JP2018073213A - Delivery planning system, delivery planning method, and program - Google Patents
Delivery planning system, delivery planning method, and program Download PDFInfo
- Publication number
- JP2018073213A JP2018073213A JP2016213838A JP2016213838A JP2018073213A JP 2018073213 A JP2018073213 A JP 2018073213A JP 2016213838 A JP2016213838 A JP 2016213838A JP 2016213838 A JP2016213838 A JP 2016213838A JP 2018073213 A JP2018073213 A JP 2018073213A
- Authority
- JP
- Japan
- Prior art keywords
- delivery
- time
- base
- plan
- demand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012384 transportation and delivery Methods 0.000 title claims abstract description 1443
- 238000000034 method Methods 0.000 title claims description 98
- 230000008569 process Effects 0.000 description 52
- 230000006870 function Effects 0.000 description 32
- 238000012545 processing Methods 0.000 description 32
- 238000004364 calculation method Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 27
- 238000009826 distribution Methods 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000009467 reduction Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 238000002716 delivery method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000011218 segmentation Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012067 mathematical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
Description
本発明は、配送計画システム、配送計画方法及びプログラムに関する。 The present invention relates to a delivery planning system, a delivery planning method, and a program.
カーシェアリングへのニーズが高まっている。カーシェアリングとは、例えば、会員の間などで車両を共同で利用し、搭乗時間などに応じて料金を負担し、自分の好きな時に車両を利用するシステムである。カーシェアリングの一つの形態として、乗り捨て型(ワンウェイ型)と呼ばれる利用形態が存在する。乗り捨て型のカーシェアリングでは、ユーザは、目的地近くの所定の駐車場まで共同の車両を利用し、その自動車を駐車場にそのまま乗り捨てておくことができる。このような形態のカーシェアリングでは、ユーザが利用し終えた車両を、新たな利用ニーズがある他の駐車場に配送する必要が生じる。 There is a growing need for car sharing. Car sharing is a system in which, for example, a vehicle is shared between members, a fee is paid according to the boarding time, and the vehicle is used at any time. As one form of car sharing, there is a use form called a drop-off type (one-way type). In the drop-off type car sharing, the user can use the common vehicle to a predetermined parking lot near the destination and leave the car as it is in the parking lot. In such a form of car sharing, it is necessary to deliver a vehicle that has been used by a user to another parking lot that has new usage needs.
また、顧客が購入した製品に対するアフターサービスを行うために、サービスマンが客先を回る、いわゆるアフターサービス巡回の場合にも、サービスマン及びサービスの提供に必要な部品等の移動について同様の事情が生じる。例えば、複数の客先のそれぞれにアフターサービス対象となる製品が設置されており、サービスマンがその製品のアフターサービスに使う部品をある場所で調達して客先に運んだり、1回の巡回で様々な種類のアフターサービスを行うサービスマンが、サービスの提供に同じ部品を必要とするある客先から他の客先へ移動し、さらに使用後の部品を元へ戻したりといった場面で効率的な巡回方法を選択する必要が生じる。 Also, in the case of so-called after-service patrols where service personnel visit customers to provide after-sales service for products purchased by customers, there are similar circumstances regarding the movement of service personnel and parts necessary for providing services. Arise. For example, products that are subject to after-sales service are installed at each of multiple customers, and service personnel procure parts to be used for after-sales service of the products at a certain location and carry them to customers. Efficient in situations where a service person who performs various types of after-sales service moves from one customer to another customer who needs the same parts to provide the service, and then returns the used parts to the original It is necessary to select a patrol method.
このような問題に対し、例えば特許文献1には、複数の配送拠点から、複数の輸送手段を用いて、複数の配送先に指定された日時に荷物を輸送する輸送計画を作成する技術について開示がある。この技術を用いれば、カーシェアリングの場合、ユーザが利用する車両をトラック等の輸送手段に積載して各駐車場に輸送する輸送計画を作成することができる。また、アフターサービス巡回においても、サービスに用いる部品を客先に配送する配送計画を作成することができる。
For such a problem, for example,
しかし、カーシェアリングで車両を配送する場合、配送スタッフが配送対象の車両に搭乗し、目的の駐車場まで運転するという車両の配送方法も存在する。このように配送物自身に搭乗して配送する方法を搭乗輸送という。搭乗輸送を含む配送において、最適な配送計画を行う技術は提供されていない。
また、アフターサービス巡回においても、サービスマンが部品を持って移動する場合や、ある客先から他の客先へ部品を配送する場合や、余った部品をサービスマンが持って次の客先に向かう場合などについては、搭乗輸送の場合と同様に、サービスマンの最適な巡回計画を行う技術は提供されていない。
また、一般に離散値の組合せ最適化問題は、線形緩和と呼ばれる手法、すなわち一旦、問題を連続値問題に置き換えて解き、得られる緩和解から最適解を求める手法、を用いることが多いが、配送問題のように複雑な制約が多いとそのままでは計算時間が掛かりすぎてしまうため、実用的な時間で解くための工夫が必要となる。
However, when a vehicle is delivered by car sharing, there is a vehicle delivery method in which a delivery staff gets on a delivery target vehicle and drives to a target parking lot. This method of boarding and delivering on the delivery itself is called boarding transportation. In delivery including boarding transportation, a technology for optimal delivery planning is not provided.
Also, in the after-service patrol, when a service person moves with parts, when a part is delivered from one customer to another, or when a spare part is taken by a service person to the next customer In the case of heading, as in the case of boarding transportation, there is no technology to provide an optimal patrol plan for service personnel.
In general, the combinatorial optimization problem of discrete values often uses a technique called linear relaxation, that is, a technique of solving a problem once by replacing it with a continuous value problem and obtaining an optimal solution from the obtained relaxation solution. If there are a lot of complicated restrictions like a problem, it will take too much calculation time as it is, so a device for solving in a practical time is required.
ところで、本願の出願人は、上記した搭乗輸送を含む配送において配送計画を行うという課題を解決することができる配送計画システムに関する出願を既に行っている(特願2016−051550)。この配送計画システムを用いると搭乗輸送を含んだ配送問題に対する最適な配送計画を、実用的な時間で求めることができる。
この配送計画システムに関し、配送対象の車両や配送先の増加により問題の規模が大きくなった場合でも、最適な配送計画を実用的な時間で求めることができるよう、計算時間のさらなる短縮化が望まれていた。
By the way, the applicant of the present application has already filed an application regarding a delivery planning system that can solve the problem of performing delivery planning in delivery including boarding and transportation (Japanese Patent Application No. 2006-051550). By using this delivery planning system, an optimum delivery plan for delivery problems including boarding transportation can be obtained in a practical time.
With regard to this delivery planning system, even when the scale of the problem increases due to an increase in the number of vehicles to be delivered and delivery destinations, it is hoped that the calculation time can be further shortened so that an optimum delivery plan can be obtained in a practical time. It was rare.
そこでこの発明は、上述の課題を解決することのできる配送計画システム、配送計画方法及びプログラムを提供することを目的とする。 Accordingly, an object of the present invention is to provide a delivery planning system, a delivery planning method, and a program that can solve the above-described problems.
本発明の第1の態様によれば、配送計画システムは、配送物を需要のある配送拠点に配送する配送問題において、初期条件が示す配送問題をより規模の小さな配送問題に分割する分割部と、前記分割部が分割した後の配送問題について配送計画を生成する配送計画生成部と、を備える。
大規模な配送問題を規模の小さな配送問題に分割し、小さな配送問題の単位で配送計画を算出することで、実用的な時間で配送計画を生成することができる。
According to the first aspect of the present invention, the delivery planning system includes a dividing unit that divides a delivery problem indicated by initial conditions into a smaller delivery problem in a delivery problem of delivering a delivery to a delivery base in demand. A delivery plan generation unit that generates a delivery plan for the delivery problem after the division unit divides.
By dividing a large-scale delivery problem into smaller-scale delivery problems and calculating a delivery plan in units of small delivery problems, a delivery plan can be generated in a practical time.
本発明の第2の態様における前記分割部は、前記配送物の需要がある配送拠点群に含まれる一つの需要点と、前記配送物の供給元となる配送拠点群に含まれる一つの供給点とを、当該一つの需要点から当該一つの供給点への移動時間が最小となるように対応付け、対応付けた前記需要点および前記供給点の組み合わせの集合を生成し、前記初期条件が示す配送問題を、前記生成した集合内に含まれる需要点群から供給点群への配送問題に分割してもよい。
初期条件に含まれる配送拠点ごとの需要と供給の情報に基づいて、配送エリアを、近距離に存在する配送拠点の集合ごとの配送エリア単位に分割し、分割後の配送エリア単位で配送計画を算出することで、実用的な時間で配送計画を生成することができる。
In the second aspect of the present invention, the dividing unit includes one demand point included in a distribution base group having a demand for the delivery item and one supply point included in a delivery base group serving as a supply source of the delivery item. Are generated so as to minimize the travel time from the one demand point to the one supply point, and a set of the combinations of the demand point and the supply point associated with each other is generated, and the initial condition indicates The delivery problem may be divided into a delivery problem from a demand point group included in the generated set to a supply point group.
Based on the supply and demand information for each delivery base included in the initial conditions, the delivery area is divided into delivery area units for each set of delivery bases that exist at a short distance, and a delivery plan is created for each delivery area after the division. By calculating, a delivery plan can be generated in a practical time.
本発明の第3の態様における前記分割部は、生成した集合内に含まれる複数の供給点と複数の需要点との対応関係のうち、一つの供給点から一つの需要点への移動時間が所定の値以下となる供給点から需要点への配送ルートを計算し、前記配送計画生成部は、前記生成した集合内に含まれる供給点群から需要点群への配送ルートのうち移動時間が前記所定の閾値以下となる配送ルートを用いて、前記規模の小さな配送問題に対する配送計画を生成してもよい。
移動時間が閾値以下となる配送拠点間の配送ルートの情報を用いて配送計画を生成するので、配送計画の生成に必要な計算量を減らすことができる。
The dividing unit according to the third aspect of the present invention is configured such that the movement time from one supply point to one demand point in the correspondence relationship between the plurality of supply points and the plurality of demand points included in the generated set. A delivery route from a supply point to a demand point that is less than or equal to a predetermined value is calculated, and the delivery plan generator generates a travel time of the delivery route from the supply point group to the demand point group included in the generated set. A delivery plan for the delivery problem with a small scale may be generated using a delivery route that is less than or equal to the predetermined threshold.
Since the delivery plan is generated using the information on the delivery route between the delivery bases whose movement time is equal to or less than the threshold value, the amount of calculation required for generating the delivery plan can be reduced.
本発明の第4の態様における前記分割部は、出発拠点を出発して一部の配送拠点間に係る配送を行って前記出発拠点に戻るまでの予め設定された配送ルートとその配送ルートで配送したときのコストとを示す単位経路情報を複数取得し、前記複数の単位経路情報の組み合わせのうち、当該組み合わせに含まれる前記配送拠点の数が所定の数以内で、且つ、前記コストの合計が最小となる組み合わせを算出し、その組み合わせに含まれる出発拠点と配送拠点の集合を生成し、前記初期条件が示す配送問題を、前記生成した出発拠点と配送拠点の集合内に含まれる需要点群から供給点群への配送問題に分割してもよい。
ある出発拠点を基準に、所定の数以内の複数の配送拠点における需要を満たしつつ配送コストが最小になる配送ルートの組み合わせを算出し、それら複数の配送拠点と出発拠点の集合を1つの配送エリアとする。初期条件で与えられた全ての配送拠点を対象とする配送エリアを、このようにして生成した配送エリアに分割し、配送エリア単位で配送計画を算出することで、実用的な時間で配送計画を生成することができる。
In the fourth aspect of the present invention, the dividing unit performs delivery according to a preset delivery route from a departure base to delivery between some delivery bases and returning to the departure base, and the delivery route. A plurality of unit route information indicating the cost at the time, and among the combination of the plurality of unit route information, the number of the delivery bases included in the combination is within a predetermined number, and the total of the costs is A minimum combination is calculated, a set of departure bases and delivery bases included in the combination is generated, and a delivery problem indicated by the initial condition is expressed as a demand point group included in the generated start base and delivery bases set. May be divided into problems of delivery from point to point.
Based on a certain departure base, a combination of delivery routes that satisfies the demands at a plurality of delivery bases within a predetermined number and minimizes the delivery cost is calculated, and a set of the plurality of delivery bases and the departure base is taken as one delivery area And By dividing the delivery area for all delivery bases given in the initial conditions into the delivery areas generated in this way, and calculating the delivery plan for each delivery area, the delivery plan can be made in a practical time. Can be generated.
本発明の第5の態様における前記分割部は、列生成法により、前記単位経路情報の組み合わせを算出する。
列生成法を用いることで高速に配送エリアを生成することができる。
The dividing unit according to the fifth aspect of the present invention calculates a combination of the unit path information by a column generation method.
By using the column generation method, a delivery area can be generated at high speed.
本発明の第6の態様における前記分割部は、前記配送物の配送制限時間を複数の時間に分割することにより前記初期条件が示す配送問題を前記分割した時間ごとの配送問題に分割し、前記配送計画生成部は、前記分割後の各時間の最初の時刻における前記配送物の配送状況から当該分割後の各時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成してもよい。 The dividing unit according to the sixth aspect of the present invention divides a delivery problem indicated by the initial condition into a delivery problem for each divided time by dividing a delivery restriction time of the delivery item into a plurality of times, The delivery plan generator generates a delivery plan in which the delivery item is delivered to a base having the highest demand within each time after the division from the delivery status of the delivery item at the first time of each time after the division. May be generated.
本発明の第7の態様における前記配送計画生成部は、前記分割部が分割してできた最後の時間に係る配送問題について、前記最後の時間が終了するまでに、前記初期条件で示された需要のある配送拠点の全てに前記配送物が配送されるよう配送計画を生成してもよい。
第6、7の態様によれば、初期条件で与えられた配送制限時間を分割し、分割後の時間単位の配送問題について配送計画を算出することで、実用的な時間で配送計画を生成することができる。
The delivery plan generation unit according to the seventh aspect of the present invention is indicated by the initial condition until the last time ends with respect to a delivery problem related to the last time generated by the division unit. A delivery plan may be generated so that the delivery is delivered to all the delivery bases in demand.
According to the sixth and seventh aspects, a delivery plan is generated in a practical time by dividing a delivery limit time given by an initial condition and calculating a delivery plan for a delivery problem in time units after the division. be able to.
本発明の第8の態様における前記分割部は、前記初期条件が示す配送問題を、前記初期条件に含まれる配送制限時間よりも所定の時間だけ短い第一配送制限時間を新たな配送制限時間とする配送問題に分割し、前記配送計画生成部は、前記第一配送制限時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成してもよい。 In the eighth aspect of the present invention, the dividing unit determines that the delivery problem indicated by the initial condition is a first delivery time limit shorter than the delivery time limit included in the initial condition by a predetermined time as a new delivery time limit. The delivery plan generation unit may generate a delivery plan in which the delivery items are delivered to a site with as much demand as possible within the first delivery time limit.
本発明の第9の態様における前記分割部は、前記第一配送制限時間に続く所定長さの時間を第二配送制限時間として設定し、前記配送計画生成部は、当該第二配送制限時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成してもよい。 The division unit according to the ninth aspect of the present invention sets a predetermined length of time following the first delivery limit time as a second delivery limit time, and the delivery plan generation unit includes the second delivery limit time In addition, a delivery plan may be generated so that the delivery is delivered to a base where there is as much demand as possible.
本発明の第10の態様における前記配送計画生成部は、前記生成した配送計画を実行した場合の完了時点を開始時刻とし、前記第一配送制限時間の開始時刻を基準にして前記初期条件に含まれる配送制限時間が経過する時刻を終了時刻とする最後の時間内に、前記配送計画の実行の結果、配送が完了していない配送物について配送し終える配送計画を生成してもよい。
第8〜10の態様によれば、初期条件で与えられた配送制限時間より短い時間を配送制限時間に設定し、配送制限時間を延長しながら配送計画を生成する。初期条件が示す配送問題を設定または延長した配送制限時間ごとの規模の小さな配送問題に分割することで、実用的な時間で配送計画を生成することができる。
In the tenth aspect of the present invention, the delivery plan generating unit includes a completion time when the generated delivery plan is executed as a start time, and is included in the initial condition on the basis of the start time of the first delivery time limit. A delivery plan that finishes delivering a delivery that has not been delivered as a result of execution of the delivery plan may be generated within the last time whose end time is the time when the delivery limit time elapses.
According to the eighth to tenth aspects, the delivery limit time is set to a time shorter than the delivery limit time given by the initial condition, and the delivery plan is generated while extending the delivery limit time. A delivery plan can be generated in a practical time by dividing the delivery problem indicated by the initial condition into smaller delivery problems for each delivery limit time set or extended.
本発明の第11の態様では、前記配送物がなるべく多く需要のある拠点に配送されるような配送計画の生成にあたり、前記配送計画生成部は、前記配送計画を実行した結果、前記配送計画に必要な配送スタッフと配送手段が前記配送拠点に残らないことを条件に配送計画を生成してもよい。
なるべく多くの配送物を配送するだけではなく、分割後の時間のうち後の時間に使用しない余分な配送スタッフと配送手段が配送拠点に残らないような配送計画を生成することができる。
In an eleventh aspect of the present invention, in generating a delivery plan in which the delivery is delivered to a base with as much demand as possible, the delivery plan generation unit executes the delivery plan as a result of executing the delivery plan. A delivery plan may be generated on the condition that necessary delivery staff and delivery means do not remain at the delivery base.
In addition to delivering as many deliverables as possible, it is possible to generate a delivery plan that leaves no extra delivery staff and delivery means that are not used at a later time in the divided time.
本発明の第12の態様における前記配送計画生成部は、前記配送物を配送する配送主体と前記配送物または前記配送主体を移動する配送手段の初期位置を示す出発拠点および前記配送拠点と配送開始の時を基準とする各時刻とを組にした点情報と、前記点情報のうち前記配送物の配送に係る2つの点情報の間の、前記配送に係る前記配送物および前記配送主体および前記配送手段の流量を示す枝情報と、で構成される時空間ネットワークモデルに基づく整数計画問題を解いて、前記分割部による分割後の配送問題における前記配送に係る枝情報の集合を少なくとも1つ生成してもよい。
配送問題を時空間ネットワークモデルでモデル化することで搭乗輸送を含む配送問題について配送計画を生成することができる。
In the twelfth aspect of the present invention, the delivery plan generator generates a delivery entity that delivers the delivery and a starting location that indicates an initial position of the delivery means or delivery means that moves the delivery entity, and the delivery location and delivery start. Between the point information obtained by pairing each time with reference to the time and the two pieces of point information relating to delivery of the delivery item among the point information, the delivery item related to the delivery, the delivery subject, and the Solving an integer programming problem based on a spatio-temporal network model composed of branch information indicating the flow rate of the delivery means and generating at least one set of branch information related to the delivery in the delivery problem after the division by the dividing unit May be.
By modeling the delivery problem with a spatio-temporal network model, a delivery plan can be generated for delivery problems including boarding transport.
