 hour.

[磁気的特性の測定]
熱処理後の圧粉磁心(成形体)の飽和磁束密度Bsを振動試料型磁力計(東英工業社製VSM−5−10)で測定した結果を図9に示す。図9では、実施例1〜6の各成形体の外形寸法と重量を測定し、実施例1〜6の各成形体の密度を算出した。実施例1〜6の各成形体の密度を軟磁性粉末の真比重で除した値に、複合磁性粒1の飽和磁束密度Bsの値を乗算することで成形体の飽和磁束密度Bsを算出している。実施例1〜6の各成形体の外形寸法は、ノギスを用いて外形と内径の三点を測定して平均値を算出したものである。測定は、マイクロメータを用いて厚さを三点測定し、平均値を算出している。実施例1〜6の各成形体の相対密度は、各成形体の重量を測定し、成形体の寸法から算出した成形体の体積で除することで成形体の密度を算出した。
[Measurement of magnetic properties]
FIG. 9 shows the result of measuring the saturation magnetic flux density Bs of the dust core (molded body) after the heat treatment with a vibrating sample magnetometer (VSM-5-10 manufactured by Toei Kogyo Co., Ltd.). In FIG. 9, the external dimensions and weight of each molded object of Examples 1-6 were measured, and the density of each molded object of Examples 1-6 was computed. The saturated magnetic flux density Bs of the compact is calculated by multiplying the value obtained by dividing the density of each compact of Examples 1 to 6 by the true specific gravity of the soft magnetic powder and the value of the saturation magnetic flux density Bs of the composite magnetic grain 1. ing. The outer dimensions of each molded body of Examples 1 to 6 are obtained by measuring the three points of the outer shape and the inner diameter using a caliper and calculating an average value. In the measurement, the thickness is measured at three points using a micrometer, and the average value is calculated. The relative density of each molded body of Examples 1 to 6 was calculated by measuring the weight of each molded body and dividing the volume by the volume of the molded body calculated from the dimensions of the molded body.

実施例1〜6の各成形体の密度を複合磁性粒1の真比重で除することで各成形体の相対密度が算出できる。複合磁性粒1の飽和磁束密度Bsの値は、実施例1〜6の複合磁性粒1の試料10mgを採取し、非磁性の粘着テープ上に試料を載せて、この粘着テープを二つ折りにし、縦7mm、横7mmの板状に成形した。次いで、振動試料型磁力計(VSM)を使用し、最大印加磁界を12000A/m、室温(25℃)で飽和磁化を測定した。そして、この測定値と実施例1〜6の各試料の真比重から飽和磁束密度Bsを算出した。   The relative density of each compact can be calculated by dividing the density of each compact in Examples 1 to 6 by the true specific gravity of the composite magnetic grain 1. The value of the saturation magnetic flux density Bs of the composite magnetic particle 1 was obtained by taking 10 mg of the sample of the composite magnetic particle 1 of Examples 1 to 6, placing the sample on the nonmagnetic adhesive tape, folding the adhesive tape in half, It was formed into a plate shape having a length of 7 mm and a width of 7 mm. Next, using a vibrating sample magnetometer (VSM), the saturation magnetization was measured at a maximum applied magnetic field of 12000 A / m and room temperature (25 ° C.). And saturation magnetic flux density Bs was computed from this measured value and the true specific gravity of each sample of Examples 1-6.

図9には、実施例1〜6に係る圧粉磁心に導電性部材を巻き、初透磁率(複素比透磁率の実数部)μ、圧粉磁心の鉄損Pcvを測定した結果も同時に示している。初透磁率μは、実施例1〜6に係る圧粉磁心に直径0.3mmの被覆銅線を導電性部材として巻きつけてコイル部品を作製した後に測定している。被覆銅線による一次巻き線と二次巻き線の巻き数は32ターンであった。アジレント(Agilent)テクノロジー株式会社製のインピーダンスアナライザ4294Aを用いて、測定周波数100kHzにおけるコイル部品のインダクタンスを測定し、実施例1〜6に係る成形体の寸法を用いて初透磁率μを算出した。圧粉磁心の鉄損Pcvの測定に際しては、同様に直径0.3mmの被覆銅線を実施例1〜6に係る圧粉磁心に巻きつけてコイル部品を岩通計測株式会社製の磁気特性測定装置(B−HアナライザSY−8217)を用いて、印加磁界100mT、測定周波数100kHzにおける圧粉磁心の鉄損Pcvを測定した。 In FIG. 9, the result of measuring the initial permeability (real part of complex relative permeability) μ i and the iron loss Pcv of the dust core at the same time by winding a conductive member around the dust core according to Examples 1 to 6 is also shown. Show. The initial permeability μ i is measured after a coated copper wire having a diameter of 0.3 mm is wound as a conductive member around the dust cores according to Examples 1 to 6 to produce a coil component. The number of turns of the primary winding and the secondary winding with the coated copper wire was 32 turns. Using an impedance analyzer 4294A manufactured by Agilent Technology Co., Ltd., the inductance of the coil component at a measurement frequency of 100 kHz was measured, and the initial permeability μ i was calculated using the dimensions of the molded bodies according to Examples 1-6. . When measuring the iron loss Pcv of the dust core, similarly, a coated copper wire having a diameter of 0.3 mm is wound around the dust core according to Examples 1 to 6, and the coil component is measured for magnetic properties by Iwatatsu Measurement Co., Ltd. The iron loss Pcv of the dust core at an applied magnetic field of 100 mT and a measurement frequency of 100 kHz was measured using an apparatus (BH analyzer SY-8217).