本発明の第13の態様によれば、前記配送計画生成部は、前記時空間ネットワークモデルにおいて、一つの前記配送拠点について、その配送拠点の入口と時刻とを組にした入口に係る点情報と、その配送拠点の出口と時刻とを組にした出口に係る点情報と、その配送拠点に係る配送物1個ずつに対して時刻を組にした配送物の置き場に係る点情報とを生成し、前記入口に係る点情報と前記配送物に係る点情報との間、前記出口に係る点情報と前記配送物に係る点情報との間、における前記配送主体および前記配送物の流量の値を0または1に設定してもよい。
配送拠点内を入口、出口、配送物一つずつの置き場に分けて扱うことで、それらの場所それぞれの状況を0と1で表すことができるので、配送拠点内を0−1整数計画問題として扱えるようになり計算処理を高速化できる。
According to a thirteenth aspect of the present invention, the delivery plan generation unit includes, in the spatio-temporal network model, point information relating to an entrance that is a set of an entrance of the delivery site and a time for one delivery site. , Generating point information related to the exit that sets the exit of the delivery base and time, and point information related to the location of the delivery that sets the time for each deliverable related to the delivery base , Between the point information related to the entrance and the point information related to the delivery, and between the point information related to the exit and the point information related to the delivery, the value of the flow rate of the delivery subject and the delivery It may be set to 0 or 1.
By handling the delivery base in separate locations for entrances, exits, and deliveries, the status of each place can be represented by 0 and 1, so the delivery base is treated as a 0-1 integer programming problem. It becomes possible to handle and can speed up the calculation process.
本発明の第14の態様によれば、配送計画システムが、配送物を需要のある配送拠点に配送する配送問題において、初期条件が示す配送問題をより規模の小さな配送問題に分割し、前記分割した後の配送問題について配送計画を生成する、配送計画方法である。 According to the fourteenth aspect of the present invention, the delivery planning system divides a delivery problem indicated by initial conditions into a smaller delivery problem in a delivery problem of delivering a delivery to a delivery base in demand, This is a delivery planning method for generating a delivery plan for a delivery problem after the delivery.
本発明の第15の態様によれば、プログラムは、配送計画システムのコンピュータを、配送物を需要のある配送拠点に配送する配送問題において、初期条件が示す配送問題をより規模の小さな配送問題に分割する手段、前記分割した後の配送問題について配送計画を生成する手段、として機能させる。 According to the fifteenth aspect of the present invention, the program causes the computer of the delivery planning system to change the delivery problem indicated by the initial condition to a smaller delivery problem in the delivery problem of delivering the delivery to a delivery base in demand. It functions as a means for dividing and a means for generating a delivery plan for the delivery problem after the division.
本発明によれば、実用的な時間で、大規模な配送問題に対するコストや移動時間を最小にする配送計画を立案することができる。 According to the present invention, it is possible to devise a delivery plan that minimizes the cost and travel time for a large-scale delivery problem in a practical time.
<第一実施形態>
以下、本発明の一実施形態による配送計画システムを図1〜図13を参照して説明する。
図1は、本発明の第一実施形態における配送計画システムの一例を示す機能ブロック図である。本実施形態において、配送計画システムは、例えば、1台のPCやサーバ装置などのコンピュータ装置によって構成される。コンピュータ装置は、CPU(Central Processing Unit)などの演算部、及び、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)などの記憶部、および、ネットワークインタフェースなどその他のハードウェアを含んで構成されている。
<First embodiment>
Hereinafter, a delivery planning system according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a functional block diagram showing an example of a delivery planning system in the first embodiment of the present invention. In the present embodiment, the delivery planning system is configured by a computer device such as a single PC or a server device, for example. The computer device includes a calculation unit such as a CPU (Central Processing Unit), a storage unit such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive), and other hardware such as a network interface. It is comprised including the wear.
図1の配送計画装置10は、配送計画システムの一例である。配送計画装置10は、搭乗輸送を含めた配送計画に対して、コストを最小にする配送手段、配送ルートなどを算出する装置である。本実施形態では、乗り捨て型のカーシェアリングにおいてユーザが共同で利用する車両をユーザが利用を開始する場所へ配送する場面で、その配送を実現する最適な配送計画を立案する方法を例として取り上げる。配送物を配送する場合、例えば、コストを最小にする配送手段、配送ルートを選択することが求められる。コストを最小にする配送計画の立案については、これまでも様々な方法が提供されてきた。しかし、カーシェアリングにおける車両の配送には、例えば、宅配便等で荷物を配送する場合と異なる点がある。それは、車両を配送する場合には、車両に人が搭乗して移動することができるという点である。例えば、拠点A、拠点B、拠点C、拠点D、拠点Eのそれぞれの拠点において、車両が余った状態、または、不足した状態があるとする。このような状態の中、車両が余っている拠点から不足している拠点へ車両を移動し、ユーザのニーズに応えられるようにするためには例えば、以下のような方法が考えられる。(1)一人の配送スタッフが、車両を積載することができるトラックで各拠点を回り、余った車両をトラックに搭載し、不足がある拠点まで配送する。(2)配送車に複数の配送スタッフが搭乗し、各拠点を移動する。配送車に搭乗した配送スタッフの一部は、車両が余っている拠点に到着すると、余剰の車両に乗り換え、その車両を車両が不足している拠点まで運転して配送する(搭乗輸送)。このような場合、どちらの配送手段で配送を行えば良いのか、どのようなルートで配送を行えばコストを最小にできるのかを知ることは容易ではない。本実施形態の配送計画装置10は、搭乗輸送が可能な場合の配送計画に対して、数学的知見に基づいた数理モデルや制約を導入することで、高速で効率的に例えばコストを最小にする配送計画を生成する方法を提供する。また、本実施形態の配送計画装置10は、配送物を配送拠点に配送する配送計画を生成するにあたり、当該配送の初期条件として与えられた、配送拠点ごとの配送物の需要数量(不足している数量)および供給数量(余っている数量)に基づいて、初期条件が示す配送問題の全体を部分的な規模の小さな配送問題に分割する。これにより、配送する車両や拠点の数が大規模であっても、実用的な時間(例えば10分)で配送計画を立案することができる。
The
図1が示すように、配送計画装置10は、初期条件設定部11と、配送計画生成部12と、入出力部13と、第一エリア分割部14と、記憶部15とを備えている。
初期条件設定部11は、配送主体(例えば配送スタッフ)が搭乗して移動することが可能な配送物(例えばユーザが利用する車両)、配送主体、配送物または配送主体を移動する配送手段(例えばトラック等の配送車)の何れかが留まる場所である配送拠点ごとの配送物の需要数量および供給数量と、配送主体と配送手段の初期位置を示す一つ又は複数の出発拠点(例えばカーシェアリングのサービスを提供する企業の運用拠点)の情報と、出発拠点における利用可能な配送手段および配送主体の情報と、配送期限の情報、などの情報を、配送計画を生成するうえでの初期条件として設定する。これらのパラメータについては後に詳しく説明する。
配送計画生成部12は、配送拠点および出発拠点と配送開始の時を基準とする時刻とを組にした点情報と、点情報のうち配送に係る2つの点情報の間の、配送に係る配送物および配送主体および配送手段の流量を示す枝情報を計算し、配送期限内に需要数量を満たす配送物を当該需要数量が設定された配送拠点に配送する場合の枝情報の集合を少なくとも1つ生成する。出発拠点と配送拠点を総称して拠点と呼ぶ。
入出力部13は、ユーザによる入力操作を受け付ける。また、入出力部13は、配送計画生成部12が生成した枝情報の集合に基づく配送計画の情報などをディスプレイ等に出力する。
第一エリア分割部14は、配送物の需要がある配送拠点群に含まれる一つの需要点と、配送物の供給元となる配送拠点群に含まれる一つの供給点とを、当該一つの需要点から当該一つの供給点への移動時間が最小となるように対応付け、対応付けた需要点および供給点の組み合わせの集合を生成する。つまり、第一エリア分割部14は、初期条件に基づく配送物の需要がある全ての配送拠点群への配送問題の全体を、生成した集合が示す配送エリア単位の配送問題(集合内に含まれる需要点群から供給点群への配送問題)に分割する。そして、配送計画生成部12は、分割後の規模の小さな配送問題のそれぞれについて、枝情報の集合を生成する。
記憶部15は、配送計画の生成に必要な諸々の情報を記憶する。
初期条件設定部11、配送計画生成部12、第一エリア分割部14は、例えば配送計画装置10が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部15からプログラムを読み出して実行することで実現される。
As shown in FIG. 1, the
The initial
The delivery
The input /
The first
The
The initial
配送計画装置10は、与えられた配送問題に対して、時空間ネットワークモデルを用いて配送計画を生成する。まず、時空間ネットワークモデルと時空間ネットワークモデルを用いた配送計画の生成方法について説明し、その後、問題が大規模になった場合の配送問題の分割方法について説明する。
The
図2は、本発明の第一実施形態における配送計画の一例を説明する図である。
図2を用いて、乗り捨て型のカーシェアリングにおける配送物(車両)の配送例について説明する。図2においてセンターとは、配送物の配送スタッフが存在し、配送物の配送を開始する拠点である(出発拠点)。また、駐車場A、駐車場B、駐車場Cは配送物の配送元または配送先となる拠点(配送拠点)である。配送物のユーザは、所定の予約システムなどで配送物の予約を行う。ユーザは、配送物の利用台数、利用開始場所(例えば、駐車場B)などの情報を予約システムから入力する。ユーザが駐車場Bから配送物を利用したい場合、既に駐車場Bに配送物が存在すれば、利用者はその配送物を利用することができる。しかし、駐車場Bに配送物が存在しない場合、配送スタッフが他の駐車場から駐車場Bに配送物を移動する必要がある。乗り捨て型のカーシェアリングにおいては、ユーザは、例えば、駐車場Bから駐車場Aへ配送物を利用すると、駐車場Aへ配送物をそのまま乗り捨ててしまう。すると、多くのユーザが利用する、例えば、駐車場Aに配送物が遍在するような状況が生じ得る。センターの配送スタッフは、遍在した配送物をユーザのニーズがある駐車場A〜駐車場Cに配送する。図2の例の場合、駐車場Aでは配送物が2台余り、駐車場B、駐車場Cでは配送物が1台ずつ不足している。センターの配送スタッフは、駐車場Aで余った2台の配送物を、それぞれ駐車場B、駐車場Cに1台ずつ配送し、ユーザが希望通り配送物を利用できるようにする。図2は、この条件を満たす配送の実現例を示している。
FIG. 2 is a diagram illustrating an example of a delivery plan in the first embodiment of the present invention.
A delivery example of a delivery item (vehicle) in a drop-off type car sharing will be described with reference to FIG. In FIG. 2, the center is a base where a delivery staff of delivery goods exists and starts delivery of the delivery goods (departure base). Further, the parking lot A, the parking lot B, and the parking lot C are bases (delivery bases) that serve as delivery sources or delivery destinations of deliveries. The user of the delivery item reserves the delivery item using a predetermined reservation system or the like. The user inputs information such as the number of deliverables to be used and the use start location (for example, parking lot B) from the reservation system. When the user wants to use a delivery item from the parking lot B, if the delivery item already exists in the parking lot B, the user can use the delivery item. However, if no delivery item exists in the parking lot B, the delivery staff needs to move the delivery item from another parking lot to the parking lot B. In drop-off type car sharing, for example, when a user uses a delivery item from the parking lot B to the parking lot A, the user drops the delivery item into the parking lot A as it is. Then, a situation where many users use, for example, delivery items are ubiquitous in the parking lot A may occur. The delivery staff at the center delivers the ubiquitous delivery to the parking lots A to C where the user needs. In the case of the example in FIG. 2, there are more than two deliverables in the parking lot A, and there are insufficient deliveries in the parking lots B and C one by one. The delivery staff of the center delivers the two surplus deliveries in the parking lot A to the parking lot B and the parking lot C, respectively, so that the user can use the deliveries as desired. FIG. 2 shows an implementation example of delivery satisfying this condition.
まず、センターから配送スタッフ2名(k、l)が1台の配送車1(配送手段)に搭乗して駐車場Aへ移動する(1)。駐車場Aでは、配送スタッフkが余っている2台のうち1台の配送物に搭乗して駐車場Bへ移動する。また、他の配送スタッフlも、そのまま配送車1に搭乗して駐車場Bへ移動する(2)。駐車場Bでは、配送スタッフkが配送物を駐車場Bに駐車し、配送スタッフlの運転する配送車1に搭乗する。配送スタッフk、lは駐車場Bから駐車場Aへ戻る(3)。駐車場Aへ戻ると、配送スタッフkは、余っている1台の配送物に搭乗して駐車場Cへ移動する。また、配送スタッフlは、そのまま配送車1に搭乗して駐車場Cへ移動する(4)。駐車場Cでは、配送スタッフkが配送物を駐車場Cに駐車し、配送スタッフlの運転する配送車1に搭乗する。配送スタッフk、lは駐車場Bからセンターへ戻る(5)。このような手順で配送を行うと、ユーザの要求を満たすことができる。本実施形態では、このような状況における配送物の配送方法を、時空間ネットワークモデルの最小コストフロー問題として定式化して、実行可能な配送方法のうちコストが最小になる方法を求める。
First, two delivery staff (k, l) from the center board a single delivery vehicle 1 (delivery means) and move to the parking lot A (1). In the parking lot A, the delivery staff k gets on one delivery item out of the two remaining and moves to the parking lot B. Further, the other delivery staff l also board the
<第1の時空間ネットワークモデル>
図3は、本発明の第一実施形態における配送計画に係る第1の時空間ネットワークモデルを説明する図である。
図3は、図2で説明した配送の実施例を時空間ネットワークにモデル化した図である。図3の縦軸は時間経過、横軸は各拠点の場所を示している。図中、時空間上の点は、各時刻における各拠点を表したものである。図中、2つの点を結んだ矢印は、配送物、配送車(配送手段)、配送スタッフ(人)の時空間上の移動を示している。各矢印は、移動元拠点と移動先拠点、移動に要する時間を表している。実線矢印は拠点間の移動を表し、二重線矢印は同一拠点に留まる配送物、配送車、配送スタッフを示している(時間を移動)。また、各矢印に添えて表示された行列の各要素は、矢印が示す配送によって移動した配送物、配送車、配送スタッフの数量を表しており、上から順に移動した配送物の数量、移動した配送車の数量、移動した配送スタッフの人数を表す。例えば、実線矢印31の場合、センターから駐車場Aへ、配送物が0台、配送車が1台、配送スタッフが2名、時刻t=0からt=1の間に移動したことを示している。また、二重線矢印32は、駐車場Aにおいて、配送物が2台、配送車が0台、配送スタッフが0名、時刻t=0からt=1の間留まっていたことを示している。また、実線矢印33の場合、駐車場Aから駐車場Bへ、配送物が1台、配送車が1台、配送スタッフが2名、時刻t=1からt=2の間に移動したことを示している。また、二重線矢印34は、駐車場Aにおいて、配送物が1台、配送車が0台、配送スタッフが0名、時刻t=1からt=2の間留まっていたことを示している。駐車場Aにおける配送物が2台から1台に変化したのは、配送スタッフが、2台のうちの配送物1台に搭乗して、駐車場Bへ移動したためである。他の矢印についても同様である。なお、一本の矢印を枝と呼ぶ。図3の枝の集合は、図2で説明した配送計画に対応したものである。配送物を配送する場合、どこかの駐車場で配送スタッフや配達手段を待ち合わせるなど時間が関係したアクションが伴う場合がある。配送計画に関する既存の数理モデルでは、拠点を点とし、拠点間の配送車の移動を枝としてモデル化することが多かった。本実施形態では、2次元の時空間ネットワークでモデル化する。これにより、拠点間の空間的な移動だけでなく、時間が介在する車両や人の移動を表すことができる。
<First space-time network model>
FIG. 3 is a diagram for explaining a first spatiotemporal network model according to the delivery plan in the first embodiment of the present invention.
FIG. 3 is a diagram in which the delivery example described in FIG. 2 is modeled as a spatio-temporal network. The vertical axis in FIG. 3 indicates the passage of time, and the horizontal axis indicates the location of each base. In the figure, the points on the spatiotemporal represent each base at each time. In the figure, an arrow connecting two points indicates movement of a delivery item, a delivery vehicle (delivery means), and a delivery staff (person) in time and space. Each arrow represents a movement source base, a movement destination base, and a time required for movement. A solid line arrow indicates movement between bases, and a double line arrow indicates a delivery, a delivery vehicle, and a delivery staff who stay at the same base (moving time). In addition, each element of the matrix displayed along with each arrow indicates the quantity of deliveries, delivery vehicles, and delivery staff moved by the delivery indicated by the arrow, and the quantity of deliveries moved in order from the top. Indicates the number of delivery vehicles and the number of delivery staff moved. For example, the
<第1の時空間ネットワークモデルに基づく配送計画の生成方法>
本実施形態では、図2、図3で説明したような制限時間内に需要を満たすような配送計画配送物において配送に掛かるコストを最小化する配送計画を求める。この問題は、以下に示す整数計画問題として定式化することができる。
[目的関数]
配送に掛かる配送物、配送手段、配送スタッフのコストの合計を最小化
[制約条件]
(1)各拠点の流量は流量保存則を満たす。
(2)駐車場に存在する車両台数は駐車場の駐車スペースは超えない。
(3)配送手段には、出発拠点以外では必ず配送スタッフが乗る。
(4)移動時には配送物または配送手段に必ず配送スタッフが乗り、また、移動時の人数は配送物および配送手段に搭乗可能な人数の合計以下である。
<Delivery plan generation method based on the first spatiotemporal network model>
In this embodiment, a delivery plan that minimizes the cost of delivery in a delivery plan delivery that satisfies the demand within the time limit described with reference to FIGS. 2 and 3 is obtained. This problem can be formulated as an integer programming problem shown below.
[Objective function]
Minimize the total cost of deliverables, delivery methods, and delivery staff [Restrictions]
(1) The flow rate at each site satisfies the flow rate conservation law.
(2) The number of vehicles in the parking lot does not exceed the parking space of the parking lot.
(3) A delivery staff is always on the delivery means except at the departure base.
(4) A delivery staff always rides on a delivery or delivery means when moving, and the number of people at the time of movement is less than or equal to the total number of people who can board the delivery and delivery means.
上記の整数計画問題を解くために、配送計画生成部12は、初期条件設定部11が受け付けた初期条件の情報に基づいて、図3で例示したような2次元の時空間情報を生成し、配送に係る点の間の枝を生成し、配送期限内に各拠点の需要数量を満たすように、配送物を当該需要数量が設定された拠点に配送できるような枝情報の集合を複数生成する。そして、配送計画生成部12は、複数の枝情報の集合の中からコストを最小にする枝情報の集合を選択する。
In order to solve the integer programming problem, the delivery
これまでに提供されてきた配送計画の数理モデルやプログラムは、配送物をトラックや鉄道などの輸送手段に積荷して配送する場合に限られている。車両の配送のように、搭乗輸送を含む場合に対しては、既存技術でも制約条件を追加することで解ける可能性があるが、制約条件が複雑になる上に、手段や経路の組合せ数が指数関数的に増大するために実用的ではないと考えられる。本実施形態によれば、搭乗輸送が可能な配送物の配送計画を生成するにあたり、時空間ネットワークモデルの最小コストフロー問題として定式化することで、実行可能な配送方法のうちコストが最小になる配送計画を求めることができる。 Mathematical models and programs for delivery plans that have been provided so far are limited to loading and delivering deliveries on transportation means such as trucks and railroads. For cases involving onboard transportation such as vehicle delivery, existing technology may be solved by adding constraints, but the constraints are complicated and the number of means and route combinations It is considered impractical to increase exponentially. According to the present embodiment, when generating a delivery plan for a deliverable that can be boarded and transported, the cost is minimized among the feasible delivery methods by formulating it as a minimum cost flow problem of a spatio-temporal network model. A delivery plan can be requested.
<第2の時空間ネットワークモデル>
第2の時空間ネットワークモデルでは、第1の時空間ネットワークモデルに対して、さらに配送拠点内のグラフ(点情報と配送スタッフ、配送物、配送手段の移動を表す枝情報)を追加する。これにより、配送拠点内を0−1整数計画問題として扱えるようにする。0−1整数計画問題は、整数計画問題より変数の幅が制限され、タイトな緩和問題を構成することができる。また、それにより、妥当不等式(カット)を入れやすくなり、計算処理の高速化(計算時間の短縮化)が図れる。
<Second space-time network model>
In the second spatio-temporal network model, a graph in the delivery base (point information and branch information indicating movement of delivery staff, delivery items, and delivery means) is further added to the first spatio-temporal network model. As a result, the delivery base can be handled as a 0-1 integer programming problem. The 0-1 integer programming problem is more limited in the variable width than the integer programming problem, and can constitute a tight relaxation problem. In addition, it makes it easier to enter valid inequalities (cuts), thereby speeding up the calculation process (shortening the calculation time).
配送計画生成部12が第2の時空間ネットワークモデルを用いて配送計画を生成する場合、第1の時空間ネットワークモデルの場合に説明した時空間情報に加え、一つの配送拠点について、その配送拠点の入口と時刻とを組にした点情報、その配送拠点の出口と時刻とを組にした点情報、その配送拠点に係る配送物1個ずつに対して時刻を組にした点情報を生成する。また、配送計画生成部12は、入口に係る点情報と配送物に係る点情報との間における配送スタッフおよび配送物の流量の値を0または1に設定する。また、配送計画生成部12は、出口に係る点情報と配送物に係る点情報との間における配送スタッフおよび配送物の流量の値を0または1に設定する。
When the delivery
ここで、配送計画立案者が、配送計画装置10へ入力するパラメータについて説明する。入力パラメータには以下の項目がある。
つまり、出発拠点の集合(Depot)、配送拠点の集合(W)、配送期限(dl)、1区間の時間(h)、配送物の種類の集合(P)、配送手段の種類の集合(D)、配送手段の積載量(cp)、配送物のコストcx(円/分)、配送手段のコストcy(円/分)、配送スタッフのコストcz(円/分)、移動時間マトリクスM(例えば、配送手段dによる配送拠点w1からw2への移動時間はm[d][w1][w2]とする)、各拠点の供給数量supply(例えば、配送拠点wにおけるdの供給数量はsupply[w、d]とする)、各配送拠点の需要数量demand(例えば、配送拠点wにおけるdの需要数量はdemand[w、d]とする)である。初期条件設定部11は、これらのパラメータを取得し、配送計画の初期条件として設定する。
Here, parameters input by the delivery planner to the
In other words, a set of departure bases (Depot), a set of delivery bases (W), a delivery deadline (dl), a time of one section (h), a set of delivery item types (P), and a set of delivery means types (D ), Loading capacity (cp) of delivery means, cost cx (yen / minute) of delivery goods, cost cy (yen / minute) of delivery means, cost cz (yen / minute) of delivery staff, travel time matrix M (for example, , The moving time from the delivery base w1 to w2 by the delivery means d is m [d] [w1] [w2]), the supply quantity supply at each base (for example, the supply quantity of d at the delivery base w is supply [w] , D]), the demand quantity demand of each delivery base (for example, the demand quantity of d at the delivery base w is demand [w, d]). The initial
また、出力項目として、配送計画生成部12は、最適化された配送計画における時空間ネットワークを流れる配送物の流量x((v,s),(w,t))、配送手段の流量y((v,s),(w,t))、配送スタッフの流量z((v,s),(w,t))を入出力部13へ出力する。なお、配送拠点vを時刻sに出発し、配送拠点wへ時刻tに到着する枝を((v,s),(w,t))で表すものとする。なお、出力項目には、他に配送に掛かるコストなどがある。
Further, as output items, the delivery
図4は、本発明の第一実施形態における配送計画に係る第2の時空間ネットワークモデルを説明する第一の図である。
図4を用いて第2の時空間ネットワークを説明する。以下、場所集合をN、時間集合をT、時空間ネットワークのグラフG=(V、E)とする。Vは点集合、Eは枝集合である。点集合Vは以下のように定義する。
V = {(w,d,p,t)|w∈W,d∈{0}∪P,p∈Swd,t∈T}
ここで、Swd={0,1}(d=0),Swd={0,1,...,m}(d≠0)である。d=0は、配送拠点の出入り口の道を示している。d=0のとき、Swdは0又は1の値を取るが、Swd=0は入口、Swd=1は出口を示している。また、d≠0の場合、dは配送物の種類を示し、Swdは0〜mの値を取る。mは配送拠点wの配送物dに対する供給数量−1または需要数量−1である。例えば、配送拠点wで配送物aが3個余っている場合(供給数量=3)、Swdは0、1、2の値を取る。また、例えば、配送拠点wで配送物aが4個足りない場合(需要数量=4)、Swdは0、1、2、3の値を取る。なお、ある配送拠点wについて、d=0の点を道、d≠0の点をポートとも呼ぶ。ポートは、配送物dを1個置く場所を示している。
FIG. 4 is a first diagram illustrating a second space-time network model according to a delivery plan in the first embodiment of the present invention.
The second space-time network will be described with reference to FIG. Hereinafter, the place set is N, the time set is T, and the spatiotemporal network graph G = (V, E). V is a point set and E is a branch set. The point set V is defined as follows.
V = {(w, d, p, t) | wεW, dε {0} ∪P, pεS wd , tεT}
Here, S wd = {0, 1} (d = 0), S wd = {0, 1,. . . , M} (d ≠ 0). d = 0 indicates the way of the entrance / exit of the delivery base. When d = 0, S wd takes a value of 0 or 1, but S wd = 0 indicates an entrance and S wd = 1 indicates an exit. In addition, in the case of d ≠ 0, d indicates the type of delivery products, S wd takes the value of 0~m. m is the supply quantity-1 or the demand quantity-1 with respect to the delivery d of the delivery base w. For example, when there are three delivery items a at the delivery base w (supply quantity = 3), S wd takes values of 0, 1, and 2. Further, for example, when there are not four deliverables a at the delivery base w (demand quantity = 4), Swd takes values of 0, 1, 2, and 3. For a certain delivery base w, a point where d = 0 is also called a road, and a point where d ≠ 0 is also called a port. The port indicates a place where one delivery item d is placed.
図4は、Depot={0}、W={1,2}、P={a}、T={0,1,2}、S1a={0}(配送拠点1で配送物aに対する供給数量1個)、S2a={0}(配送拠点2で配送物aに対する需要数量1個)の場合の時空間ネットワークである。次に枝集合Eについて図5を用いて説明する。
FIG. 4 shows Depot = {0}, W = {1,2}, P = {a}, T = {0,1,2}, S 1a = {0} (Supply to delivery a at
図5は、本発明の第一実施形態における配送計画に係る第2の時空間ネットワークモデルを説明する第二の図である。
以下、枝集合Eを、E=Ex∪Ey∪Ezとする。Exは配送物の枝集合、Eyは配送手段の枝集合、Ezは配送スタッフの枝集合である。
配送物の枝集合Exは以下のように定義する。
Ex=Ewwx∪Ewx∪Ewpx∪Epwx∪Epx
Ewwxは配送物の拠点間の移動を示す枝の集合、Ewxは配送物の配送拠点の道に留まる枝(待ち合わせなど)の集合、Ewpxは配送物の道からポートへの移動を示す枝の集合、Epwxは配送物のポートから道への移動を示す枝の集合、Epxは配送物がポートに留まる枝の集合である。
FIG. 5 is a second diagram illustrating a second space-time network model according to the delivery plan in the first embodiment of the present invention.
Hereinafter, the branch set E is defined as E = E x ∪E y ∪E z . E x is a branch set of delivery items, E y is a branch set of delivery means, and E z is a branch set of delivery staff.
The branch set Ex of the deliverable is defined as follows.
E x = E wwx ∪E wx ∪E wpx ∪E pwx ∪E px
E wwx is a set of branches indicating the movement of the delivery item between the bases, E wx is a set of branches (such as waiting) remaining on the road of the delivery point of the delivery item, and E wpx is a movement of the delivery item from the road to the port A set of branches, E pwx, is a set of branches indicating movement of the delivery from the port to the road, and E px is a set of branches where the delivery remains at the port.
配送手段の枝集合Eyは以下のように定義する。
Ey=Ewwy∪Ewy∪Ewpy∪Epwy
Ewwyは配送手段の拠点間の移動を示す枝の集合、Ewyは配送手段の配送拠点の道に留まる枝(待ち合わせなど)の集合、Ewpyは配送手段の道からポートへの移動を示す枝の集合、Epwyは配送手段のポートから道への移動を示す枝の集合である。
The branch set E y of the delivery means is defined as follows.
E y = E wwy ∪E wy ∪E wpy ∪E pwy
E wwy shows a set of branches showing the movement between the base of the delivery means, the set of E wy branches that remain in the way of delivery base of the delivery means (such as waiting), the movement of the E wpy is to port from the way of the delivery means A set of branches, E pwy, is a set of branches indicating movement from the port of the delivery means to the road.
配送スタッフの枝集合Ezは以下のように定義する。
Ez=Ewwz∪Ewz∪Ewpz∪Epwz
Ewwzは配送スタッフの拠点間の移動を示す枝の集合、Ewzは配送スタッフの配送拠点の道に留まる枝(待ち合わせなど)の集合、Ewpzは配送スタッフの道からポートへの移動を示す枝の集合、Epwzは配送スタッフのポートから道への移動を示す枝の集合である。
The branch set E z of the delivery staff is defined as follows.
E z = E wwz ∪E wz ∪E wpz ∪E pwz
E wwz is a set of branches indicating movement between delivery staff bases, E wz is a set of branches (such as waiting) remaining on the delivery staff delivery base road, and E wpz is movement from the delivery staff road to the port. A set of branches, E pwz, is a set of branches indicating the movement of the delivery staff from the port to the road.
図5に、上記で定義した枝集合の表示例を示す。斜め方向の実線矢印は、Ewwx、Ewwy、Ewwzの各集合に対応する枝を示している。縦方向の二重線矢印は、Ewx、Ewy、Ewzの各集合に対応する枝を示している。横方向の二点鎖線矢印は、Ewpx、Ewpy、Ewpzの各集合に対応する枝を示している。斜め方向の一点鎖線矢印は、Epwx、Epwy、Epwzの各集合に対応する枝を示している。縦方向の破線矢印は、Epxの集合に対応する枝を示している。
第2の時空間ネットワークモデルでは配送拠点内を0−1整数問題として扱うが、横方向の二点鎖線矢印、斜め方向の一点鎖線矢印、縦方向の破線矢印の枝が、この0−1整数問題化に関連して、本実施形態で追加された枝である。
FIG. 5 shows a display example of the branch set defined above. Diagonal solid arrows indicate branches corresponding to the respective sets of Ewx, Ewwy, and Ewwz . A vertical double line arrow indicates a branch corresponding to each set of E wx, E wy, and E wz . The two-dot chain arrows in the horizontal direction indicate branches corresponding to the respective sets of E wpx, E wpy, and E wpz . The one-dot chain line arrows in the oblique direction indicate branches corresponding to the respective sets of E pwx, E pwy, and E pwz . A vertical dashed arrow indicates a branch corresponding to a set of Epx .
In the second spatio-temporal network model, the inside of the delivery base is treated as a 0-1 integer problem, but a branch of a horizontal two-dot chain line arrow, an oblique one-dot chain line arrow, and a vertical broken line arrow is the 0-1 integer. This is a branch added in the present embodiment in relation to the problem.
図6は、本発明の第一実施形態における配送計画に係る第2の時空間ネットワークモデルを説明する第三の図である。
図6を用いて、各枝に対して設定される流量ベクトルについて説明する。図6(a)に示すように各枝eには流量ベクトル
FIG. 6 is a third diagram illustrating the second space-time network model according to the delivery plan in the first embodiment of the present invention.
A flow vector set for each branch will be described with reference to FIG. As shown in FIG. 6A, each branch e has a flow vector.
が設定される。この流量ベクトルのうち、x[d、e](d∈P,e∈Ex)は配送物の流量、y[d、e](d∈D,e∈Ey)は配送手段の流量、z[e](e∈Ez)は配送スタッフの流量を示している。いくつか例を挙げる。P={a}、D={車}の場合、流量ベクトルは、 Is set. Of these flow vectors, x [d, e] (dεP, eεE x ) is the flow rate of the delivery, y [d, e] (dεD, eεE y ) is the flow rate of the delivery means, z [e] (eεE z ) indicates the flow rate of the delivery staff. Here are some examples: When P = {a} and D = {car}, the flow vector is
となる。図6(b)に示す枝eは、aが1個、配送車(車)が1台、配送スタッフ(人)が2人の移動を示す。また、P={a,b}、D={車,バイク}の場合、流量ベクトルは、 It becomes. The branch e shown in FIG. 6B shows the movement of one a, one delivery car (car), and two delivery staff (persons). When P = {a, b} and D = {car, bike}, the flow vector is
となる。図6(c)に示す枝eは、aが1個、bが1個、配送車(車)が1台、バイクが1台、配送スタッフ(人)が2人の移動を示す。 It becomes. The branch e shown in FIG. 6C shows the movement of one a, one b, one delivery vehicle (car), one motorcycle, and two delivery staff (people).
図7は、本発明の第一実施形態における配送計画に係る第2の時空間ネットワークモデルを説明する第四の図である。
図7は、流量ベクトルが以下であって、
FIG. 7 is a fourth diagram illustrating the second space-time network model according to the delivery plan in the first embodiment of the present invention.
FIG. 7 shows that the flow vector is
配送物aを1個、配送拠点1から配送拠点2へ移動させる場合の時空間ネットワークモデルである。まず、配送スタッフ(人)2人と配送車(車)1台がDepot出口から配送拠点1へ移動する(実線矢印91)。配送拠点1では、配送スタッフ1人が配送物aの置き場(ポート0)へ移動する(2点鎖線矢印92)。また、配送物aのポート0では、配送物aが時刻0〜1まで存在する(破線矢印93)。続いて配送スタッフ1人と配送物a1個が配送拠点1の出口へ移動する(1点鎖線矢印94)。次に配送物aが1個、配送車1台、配送スタッフ2人が配送拠点1の出口から配送拠点2の入口へ移動する(実線矢印95)。次に配送スタッフ1人と配送物a1個が配送拠点2のポート0へ移動する(2点鎖線矢印96)。続いて配送スタッフ1人がポート0から配送拠点2の出口へ移動する(1点鎖線矢印97)。次に配送スタッフ2人と配送車1台が配送拠点2の出口からDepot入口へ移動する(実線矢印98)。配送拠点2のポート0では配送物aが時刻2〜3まで存在する(破線矢印100)。図7に示すように本実施形態では、配送拠点1および配送拠点2において、配送物a1個ごとに点を割り当て、また配送拠点の入口、出口それぞれに点を割り当てている。そのため、配送拠点1内および配送拠点2内における流量ベクトルの各要素の値は0か1となる。これにより、配送拠点内を0−1整数計画問題として扱えるようになり、計算時間を短縮化できる。
This is a spatio-temporal network model when one delivery item a is moved from the
図8は、本発明の第一実施形態における配送計画に係る第2の時空間ネットワークモデルを説明する第五の図である。
図8は、図3で例示した第1の時空間ネットワークモデルを第2の時空間ネットワークモデルを用いて表したものである。図8では、図3では駐車場Aの列で表した点集合を、さらに細分化した(1,0,0,0)、(1,a,0,0)、(1,a,1,0)の各列の点集合で表している。駐車場B、駐車場Cについても同様である。また、センター、駐車場A〜駐車場Cのそれぞれには出入口に対応する点集合が与えられている。
FIG. 8 is a fifth diagram illustrating the second space-time network model according to the delivery plan in the first embodiment of the present invention.
FIG. 8 shows the first space-time network model illustrated in FIG. 3 using the second space-time network model. In FIG. 8, the point set represented by the column of the parking lot A in FIG. 3 is further subdivided into (1, 0, 0, 0), (1, a, 0, 0), (1, a, 1, 0) is represented by a point set in each column. The same applies to parking lot B and parking lot C. In addition, a point set corresponding to the entrance / exit is given to each of the center and the parking lots A to C.
<第2の時空間ネットワークモデルに基づく配送計画の生成方法>
以上、第2の時空間ネットワークモデルにおける処理の高速化に対する対策として、配送拠点内を0−1整数計画問題とすることについて説明した。次に配送計画の生成方法について説明する。なお、配送手段として、配送車と自転車で配送する場合(配送車だけで配送する場合も含む)、トラックで(配送物を積載して)配送する場合のそれぞれについて説明を行う。なお、配送手段の自転車は、配送スタッフが自転車に乗って供給のある配送拠点へ移動し、そこで余剰の車両に自転車を積んで、配送スタッフが余剰車両を運転して需要のある配送拠点へ移動するといった用いられ方をする。
<Delivery plan generation method based on second space-time network model>
As described above, as a countermeasure for speeding up the processing in the second spatio-temporal network model, it has been described that the delivery base is set to a 0-1 integer programming problem. Next, a method for generating a delivery plan will be described. In addition, as a delivery means, each of the case where it delivers by a delivery vehicle and a bicycle (including the case where it delivers only with a delivery vehicle) and the case where it delivers by a truck (with a delivery thing loaded) are demonstrated. In addition, the delivery staff bicycle rides on the bicycle and moves to the delivery base where the supply is provided, where the surplus vehicles are loaded on the bicycle, and the delivery staff drives the surplus vehicles and moves to the delivery base in demand. To be used.
まず、目的関数について説明する。図3では、コストを最小化する場合を例に説明を行った。ここでは、配送に掛かる移動時間を最小化する場合も含めて説明する。
(配送車と自転車で配送する場合)
1.配送に掛かるコストを最小化する場合の目的関数は、配送物、配送車、配送スタッフそれぞれの時間当たりのコストに移動時間を掛けて足したものとする。
2.配送に掛かる移動時間を最小化する場合の目的関数は配送物、配送車、配送スタッフそれぞれの移動時間を足したものとする。
First, the objective function will be described. In FIG. 3, the case where cost is minimized has been described as an example. Here, the case where the travel time required for delivery is minimized will be described.
(When delivering by delivery car and bicycle)
1. The objective function in the case of minimizing the cost for delivery is assumed to be the cost per hour for each of the deliverables, delivery vehicles, and delivery staff multiplied by the travel time.
2. It is assumed that the objective function for minimizing the travel time required for delivery is the sum of the travel times of deliveries, delivery vehicles, and delivery staff.
(トラックで配送する場合)
1.配送に掛かるコストを最小化する場合の目的関数は、配送トラック、配送スタッフそれぞれの時間当たりのコストに移動時間を掛けて足したものとする。
2.配送に掛かる移動時間を最小化する場合の目的関数は、配送トラック、配送スタッフそれぞれの移動時間を足したものとする。
(When delivering by truck)
1. Assume that the objective function for minimizing the cost for delivery is the cost per hour for each of the delivery truck and delivery staff multiplied by the travel time.
2. It is assumed that the objective function for minimizing the travel time for delivery is the sum of the travel times of the delivery truck and delivery staff.
次に制約条件について説明する。
(配送車と自転車で配送する場合とトラックで配送する場合に共通)
1.流量保存則
(1)配送物の流量について
配送開始時点においては、供給が存在するポートから出る流量は1となる。配送完了時点においては、需要が存在するポートに入る流量が1となる。その他の点では、出ていく流量と入る流量は等しい。
Next, the constraint conditions will be described.
(Common for delivery by delivery car and bicycle and delivery by truck)
1. Flow Conservation Law (1) About Flow Rate of Deliverables At the start of delivery, the flow rate exiting from the port where the supply exists is 1. At the time of delivery completion, the flow rate entering the port where demand exists is 1. In other respects, the outgoing flow rate and the incoming flow rate are equal.