図7に示した熱処理の保持時間1分の実施例1〜3に関しては、図9に示すように、実施例1の飽和磁束密度Bs=1.72Tであり、実施例2の飽和磁束密度Bs=1.73で、実施例3の飽和磁束密度Bs=1.76である。一方、図7の保持時間1分の実施例4〜6に関しては、実施例4の飽和磁束密度Bs=1.77であり、実施例5の飽和磁束密度Bs=1.77で、実施例6の飽和磁束密度Bs=1.79である。よって、熱処理の保持時間が長い方が、飽和磁束密度Bsが大きくなる傾向が見られる。   Regarding Examples 1 to 3 in which the holding time of the heat treatment shown in FIG. 7 is 1 minute, as shown in FIG. 9, the saturation magnetic flux density Bs of Example 1 is 1.72 T, and the saturation magnetic flux density Bs of Example 2 is. = 1.73, and the saturation magnetic flux density Bs of Example 3 is 1.76. On the other hand, with respect to Examples 4 to 6 having a holding time of 1 minute in FIG. 7, the saturation magnetic flux density Bs of Example 4 is 1.77, and the saturation magnetic flux density Bs of Example 5 is 1.77. The saturation magnetic flux density Bs = 1.79. Therefore, the saturation magnetic flux density Bs tends to increase as the heat treatment holding time is longer.

図9に示すように、図7の保持時間1分の実施例1〜3に関しては実施例1の初透磁率μ=14.6であり、実施例2の初透磁率μ=15.1で、実施例3の初透磁率μ=15.6であるので加熱温度が高くなると、初透磁率μが大きくなる傾向が見られる。一方、図7の保持時間1分の実施例4〜6に関しては、実施例4の初透磁率μ=14.0であり、実施例5の初透磁率μ=14.2で、実施例6の初透磁率μ=13.9であるので、保持時間が長い場合は加熱温度による初透磁率μの変化の傾向は認められない。 As shown in FIG. 9, an initial permeability mu i = 14.6 Example 1 for Examples 1-3 of the holding time of 1 minute in FIG. 7, the initial permeability mu i = 15 in Example 2. 1 and the initial permeability μ i of Example 3 is 15.6, so that when the heating temperature is increased, the initial permeability μ i tends to increase. On the other hand, with respect to Examples 4 to 6 having a holding time of 1 minute in FIG. 7, the initial permeability μ i = 14.0 of Example 4 and the initial permeability μ i = 14.2 of Example 5 were performed. Since the initial permeability μ i in Example 6 is 13.9, when the holding time is long, the tendency of the change in the initial permeability μ i due to the heating temperature is not recognized.

図9から分かるように、図7の熱処理の保持時間1分の実施例1〜3に関しては実施例1に係る圧粉磁心の鉄損Pcv=5344kW/mであり、実施例2に係る圧粉磁心の鉄損Pcv=4945kW/mで、実施例3に係る圧粉磁心の鉄損Pcv=4600kW/mであるので、熱処理の保持時間が短い場合は加熱温度が高くなると、圧粉磁心の鉄損Pcvが減少する傾向が見られる。一方、図7の保持時間1分の実施例4〜6に関しては、実施例4に係る圧粉磁心の鉄損Pcv=5190kW/mであり、実施例5に係る圧粉磁心の鉄損Pcv=5731kW/mで、実施例6に係る圧粉磁心の鉄損Pcv=5710kW/mであるので、熱処理の保持時間が長い場合は加熱温度による圧粉磁心の鉄損Pcvの変化の傾向は認められない。 As can be seen from FIG. 9, the iron loss Pcv of the dust core according to Example 1 is 5344 kW / m 3 for Examples 1 to 3 in which the heat treatment holding time is 1 minute in FIG. Since the iron loss Pcv of the powder magnetic core is 4945 kW / m 3 and the iron loss Pcv of the powder magnetic core according to Example 3 is 4600 kW / m 3 , if the heating temperature is high when the holding time of the heat treatment is short, There is a tendency for the iron loss Pcv of the magnetic core to decrease. On the other hand, for Examples 4 to 6 having a holding time of 1 minute in FIG. 7, the iron loss Pcv of the dust core according to Example 4 is 5190 kW / m 3 and the iron loss Pcv of the dust core according to Example 5 is as follows. = 5731 kW / m 3 and iron loss Pcv of the dust core according to Example 6 = 5710 kW / m 3 , so when the heat treatment holding time is long, the iron core loss Pcv of the dust core due to the heating temperature tends to change It is not allowed.