(2)配送車の流量について
配送開始時点においては、配送車が存在する道から出る流量は、配送車の存在台数分となる。配送完了時点においては、配送車が存在する道に入る流量は、配送車の存在台数分となる。その他の点では、出ていく流量と入る流量は等しい。
(3)配送スタッフの流量について
配送開始時点においては、配送スタッフが存在する道から出る流量は、配送スタッフの人数分となる。配送完了時点においては、配送スタッフが存在する道に入る流量は、配送スタッフの人数分となる。その他の点では、出ていく流量と入る流量は等しい。
2.容量制約
配送拠点内の配送物、人の移動量は1以下である。
(2) Flow rate of delivery vehicles At the time of delivery start, the flow rate from the road where delivery vehicles exist is equal to the number of delivery vehicles. At the time of completion of delivery, the flow rate entering the road where the delivery vehicle exists is equal to the number of delivery vehicles. In other respects, the outgoing flow rate and the incoming flow rate are equal.
(3) Flow rate of delivery staff At the start of delivery, the flow rate from the road where the delivery staff exists is equal to the number of delivery staff members. At the time of completion of delivery, the flow rate entering the road where the delivery staff exists is equal to the number of delivery staff. In other respects, the outgoing flow rate and the incoming flow rate are equal.
2. The amount of movement of goods and people in the capacity-constrained delivery base is 1 or less.
3.配送拠点内の制約1
∀e∈Ewp
(Ewpは配送物、配送手段、人の道からポートへの移動を示す枝の集合)
(1)eの行き先がdの供給点のとき
配送物は道からポートには入ってこない。
(2)eの行き先がdの需要点のとき
配送物と配送スタッフの流量が同じ値を取る(0または1)。
(3)どちらの場合も
自転車の台数は配送スタッフの人数以下である。
3.
∀e∈E wp
(E wp is a set of branches indicating delivery, delivery means, movement from person's road to port)
(1) When the destination of e is the supply point of d The delivery does not enter the port from the road.
(2) When the destination of e is the demand point of d The flow rate of the delivery item and the delivery staff takes the same value (0 or 1).
(3) In both cases, the number of bicycles is less than the number of delivery staff.
4.配送拠点内の制約2
∀e∈Epw
(Epwは配送物、配送手段、人のポートから道への移動を示す枝の集合)
(1)eの出発点がdの供給点のとき
配送物と配送スタッフの流量が同じ値を取る(0または1)。
(2)eの出発点がdの需要点のとき
配送物はポートから道には出ない。
(3)どちらの場合も
自転車の台数は配送スタッフの人数以下である。
4).
∀e∈E pw
(E pw is a set of branches indicating delivery, delivery means, movement from a person's port to a road)
(1) When the starting point of e is the supply point of d The flow rate of the delivery item and the delivery staff takes the same value (0 or 1).
(2) When the starting point of e is the demand point of d The delivery does not go out from the port on the road.
(3) In both cases, the number of bicycles is less than the number of delivery staff.
以下、配送車と自転車で配送する場合とトラックで配送する場合に分けて説明する。
(配送車と自転車で配送する場合)
5.拠点から別の拠点へ移動するときの枝に対する制約
∀e∈Eww
(Ewwは配送物、配送手段、人の拠点間の移動を示す枝の集合)
(1)eが自転車の枝かつ車の枝のとき
自転車と車のそれぞれに配送スタッフが乗って移動している場合と、自転車を車に積載して移動している場合があり、車には必ず配送スタッフが乗ること、配送スタッフの人数は搭乗可能人数以下であること、運転できない自転車の台数は、車に積載可能な台数以下であることを制約とする。
(2)eが自転車の枝であるが車の枝ではないとき(自転車で移動している)
自転車の台数と人数が一致する。
The following description is divided into a case of delivery by delivery vehicle and bicycle and a case of delivery by truck.
(When delivering by delivery car and bicycle)
5. Restrictions on branches when moving from one base to another base ∀e∈E ww
( Eww is a set of branches indicating deliveries, delivery means, and movement between people's bases)
(1) When e is a branch of a bicycle and a branch of a car There are cases where a delivery staff rides on each of the bicycle and the car, and there are cases where the bicycle is loaded on the car and moved. There are restrictions that the delivery staff must ride, that the number of delivery staff is less than the number of passengers that can be boarded, and that the number of bicycles that cannot be driven is less than or equal to the number that can be loaded in the car.
(2) When e is a bicycle branch but not a car branch (moving by bicycle)
The number of bicycles matches the number of people.
6.配送拠点の中で留まる枝に対する制約
車には必ず人が乗ることを制約とする。
6). Restrictions on branches staying at the delivery base Restrictions on vehicles being on board.
(トラックで配送する場合)
5.配送拠点から別の配送拠点へ移動するときの枝に対する制約
トラックには必ず配送スタッフが乗ること、配送スタッフの人数は搭乗可能人数以下であること、配送物の総体積はトラックの積載量以下であることを制約とする。
(When delivering by truck)
5. Restrictions on branches when moving from a delivery base to another delivery base The delivery staff must be on the truck, the number of delivery staff must be less than the number of passengers, and the total volume of deliveries must be less than the load capacity of the truck. It is a constraint.
6.配送拠点の中で留まる枝に対する制約
配送物の総体積はトラックの積載量以下であることを制約とする。
6). Restriction on branches staying in the delivery base The restriction is that the total volume of deliveries is less than the load capacity of the truck.
さらに、計算時間を短縮化するためにカットと呼ばれる制約式を適用することができる。整数計画問題において、実行可能領域の点が満たすことができる不等式を妥当不等式と呼ぶ。整数計画問題は、解くのが難しいため、まず整数条件を除いた線形緩和問題として扱うことも多い。線形緩和問題の解空間を削る妥当不等式を追加することをカットの追加と呼ぶ。カットの追加によって、線形緩和解が整数最適解に近づくことから、計算の高速化に強力な効果がある。また、カットの追加によって、実行可能領域は切断されないため、解の最適性は保証される。例えば、配送車は1台以上で来ることを規定するようなカットを加える。すると、配送車が3/4台で来るという現実的ではない場合を計算対象から除外することができ、計算速度を向上することができる。なお、カットの具体例については、本願の出願人による特願2016−051550の明細書に記載されている。カットを追加した場合、カットを追加しない場合で数時間以上を要した整数計画問題について、数分で解くことが可能となった。 Furthermore, a constraint equation called a cut can be applied in order to shorten the calculation time. In an integer programming problem, an inequality that can be satisfied by a feasible region point is called a valid inequality. Since the integer programming problem is difficult to solve, it is often handled as a linear relaxation problem excluding the integer condition. Adding a reasonable inequality that reduces the solution space of a linear relaxation problem is called adding a cut. By adding a cut, the linear relaxation solution approaches an integer optimal solution, which has a powerful effect on speeding up the calculation. Further, since the feasible area is not cut by adding the cut, the optimality of the solution is guaranteed. For example, a cut that stipulates that one or more delivery vehicles come is added. Then, the unrealistic case where the delivery vehicles come in 3/4 can be excluded from the calculation target, and the calculation speed can be improved. A specific example of the cut is described in the specification of Japanese Patent Application No. 2006-051550 by the applicant of the present application. With the addition of a cut, it became possible to solve an integer programming problem that took several hours without adding a cut in a few minutes.
配送計画生成部12は、配送拠点の中を、道(d=0)と駐車ポート(d≠0)で分割した時空間ネットワークモデルを生成し、さらに上記制約条件、追加されたカットを用いて枝情報を計算する。本実施形態によれば、配送拠点内を0−1整数計画問題としてモデル化することができるので、第1の時空間ネットワークを用いて配送計画を生成する場合の効果に加え、配送計画の計算に要する時間が削減できるという効果が得られる。さらに、カットの追加により計算時間を大幅に短縮することができる。これにより、例えば、様々な初期条件下で生成された配送計画を比較し、より低コストな配送計画の選択を行うことができるようになるなど、計画立案者の利便性が向上する。
The delivery
次に第2の時空間ネットワークを用いて配送計画を生成する事例について説明する。
図9は、本発明の第一実施形態における配送問題の一例を示す図である。
図10は、配送問題に対して生成した配送計画の一例を示す図である。
図9の点c0(depot)は出発拠点である。他の点w1〜w9は配送拠点である。例えば、点w7において「d1:2」とあるのは、配送物d1が2個余っている状態を示し、点w5において「d2:−1」とあるのは、配送物d2が1個不足している状態を示している。また、点w2で「d1:−1、d2:1」とあるのは、配送物d1が1個不足し配送物d2が1個余っている状態を示している。図9が示す配送物d1〜d3が遍在した状態から、各配送拠点で配送物d1〜d3が不足した状態が無くなるように配送物d1〜d3を配送する問題を考える。以下に車と自転車で配送する場合、トラックで配送する場合のそれぞれについて、配送計画装置10が生成した配送計画の例を挙げる。
Next, a case where a delivery plan is generated using the second space-time network will be described.
FIG. 9 is a diagram showing an example of a delivery problem in the first embodiment of the present invention.
FIG. 10 is a diagram illustrating an example of a delivery plan generated for a delivery problem.
A point c0 (depot) in FIG. 9 is a starting point. Other points w1 to w9 are delivery bases. For example, “d1: 2” at the point w7 indicates a state in which two deliveries d1 are left, and “d2: −1” at the point w5 indicates that one delivery d2 is insufficient. It shows the state. Further, “d1: −1, d2: 1” at the point w2 indicates a state in which one delivery item d1 is insufficient and one delivery item d2 is left. Consider the problem of delivering the delivery items d1 to d3 so that the delivery items d1 to d3 are not in shortage at each delivery base from the state where the delivery items d1 to d3 shown in FIG. 9 are ubiquitous. Examples of a delivery plan generated by the
1.車と自転車で配送する場合
(1)入力
・depotには、配送車1台、自転車3台、配送スタッフ3人
・配送期限:120分
・配送車のコスト:1.5円/分
・配送スタッフのコスト:17円/分
・d1、d2、d3のコスト:1.5円/分
・配送車の搭乗可能人数:4人、自転車の積載可能台数:1台
・d1の搭乗可能人数:1人、自転車の積載可能台数:0台
・d2の搭乗可能人数:4人、自転車の積載可能台数:1台
・d3の搭乗可能人数:2人、自転車の積載可能台数:0台
(2)目的関数
コスト最小化
1. When delivering by car and bicycle (1) Input / depot includes 1 delivery vehicle, 3 bicycles, 3 delivery staff, delivery deadline: 120 minutes, delivery vehicle cost: 1.5 yen / minute, delivery staff Cost: 17 yen / min ・ d1, d2, d3 cost: 1.5 yen / min ・ Number of passengers in delivery vehicle: 4 people, Bicycle capacity: 1 vehicle ・ D1 passenger capacity: 1 person , Number of bicycles that can be loaded: 0 • Number of people that can be boarded in d2: 4 people, Number of bicycles that can be loaded: 1 unit • Number of people that can be boarded in d3: 2 people, Number of bicycles that can be loaded: 0 (2) Objective function Cost minimization
この目的関数に対して上述の制約条件、カットを加えて、配送計画装置10に計算させると次のような出力結果が得られた。
(3)出力
・配送車1台、自転車1台、配送スタッフ2人で図10に示すようにS1〜S7で示される配送ルートとT1〜T9で示される配送ルートの2ルートに分かれて配送する。
・配送コスト:2768円
・必要な時間:60分
このように、初期条件で設定した配送手段、配送スタッフ、配送期限の条件内でコストを最小化する配送計画を得ることができる。
When the above-mentioned constraint conditions and cuts are added to this objective function and the
(3) One output / delivery vehicle, one bicycle, and two delivery staffs, as shown in FIG. 10, are divided into two routes, a delivery route indicated by S1 to S7 and a delivery route indicated by T1 to T9. .
-Delivery cost: 2768 yen-Required time: 60 minutes In this way, a delivery plan that minimizes the cost within the conditions of delivery means, delivery staff, and delivery deadline set in the initial conditions can be obtained.
なお、配送計画装置10による第1の時空間ネットワーク又は第2の時空間ネットワークを用いた配送計画の生成は、搭乗輸送が可能な配送物の配送、調達、アフターサービス巡回にも適用可能である。例えば、アフターサービスにおいては、アフターサービスに必要な部品等を調達してから客先に向かったり、複数の客先を回ったりしてサービスを提供する必要がある。配送物をアフターサービスに使う部品等、配送主体をサービスマン、配送手段をサービスマンが移動に用いる車両や部品等の運搬に必要な配送車等、拠点を客先やアフターサービスの対象となる製品の設置場所として、上記の数理モデルを適用して整数計画問題を解くことができ、サービスマンが複数の客先でアフターサービスを行う場合に、その巡回コストや巡回時間を最小にする巡回方法(巡回手段、巡回経路)を算出することができる。図2の場合、例えば、駐車場A〜駐車場C(配送拠点)を、アフターサービスを提供する客先、車両(配送物)を部品、乗用車(配送手段)をサービスマンが移動に用いる手段、配送者(配送主体)をサービスマンとすればよい。また、アフターサービスの場合、単に客先を巡回するだけでなく、客先で点検、修理などの作業を行う。時空間ネットワークモデルを用いた配送計画装置10、10A、10Bによれば、サービスマンの巡回行動を、これら作業時間を考慮に入れてモデル化することができる。
Note that the generation of a delivery plan using the first spatiotemporal network or the second spatiotemporal network by the
また、上記の例以外にも搭乗輸送を行わない配送物の配送に対しても適用することができる。例えば、ミルクランと呼ばれる集荷方法が存在する。ミルクランとは、ある製品のメーカが、その製品に使用する原材料や部品を、複数のサプライヤから仕入れる場合、各サプライヤに搬入させるのではなく、メーカが、各サプライヤを巡回して原材料等を集荷する調達方法のことである。ミルクランによって集荷を行うと、例えば、1台のトラックで集荷することで、各サプライヤに納入させる場合と比べてコスト削減、工場周辺の渋滞軽減、環境の負荷軽減を図ることができる。本実施形態の配送計画装置10によってミルクランの最適な巡回方法を算出する場合、例えば、製品メーカの納入先の工場等をカーシェアリングにおける需要のある配送拠点とし、原材料や部品の納入業者の工場等を車両が余っている配送拠点とすれば、上述した「トラックで配送する場合」と同様の目的関数、制約条件等を設定することで、配送計画を算出することができる。なお、上記のトラックで配送する場合の「配送物の総体積はトラックの積載量以下であること」との制約条件については、「(原材料の重み×原材料の量+部品の重み×部品数)はトラックの積載量以下であること」との制約条件に変更する。また、あるサプライヤの集荷時間枠が指定されている場合、制約条件にその指定された集荷時間枠の情報を加えることで対応することができる。例えば、あるサプライヤへの到着時刻を(集荷の開始から)30分後以降にしなければならない場合、次のような制約条件を追加すれば、当該サプライヤの時間枠制約を守った集荷計画を生成することができる。
あるサプライヤへの到着時刻 ≧ 30分後
In addition to the above example, the present invention can also be applied to delivery of a delivery that is not carried on board. For example, there is a collection method called milk run. Milk run means that when a manufacturer of a product purchases raw materials and parts used for the product from multiple suppliers, the manufacturer visits each supplier and collects the raw materials, etc., instead of bringing them into each supplier. It is a procurement method. When collecting by a milk run, for example, by collecting with one truck, it is possible to reduce costs, reduce traffic congestion around the factory, and reduce environmental load compared with the case of delivering to each supplier. When calculating the optimal milk run patrol method by the
Arrival time at a supplier ≥ 30 minutes later
これまでに本実施形態の配送計画装置10が、配送計画を生成する処理について説明した。上述した方法によれば、配送計画装置10は、配送問題における厳密な最適解を求めることができる。しかしながら、上記の方法だけでは、問題の規模が大きくなると(例えば、配送拠点が20カ所で、配送する車両が20台)、実用的な時間で解を求めることが難しい場合がある。そこで、第一エリア分割部14は、配送拠点を配送エリアごとに分割して、与えられた配送問題を分割したエリアごとの配送問題に分割する。次に第一エリア分割部14によるエリア分割処理(第一エリア分割処理)について説明する。
So far, the
図11は、本発明の第一実施形態における第一エリア分割処理を説明する第一の図である。
図11の左図は、配送計画の対象となる地域に存在する配送拠点と出発拠点の位置を示している。図中、丸点は配送拠点(w1〜w17)、四角点は出発拠点(c1〜c3)を示している。配送拠点w1〜w17には、配送物の需要または余剰があり、出発拠点c1〜c3には配送車や配送スタッフが存在している。第一エリア分割部14は、近隣に存在する需要のある配送拠点(需要点)と余剰がある配送拠点(供給点)とを対応させた組を生成し、さらに需要点と供給点の組を1つ又は複数集めて分割された一つのエリアを生成する。第一エリア分割部14によるエリアの生成を第一エリア分割処理と呼ぶ。
FIG. 11 is a first diagram illustrating the first area division processing in the first embodiment of the present invention.
The left diagram of FIG. 11 shows the positions of the delivery base and the departure base that exist in the area targeted for the delivery plan. In the figure, circle points indicate delivery bases (w1 to w17), and square points indicate departure bases (c1 to c3). The delivery bases w1 to w17 have demands or surpluses of deliveries, and the departure bases c1 to c3 have delivery vehicles and delivery staff. The first
図11の右図は、第一エリア分割部14が第一エリア分割処理を行った結果を示している。配送拠点w1〜w5はエリアj1、配送拠点w6〜w9はエリアj2、配送拠点w10〜w17はエリアj3にそれぞれ属している。配送計画生成部12は、分割後のエリアj1〜エリアj3それぞれについて上記の方法で配送計画の生成を行う。エリアj1〜エリアj3には、それぞれ10個未満の配送拠点しか含まれず、比較的小規模である。その為、配送計画生成部12は、上記した時空間ネットワークモデルを用いて実用的な時間で配送計画を生成することができる。
The right figure of FIG. 11 shows the result of the first
次に図11を用いて第一エリア分割処理の概要を説明する。まず、第一エリア分割部14は、配送拠点w1〜w17を需要点と、供給点と、需要点でも供給点でもない配送拠点とに分ける。次に第一エリア分割部14は、需要点と供給点とを1対1に対応付ける。このとき、第一エリア分割部14は、需要点と供給点の距離(移動時間)が近いもの同士を対応付ける。例えば、図11の配送拠点w4では配送物d1が1余り、配送拠点w5では配送物d1が1足りない。また、配送拠点w6では配送物d1が1余り、配送拠点w7では配送物d1が1足りない。また、配送拠点w8では配送物d2が1余り、配送拠点w9では配送物d2が1足りないとする。この場合、第一エリア分割部14は、需要と供給が一致し、距離が近い配送拠点同士を対応付ける。すなわち、第一エリア分割部14は、配送拠点w4と配送拠点w5とを対応付け(組1とする)、配送拠点w6と配送拠点w7とを対応付け(組2とする)、配送拠点w8と配送拠点w9とを対応付ける(組3とする)。その他の需要点と供給点についても同様に対応付けを行う。
Next, the outline of the first area division processing will be described with reference to FIG. First, the first
次に第一エリア分割部14は、対応付けた需要点と供給点の組について、距離の近い組同士を複数集めて1つのエリアを生成する。このとき、距離の近い組が他に無ければ1つの組を1つのエリアとしてもよい。例えば、上に挙げた例の場合、第一エリア分割部14は、組1の配送拠点w4と組2の配送拠点w6との距離を計算する。そして、計算した距離が所定の閾値より小さければ、組1と組2とを同じエリアに分類し、計算した距離が所定の閾値より大きければ、組1と組2とは別のエリアとして判定する。組の間の距離の計算については、例えば、組1と組2の距離の場合、配送拠点w4と配送拠点w7の距離を計算してもよいし、配送拠点w4〜配送拠点w6間、配送拠点w4〜配送拠点w7間、配送拠点w5〜配送拠点w6間、配送拠点w5〜配送拠点w7間の距離をそれぞれ計算し、計算した距離の平均を組1と組2との距離としてもよい。あるいは、計算した距離のうち最も大きい(又は最も小さい)距離を組1と組2との距離としてもよい。図11の例の場合、第一エリア分割部14は、例えば、組2と組3を同じエリアj2に分類し、組1をそれとは別のエリアj1に分類する。第一エリア分割部14は、他の配送拠点についても同様の処理を行い、配送拠点w1〜w17をエリアごとに分類し、図11に示すエリアj1〜エリアj3を生成する。
Next, the first
第一エリア分割処理によってエリアが生成されると、配送計画生成部12は、エリアj1〜エリアj3のそれぞれについて、各エリア内の各配送拠点における配送物の供給数量、需要数量などを初期条件とする配送問題に対して、第1の時空間ネットワークモデル又は第2の時空間ネットワークモデルを用いて配送計画の生成を行ってもよいが、全く初期の状態から時空間ネットワークモデルを用いた計算を行わなくても、第一エリア分割処理の際の需要点と供給点の対応付けを枝情報として利用することができる。すなわち、配送計画生成部12は、対応付けた需要点から供給点への枝情報を生成し、それらを繋ぎ合わせることで全ての需要を満たす配送計画が生成できる。しかし、距離が最も近い配送拠点間を結んだ配送ルートだけでは、余りにも限定され過ぎており、複数の拠点間を移動する配送計画全体から見た場合、最適化された状態から遠ざかってしまう可能性がある。そこで、第一エリア分割部14は、配送計画生成部12が枝情報の生成を行う際に選択される可能性がある配送ルートを追加する処理を行う。そして、配送計画生成部12は、需要と供給を満たす最も近い配送拠点間を結ぶ配送ルートに追加された選択される可能性がある配送ルートを加えた全ての候補となる配送ルートの中から適切な配送ルートを選択して枝情報を生成し、エリアごとの配送計画を生成する。
なお、図11では、需要点、供給点を配送拠点として説明したが、それぞれ需要のあるポート、供給のあるポートとしてもよい。
When the area is generated by the first area division processing, the delivery
In FIG. 11, the demand point and the supply point are described as the delivery bases. However, a port with demand and a port with supply may be used.
次に第一エリア分割処理について詳しく説明する。
図12は、本発明の第一実施形態における第一エリア分割処理を説明する第二の図である。
以下に本実施形態の第一エリア分割処理のアルゴリズムを説明する。第一エリア分割部14は、以下の手順で各処理を行う。
1.まず、各配送拠点の各ポート(第1の時空間ネットワークモデルの場合は配送拠点)を供給点と需要点に分け、供給点の集合A、需要点の集合Bを生成する。V1=A∪Bとする。
2.次にV1に新しい点s、tを加え、V=V1∪{s,t}とする。
3.AからBに配送ルートe11〜e19を作り、各配送ルートに対してその配送ルートが示す経路で配送した場合の移動時間に基づくコスト関数c(e)を定義する。
4.sからA、Bからtに配送ルートを作りそれらのコストを0とする。sからA、Bからtの配送ルートの集合をE2とし、E1とE2の和集合をEとする。
5.ここまでの処理で2部グラフG=(V,E)を構成する。
6.Gの最小重み最大マッチング、すなわちコストが最小となるsからtへの経路を算出する。より具体的には、sからtへの経路のうち、集合Aに含まれる各供給点から出る配送ルートの数が1、集合Bに含まれる各需要点に入る配送ルートの数が1という条件の下で、sと集合Aの各供給点と集合Bの各需要点とtとを結ぶ配送ルートのコストの合計が最小となる場合の配送ルートを算出する(主問題)。4.よりsから集合Aの各供給点へのコスト、集合Bの各需要点からtへのコストは0であるから、コストが最小となる場合の供給点a1〜供給点a3と需要点b1〜需要点b3との対応付け方を求めることができる。ここでコストは移動時間に基づく関数であるから、最も距離が近い供給点と需要点との1対1マッチングを求めることができる。図12の例では、例えばa1とb1とを結ぶ配送ルートe11、a2とb3とを結ぶ配送ルートe16、a3とb2とを結ぶ配送ルートe18の組み合わせがコストの合計が最小となる配送ルートであって、その場合、a1とb1、a2とb3、a3とb2が1対1で対応付けられる。
7.次に対応付けられた2つのポートが同じエリアに含まれるように、全てのポートをエリアで分割する。このとき、対応付けられた2つのポート間の移動時間が所定の値以下であれば1つのエリアに分類する。図12の例では、例えば、対応付けたa1とb1、a2とb3、a3とb2のうち、a1とb1を1つのエリア(j4)、a2とb3、a3とb2を1つのエリア(j5)として分類する。
Next, the first area division process will be described in detail.
FIG. 12 is a second diagram illustrating the first area division processing in the first embodiment of the present invention.
Hereinafter, the algorithm of the first area division process of this embodiment will be described. The first
1. First, each port of each delivery base (a delivery base in the case of the first space-time network model) is divided into a supply point and a demand point, and a supply point set A and a demand point set B are generated. Let V 1 = A∪B.
2. Then new point s, the t added to V 1, and V = V 1 ∪ {s, t}.
3. Delivery routes e 11 to e 19 are created from A to B, and a cost function c (e) is defined based on the travel time when delivery is performed for each delivery route via the route indicated by the delivery route.
4). A delivery route is created from s to A and from B to t, and their cost is set to zero. A set of delivery routes from s to A and B to t is E 2, and a union of E 1 and E 2 is E.
5. The bipartite graph G = (V, E) is configured by the processing so far.
6). A minimum weight maximum matching of G, that is, a route from s to t that minimizes the cost is calculated. More specifically, among the routes from s to t, the condition is that the number of delivery routes coming from each supply point included in the set A is 1, and the number of delivery routes entering each demand point included in the set B is 1. The distribution route is calculated when the total cost of the distribution route connecting s, each supply point of set A, each demand point of set B, and t is the minimum (main problem). 4). Since the cost from s to each supply point of set A and the cost from each demand point of set B to t are 0, supply point a1 to supply point a3 and demand point b1 to demand when the cost is minimum It is possible to determine how to associate with the point b3. Here, since the cost is a function based on the travel time, a one-to-one matching between the supply point and the demand point with the shortest distance can be obtained. In the example of FIG. 12, for example, a combination of a delivery route e 11 linking a1 and b1, a delivery route e 16 linking a2 and b3, and a delivery route e 18 linking a3 and b2 has a minimum cost. In this case, a1 and b1, a2 and b3, and a3 and b2 are associated one-to-one.
7). Next, all ports are divided by area so that the two associated ports are included in the same area. At this time, if the movement time between the two associated ports is equal to or less than a predetermined value, the area is classified into one area. In the example of FIG. 12, for example, among a1 and b1, a2 and b3, and a3 and b2 associated with each other, a1 and b1 are one area (j4), a2 and b3, and a3 and b2 are one area (j5). Classify as
8.次に1.〜5.の手順で作成した2部グラフを再度作成し、6.の双対問題を生成する(双対問題は数学的な操作で生成することができる)。また、枝e=(u,v)に対して、主問題の最適解X*(e)が1であれば、双対問題の最適解をYとした場合、c(e)−Y*(u)−Y*(v)=0となる(相補性条件:complementary slackness)ところ、c^(e)をc^(e)=c(e)−Y*(u)−Y*(v)で定義し、
0 ≦ c^(e) ≦ ε(εは所定の定数)
の条件により、c^(e)に幅を持たせる。この条件は、c^(e)=0だけでなく、c^(e)がε以下となる場合も配送ルートの候補として認めることを意味する。つまり、主問題でもコストが最小になる場合だけでなく、幅を持った解が得られる。この解の条件の緩和により、図12の例では、例えばa1とb1とを結ぶ配送ルートの候補e19が新たに得られる。
8). Next, 1. ~ 5. 5. Recreate the bipartite graph created in the above procedure. (The dual problem can be generated by mathematical operations). For the branch e = (u, v), if the optimal solution X * (e) of the main problem is 1, assuming that the optimal solution of the dual problem is Y, c (e) −Y * (u ) −Y * (v) = 0 (complementary slackness) where c ^ (e) is c ^ (e) = c (e) −Y * (u) −Y * (v) Define
0 ≦ c ^ (e) ≦ ε (ε is a predetermined constant)
According to the condition, c ^ (e) is given a width. This condition means that not only c ^ (e) = 0 but also a case where c ^ (e) is equal to or less than ε is recognized as a delivery route candidate. In other words, not only the cost of the main problem is minimized, but a solution with a wide range can be obtained. The relaxation of the conditions of the solution, in the example of FIG. 12, the candidate e 19 delivery routes connecting the example a1 and b1 obtained newly.
以上で第一エリア分割処理が完了する。第一エリア分割処理が完了すると、配送計画生成部12が、分割後の各エリアについて配送計画を生成する。その際、配送計画生成部12は、第一エリア分割処理で得られた配送ルートの候補を使用して条件を満たす配送計画を生成する。具体的には、上述した「1.流量保存則」〜「6.配送拠点の中で留まる枝に対する制約」に加えて、第一エリア分割処理で得られた配送ルートの候補(e11,e16,e18,e19)を用いることを制約条件に加えて、枝情報の集合を計算する。
Thus, the first area division process is completed. When the first area division processing is completed, the delivery
次に本実施形態の配送計画の生成処理の流れについて説明する。
図13は、本発明の第一実施形態における配送計画の生成処理の一例を示すフローチャートである。
まず、配送計画を行う配送スタッフが、配送計画装置10に配送計画の初期条件を入力する。入出力部13はその入力を受け付け、受け付けた情報を初期条件設定部11に出力する。初期条件設定部11は、配送スタッフが入力した初期条件の情報を取得する(ステップS11)。初期条件設定部11は、取得した初期条件の情報を配送計画の初期条件に設定する。初期条件とは、例えば、各拠点における配送物の供給数量(余っている数量)、需要数量(不足している数量)、出発拠点にある配送車の台数、配送スタッフの人数、各拠点間の移動時間、配送期限などである。
次に、第一エリア分割部14は、初期条件の情報に含まれる各配送拠点(又はポート)での配送物の供給数量、需要数量を用いて、第一エリア分割処理を行う(ステップS12)。第一エリア分割処理については図11,図12を用いて説明したとおりである。
Next, the flow of the delivery plan generation process of this embodiment will be described.
FIG. 13 is a flowchart showing an example of a delivery plan generation process in the first embodiment of the present invention.
First, the delivery staff who performs the delivery plan inputs the initial conditions of the delivery plan to the
Next, the first
次に、配送計画生成部12は、第一エリア分割処理で得られたエリアごとに、図3や図8で例示した時空間ネットワークモデル上で、上記の各制約条件を満たすように枝情報を生成し、配送期限等の条件を満たす枝情報の集合を複数生成する(ステップS13)。具体的には、配送計画生成部12は、第一エリア分割処理で得られた配送ルートの候補について、配送物の数量、配送車の台数、配送スタッフの人数の情報を付加し、各制約条件(「1.流量保存則」〜「6.配送拠点の中で留まる枝に対する制約」)を満たす枝情報を生成する。また、配送計画生成部12は、生成した枝情報を組み合わせて、配送期限までに各拠点の需要台数を満たすような配送を示す枝情報の集合を複数生成する。
Next, for each area obtained by the first area division processing, the delivery
次に、配送計画生成部12は、エリアごとに、生成した枝情報の集合ごとに総コストを計算する(ステップS14)。例えば、配送車、配送スタッフ、配送物ごとに単位時間あたりに発生する単位コストが予め記憶部15に記録されており、配送計画生成部12は、配送車、配送スタッフ、配送物の単位コストに各枝が示す時間を乗じて枝ごとのコスト(配送車、配送スタッフ、配送物に掛かるコストの合計)を計算する。配送計画生成部12は、枝情報の集合に含まれる枝ごとのコストを計算してそれらを合計する。合計したコストが1つの枝情報の集合に対するコストである。配送計画生成部12は、エリアごとに、全ての枝情報の集合それぞれについてコストを計算する。
Next, the delivery plan production |
次に配送計画生成部12は、エリアごとに、計算した各集合について計算したコストを比較し、総コストが最小となる枝情報の集合を選択する(ステップS15)。選択した枝情報の集合は、初期条件が示す出発拠点や各配送拠点の状態から、時間の経過に伴う配送物、配送手段、配送スタッフの移動を表している(図3、図8)。従って、枝情報の集合に基づいて配送を実行すれば、ユーザからの需要に応じた配送が可能になる。つまり、この枝情報の集合は、分割後の1つのエリアについての求める配送計画である。配送計画生成部12がエリアごとの配送計画を生成し終えると、初期条件として与えられた全配送拠点に対する配送計画が生成されたことになる。
Next, the delivery
本実施形態によれば、初期条件で与えられた配送拠点の全体を、近距離にある配送拠点の集合(エリア)に分割することによって、配送問題の規模を小さくすることができ、各エリアでの配送計画の生成処理の計算量を削減することができる。また、エリア分割を行う際に配送ルートの候補を算出し、それらの候補の中から配送ルートを選択して枝情報を生成するのでさらに計算量を削減することができる。これにより、配送物や配送拠点の数が多く、配送問題が大規模になった場合でも、実用的な時間(例えば10分)で配送計画を生成することができる。
なお、配送計画生成部12は、ステップS13において配送ルートの候補を用いることなく枝情報を生成し、配送計画を生成してもよい。
また、エリアの配送計画のコストを加味してエリアを再構成してもよい。例えば、配送コストの差が著しく離れているエリアのペアに対して、早めに配送が完了するエリアを大きくし、遅く配送が完了するエリアを小さくすることで、全体のコストを下げることができる場合がある。
According to the present embodiment, the size of the delivery problem can be reduced by dividing the entire delivery base given by the initial condition into a set (area) of delivery bases at a short distance. It is possible to reduce the calculation amount of the generation process of the delivery plan. Further, since the delivery route candidates are calculated when the area is divided, and branch information is generated by selecting the delivery route from the candidates, the amount of calculation can be further reduced. As a result, even when the number of deliverables and delivery bases is large and the delivery problem becomes large-scale, a delivery plan can be generated in a practical time (for example, 10 minutes).
In addition, the delivery plan production |
The area may be reconfigured in consideration of the cost of the area delivery plan. For example, for a pair of areas where the difference in delivery costs is significantly distant, the overall cost can be reduced by increasing the area where delivery is completed earlier and reducing the area where delivery is completed later There is.
<第二実施形態>
次に大規模な配送問題について実用的な時間で配送計画を生成する他の方法(第二実施形態)に係る配送計画システムについて図14〜図18を参照して説明する。第一実施形態では、比較的近距離に存在する需要点と供給点に注目し、一対の需要点と供給点とを集めて小規模なエリアを生成した。第二実施形態では、出発拠点を中心にエリア分割処理を行い、分割後の各エリア内で配送計画を生成する。なお、第二実施形態におけるエリア分割処理を第二エリア分割処理と呼ぶ。
<Second embodiment>
Next, a delivery plan system according to another method (second embodiment) for generating a delivery plan in a practical time for a large-scale delivery problem will be described with reference to FIGS. In the first embodiment, attention is paid to demand points and supply points that are relatively close to each other, and a pair of demand points and supply points are collected to generate a small area. In the second embodiment, area division processing is performed centering on the departure base, and a delivery plan is generated in each divided area. The area division process in the second embodiment is referred to as a second area division process.
図14は、本発明の第二実施形態における配送計画システムの一例を示す機能ブロック図である。
本発明の第二実施形態に係る構成のうち、本発明の第一実施形態に係る配送計画装置10を構成する機能部と同じものには同じ符号を付し、それぞれの説明を省略する。第二実施形態に係る配送計画装置10Aは、第一実施形態の構成における第一エリア分割部14に代えて、第二エリア分割部16を備えている。
第二エリア分割部16は、出発拠点を出発して一部の配送拠点間に係る配送を行って元の出発拠点に戻るまでの予め設定された配送ルートとその配送ルートで配達したときのコストとを示す単位経路情報を複数取得する。また、第二エリア分割部16は、複数の単位経路情報の組み合わせの中から、当該組み合わせに含まれる、配送拠点の数が所定の数以内となり、且つ、コストが最小となる組み合わせを選択する。この単位経路情報の組み合わせに含まれる出発拠点および配送拠点の集合が分割後のエリアである。
なお、第二エリア分割部16は、配送計画装置10Aが備えるCPUが、記憶部15からプログラムを読み出して実行することで実現される。
FIG. 14 is a functional block diagram showing an example of a delivery plan system in the second embodiment of the present invention.
Of the configurations according to the second embodiment of the present invention, the same components as those constituting the
The second
The second
図15は、本発明の第二実施形態における配送問題の第二エリア分割処理を説明する第一の図である。
図15において、丸点は配送拠点w1〜配送拠点w17、四角点は出発拠点c1〜出発拠点c3を示している。本実施形態では、まず、考えうるすべての需要・供給のパターンを列挙した上で、出発拠点ごとに各パターンの需要・供給を満たす単純な配送ルートを多数作成しておく。ここで、出発拠点c1〜出発拠点c3には、十分な量の配送車(トラック)や配送スタッフが存在しており、配送拠点w1,w3,w6,w8,w10が供給点、配送拠点w2,w5,w7,w9,w11が需要点であるとする。また、配送に係る配送物の種類は同じであるとする。この場合、出発拠点ごとの需要・供給を満たす単純な配送ルートとは、例えば、出発拠点c1を出発し配送拠点w1に至り(R1)、配送拠点w1で配送物を取り、配送拠点w2へその配送物を運び(R2)、配達が終わったら出発拠点c1に戻る(R3)配送ルート(配送ルート1とする)である。同様に、出発拠点c1から配送拠点w3、配送拠点w5を経由して出発拠点c1に戻るルート(配送ルート2とする)、出発拠点c1から配送拠点w6、配送拠点w7を経由して出発拠点c1に戻る配送ルート(配送ルート3とする)、出発拠点c2から配送拠点w8、配送拠点w9を経由して出発拠点c2に戻る配送ルート(配送ルート4とする)、出発拠点c3から配送拠点w10、配送拠点w11を経由して出発拠点c3に戻る配送ルート(配送ルート5とする)などである。これらの単純なルートは予め多数作成され、記憶部15に記録されている。図示しないが、例えば以下のようなルートも作成され予め記憶部15に記録されている。出発拠点c1から配送拠点w1と配送拠点w5を経由して出発拠点c1に戻る配送ルート、出発拠点c1から配送拠点w1と配送拠点w7を経由して出発拠点c1に戻る配送ルート、出発拠点c1から配送拠点w3と配送拠点w2を経由して出発拠点c1に戻る配送ルート、出発拠点c1から配送拠点w10と配送拠点w11を経由して出発拠点c1に戻る配送ルート、出発拠点c2から配送拠点w1と配送拠点w2を経由して出発拠点c2に戻る配送ルート、出発拠点c3から配送拠点w1と配送拠点w2を経由して出発拠点c3に戻る配送ルート、などである。
FIG. 15 is a first diagram illustrating a second area division process for a delivery problem in the second embodiment of the present invention.