実施例1〜6に係る圧粉磁心の測定結果と比較するため、図11には図10に分類した比較例1〜3について図9と同様な測定をした結果を示す。比較例1は実施例1〜6と同一の組成のFe85.7Si0.59.53.5Cu0.899であるが、熱処理をしていない軟磁性合金粉末のため、軟磁性合金粉末の上に図1等に示したような柱状結晶層が形成されていない構造である。比較例2は(Fe0.97Cr0.0376(Si0.50.522の組成を有するFe系アモルファス材、比較例2は(Fe0.8Co0.275Si20Nbの組成を有するFe系アモルファス材である。比較例1〜3の試料についても、実施例1〜6と同様に、造粒粉を内径8mm,外径13mm,高さ3mmのトロイダル形状の金型に充填し、油圧ハンドプレス装置で1.5GPaの圧力を加えることで圧粉磁心の形状に成形して、実施例1〜6と同様の測定をした。 In order to compare with the measurement results of the dust cores according to Examples 1 to 6, FIG. 11 shows the results of measurement similar to FIG. 9 for Comparative Examples 1 to 3 classified in FIG. Comparative Example 1 is Fe 85.7 Si 0.5 B 9.5 P 3.5 Cu 0.8 ) 99 C 1 having the same composition as Examples 1 to 6, but is not heat-treated Because of the powder, the columnar crystal layer as shown in FIG. 1 or the like is not formed on the soft magnetic alloy powder. Comparative Example 2 is an Fe-based amorphous material having a composition of (Fe 0.97 Cr 0.03 ) 76 (Si 0.5 B 0.5 ) 22 C 2 , and Comparative Example 2 is (Fe 0.8 Co 0.2 ) A Fe-based amorphous material having a composition of 75 Si 4 B 20 Nb 1 . For the samples of Comparative Examples 1 to 3, as in Examples 1 to 6, the granulated powder was filled in a toroidal mold having an inner diameter of 8 mm, an outer diameter of 13 mm, and a height of 3 mm. By applying a pressure of 5 GPa, it was molded into the shape of a dust core, and the same measurement as in Examples 1 to 6 was performed.

図11に示すように、比較例1の圧粉磁心の初透磁率μ=16.5であり、比較例2の圧粉磁心の初透磁率μ=16.2であるので、比較例1及び2に関しては、実施例1〜6よりも初透磁率μが大きい傾向にある。一方、比較例3の圧粉磁心の初透磁率μ=14.6であるので実施例1〜6と同程度の初透磁率μである。図11から分かるように、比較例1に係る圧粉磁心の鉄損Pcv=5986kW/mであり、比較例2に係る圧粉磁心の鉄損Pcv=7850kW/mであり、比較例3に係る圧粉磁心の鉄損Pcv=7881kW/mであるので実施例1〜6に比して、圧粉磁心の鉄損Pcvが大きいことが分かる。 As shown in FIG. 11, the initial permeability μ i = 16.5 of the dust core of Comparative Example 1 and the initial permeability μ i = 16.2 of the dust core of Comparative Example 2 are compared. Regarding 1 and 2, the initial permeability μ i tends to be larger than those in Examples 1-6. On the other hand, since the initial permeability μ i of the dust core of Comparative Example 3 is 14.6, the initial permeability μ i is about the same as in Examples 1-6. As can be seen from FIG. 11, the iron loss Pcv of the dust core according to Comparative Example 1 is 5986 kW / m 3 , the iron loss Pcv of the dust core according to Comparative Example 2 is 7850 kW / m 3 , and Comparative Example 3 Therefore, it can be seen that the iron loss Pcv of the dust core is larger than those of Examples 1 to 6. Thus, the iron loss Pcv of the dust core is 7881 kW / m 3 .

図12には、実施例7〜9及び比較例4〜15の試料について、複合磁性粒1の柱状結晶層の厚さ、柱状結晶層の短軸寸法、柱状結晶層の酸素濃度、軟磁性合金粉末の金属組織の酸素濃度等を絶縁層(SiO層)の厚さと共に示している。実施例7〜9及び比較例4〜5に関しては、軟磁性合金粉末の表面に絶縁層がなく、比較例6〜10は軟磁性合金粉末の表面に設けられた絶縁層の厚さが0.5μmであり、比較例11〜15は絶縁層の厚さが2μmである。比較例4,6,11は複合磁性粒に柱状結晶層が付されていない構造である。図18は、軟磁性合金粉末の表面に設けられる絶縁層の厚さと柱状結晶層の厚さの関係をマトリクス表示した表である。図13には、 図12に示した実施例7〜9及び比較例4〜15の試料について、飽和磁束密度Bs、初透磁率μ、圧粉磁心の鉄損Pcvを測定した結果を示している。 FIG. 12 shows the thickness of the columnar crystal layer of the composite magnetic grain 1, the minor axis dimension of the columnar crystal layer, the oxygen concentration of the columnar crystal layer, and the soft magnetic alloy for the samples of Examples 7 to 9 and Comparative Examples 4 to 15. The oxygen concentration of the metal structure of the powder is shown together with the thickness of the insulating layer (SiO 2 layer). Regarding Examples 7 to 9 and Comparative Examples 4 to 5, there is no insulating layer on the surface of the soft magnetic alloy powder, and in Comparative Examples 6 to 10, the thickness of the insulating layer provided on the surface of the soft magnetic alloy powder is 0. The thickness of the insulating layer in Comparative Examples 11 to 15 is 2 μm. Comparative Examples 4, 6, and 11 have a structure in which the columnar crystal layer is not attached to the composite magnetic grains. FIG. 18 is a table showing a matrix display of the relationship between the thickness of the insulating layer provided on the surface of the soft magnetic alloy powder and the thickness of the columnar crystal layer. FIG. 13 shows the results of measuring the saturation magnetic flux density Bs, the initial permeability μ i , and the iron loss Pcv of the dust core for the samples of Examples 7 to 9 and Comparative Examples 4 to 15 shown in FIG. Yes.