In FIG. 15, circles indicate delivery bases w1 to w17, and square points indicate departure bases c1 to c3. In the present embodiment, first, all possible demand / supply patterns are listed, and a number of simple delivery routes satisfying the demand / supply of each pattern are created for each departure base. Here, a sufficient amount of delivery vehicles (trucks) and delivery staff exist in the departure base c1 to the departure base c3, and the delivery bases w1, w3, w6, w8, and w10 are the supply points, the delivery bases w2, and so on. Assume that w5, w7, w9, and w11 are demand points. Further, it is assumed that the types of deliverables related to delivery are the same. In this case, for example, a simple delivery route that satisfies the demand and supply for each departure base is, for example, starting from the departure base c1 to the delivery base w1 (R1), taking a delivery item at the delivery base w1, and sending it to the delivery base w2. This is a delivery route (referred to as delivery route 1) that carries the delivery (R2) and returns to the departure point c1 when delivery is completed (R3). Similarly, the route from the departure point c1 to the departure point c1 via the delivery point w3 and the delivery point w5 (referred to as the delivery route 2), the departure point c1 to the departure point c6 via the delivery point w6 and the delivery point w7. A delivery route (referred to as delivery route 3), a delivery route (referred to as delivery route 4) returning from the departure location c2 to the departure location c2 via the delivery location w8, a delivery location w9, a delivery location w10 from the departure location c3, A delivery route (referred to as delivery route 5) that returns to the departure location c3 via the delivery location w11. A large number of these simple routes are created in advance and recorded in the
また、単純な配送ルートとは、1つの供給点、1つの需要点を経由して元の出発拠点に戻る配送ルート(2つの配送拠点を巡回して元の出発拠点に戻るルート)のことだけを指すのではなく、出発拠点c1を出発して、配送拠点w1にて配送物を2つ取り、配送拠点w2と配送拠点w4に配送物を一つずつ届け出発拠点c1に戻るという配送ルートであってもよい(配送拠点が3つの例)。あるいは、出発拠点c1を出発して、配送拠点w1にて配送物を1つ取り配送拠点w2に届け、続いて配送拠点w3にて配送物を1つ取り配送拠点w4に届け、出発拠点c1に戻るという配送ルートであってもよい(配送拠点が4つの例)。 A simple delivery route is only a delivery route that returns to the original departure point via one supply point and one demand point (a route that returns to the original departure point after visiting two delivery points). Is a delivery route that leaves the departure base c1, takes two deliveries at the delivery base w1, and delivers the deliveries to the delivery base w2 and the delivery base w4 one by one and returns to the departure base c1. There may be (example of three delivery bases). Alternatively, the vehicle departs from the departure base c1, picks up one delivery at the delivery base w1, delivers it to the delivery base w2, and then picks up one delivery at the delivery base w3 and delivers it to the delivery base w4. It may be a delivery route that returns (example of four delivery bases).
図16は、本発明の第二実施形態における配送問題の第二エリア分割処理を説明する第二の図である。
図16に図示するように記憶部15には、予め用意された単純な配送ルートが複数記録されている。また、単純な配送ルートに対応付けて、その配送ルートで配送した場合のコストが記録されている。コストは、例えば移動時間の関数として与えられる。予め記録された単純な配送ルートとコストの情報は、多ければ多い程、より精度の高い(厳密な最適解に近い)配送計画を生成することができる。なお、図16に例示する単純な配送ルートとその配送ルートに対応するコストを含む情報を単位経路情報とよぶ。
FIG. 16 is a second diagram for explaining the second area division processing of the delivery problem in the second embodiment of the present invention.
As shown in FIG. 16, the
図17は、本発明の第二実施形態における配送問題の第二エリア分割処理を説明する第三の図である。
次に第二エリア分割部16による第二エリア分割処理について図15〜図17を用いて説明する。
前提として、記憶部15には図16で例示した単位経路情報が記録されている。また、配送に関する要求事項(配送拠点ごとの需要数量、供給数量、出発拠点の配送車の台数、配送スタッフの人数など)の初期条件が与えられるとする。
1.まず第二エリア分割部16は、初期条件で与えられる配送要求(需要)のうち、一部を満たす配送ルートを含む単位経路情報を記憶部15から読み出す。
2.次に第二エリア分割部16は、読み出した単位経路情報に含まれる配送ルートを組み合わせて、全ての配送要求を満たすルートを作成し、暫定解とする。ここで、予め記録された単純な配送ルートを組み合わせて、全ての要求を満たし且つコストが最も安くなる組み合わせを求める方法として、集合分割アプローチと呼ばれる数学的手法が用いられるが、この手法の場合、単純な配送ルートの数が膨大になると、その組み合わせの最適化問題は実用的な時間では解くことができない場合がある。その為、第二エリア分割部16は、記憶部15が記憶する多数の単純な配送ルートのうち、少数の配送ルートを用いて初期解を生成し、列生成法と呼ばれる数学的手法を用いて、単純な配送ルートを追加しながら最適解を求める。なお、初期解を生成するための少数の単純な配送ルートは、任意の方法で選択してよい。また、初期解の生成には、一般的に提供されているソルバーを用いることができる。このとき、1つの出発拠点が担当する配送拠点の数に制約(例えば、需要点と供給点を含め6拠点以内など)を設ける。ここで、配送拠点の数に制約(上限)を設けるのは、計算量を削減し、処理を高速化するためである。制約する配送拠点の数については、例えば、実際に計算を行い、実用的な時間内に解が求められる場合の配送拠点の数を上限として定めてもよい。初期解として、例えば、図15に示す解(配送ルート1〜配送ルート5)が得られる。
FIG. 17 is a third diagram for explaining the second area division processing of the delivery problem in the second embodiment of the present invention.
Next, the second area dividing process by the second
As a premise, the unit route information illustrated in FIG. 16 is recorded in the
1. First, the second
2. Next, the second
3.次に第二エリア分割部16は、列生成法(公知の数学的手法)によって未選択の単純な配送ルートの中から1つ又は複数の配送ルートを選択し、既に選択されたある単純な配送ルートと選択した単純な配送ルートを入れ替えた場合の減少コストを計算する。減少コストとは、入れ替えにより新たに解として選択された単純な配送ルートに対応付けられて記録されたコスト(図16のコスト欄)の合計から、入れ替え前に選択されていた元々の単純な配送ルートに対応付けられて記録されたコストの合計を引いた値である。
3. Next, the second
4.第二エリア分割部16は、3.で計算した減少コストが負の値(入れ替え後の方が安い)ならば、3.で選択した単純な配送ルートで既存の全配送ルートの一部を更新する。例えば、配送拠点w7への配送に関して、図15に示す初期解では、配送ルート3が選択されているが、第二エリア分割部16は、この配送ルート3に代えて、出発拠点c2から配送拠点w6、配送拠点w7を経由して出発拠点c2へ戻るルート(配送ルート6とする)に入れ替えた場合の減少コストを計算する。図16により配送ルート3のコストは2500、配送ルート6のコストは1500であるから、減少コストは、−1000である。従って、第二エリア分割部16は、配送ルート3を配送ルート6で更新する。更新後の単純な配送ルートの組み合わせを図17に示す。なお、減少コストを計算する場合も、第二エリア分割部16は、1つの出発拠点が担当する拠点の数が制約内となるように配送ルートを選択する。
4). The second
また、この例では、単純な配送ルートを出発拠点c1の担当範囲から出発拠点c3の担当範囲へ移す例を挙げたが、配送ルートの更新は、この例に限定されない。例えば、図15の状態で、出発拠点c1が担当するルート内の配送ルート1と配送ルート2の組み合わせを、出発拠点c1から配送拠点w3、配送拠点w2を経由して出発拠点c1へ戻るルートと出発拠点c1から配送拠点w1、配送拠点w5を経由して出発拠点c1へ戻るルートの組み合わせに更新する方法でもよい。あるいは、配送拠点w1に対象とする配送物が2つあるとして、配送ルート1と配送ルート2の組み合わせを、出発拠点c1から配送拠点w1、配送拠点w2、配送拠点w3、配送拠点w5を経由して出発拠点c1へ戻る配送ルートに更新する方法でもよい。
Further, in this example, an example is given in which a simple delivery route is moved from the assigned range of the departure point c1 to the assigned range of the departure point c3. However, the update of the delivery route is not limited to this example. For example, in the state of FIG. 15, a combination of the
5.第二エリア分割部16は、3.〜4.の処理を繰り返し、コストを減少できるルートが無くなった時点で第二エリア分割処理を終了する。第二エリア分割処理が終了すると、出発拠点ごとに制約条件(例えば6拠点)以内の配送拠点が関連付けられることになる。この関連付けられた複数の配送拠点と出発拠点の集合(例えば、エリアj6〜エリアj8のそれぞれ)が、第二エリア分割処理によって得られるエリアである。
5. The second
次に本実施形態の配送計画の生成処理の流れについて説明する。
図18は、本発明の第二実施形態における配送計画の生成処理の一例を示すフローチャートである。図13と同様の処理については簡単に説明を行う。
まず、初期条件設定部11は、配送スタッフなどが入力した初期条件の情報を取得する(ステップS11)。
次に、第二エリア分割部16は、初期条件の情報に含まれる各拠点での配送物の供給数量、需要数量、出発拠点での配送スタッフ数、配送車の種類及び数を用いて、第二エリア分割処理を行う(ステップS121)。第二エリア分割処理については図15〜図17を用いて説明したとおりである。
Next, the flow of the delivery plan generation process of this embodiment will be described.
FIG. 18 is a flowchart showing an example of delivery plan generation processing in the second embodiment of the present invention. A process similar to that of FIG. 13 will be briefly described.
First, the initial
Next, the second
次に、配送計画生成部12は、第二エリア分割処理で得られたエリア(第二エリア分割処理で得られた出発拠点とその出発拠点に関連付けられた複数の配送拠点の集合)ごとに、図3や図8で例示した時空間ネットワークモデル上で、上記の各制約条件を満たすように枝情報を生成し、配送期限等の条件を満たす枝情報の集合を複数生成する(ステップS131)。図17の例では、配送計画生成部12は、エリアj6〜エリアj8のそれぞれについて、枝情報の集合を複数生成する。なお、配送計画生成部12は、第二エリア分割処理で用いた単純な配送ルート及びその組み合わせに関係なく枝情報の生成を行ってもよいし、単純な配送ルート及びその組み合わせを利用して枝情報の生成を行ってもよい。
Next, the delivery
次に、配送計画生成部12は、生成した枝情報の集合ごとに総コストを計算する(ステップS14)。図17の例では、配送計画生成部12は、エリアj6〜エリアj8のそれぞれについて、生成した枝情報の集合ごとの総コストを計算する。
次に配送計画生成部12は、計算した総コストを比較し、総コストが最小となる枝情報の集合を選択する(ステップS15)。図17の例では、配送計画生成部12は、エリアj6〜エリアj8のそれぞれについて、総コストが最小となる枝情報の集合を選択する。選択した枝情報の集合は、各エリアにおける配送計画を示している。つまり、配送計画生成部12がエリアごとの配送計画を生成し終えると、分割前の全配送拠点についての配送計画が生成されたことになる。
Next, the delivery plan production |
Next, the delivery
本実施形態によれば、初期条件で与えられた需要や供給のある全ての配送拠点の一つ一つを出発拠点に関連付けることによって出発拠点ごとの配送エリアに分割することができる。小規模な配送エリアに分割し、それらの配送エリアごとに配送計画の生成処理を行うことで、初期条件で与えられた全ての需要のある配送拠点を対象にして配送計画を生成する場合に比べ、配送計画の生成に必要な計算量を削減することができる。これにより、配送物や配送拠点の数が多く、配送問題が大規模になった場合でも、実用的な時間(例えば10分)で配送計画を立案することができる。 According to the present embodiment, it is possible to divide each delivery base for each departure base by associating each of the delivery bases with the demand and supply given in the initial condition with the departure base. Compared to the case where a delivery plan is created for all delivery bases with demand given in the initial conditions by dividing the delivery area into smaller areas and generating a delivery plan for each delivery area. The amount of calculation required for generating a delivery plan can be reduced. Thereby, even when the number of deliverables and delivery bases is large and the delivery problem becomes large-scale, a delivery plan can be made in a practical time (for example, 10 minutes).
<第三実施形態>
さらに大規模な配送問題について実用的な時間で配送計画を生成する他の方法(第三実施形態)に係る配送計画システムについて図19〜図22を参照して説明する。第一実施形態、第二実施形態は、初期条件に含まれる配送拠点ごとの需要および供給の情報に基づいて配送問題を空間的に分割(エリア分割)することにより小規模な配送問題に分割し、小規模な配送問題を解くことにより処理の高速化を実現する方法であった。この第三実施形態では、初期条件に含まれる配送物の配送制限時間の情報に基づいて時間的な分割により配送問題を小問題化し、分割後の各時間ごとに配送計画を生成する。
<Third embodiment>
Furthermore, a delivery plan system according to another method (third embodiment) for generating a delivery plan in a practical time for a large-scale delivery problem will be described with reference to FIGS. In the first and second embodiments, the distribution problem is divided into small-scale distribution problems by spatially dividing (area division) based on the supply and demand information for each distribution base included in the initial conditions. It was a method that realized high-speed processing by solving a small-scale delivery problem. In the third embodiment, the delivery problem is subdivided by time division based on the information on the delivery time limit of the delivery included in the initial condition, and a delivery plan is generated for each time after division.
図19は、本発明の第三実施形態における配送計画システムの一例を示す機能ブロック図である。
本発明の第三実施形態に係る構成のうち、本発明の第一実施形態に係る配送計画装置10Bを構成する機能部と同じものには同じ符号を付し、それぞれの説明を省略する。第三実施形態に係る配送計画装置10Bは、第一実施形態の構成における第一エリア分割部14に代えて、時間分割部17を備えている。また、配送計画装置10Bは、配送計画生成部12に代えて、配送計画生成部12aを備えている。
時間分割部17は、初期条件で与えられた配送制限時間を複数の時間に分割することにより配送問題を分割した時間ごとの規模の小さな配送問題に分割する。時間分割部17が分割して出来た各時間を区間と呼ぶ。
配送計画生成部12aは、時間分割部17が分割してできた区間に応じて、異なる目的関数や制約を設定した配送問題を解いて配送計画を生成する。例えば、配送計画生成部12aは、分割後の各区間の最初の時刻における配送物の配送状況(1つ前の区間が終わったときの配送の進捗状況)から配送を開始して、当該区間内に配送物がなるべく多く需要のある配送拠点に配送されるような配送計画を生成する。また、時間分割部17は、分割してできた区間のうち最後の区間については、その最後の区間内に初期条件で示された需要のある配送拠点の中で未配送となっている配送拠点の全てに配送物が配送される配送計画を生成する。
なお、時間分割部17、配送計画生成部12aは、配送計画装置10Bが備えるCPUが、記憶部15からプログラムを読み出して実行することで実現される。
FIG. 19 is a functional block diagram showing an example of a delivery plan system in the third embodiment of the present invention.
Among the configurations according to the third embodiment of the present invention, the same components as those constituting the
The
The delivery
The
図20は、本発明の第三実施形態における配送問題の時間分割処理を説明する第一の図である。
図20の左図は、ある配送問題の初期状態を示している。配送拠点w1では配送物d1が2個余っており、配送拠点w2では配送物d1が3個余っている。また、配送拠点w3では配送物d1が4個不足しており、配送拠点w4では配送物d1が1個不足している。この初期状態から配送物d1を、120分以内に配送拠点w3、配送拠点w4における需要を満たすように配送する問題を考える。第一実施形態、第二実施形態では、配送拠点w1〜配送拠点w4をエリアごとに分割した。本実施形態では、初期条件として与えられた配送制限時間120分を分割する。
具体的には、時間分割部17は、配送制限時間120分を複数の時間(区間)に分割する。例えば、時間分割部17は、配送制限時間120分を前半60分、後半60分の2つの区間に分割する。時間分割部17が分割してできる1区間の時間の長さや区間の数は任意であってよい。例えば、時間分割部17は、120分を90分と30分に分割してもよいし、40分ごとの3つの区間に分類してもよい。また、時間分割部17は、初期条件で与えられた配送制限時間よりも所定の時間だけ短い時間を分割後の1番目の区間とし、残りの時間を最後の区間としてもよい。
FIG. 20 is a first diagram illustrating a time division process for a delivery problem in the third embodiment of the present invention.
The left diagram in FIG. 20 shows an initial state of a delivery problem. The delivery base w1 has two extra items d1 and the delivery base w2 has three extra items d1. In addition, four delivery items d1 are insufficient at the delivery base w3, and one delivery item d1 is lacking at the delivery base w4. Consider the problem of delivering the delivery item d1 from this initial state within 120 minutes so as to satisfy the demand at the delivery base w3 and the delivery base w4. In the first embodiment and the second embodiment, the delivery base w1 to the delivery base w4 are divided for each area. In this embodiment, the delivery limit time of 120 minutes given as the initial condition is divided.
Specifically, the
図20の右図は、時間分割部17が、配送制限時間120分を60分ずつの2つの区間に分割したことを示している。時間分割部17が配送制限時間の分割を行うと、配送計画生成部12aが、分割してできた1つ目の区間について配送計画の生成を行う。このとき、配送計画生成部12aは、全ての要求を満たすことを目指すのではなく、1つ目の区間の終了時点にできるだけ多くの要求を満たせるような配送計画を生成する。なお、全ての要求を満たすことを目指すとは、この例の場合、配送拠点w3と配送拠点w4の需要数量を満足するように配送物d1を60分で配送することである。また、できるだけ多くの要求を満たせるような配送計画とは、例えば、配送を開始してから60分後に、配送拠点w3での配送物d1の不足が3個、配送拠点w4での配送物d1の不足が0個となる配送計画と、配送拠点w3での配送物d1の不足が2個、配送拠点w4での配送物d1の不足が0個となる配送計画が生成できた場合、後者の配送計画のことをいう。
The right diagram of FIG. 20 shows that the
次に1つ目の区間について設定する目的関数、制約について説明する。なお、次に説明する目的関数等は、より一般的には、時間分割部17が、配送制限時間をN個に分割した場合、最後の区間(N番目の区間)を除く、全ての区間(時間の流れに沿って順に1番目の区間からN−1番目の区間)について使用する目的関数等である。
Next, the objective function and constraints set for the first section will be described. It should be noted that the objective function and the like to be described next generally include all sections (except the last section (Nth section)) when the
(目的関数)
以下の(1)〜(7)の和を最小化する。
(1)拠点間の移動コスト
拠点間の移動コストを抑制することができる。
(2)需要供給を満たす時刻
需要供給を満たす時刻をなるべく早くするよう促すことで解の選択肢が減る(後の時刻でも同様な配送が可能な場合でも、最先の配送のみを解とすることで選択肢を減らすことができ、計算量の削減につながる)。
(3)需要を満たす場合に供給を行うポート番号
小さい番号のポートから供給を行うよう促すことで解の選択肢が減る(大きい番号のポートに配送しても問題ない場合でも、もっとも小さい番号のポートと定めておくことで解の選択肢を減らし計算量を削減することができる)。
(4)配送拠点に存在する人、配送手段のうち、後の区間で使用しないものの数(g[w])
計算中の区間の最後の時刻において,次の区間で配送物の配送に用いられない余分な人・配送手段を出発拠点に移動させることを促す。例えば、第一区間の最後の時刻において、自転車を載せて移動できる配送手段が無くなっている場合、第二区間では自転車を配送に使用しないため出発拠点に移動させる。
(5)需要点における需要、供給点における供給が満たされた場合であって、それらの配送拠点に存在する人、配送手段の数
需要供給が満たされた配送拠点において、人や配送手段が残らないようにすることを促す。本実施形態では、時間分割を行ったそれぞれの区間について(一つ前の区間における配送状況の引き継ぎは行うが)、独立して配送計画を算出するので、後の区間で使用しない余分な配送スタッフや配送手段が配送拠点に残ってしまうことも考えられる。そこで(4)、(5)を加えて余分な配送スタッフなどが配送拠点に残らないようにする。
(6)供給点に残っている配送物の数、需要点で足りない配送物の数
(7)配送物が足りない需要点の数
(6)、(7)によって、その区間の最後の時刻において、なるべく需要供給の条件をできるだけ多く満たすことを促すことができる。
なお、目的関数は、各項目(1)〜(7)の各々の内容に対応する関数の和を最小化することとして表されるが、目的関数の各項(各項目の関数)に任意の係数を乗算して重み付けを行ってもよい。
(Objective function)
The sum of the following (1) to (7) is minimized.
(1) Movement cost between bases The movement cost between bases can be suppressed.
(2) Time to meet demand supply The choice of solutions is reduced by encouraging the time to meet demand supply as soon as possible (even if the same delivery is possible at a later time, only the earliest delivery is the solution) Can reduce the number of choices and lead to a reduction in the amount of calculation).
(3) Port number to supply when meeting demand Demand is reduced by prompting supply from a lower numbered port (even if there is no problem even if it is delivered to a higher numbered port, the lowest numbered port This can reduce the choice of solutions and the amount of calculation.)
(4) Number of people and delivery means that are not used in later sections (g [w])
At the last time of the section being calculated, it is urged to move an extra person / delivery means that is not used for delivery in the next section to the departure point. For example, at the last time of the first section, if there is no delivery means that can move on a bicycle, the bicycle is not used for delivery in the second section, so it is moved to the departure point.
(5) When the demand at the demand point and the supply at the supply point are satisfied, the number of people and delivery means existing at those delivery bases. No people or delivery means remain at the delivery base where the demand supply is satisfied. Encourage them not to. In this embodiment, the delivery plan is calculated independently for each section that has been time-divided (the delivery status in the previous section is taken over), so extra delivery staff not used in the subsequent section It is also possible that the delivery means remain at the delivery base. Therefore, (4) and (5) are added to prevent extra delivery staff from remaining at the delivery base.
(6) Number of deliveries remaining at the supply point, number of deliveries with insufficient demand points (7) Number of demand points with insufficient deliveries Demand according to (6) and (7) as much as possible at the last time of the section You can encourage them to meet as many supply requirements as possible.
The objective function is expressed as minimizing the sum of the functions corresponding to the contents of the items (1) to (7), but any item (function of each item) of the objective function is arbitrarily set. Weighting may be performed by multiplying by a coefficient.
次に制約について説明する。
1.流量保存則
(ア)分割後の各区間のうち最後の区間以外の区間の場合
(1)配送物の流量について
区間の開始時点においては、供給が存在するポートから出る流量は1、供給が存在しないポートから出る流量は0となる。その他の点で、区間の終了時点でない場合は、出ていく流量と入る流量は等しい。
(2)配送車の流量について
区間の開始時点においては、道から出る流量は、その拠点に存在する配送車の数となる。その他の点で、区間の終了時点でない場合は、出ていく流量と入る流量は等しい。
(3)配送スタッフの流量について
区間の開始時点においては、道から出る流量は、その拠点に存在する配送スタッフの数となる。その他の点で、区間の終了時点でない場合は、出ていく流量と入る流量は等しい。
Next, restrictions will be described.
1. Flow Conservation Law (a) In the case of sections other than the last section among the divided sections (1) About the flow rate of the delivery At the start of the section, the flow rate from the port where the supply exists is 1, the supply exists The flow rate out of the port that does not do is zero. Otherwise, if it is not at the end of the section, the outgoing flow and the incoming flow are equal.
(2) Flow rate of delivery vehicles At the start of the section, the flow rate from the road is the number of delivery vehicles existing at the base. Otherwise, if it is not at the end of the section, the outgoing flow and the incoming flow are equal.
(3) Flow rate of delivery staff At the start of the section, the flow rate from the road is the number of delivery staffs present at the base. Otherwise, if it is not at the end of the section, the outgoing flow and the incoming flow are equal.
(イ)分割後の各区間のうち最後の区間の場合
(1)配送物の流量について
区間の開始時点においては、供給が存在するポートから出る流量は1、供給が存在しないポートから出る流量は0となる。区間の終了時点においては、需要が存在するポートに入る流量は1、需要が存在しないポートに入る流量は0となる。その他の点では、出ていく流量と入る流量は等しい。
(2)配送車の流量について
区間の配送開始時点においては、道から出る流量は、その拠点に存在する配送車の数となる。区間の終了時点においては、道から入る流量は、その拠点で需要がある配送車の数となる。その他の点では、出ていく流量と入る流量は等しい。
(3)配送スタッフの流量について
区間の配送開始時点においては、道から出る流量は、その拠点に存在する配送スタッフの人数となる。区間の終了時点においては、道から入る流量は、その拠点で需要がある配送スタッフの人数となる。その他の点では、出ていく流量と入る流量は等しい。
(A) In the case of the last section of each section after division (1) About the flow rate of the delivery At the start of the section, the flow rate from the port where the supply exists is 1, the flow rate from the port where the supply does not exist 0. At the end of the section, the flow rate entering the port where the demand exists is 1, and the flow rate entering the port where the demand does not exist is 0. In other respects, the outgoing flow rate and the incoming flow rate are equal.
(2) Flow rate of delivery vehicles At the start of delivery in a section, the flow rate from the road is the number of delivery vehicles existing at the base. At the end of the section, the flow rate entering from the road is the number of delivery vehicles in demand at the base. In other respects, the outgoing flow rate and the incoming flow rate are equal.
(3) Flow rate of delivery staff At the start of delivery in a section, the flow rate from the road is the number of delivery staff members present at the base. At the end of the section, the flow rate entering the road is the number of delivery staff in demand at the base. In other respects, the outgoing flow rate and the incoming flow rate are equal.
2.容量制約
配送拠点内の配送物、人の移動量は1以下である。
2. The amount of movement of goods and people in the capacity-constrained delivery base is 1 or less.
3.配送拠点内の制約1
∀e∈Ewp
(Ewpは配送物、配送手段、人の道からポートへの移動を示す枝の集合)
(1)eの行き先がdの供給点のとき
配送物は道からポートには入ってこない。
(2)eの行き先がdの需要点のとき
配送物と配送スタッフの流量が同じ値を取る(0または1)。
(3)どちらの場合も
自転車の台数は配送スタッフの人数以下である。
3.
∀e∈E wp
(E wp is a set of branches indicating delivery, delivery means, movement from person's road to port)
(1) When the destination of e is the supply point of d The delivery does not enter the port from the road.
(2) When the destination of e is the demand point of d The flow rate of the delivery item and the delivery staff takes the same value (0 or 1).
(3) In both cases, the number of bicycles is less than the number of delivery staff.
4.配送拠点内の制約2
∀e∈Epw
(Epwは配送物、配送手段、人のポートから道への移動を示す枝の集合)
(1)eの出発点がdの供給点のとき
配送物と配送スタッフの流量が同じ値を取る(0または1)。
(2)eの出発点がdの需要点のとき
配送物はポートから道には出ない。
(3)どちらの場合も
自転車の台数は配送スタッフの人数以下である。
4).
∀e∈E pw
(E pw is a set of branches indicating delivery, delivery means, movement from a person's port to a road)
(1) When the starting point of e is the supply point of d The flow rate of the delivery item and the delivery staff takes the same value (0 or 1).
(2) When the starting point of e is the demand point of d The delivery does not go out from the port on the road.
(3) In both cases, the number of bicycles is less than the number of delivery staff.
5.区間の最後の時刻におけるペナルティに関する変数に対する制約
任意の道wに対して、次の区間で使用しない人や配送手段の数をg[w]としたとき、g[w] ≦ f[w]という制約を入れる。
f[w]は任意の数を表す。f[w]の値を調整することで、区間の最後に残存することを許容できる人、配送手段の数を変更することができる。
5. Constraints on variables related to penalties at the last time of a section When g [w] is the number of people or delivery means not used in the next section for an arbitrary road w, g [w] ≦ f [w] Include constraints.
f [w] represents an arbitrary number. By adjusting the value of f [w], the number of persons and delivery means that can be allowed to remain at the end of the section can be changed.
6.道から道への枝に対する制約
(1)道から道への枝が、車の枝のとき(自転車を載せる可能性がある)
配送車には必ず配送スタッフが乗ること、配送スタッフの人数は搭乗可能人数以下であること、運転できない自転車の台数は、車に積載可能な台数以下であることを制約とする。
(2)道から道への枝が、自転車の枝かつ徒歩の枝で車の枝ではないとき(自転車または徒歩で移動)
自転車台数と徒歩で移動している人数の和は、その枝を移動している配送スタッフの人数に等しい。
(3)道から道への枝が、自転車の枝であるが車の枝でも徒歩の枝でもないとき(自転車で移動)
自転車台数と、その枝を移動している配送スタッフの人数は等しい。
(4)道から道への枝が、徒歩の枝であるが車の枝でも自転車の枝でもないとき(徒歩で移動)
徒歩で移動している人数と、その枝を移動している配送スタッフの人数は等しい。
6). Restrictions on the road-to-road branch (1) When the road-to-road branch is a car branch (it may carry a bicycle)
The delivery vehicle must have a delivery staff, the number of delivery staff must be less than or equal to the number that can be boarded, and the number of bicycles that cannot be driven is less than the number that can be loaded in the car.
(2) When the road-to-road branch is a bicycle branch and a walking branch, not a car branch (moves by bicycle or walking)
The sum of the number of bicycles and the number of people moving on foot is equal to the number of delivery staff moving on that branch.
(3) When the road-to-road branch is a bicycle branch but not a car branch or a walking branch (moves by bicycle)
The number of bicycles is equal to the number of delivery staff moving on that branch.
(4) When the road-to-road branch is a walking branch but not a car branch or a bicycle branch (moves on foot)
The number of people moving on foot is equal to the number of delivery staff moving on that branch.
7.配送拠点の中で留まる枝に対する制約
車には必ず人が乗ること、自転車は路駐できないこと、配送物の総体積はトラックの積載量以下であること、を制約とする。
7). Restrictions on branches staying in the delivery base Restrictions are placed on the fact that cars must be on board, bicycles cannot be parked, and the total volume of deliveries is less than the load capacity of the truck.
配送計画生成部12aは、これらの目的関数や制約条件で定式化された配送問題(整数計画問題)を、第1または第2の時空間ネットワークを用いて解く。なお、実際の計算においては、カットを加えてさらに高速化を図ってもよい。図20の右図に、配送計画生成部12aが1番目の区間について配送計画を生成した結果の一例を示す。この計画によれば、配送を開始してから60分後には、配送拠点w1および配送拠点w2では配送物d1が1個余り、配送拠点w3では配送物d1が2個不足しており、配送拠点w4では配送物d1の不足が解消していることが分かる。
The delivery
このように時間を分割して計算する方法の利点として、次のような点を挙げることができる。まず、配送制限時間を120分から60分にすることで、計算に必要なパラメータの数を減らし、計算量を削減することができる。図20では、説明の便宜のため、配送拠点、配送物の数が共に少ない例を挙げているが、20カ所の配送拠点に、20個以上の配送物を120分以内に配送する問題を計算する場合、例えば、変数が41000、制約が61000にもなることが分かっている。これに対し、時間を前半の60分で区切り、上記のできるだけ多くの要求を満たせるような配送計画を生成する場合、例えば、変数の数を14000、制約の数は18000程度に抑えることができる。このようにパラメータの数を減らすことで計算量を削減し、処理を高速化することができる。次に後半の60分の配送計画の生成処理について説明する。 The following points can be cited as advantages of the method of dividing the time in this way. First, by setting the delivery limit time from 120 minutes to 60 minutes, it is possible to reduce the number of parameters necessary for calculation and reduce the amount of calculation. For convenience of explanation, FIG. 20 shows an example in which both the number of delivery bases and the number of deliverables are small. However, when calculating a problem of delivering 20 or more deliveries to 120 delivery bases within 120 minutes For example, it is known that there are 41000 variables and 61000 constraints. On the other hand, when dividing the time into 60 minutes in the first half and generating a delivery plan that can satisfy as many requests as possible, the number of variables can be reduced to 14000 and the number of constraints to about 18000, for example. By reducing the number of parameters in this way, the amount of calculation can be reduced and the processing speed can be increased. Next, a process for generating a 60-minute delivery plan in the latter half will be described.
図21は、本発明の第三実施形態における配送問題の時間分割処理を説明する第二の図である。
図21に分割後の後半60分を使って行う配送計画の生成処理を示す。後半60分の開始時点の各配送拠点における需要数量と供給数量について整理する。後半の開始時点の配送拠点w1および配送拠点w2では配送物d1が1個余り、配送拠点w3では配送物d1が2個不足している。配送計画生成部12aが、後半60分を使って生成しなければならない配送計画は、配送拠点w1および配送拠点w2の配送物d1を、残りの60分以内に配送拠点w3における需要を満たすように配送する問題である。なお、配送拠点w4については、配送拠点w4の不足は前半60分で解消しているので後半60分の配送問題には含まれない。
FIG. 21 is a second diagram illustrating the time division processing for the delivery problem in the third embodiment of the present invention.
FIG. 21 shows a delivery plan generation process performed using the
次に、配送制限時間をN個に分割した場合の最後の区間を対象とする配送問題について設定する目的関数、制約について説明する。この場合の目的関数や制約などは、第1の時空間ネットワークモデル(図3)、第2の時空間ネットワークモデル(図8)を用いて説明したものと同様である。つまり、配送計画生成部12aは、最後の区間の最後の時刻までに全ての需要を満たすように配送物を配送し終える配送計画のうち、最もコストや配送に掛かる移動時間を最小化する配送計画を生成する。
Next, objective functions and constraints set for a delivery problem for the last section when the delivery time limit is divided into N will be described. The objective functions and constraints in this case are the same as those described using the first spatiotemporal network model (FIG. 3) and the second spatiotemporal network model (FIG. 8). In other words, the delivery
後半の60分(最後の区間)の処理についての利点を挙げると、まず、前半60分と同様、配送制限時間を60分にすることで、パラメータの数を減らし、計算量を削減することで処理の高速化を図ることができる点を挙げることができる。さらに、最後の区間に至るまでの各区間で算出されたなるべく多く要求を満たすような配送計画によって、残っている需要が減少しているため、解かなければならない配送問題の規模が小さくなっていることを挙げることができる。例えば図20、図21に示す例では、単に各需要点における需要数量が減るだけではなく、配送拠点w4での需要が満たされているので、配送拠点の数を減らすことに成功している。これによりさらに配送問題の規模を小さくすることができる。20カ所の配送拠点に20個以上の配送物を120分以内に配送する問題を60分ごとに分割した場合、後半60分の区間においては、例えば、変数の数を8000、制約の数は12000程度に減少させることができる。このように、本実施形態によれば、時間の分割によるパラメータの減少と、時間的に先の区間において生成した配送計画によって、後の区間での配送問題の規模を縮小化することができるので、配送計画の生成処理を高速化することができる。また、第三実施形態ではエリア分割を行わない為、第一実施形態、第二実施形態と比べ、配送拠点分布の大域性を確保したまま配送計画を生成することができ、より最適化された配送計画を生成することができる。
The advantages of the latter half of 60 minutes (the last section) are as follows: First, as with the
次に本実施形態の配送計画の生成処理の流れについて説明する。
図22は、本発明の第三実施形態における配送計画の生成処理の一例を示すフローチャートである。図13、図18と同様の処理については簡単に説明を行う。
まず、配送計画を行う配送スタッフが、配送計画装置10Bに配送計画の初期条件を入力する。入出力部13はその入力を受け付け、受け付けた情報を初期条件設定部11に出力する。初期条件設定部11は、配送スタッフが入力した初期条件の情報を取得する(ステップS11)。
次に、時間分割部17は、初期条件の情報に含まれる配送制限時間を用いて、時間分割処理を行う(ステップS122)。時間分割処理については図20を用いて説明したとおりである。例えば、時間分割部17は、初期条件の配送制限時間を2〜3つに分割する。あるいは、経験則などで需要のある配送拠点に対する配送完了が一定の割合で見込める時間(例えば75分)が分かっている場合、ユーザの設定により、時間分割部17は、その時間単位(例えば75分)で元の配送制限時間を分割し、残りの時間を最後の区間としてもよい。あるいは、時間分割部17は、初期条件で与えられた配送制限時間よりも所定の時間だけ短い時間を分割後の1番目の区間とし、残りの時間を最後の区間としてもよい。次に配送計画生成部12aは、分割された各区間に対して時間順に配送計画を生成する。まず、配送計画生成部12aは、カウンター変数nに1を設定する(ステップS123)。次に配送計画生成部12aは、n番目の区間の配送問題を設定する(ステップS124)。例えば、1番目の区間であれば、配送計画生成部12aは、初期条件の情報に含まれる各配送拠点の需要数量、供給数量、出発拠点に存在する配送手段の数量、配送スタッフの人数、1番目の区間の時間を配送制限時間に用いて、できるだけ多くの要求を満たし、コストが最も安くなる配送計画の生成のための目的関数、制約条件による整数計画問題を定式化する。
Next, the flow of the delivery plan generation process of this embodiment will be described.
FIG. 22 is a flowchart showing an example of delivery plan generation processing in the third embodiment of the present invention. Processing similar to that in FIGS. 13 and 18 will be briefly described.
First, the delivery staff who performs the delivery plan inputs the initial conditions of the delivery plan to the
Next, the
次に、配送計画生成部12aは、定式化した整数計画問題に対して、図3や図8で例示した第1または第2の時空間ネットワークモデルを用いて、各制約を満たしつつ、各配送拠点の需要をなるべく満足するような枝情報の集合を複数生成する(ステップS132)。次に、配送計画生成部12aは、生成した枝情報の集合ごとに総コストを計算する(ステップS14)。次に配送計画生成部12aは、計算した総コストを比較し、総コストが最小となる枝情報の集合を選択する(ステップS15)。これによって、n番目(今回は1番目)の区間に対する配送計画が生成される。
Next, the delivery
次に配送計画生成部12aは、nがNと等しいかどうかを判定する(ステップS16)。nがNと等しい場合(ステップS16;Yes)、分割後の全ての区間に対する配送計画が生成されていることになるので、配送計画の生成処理を終了する。nがNと等しくない場合(ステップS16;No)、配送計画生成部12aは、nに1を加算し(ステップS17)、ステップS124からの処理を繰り返す。
Next, the delivery plan production |
具体的には、例えば、1を加算した後のnの値が2の場合、配送計画生成部12aは、ステップS124において、1番目の区間について生成した配送計画を実行した結果の各配送拠点の需要数量、供給数量、出発拠点に存在する配送手段の数量、配送スタッフの人数、2番目の区間の時間を配送制限時間に用いて、整数計画問題を定式化する。このとき、配送計画生成部12aは、nがNと等しければ、全ての要求を満たす配送計画の生成のための目的関数、制約による整数計画問題を定式化する(第一実施形態、第二実施形態と同様の目的関数等)。nがNと等しくない場合、配送計画生成部12aはできるだけ多くの要求を満たせる配送計画の生成のための目的関数、制約による整数計画問題を定式化する。配送計画生成部12aは、整数計画問題を解いて、n番目の区間の配送計画を生成する。配送計画生成部12aは、全ての区間について配送計画を生成するまで(nがNと等しくなるまで)ステップS124〜ステップS17の処理を繰り返す。1番目の区間からN番目(最後)の区間のそれぞれについて順に生成した配送計画の全体が、初期条件で与えられた要求を満たす配送計画である。
More specifically, for example, when the value of n after adding 1 is 2, the delivery
図22のフローチャートでは、最初に初期条件で与えられた配送制限時間をいくつかの区間に分割したが、例えば、次のように配送計画処理を構成してもよい。
1.まず、初期条件で与えられた配送制限時間より短い区間(第一配送制限時間)を設定し、その区間内になるべく多く、且つ、安く配送できる配送計画を生成する。
2.次にその第一配送制限時間内で配送し終えることができない配送物については、さらに第一配送制限時間に続く所定長さの区間(第二配送制限時間)を設定し、設定した区間内になるべく多くの配送物を配送する配送計画を生成する。
3.1.〜2.のステップを、配送開始からの区間の長さの合計が配送制限時間を超えない間繰り返す。つまり、時間を延長しながら解を見つける(時間展開法)。最初の区間や延長する区間の長さは配送状況に応じて任意に設定してよい。
4.配送開始からの時間の合計が配送制限時間を超えそうになった場合は、次の区間を最後として、最後の区間内(直前に生成した配送計画の完了時点を開始時刻とし、第一配送制限時間の開始時刻を基準にして初期条件に含まれる配送制限時間が経過する時刻を終了時刻とする時間内)に全ての需要を満たしコストが最小となるような配送計画を生成する。
In the flowchart of FIG. 22, the delivery limit time initially given as the initial condition is divided into several sections. However, for example, the delivery plan process may be configured as follows.