図14は、 図13に示した実施例7〜9及び比較例4〜15の飽和磁束密度Bsと柱状結晶層の厚さの関係を示す図である。図14に示すように、実施例7〜9の飽和磁束密度Bsの値が、比較例4〜15の飽和磁束密度Bsの値よりも大きいことが分かる。実施例7〜9の比較では、柱状結晶層の厚さが厚くなると飽和磁束密度Bsの値が減少する傾向が認められる。又、比較例4〜15の飽和磁束密度Bsの値を比較すると、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、飽和磁束密度Bsの値が減少する傾向が読める。   FIG. 14 is a diagram showing the relationship between the saturation magnetic flux density Bs and the thickness of the columnar crystal layer in Examples 7 to 9 and Comparative Examples 4 to 15 shown in FIG. As shown in FIG. 14, it can be seen that the values of the saturation magnetic flux density Bs of Examples 7 to 9 are larger than the value of the saturation magnetic flux density Bs of Comparative Examples 4 to 15. In the comparison of Examples 7 to 9, it is recognized that the value of the saturation magnetic flux density Bs decreases as the thickness of the columnar crystal layer increases. Moreover, when the values of the saturation magnetic flux density Bs of Comparative Examples 4 to 15 are compared, it can be seen that the value of the saturation magnetic flux density Bs decreases as the thickness of the insulating layer increases to 0 μm, 0.5 μm, and 2 μm.

図18の絶縁層の厚さと柱状結晶層の厚さとのマトリクス表示から、図19の飽和磁束密度Bsのマトリクス表示を見ても、絶縁層がない実施例7〜9の飽和磁束密度Bsの値が、比較例4〜15の飽和磁束密度Bsの値よりも大きく、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、飽和磁束密度Bsの値が減少する傾向が分かる。図18のマトリクス表示の試料から、柱状結晶層の厚さが200nmの実施例7、比較例7,比較例12の試料を削除したマトリクスに対応するのが図20に示す表である。図20のマトリクス表示において、飽和磁束密度Bsの値の優劣を◎、○、△、×で示すと、絶縁層がなく、且つ柱状結晶層が付されていない構造の比較例4、及び、絶縁層がなく、柱状結晶層が500nmの実施例8が最も高い。又、絶縁層がなく、柱状結晶層が1000nmの実施例9が次に高く、これらは1.7Tを超えている。これら以外の比較例では、いずれも小さく、1.7Tを下回っている。特に、絶縁層の厚さが2μmである比較例11〜15は、1.37T〜1.43Tと、著しく小さい。   When the matrix display of the saturation magnetic flux density Bs in FIG. 19 is seen from the matrix display of the thickness of the insulating layer and the thickness of the columnar crystal layer in FIG. 18, the value of the saturation magnetic flux density Bs in Examples 7 to 9 without the insulating layer. However, the value of the saturation magnetic flux density Bs is larger than the value of the saturation magnetic flux density Bs of Comparative Examples 4 to 15, and the value of the saturation magnetic flux density Bs tends to decrease as the thickness of the insulating layer increases to 0 μm, 0.5 μm, and 2 μm. The table shown in FIG. 20 corresponds to a matrix obtained by deleting the samples of Example 7, Comparative Example 7, and Comparative Example 12 in which the columnar crystal layer has a thickness of 200 nm from the sample of the matrix display of FIG. In the matrix display of FIG. 20, when the superiority or inferiority of the saturation magnetic flux density Bs is indicated by ◎, ○, Δ, ×, Comparative Example 4 having a structure without an insulating layer and without a columnar crystal layer, and insulation Example 8 with no layer and columnar crystal layer of 500 nm is the highest. In addition, Example 9 in which there is no insulating layer and the columnar crystal layer is 1000 nm is the next highest, which exceeds 1.7T. In comparative examples other than these, all are small and are less than 1.7T. In particular, Comparative Examples 11 to 15 in which the thickness of the insulating layer is 2 μm are extremely small, 1.37T to 1.43T.

図15は、 図13に示した実施例7〜9及び比較例4〜15の初透磁率μと柱状結晶層の厚さの関係を示す図である。図15に示すように、実施例7〜9の初透磁率μの値が、比較例4〜15の初透磁率μの値よりも大きいことが分かる。実施例7〜9の比較では、柱状結晶層の厚さが厚くなると初透磁率μの値が減少する傾向が認められる。又、比較例4〜15の初透磁率μの値を比較すると、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、初透磁率μの値が減少する傾向が読める。 FIG. 15 is a diagram showing the relationship between the initial permeability μ i and the thickness of the columnar crystal layer in Examples 7 to 9 and Comparative Examples 4 to 15 shown in FIG. As shown in FIG. 15, the value of the initial permeability mu i of Example 7-9, it is found greater than the value of the initial permeability mu i of the comparative examples 4-15. In the comparison of Examples 7 to 9, it is recognized that the value of the initial permeability μ i tends to decrease as the thickness of the columnar crystal layer increases. Further, comparing the values of the initial permeability μ i of Comparative Examples 4 to 15, it can be seen that the value of the initial permeability μ i decreases as the thickness of the insulating layer becomes 0 μm, 0.5 μm, and 2 μm. .

図18の絶縁層の厚さと柱状結晶層の厚さとのマトリクス表示の試料から、図21の初透磁率μのマトリクス表示を見ても、絶縁層がない実施例7〜9の初透磁率μの値が、比較例4〜15の初透磁率μの値よりも大きく、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、初透磁率μの値が減少する傾向が分かる。図18のマトリクス表示の試料から、柱状結晶層の厚さが200nmの実施例7、比較例7,比較例12の試料を削除したマトリクスに対応するのが図22に示す表である。図22のマトリクス表示において、初透磁率μの値の優劣を◎、○、△、×で示すと、絶縁層がなく、且つ柱状結晶層が500nmの実施例8、が最も高い。絶縁層がなく、柱状結晶層が付されていない比較例4、及び絶縁層が無く、柱状結晶層が1000nmの実施例9が次に大きい。これら以外の比較例では、いずれも小さく、1.5を下回っている。特に、絶縁層の厚さが2μmである比較例11〜15は、11.5〜12.3と、著しく小さい。 From the matrix display sample of the insulating layer thickness and the columnar crystal layer thickness of FIG. 18, even if the matrix display of the initial permeability μ i of FIG. the value of mu i is greater than the value of the initial permeability mu i of the comparative examples 4-15, the thickness of the insulating layer is 0 .mu.m, 0.5 [mu] m, in accordance with thicker and 2 [mu] m, the value of the initial permeability mu i decreases The tendency to do. The table shown in FIG. 22 corresponds to a matrix obtained by deleting the samples of Example 7, Comparative Example 7, and Comparative Example 12 in which the columnar crystal layer has a thickness of 200 nm from the sample of the matrix display of FIG. In the matrix display of FIG. 22, when the superiority or inferiority of the value of the initial magnetic permeability μ i is indicated by 、, ○, Δ, ×, Example 8 in which there is no insulating layer and the columnar crystal layer is 500 nm is the highest. Comparative Example 4 having no insulating layer and no columnar crystal layer, and Example 9 having no insulating layer and having a columnar crystal layer of 1000 nm are the next largest. In comparative examples other than these, all are small and are less than 1.5. Particularly, Comparative Examples 11 to 15 in which the thickness of the insulating layer is 2 μm are remarkably small as 11.5 to 12.3.

図16及び図17は、 図13に示した実施例7〜9及び比較例4〜15に係る圧粉磁心の鉄損Pcvと柱状結晶層の厚さの関係を示す図である。図16は、図17の鉄損Pcvの5000kW/mの近傍(4500kW/m〜5500kW/m)を拡大して示す。図15に示すように、柱状結晶層の厚さが185nmと薄い実施例7の鉄損Pcvの値は、比較例5〜15の鉄損Pcvの値よりも大きいが、柱状結晶層の厚さが515nmの実施例8の鉄損Pcvの値、及び柱状結晶層の厚さが970nmの実施例9の鉄損Pcvの値は、比較例4〜15の鉄損Pcvの最低値のレベルである。ただし、図17に示すように、絶縁層がなく、且つ柱状結晶層が付されていない構造の比較例4の鉄損Pcvの値は、9120kW/mと実施例7〜9の鉄損Pcvよりも大きい。又、比較例5〜15の鉄損Pcvの値を比較すると、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、鉄損Pcvの値が減少する傾向が読める。 16 and 17 are diagrams showing the relationship between the iron loss Pcv of the dust cores according to Examples 7 to 9 and Comparative Examples 4 to 15 shown in FIG. 13 and the thickness of the columnar crystal layer. FIG. 16 shows an enlarged view of the vicinity (4500 kW / m 3 to 5500 kW / m 3 ) of the iron loss Pcv of FIG. 17 at 5000 kW / m 3 . As shown in FIG. 15, the value of the iron loss Pcv of Example 7 in which the thickness of the columnar crystal layer is as thin as 185 nm is larger than the value of the iron loss Pcv of Comparative Examples 5 to 15, but the thickness of the columnar crystal layer The value of the iron loss Pcv of Example 8 having a thickness of 970 nm and the value of the iron loss Pcv of Example 9 having a columnar crystal layer thickness of 970 nm is the level of the lowest value of the iron loss Pcv of Comparative Examples 4 to 15. . However, as shown in FIG. 17, the value of the iron loss Pcv of the comparative example 4 having the structure without the insulating layer and without the columnar crystal layer is 9120 kW / m 3 and the iron loss Pcv of the examples 7 to 9. Bigger than. Further, when the values of the iron loss Pcv of Comparative Examples 5 to 15 are compared, it can be seen that the value of the iron loss Pcv decreases as the thickness of the insulating layer increases to 0 μm, 0.5 μm, and 2 μm.

図18の絶縁層の厚さと柱状結晶層の厚さとのマトリクス表示から、図23の鉄損Pcvのマトリクス表示を見ても、絶縁層がなく、且つ柱状結晶層が付されていない構造の比較例4の鉄損Pcvの値が非常に大きいことが分かる。又、柱状結晶層の厚さが185nmと薄い実施例7の鉄損Pcvの値は、比較例5〜15の鉄損Pcvの値よりも大きいが、柱状結晶層の厚さが515nmの実施例8の鉄損Pcvの値、及び柱状結晶層の厚さが970nmの実施例9の鉄損Pcvの値は、比較例14及び15の鉄損Pcvのレベルと同等な最低値であることが分かる。更に、絶縁層の厚さが0μm、0.5μm、2μmと厚くなるに従い、鉄損Pcvの値が減少する傾向が分かる。   Comparison of the structure having no insulating layer and no columnar crystal layer even when the matrix display of the iron loss Pcv in FIG. 23 is seen from the matrix display of the insulating layer thickness and the columnar crystal layer thickness of FIG. It turns out that the value of the iron loss Pcv of Example 4 is very large. Further, the value of the iron loss Pcv of Example 7 where the thickness of the columnar crystal layer is as thin as 185 nm is larger than the value of the iron loss Pcv of Comparative Examples 5 to 15, but the thickness of the columnar crystal layer is 515 nm. It can be seen that the iron loss Pcv value of 8 and the iron loss Pcv value of Example 9 in which the thickness of the columnar crystal layer is 970 nm are minimum values equivalent to the level of the iron loss Pcv of Comparative Examples 14 and 15. . Furthermore, it can be seen that the value of the iron loss Pcv tends to decrease as the thickness of the insulating layer increases to 0 μm, 0.5 μm, and 2 μm.

図18のマトリクス表示の試料から、柱状結晶層の厚さが200nmの実施例7、比較例7,比較例12の試料を削除したマトリクスに対応するのが図24に示す表である。図24のマトリクス表示において、鉄損Pcvの値の優劣を◎、○、△、×で示すと、絶縁層がなく、且つ柱状結晶層が付されていない構造の比較例4の値が9120kW/mで突出して大きな値である。比較例4以外は、全て5020kW/m以下と小さい値である。 The table shown in FIG. 24 corresponds to a matrix in which the samples of Example 7, Comparative Example 7, and Comparative Example 12 in which the thickness of the columnar crystal layer is 200 nm are deleted from the matrix display sample of FIG. In the matrix display of FIG. 24, when the superiority or inferiority of the value of iron loss Pcv is indicated by ◎, ○, Δ, ×, the value of Comparative Example 4 having a structure without an insulating layer and without a columnar crystal layer is 9120 kW / is a large value projects in m 3. Except for Comparative Example 4, all values are as small as 5020 kW / m 3 or less.

以上のとおり、飽和磁束密度Bs、初透磁率μi、鉄損Pcvの3つの特性を併せ持つ条件は、絶縁層なしで、柱状結晶層があり、その厚さが1μm以下の場合である。本発明の一実施形態に係る磁性部品によれば、表面を絶縁層で覆われておらず、酸化鉄を主成分とする厚みが1μm以下の柱状結晶層12を軟磁性合金粉末11の表面の少なくとも一部に設けた複合磁性粒1を主成分として含んでいるので、成形体を構成した場合に軟磁性材料の体積割合を高めることができる。よって、本発明の一実施形態に係る磁性部品によれば、成形体を構成した場合に、成形体の鉄損Pcvを低減でき、初透磁率μ及び飽和磁束密度Bsを高めることができる。 As described above, the condition having the three characteristics of the saturation magnetic flux density Bs, the initial permeability μi, and the iron loss Pcv is the case where there is no insulating layer, the columnar crystal layer has a thickness of 1 μm or less. According to the magnetic component according to one embodiment of the present invention, the surface of the soft magnetic alloy powder 11 is not covered with the insulating layer, and the columnar crystal layer 12 having a thickness of iron oxide as a main component and having a thickness of 1 μm or less is formed. Since the composite magnetic particle 1 provided at least in part is included as a main component, the volume ratio of the soft magnetic material can be increased when a molded body is formed. Therefore, according to the magnetic component according to the embodiment of the present invention, when the molded body is configured, the iron loss Pcv of the molded body can be reduced, and the initial magnetic permeability μ i and the saturation magnetic flux density Bs can be increased.

(その他の実施形態)
上記のように、本発明は一実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to an embodiment. However, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、上記の一実施形態の説明では圧粉磁心を本発明の磁性部品と一つとして例示し、圧粉磁心に導電性部材を巻きつけたコイル部品について説明したが、本発明の実施形態に係る磁性部品は圧粉磁心や圧粉磁心を用いたコイル部位品に限定されるものではない。本発明は、リアクトル、トランス、インダクタ、モータ、ノイズフィルタ等ノイズ関連、チョークコイルなどの磁力を利用する各種の磁性部品に適用可能である。   For example, in the description of the above-described embodiment, the dust core is exemplified as one magnetic component of the present invention, and the coil component in which the conductive member is wound around the dust core has been described. The magnetic component is not limited to a dust core or a coil part product using a dust core. The present invention can be applied to various magnetic parts using magnetic force such as a reactor, a transformer, an inductor, a motor, a noise filter, etc., noise related, and a choke coil.

本発明の実施例1〜9等では、磁性部材である圧粉磁心(圧粉コア)とコイル状の形状を有する導電性部材とを備える構造を説明したが、本発明の実施形態に係る磁性部材は磁性シートでもよい。他の磁性部品の例としての磁性シートには、両面テープなど他の固定用部材等が含まれていてもよい。又、磁性部材の成形体の内部にコイルが埋設されている構造であっても構わない。導電性部材は、磁性部材の内部に埋設可能であれば、その形状及び組成は限定されない。   In Examples 1 to 9 and the like of the present invention, the structure including the dust core (dust core) that is a magnetic member and the conductive member having a coil shape has been described. However, the magnetic according to the embodiment of the present invention is described. The member may be a magnetic sheet. The magnetic sheet as an example of another magnetic component may include other fixing members such as a double-sided tape. Moreover, the structure by which the coil is embed | buried under the inside of the molded object of a magnetic member may be sufficient. The shape and composition of the conductive member are not limited as long as the conductive member can be embedded in the magnetic member.

本発明の実施形態に係る磁性部品を備えることにより、本発明の実施形態に係る電気・電子機器を構成できる。本発明の実施形態に係る磁性部品がインダクタンス素子からなる場合には、このインダクタンス素子が実装された機器が本発明の実施形態に係る電気・電子機器に対応し、本発明の実施形態に係る磁性部品が磁性シートからなる場合には、この磁性シートが、例えば筐体や基板に貼付された機器が、本発明の実施形態に係る電気・電子機器に対応する。具体的には、スイッチング電源、電圧昇降回路、平滑回路等を備えた電源装置、インバータ装置、ノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイなどが、本発明の実施形態に係る電気・電子機器として例示される。   By including the magnetic component according to the embodiment of the present invention, the electric / electronic device according to the embodiment of the present invention can be configured. When the magnetic component according to the embodiment of the present invention includes an inductance element, the device on which the inductance element is mounted corresponds to the electric / electronic device according to the embodiment of the present invention, and the magnetic component according to the embodiment of the present invention. When the component is made of a magnetic sheet, a device in which the magnetic sheet is attached to, for example, a housing or a substrate corresponds to the electric / electronic device according to the embodiment of the present invention. Specifically, a power supply device including a switching power supply, a voltage raising / lowering circuit, a smoothing circuit, an inverter device, a small information device such as a notebook computer or a mobile phone, a thin CRT, a flat panel display, etc. It is illustrated as an electrical / electronic device according to the above.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

磁気部品を製造する産業分野や、この磁気部品を用いたノート型パソコン、小型携帯機器、薄型ディスプレイなどの電気・電子機器の製造の技術分野に利用可能である。   The present invention can be used in the industrial field of manufacturing magnetic parts and in the technical field of manufacturing electrical / electronic devices such as notebook computers, small portable devices, and thin displays using the magnetic components.

1…複合磁性粒
11…軟磁性合金粉末
12…柱状結晶層
DESCRIPTION OF SYMBOLS 1 ... Composite magnetic grain 11 ... Soft magnetic alloy powder 12 ... Columnar crystal layer

Claims (5)

アモルファス合金粉末及びナノ結晶合金粉末の少なくとも一方を含む軟磁性合金粉末と、
該軟磁性合金粉末の表面の少なくとも一部に設けられた厚みが1μm以下の柱状結晶層と、
を備えることを特徴とする複合磁性粒。
A soft magnetic alloy powder comprising at least one of an amorphous alloy powder and a nanocrystalline alloy powder;
A columnar crystal layer having a thickness of 1 μm or less provided on at least a part of the surface of the soft magnetic alloy powder;
A composite magnetic grain comprising:
前記複合磁性粒の断面に対するエネルギー分散型X線分光器による元素マッピング測定において、前記柱状結晶層の酸素濃度が、前記軟磁性合金粉末の金属組織の酸素濃度よりも高いことを特徴とする請求項1に記載の複合磁性粒。   The element concentration measurement by an energy dispersive X-ray spectrometer for the cross section of the composite magnetic grain, wherein the oxygen concentration of the columnar crystal layer is higher than the oxygen concentration of the metal structure of the soft magnetic alloy powder. 2. The composite magnetic particle according to 1. 前記柱状結晶層の短軸寸法が200nm以下であることを特徴とする請求項1又は2に記載の複合磁性粒。   The composite magnetic grain according to claim 1 or 2, wherein the columnar crystal layer has a minor axis dimension of 200 nm or less. 前記軟磁性合金粉末はFe、Si、B、P、Cu、Cを含み、粉末の集合体としてFeSiCuの組成式で表したときに、79≦a≦86at%、5≦b≦13at%、0<c≦8at%、0<x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.08≦z/x≦1.2の条件を満たすことを特徴とする請求項1〜3のいずれか1項に記載の複合磁性粒。 The soft magnetic alloy powder is Fe, Si, B, P, Cu, includes C, and when expressed by Fe a B b Si c P x C y Cu composition formula of z as a collection of powder, 79 ≦ a ≦ 86 at%, 5 ≦ b ≦ 13 at%, 0 <c ≦ 8 at%, 0 <x ≦ 10 at%, 0 ≦ y ≦ 5 at%, 0.4 ≦ z ≦ 1.4 at%, and 0.08 ≦ z / x The composite magnetic grain according to claim 1, wherein a condition of ≦ 1.2 is satisfied. 請求項1〜4のいずれか1項に記載の前記複合磁性粒を成形体の主成分として含んだことを特徴とする磁性部品。   A magnetic component comprising the composite magnetic particle according to any one of claims 1 to 4 as a main component of a molded body.
JP2016210800A 2016-10-27 2016-10-27 Composite magnetic particles and magnetic parts Active JP6744534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210800A JP6744534B2 (en) 2016-10-27 2016-10-27 Composite magnetic particles and magnetic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210800A JP6744534B2 (en) 2016-10-27 2016-10-27 Composite magnetic particles and magnetic parts

Publications (2)

Publication Number Publication Date
JP2018073945A true JP2018073945A (en) 2018-05-10
JP6744534B2 JP6744534B2 (en) 2020-08-19

Family

ID=62112852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210800A Active JP6744534B2 (en) 2016-10-27 2016-10-27 Composite magnetic particles and magnetic parts

Country Status (1)

Country Link
JP (1) JP6744534B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026573A (en) * 2018-08-18 2020-02-20 株式会社戸畑製作所 Magnesium alloy powder
CN111755197A (en) * 2019-03-28 2020-10-09 Tdk株式会社 Soft magnetic metal powder and magnetic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026573A (en) * 2018-08-18 2020-02-20 株式会社戸畑製作所 Magnesium alloy powder
CN111755197A (en) * 2019-03-28 2020-10-09 Tdk株式会社 Soft magnetic metal powder and magnetic component
CN111755197B (en) * 2019-03-28 2023-09-26 Tdk株式会社 Soft magnetic metal powder and magnetic component

Also Published As

Publication number Publication date
JP6744534B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6089430B2 (en) Soft magnetic powder, dust core and magnetic element
US11145448B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP6446863B2 (en) Amorphous alloy powder, dust core, magnetic element and electronic device
Guo et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP5370688B2 (en) Powder magnetic core and manufacturing method thereof
JP4748397B2 (en) Soft magnetic composite materials for reactors and reactors
JP6536860B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP2016014162A (en) Amorphous alloy powder, dust core, magnetic element and electronic equipment
Liu et al. Improved high-frequency magnetic properties of FeSiBCCr amorphous soft magnetic composites by adding carbonyl iron powders
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
WO2019208768A1 (en) Powder for magnetic cores, magnetic core using same, and coil component
Zhang et al. Fe-rich Fe–Si–B–P–Cu powder cores for high-frequency power electronic applications
JP2004288983A (en) Dust core and method for manufacturing same
JP6998552B2 (en) Powder magnetic core
JP2018070935A (en) Nanocrystal alloy powder and magnetic component
US20190013129A1 (en) Dust core
JP2018073947A (en) Soft magnetic alloy, soft magnetic alloy powder and magnetic part
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
Wang et al. Industrial-scale fabrication of amorphous magnetic powder cores with excellent high-frequency magnetic properties: optimization for kinds and content of insulating agents
JP2014167953A (en) Amorphous alloy powder, powder-compact magnetic core, magnetic device and electronic device
JP6146051B2 (en) Amorphous alloy powder, dust core, magnetic element and electronic device
JP6744534B2 (en) Composite magnetic particles and magnetic parts
JP2018073946A (en) Powder mixture and magnetic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6744534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250