1. First, a section (first delivery limit time) shorter than the delivery limit time given in the initial condition is set, and a delivery plan that can be delivered as much as possible and cheaply within the section is generated.
2. Next, for deliverables that cannot be delivered within the first delivery time limit, a section with a predetermined length (second delivery time limit) following the first delivery time limit is set, and within the set section A delivery plan for delivering as many deliveries as possible is generated.
3.1. ~ 2. This step is repeated while the total length of the section from the start of delivery does not exceed the delivery time limit. In other words, find a solution while extending the time (time expansion method). The length of the first section or the section to be extended may be arbitrarily set according to the delivery status.
4). If the total time from the start of delivery is likely to exceed the delivery limit time, the next section will be the last, within the last section (the time when the delivery plan generated immediately before will be the start time, the first delivery limit A delivery plan is generated so that all demands are satisfied and the cost is minimized within a time period in which the delivery limit time included in the initial condition elapses with respect to the start time of time as the end time.
本実施形態の配送計画生成処理を実際に行ったところ、配送拠点が20カ所、配送物が20個程度の配送問題に対して、実用的な時間(10分以内)で準最適解(厳密な最適解と比べて目的関数の値の差が10%以下)を算出することができた。 When the delivery plan generation processing of this embodiment is actually performed, a suboptimal solution (strictly accurate) is obtained in a practical time (within 10 minutes) for a delivery problem with 20 delivery bases and 20 deliveries. The difference in the value of the objective function was 10% or less compared to the optimal solution).
なお、本実施形態の配送計画生成方法は以下のような場面で用いることもできる。例えば、120分間で全ての車両を需要のある駐車場に配送しなければならない場合、まず前半60分について配送計画を生成する。配送計画を生成し終えると、実際にその配送計画に基づいて、車両の配送を開始する。車両の配送を行っている間、残りの60分間の配送計画を生成する。このように、配送計画の生成処理と配送とを並行して行うことで、例えばカーシェアリングのサービスを行う現場で、時間を有効に使うことができる。 In addition, the delivery plan production | generation method of this embodiment can also be used in the following scenes. For example, when all vehicles must be delivered to a demanding parking lot in 120 minutes, a delivery plan is first generated for the first 60 minutes. When the delivery plan is generated, the vehicle delivery is actually started based on the delivery plan. While delivering the vehicle, a delivery plan for the remaining 60 minutes is generated. In this way, by performing the delivery plan generation process and the delivery in parallel, time can be used effectively, for example, at a site where a car sharing service is provided.
なお、上述した配送計画装置10、10A、10Bにおける各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムを配送計画システムのコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
Each process in the
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
また、配送計画装置10、10A、10Bは、1台のコンピュータで構成されていても良いし、通信可能に接続された複数のコンピュータで構成されていてもよい。
The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.
In addition, the
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
なお、配送スタッフは配送主体の一例であり、配送車、トラック、自転車は配送手段の一例であり、カーシェアリングにおける共用の車両は配送物の一例である。また、第一エリア分割部14、第二エリア分割部16、時間分割部17の各々は分割部の一例である。
A delivery staff is an example of a delivery subject, a delivery vehicle, a truck, and a bicycle are examples of delivery means, and a shared vehicle in car sharing is an example of delivery. Moreover, each of the 1st
10、10A、10B・・・配送計画装置
11・・・初期条件設定部
12、12a・・・配送計画生成部
13・・・入出力部
14・・・第一エリア分割部
15・・・記憶部
16・・・第二エリア分割部
17・・・時間分割部
10, 10A, 10B ...
Claims (15)
前記分割部が分割した後の配送問題について配送計画を生成する配送計画生成部と、
を備える配送計画システム。 In a delivery problem of delivering a delivery to a delivery base in demand, a division unit that divides the delivery problem indicated by the initial condition into a smaller delivery problem,
A delivery plan generation unit that generates a delivery plan for a delivery problem after the division unit is divided;
A delivery planning system comprising:
請求項1に記載の配送計画システム。 The dividing unit includes a demand point included in a delivery base group having a demand for the delivery and a supply point included in a delivery base group serving as a supply source of the delivery. And a set of the combination of the demand point and the supply point associated with each other so as to minimize the travel time from the supply point to the one supply point, and the delivery problem indicated by the initial condition is generated. Divide into the delivery problem from the demand point group to the supply point group included in the
The delivery planning system according to claim 1.
前記配送計画生成部は、前記生成した集合内に含まれる供給点群から需要点群への配送ルートのうち移動時間が前記所定の閾値以下となる配送ルートを用いて、前記規模の小さな配送問題に対する配送計画を生成する、
請求項2に記載の配送計画システム。 The dividing unit is a supply point in which a movement time from one supply point to one demand point is equal to or less than a predetermined value among correspondence relationships between a plurality of supply points and a plurality of demand points included in the generated set. To calculate the delivery route from
The delivery plan generation unit uses the delivery route whose travel time is equal to or less than the predetermined threshold among the delivery routes from the supply point group to the demand point group included in the generated set, and delivers the small delivery problem. Generate a delivery plan for
The delivery planning system according to claim 2.
請求項1に記載の配送計画システム。 The dividing unit is a unit indicating a delivery route set in advance from delivery from a departure base to delivery to a part of the delivery base and returning to the departure base, and a cost when delivery is made by the delivery route A plurality of route information is acquired, and among the combinations of the plurality of unit route information, the number of the delivery bases included in the combination is within a predetermined number, and the combination that minimizes the total cost is calculated. A set of departure bases and delivery bases included in the combination is generated, and a delivery problem indicated by the initial condition is determined as a delivery problem from a demand point group included in the generated start base and delivery base set to a supply point group. Split into
The delivery planning system according to claim 1.
請求項4に記載の配送計画システム。 The dividing unit calculates a combination of the unit path information by a column generation method.
The delivery planning system according to claim 4.
前記配送計画生成部は、前記分割後の各時間の最初の時刻における前記配送物の配送状況から当該分割後の各時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成する、
請求項1に記載の配送計画システム。 The dividing unit divides a delivery problem indicated by the initial condition into a delivery problem for each divided time by dividing a delivery time limit of the delivery item into a plurality of times,
The delivery plan generation unit is configured to deliver the delivery to a location where demand is as high as possible within each time after the division from the delivery status of the delivery at the first time of each time after the division. Generate a plan,
The delivery planning system according to claim 1.
前記配送計画生成部は、前記最後の時間が終了するまでに、前記初期条件で示された需要のある配送拠点の全てに前記配送物が配送されるよう配送計画を生成する、
請求項6に記載の配送計画システム。 Regarding the delivery problem related to the last time that the division unit has divided,
The delivery plan generation unit generates a delivery plan so that the delivery is delivered to all of the delivery bases in demand indicated by the initial condition by the end of the last time.
The delivery planning system according to claim 6.
前記配送計画生成部は、前記第一配送制限時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成する、
請求項1に記載の配送計画システム。 The dividing unit divides the delivery problem indicated by the initial condition into a delivery problem in which a first delivery time limit shorter than a delivery time limit included in the initial condition by a predetermined time is used as a new delivery time limit,
The delivery plan generation unit generates a delivery plan such that the delivery is delivered to a base in demand as much as possible within the first delivery time limit;
The delivery planning system according to claim 1.
前記配送計画生成部は、当該第二配送制限時間内に前記配送物がなるべく多く需要のある拠点に配送されるような配送計画を生成する、
請求項8に記載の配送計画システム。 The dividing unit sets a predetermined length of time following the first delivery time limit as a second delivery time limit,
The delivery plan generation unit generates a delivery plan such that the delivery is delivered to a base in demand as much as possible within the second delivery time limit.
The delivery planning system according to claim 8.
請求項8または請求項9に記載の配送計画システム。 The delivery plan generation unit uses a completion time when the generated delivery plan is executed as a start time, and a time at which the delivery limit time included in the initial condition elapses with reference to the start time of the first delivery limit time A delivery plan that finishes delivering a delivery that has not been delivered as a result of execution of the delivery plan within the last time of
The delivery planning system according to claim 8 or 9.
請求項6から請求項10の何れか1項に記載の配送計画システム。 When generating a delivery plan such that the delivery is delivered to a base with as much demand as possible, the delivery plan generation unit executes the delivery plan, and as a result, the delivery staff and delivery means necessary for executing the delivery plan. Generate a delivery plan on the condition that does not remain at the delivery base,
The delivery planning system according to any one of claims 6 to 10.
請求項1から請求項11の何れか1項に記載の配送計画システム。 The delivery plan generating unit includes a delivery entity that delivers the delivery item, a departure location that indicates an initial position of the delivery item or delivery means that moves the delivery entity, and each time based on the delivery location and the time of delivery start. Branch information indicating the flow rate of the delivery item, the delivery subject, and the delivery means related to the delivery between the point information and the two pieces of point information relating to delivery of the delivery item among the point information And solving at least one integer programming problem based on a spatio-temporal network model configured to generate at least one set of branch information related to the delivery in the delivery problem after division by the division unit,
The delivery planning system according to any one of claims 1 to 11.
請求項12に記載の配送計画システム。 In the spatio-temporal network model, the delivery plan generation unit sets, for each of the delivery bases, point information related to an entrance that is a combination of the entrance and time of the delivery base, and the exit and time of the delivery base. Point information relating to the exit, and point information relating to the place where the delivery is placed for each delivery item relating to the delivery base, and generating the point information relating to the entrance and the delivery item Set the flow rate of the delivery subject and the delivery item to 0 or 1 between the point information relating to the point and the point information relating to the exit and the point information relating to the delivery item.
The delivery planning system according to claim 12.
配送物を需要のある配送拠点に配送する配送問題において、初期条件が示す配送問題をより規模の小さな配送問題に分割し、
前記分割した後の配送問題について配送計画を生成する、
配送計画方法。 The delivery planning system
In the delivery problem where deliveries are delivered to a delivery base with demand, the delivery problem indicated by the initial conditions is divided into smaller delivery problems,
Generating a delivery plan for the delivery problem after the division;
Delivery planning method.
配送物を需要のある配送拠点に配送する配送問題において、初期条件が示す配送問題をより規模の小さな配送問題に分割する手段、
前記分割した後の配送問題について配送計画を生成する手段、
として機能させるためのプログラム。 The computer of the delivery planning system,
A means of dividing the delivery problem indicated by the initial conditions into a smaller delivery problem in the delivery problem of delivering a delivery to a delivery base in demand;
Means for generating a delivery plan for the delivery problem after the division;
Program to function as.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213838A JP6692022B2 (en) | 2016-10-31 | 2016-10-31 | Delivery planning system, delivery planning method and program |
SG11201901115SA SG11201901115SA (en) | 2016-10-31 | 2017-10-20 | Delivery planning system, delivery planning method, and program |
PCT/JP2017/038040 WO2018079443A1 (en) | 2016-10-31 | 2017-10-20 | Delivery planning system, delivery planning method, and program |
TW106137595A TWI706339B (en) | 2016-10-31 | 2017-10-31 | Delivery planning system, delivery planning method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213838A JP6692022B2 (en) | 2016-10-31 | 2016-10-31 | Delivery planning system, delivery planning method and program |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018073213A true JP2018073213A (en) | 2018-05-10 |
JP2018073213A5 JP2018073213A5 (en) | 2019-02-28 |
JP6692022B2 JP6692022B2 (en) | 2020-05-13 |
Family
ID=62023404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016213838A Active JP6692022B2 (en) | 2016-10-31 | 2016-10-31 | Delivery planning system, delivery planning method and program |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6692022B2 (en) |
SG (1) | SG11201901115SA (en) |
TW (1) | TWI706339B (en) |
WO (1) | WO2018079443A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021176632A1 (en) * | 2020-03-05 | 2021-09-10 | 日本電信電話株式会社 | Optimization function generation device, optimization function generation method, and program |
JP2021165196A (en) * | 2020-04-08 | 2021-10-14 | 富士通株式会社 | Information processing device, information processing method, and information processing program |
WO2022153716A1 (en) * | 2021-01-12 | 2022-07-21 | 日本電気株式会社 | Optimization device, optimization method, and non-transitory computer-readable medium |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7259774B2 (en) | 2020-01-15 | 2023-04-18 | Jfeスチール株式会社 | Delivery plan creation method and delivery plan creation device |
JP2021144351A (en) * | 2020-03-10 | 2021-09-24 | 富士通株式会社 | Information processor, path generation method and path generation program |
CN115112137A (en) * | 2021-03-23 | 2022-09-27 | 广东博智林机器人有限公司 | Path planning method and device, electronic equipment and readable storage medium |
CN113177699B (en) * | 2021-04-14 | 2022-07-22 | 中联重科股份有限公司 | Distribution method and distribution system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09311702A (en) * | 1996-05-21 | 1997-12-02 | Ricoh Co Ltd | Optimum block division system in delivery plan |
JP2004238129A (en) * | 2003-02-05 | 2004-08-26 | Jfe Steel Kk | Delivery plan planning method and its device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102117441A (en) * | 2010-11-29 | 2011-07-06 | 中山大学 | Intelligent logistics distribution and delivery based on discrete particle swarm optimization algorithm |
US20130159206A1 (en) * | 2011-12-14 | 2013-06-20 | International Business Machines Corporation | Dynamic vehicle routing in multi-stage distribution networks |
CN103413209B (en) * | 2013-07-17 | 2016-08-10 | 西南交通大学 | Many client many warehouses logistics distribution routing resources |
US20160048802A1 (en) * | 2014-08-13 | 2016-02-18 | Tianyu Luwang | Transportation planning for a regional logistics network |
CN105809402A (en) * | 2016-03-11 | 2016-07-27 | 惠龙易通国际物流股份有限公司 | Freight information processing method and system based on BFS algorithm |
-
2016
- 2016-10-31 JP JP2016213838A patent/JP6692022B2/en active Active
-
2017
- 2017-10-20 WO PCT/JP2017/038040 patent/WO2018079443A1/en active Application Filing
- 2017-10-20 SG SG11201901115SA patent/SG11201901115SA/en unknown
- 2017-10-31 TW TW106137595A patent/TWI706339B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09311702A (en) * | 1996-05-21 | 1997-12-02 | Ricoh Co Ltd | Optimum block division system in delivery plan |
JP2004238129A (en) * | 2003-02-05 | 2004-08-26 | Jfe Steel Kk | Delivery plan planning method and its device |
Non-Patent Citations (1)
Title |
---|
澤本 潤: "配送計画問題における再計画処理方式の提案", 電気学会論文誌C VOL.122−C NO.5, vol. 第122-C巻, JPN6020006605, 1 May 2002 (2002-05-01), JP, pages 832 - 842, ISSN: 0004217162 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021176632A1 (en) * | 2020-03-05 | 2021-09-10 | 日本電信電話株式会社 | Optimization function generation device, optimization function generation method, and program |
JPWO2021176632A1 (en) * | 2020-03-05 | 2021-09-10 | ||
JP7409478B2 (en) | 2020-03-05 | 2024-01-09 | 日本電信電話株式会社 | Optimization function generation device, optimization function generation method, program |
JP2021165196A (en) * | 2020-04-08 | 2021-10-14 | 富士通株式会社 | Information processing device, information processing method, and information processing program |
WO2022153716A1 (en) * | 2021-01-12 | 2022-07-21 | 日本電気株式会社 | Optimization device, optimization method, and non-transitory computer-readable medium |
JP7544400B2 (en) | 2021-01-12 | 2024-09-03 | 日本電気株式会社 | Optimization device, optimization method, and optimization program |
Also Published As
Publication number | Publication date |
---|---|
JP6692022B2 (en) | 2020-05-13 |
TWI706339B (en) | 2020-10-01 |
WO2018079443A1 (en) | 2018-05-03 |
TW201830298A (en) | 2018-08-16 |
SG11201901115SA (en) | 2019-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018079443A1 (en) | Delivery planning system, delivery planning method, and program | |
Manerba et al. | Attended Home Delivery: Reducing last-mile environmental impact by changing customer habits | |
CN108960519B (en) | Method for selecting shortest time transportation route based on big data analysis | |
Daneshzand | The vehicle-routing problem | |
Comi et al. | Emerging information and communication technologies: the challenges for the dynamic freight management in city logistics | |
Ni et al. | Same-day delivery with crowdshipping and store fulfillment in daily operations | |
Yaghini et al. | A hybrid metaheuristic algorithm for dynamic rail car fleet sizing problem | |
Ebben | Logistic control in automated transportation networks | |
Zahrani et al. | An intelligent social-based method for rail-car fleet sizing problem | |
Gu et al. | Dynamic truck–drone routing problem for scheduled deliveries and on-demand pickups with time-related constraints | |
Parragh et al. | A survey on pickup and delivery models part ii: Transportation between pickup and delivery locations | |
WO2017159734A1 (en) | Delivery planning system, delivery planning method, and program | |
Bayliss et al. | Designing a multi-modal and variable-echelon delivery system for last-mile logistics | |
Iacobucci et al. | A multi-stage optimisation approach to design relocation strategies in one-way car-sharing systems with stackable cars | |
Duan et al. | A greedy approach for vehicle routing when rebalancing bike sharing systems | |
CN108985510B (en) | Large-scale intelligent logistics path judgment system based on artificial intelligence | |
Teimoury et al. | The sustainable hybrid truck-drone delivery model with stochastic customer existence | |
Jung et al. | High-coverage point-to-point transit: study of path-based vehicle routing through multiple hubs | |
Vishkaei et al. | Rescheduling multiproduct delivery planning with digital technologies for smart mobility and sustainability goals | |
Isaai et al. | Hybrid applications of constraint satisfaction and meta-heuristics to railway timetabling: a comparative study | |
Freitas et al. | Exact and heuristic approaches to drone delivery problems | |
Jeong et al. | Dynamic pickup and delivery problem for autonomous delivery robots in an airport terminal | |
Jayarathna et al. | Modeling a cost benefit transportation model to optimize the redistribution process: Evidence study from Sri Lanka | |
Safia et al. | Optimization of vehicle routing for smart city: Real case study in Casablanca | |
Ahamed et al. | Multi-tier adaptive memory programming and cluster-and job-based relocation for distributed on-demand crowdshipping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6692022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |