JP2018071939A - Latent heat storage body and manufacturing method of latent heat storage body - Google Patents

Latent heat storage body and manufacturing method of latent heat storage body Download PDF

Info

Publication number
JP2018071939A
JP2018071939A JP2016215745A JP2016215745A JP2018071939A JP 2018071939 A JP2018071939 A JP 2018071939A JP 2016215745 A JP2016215745 A JP 2016215745A JP 2016215745 A JP2016215745 A JP 2016215745A JP 2018071939 A JP2018071939 A JP 2018071939A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
storage member
powder
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016215745A
Other languages
Japanese (ja)
Other versions
JP6705365B2 (en
Inventor
徹 岡村
Toru Okamura
徹 岡村
奈良 健一
Kenichi Nara
健一 奈良
廣一 志方
Koichi Shikata
廣一 志方
弘 伊原
Hiroshi Ihara
弘 伊原
怜史 大矢
Reiji Oya
怜史 大矢
由加利 渕上
Yukari Fuchigami
由加利 渕上
芳片 敏之
Toshiyuki Yoshikata
敏之 芳片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Qualtec Co Ltd
Original Assignee
Denso Corp
Qualtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Qualtec Co Ltd filed Critical Denso Corp
Priority to JP2016215745A priority Critical patent/JP6705365B2/en
Priority to US15/800,270 priority patent/US20180120036A1/en
Priority to DE102017125583.4A priority patent/DE102017125583A1/en
Publication of JP2018071939A publication Critical patent/JP2018071939A/en
Application granted granted Critical
Publication of JP6705365B2 publication Critical patent/JP6705365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2013Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a latent heat storage body excellent in mechanical strength with a relatively light weight, and capable of facilitating latent heat storage for waste heat in a low temperature range, and a manufacturing method of the latent heat storage body.SOLUTION: A latent heat storage body 1 includes a latent heat storage member 10 composed of an organic compound, and a metal film 20, as a metal seamless capsule, configured to encapsulate the latent heat storage member 10 therein. A manufacturing method of the latent heat storage body 1 comprises: on a surface of the latent heat storage member 10, applying powder of copper oxide; after electroless copper plating with the powder and plating catalyst as deposition origin, performing electrolytic copper plating to form the metal film 20; and encapsulating the latent heat storage member 10 inside the metal film 20.SELECTED DRAWING: Figure 1

Description

ここに開示される技術は、物質の固液相変化を利用して蓄熱を行なう潜熱蓄熱体およびその製造方法に関する。   The technology disclosed herein relates to a latent heat storage body that performs heat storage using a solid-liquid phase change of a substance and a method for manufacturing the same.

従来技術の潜熱蓄熱体として、例えば下記特許文献1に開示された潜熱蓄熱カプセルがある。この潜熱蓄熱カプセルは、潜熱蓄熱材と、潜熱蓄熱材の表面を覆う金属皮膜とからなる。開示された潜熱蓄熱体は、潜熱蓄熱材の表面を金属皮膜で覆うため、比較的機械的強度が大きい。   As a conventional latent heat storage body, for example, there is a latent heat storage capsule disclosed in Patent Document 1 below. This latent heat storage capsule includes a latent heat storage material and a metal film that covers the surface of the latent heat storage material. The disclosed latent heat storage body has a relatively high mechanical strength because the surface of the latent heat storage material is covered with a metal film.

特開平11−23172号公報Japanese Patent Laid-Open No. 11-23172

しかしながら、上記従来技術の潜熱蓄熱体では、潜熱蓄熱材が鉛等の金属であり、固液相変化する温度が比較的高い。そのため、産業界等で多量に廃棄されている低温域の廃熱を潜熱として蓄熱し難いという問題がある。また、潜熱蓄熱材に鉛等の金属を用いた場合には、潜熱蓄熱材の比重が比較的大きいために、潜熱蓄熱体の重量が極めて大きくなってしまうという問題がある。   However, in the above-described conventional latent heat storage body, the latent heat storage material is a metal such as lead and the temperature at which the solid-liquid phase changes is relatively high. For this reason, there is a problem that it is difficult to store heat as a latent heat of waste heat in a low temperature region that is discarded in large quantities in the industrial world. Moreover, when metals, such as lead, are used for a latent heat storage material, since the specific gravity of a latent heat storage material is comparatively large, there exists a problem that the weight of a latent heat storage body will become very large.

ここに開示される技術は、上記点に鑑みてなされたものであり、比較的軽量で機械的強度に優れるとともに容易に低温域の廃熱を潜熱蓄熱することが可能な潜熱蓄熱体およびその製造方法を提供することを目的とする。   The technology disclosed herein has been made in view of the above points, and is a latent heat storage body that is relatively lightweight and excellent in mechanical strength and can easily store latent heat of low-temperature waste heat and its manufacture. It aims to provide a method.

上記目的を達成するため、開示される潜熱蓄熱体では、
有機化合物で構成される潜熱蓄熱部材(10)と、
潜熱蓄熱部材を内部に封入する金属製のシームレスカプセル(20)と、を備えている。
In order to achieve the above object, in the disclosed latent heat storage body,
A latent heat storage member (10) composed of an organic compound;
And a metal seamless capsule (20) enclosing the latent heat storage member therein.

これによると、潜熱蓄熱部材を、比重が比較的小さく比較的低融点の有機化合物で構成することができる。また、潜熱蓄熱部材を内部に封入するカプセルを、接合部等のない比較的高強度のシームレスの金属製とすることができる。したがって、比較的軽量で機械的強度に優れるとともに、容易に低温域の廃熱を潜熱蓄熱することができる。   According to this, the latent heat storage member can be composed of an organic compound having a relatively small specific gravity and a relatively low melting point. Moreover, the capsule which encloses a latent-heat storage member inside can be made from a comparatively high intensity | strength seamless metal without a junction part. Therefore, it is comparatively lightweight and excellent in mechanical strength, and the waste heat in the low temperature region can be easily stored as latent heat.

また、開示される潜熱蓄熱体の製造方法では、
有機化合物で構成される粒状の潜熱蓄熱部材(10)を準備する準備工程(110)と、
準備工程で準備した潜熱蓄熱部材の表面に金属又は金属酸化物の粉末(30)を押し付けて、潜熱蓄熱部材に粉末を担持させる粉末担持工程(120)と、
潜熱蓄熱部材の表面にめっき触媒を付与し、粉末及びめっき触媒を析出起点として、無電解めっき法によって潜熱蓄熱部材の表面に第1めっき層(21)を形成する無電解めっき工程(130)と、
無電解めっき工程の後に、電解めっき法によって第1めっき層の表面に第2めっき層(22)を形成する電解めっき工程(140)と、を備え、
第1めっき層及び第2めっき層を有する金属製のシームレスカプセル(20)の内部に潜熱蓄熱部材が封入された潜熱蓄熱体を製造する。
In the disclosed method for manufacturing a latent heat storage body,
A preparation step (110) for preparing a granular latent heat storage member (10) composed of an organic compound;
A powder supporting step (120) of pressing the powder of metal or metal oxide (30) on the surface of the latent heat storage member prepared in the preparation step, and supporting the powder on the latent heat storage member;
An electroless plating step (130) of forming a first plating layer (21) on the surface of the latent heat storage member by an electroless plating method using a plating catalyst as a starting point for deposition by applying a plating catalyst to the surface of the latent heat storage member; ,
An electroplating step (140) for forming a second plating layer (22) on the surface of the first plating layer by an electroplating method after the electroless plating step;
A latent heat storage body is manufactured in which a latent heat storage member is enclosed in a metal seamless capsule (20) having a first plating layer and a second plating layer.

これによると、準備工程で準備した粒状の潜熱蓄熱部材の表面を、無電解めっき工程及び電解めっき工程で形成する第1めっき層及び第2めっき層で容易に被覆することができる。無電解めっきの触媒付与ばかりでなく、粉末担持工程を行なうことで、無電解めっき工程では、潜熱蓄熱部材を比較的均一に覆うとともに、潜熱蓄熱部材に密着した第1めっき層を形成することができる。また、電解めっき工程では、比較的膜厚を制御し易い第2めっき層を、第1めっき層を起点として析出させることができる。したがって、有機化合物で構成される粒状の潜熱蓄熱部材を内部に封入するカプセルを、第1めっき層及び第2めっき層を有する比較的高強度のシームレスの金属製とすることができる。このようにして、比較的軽量で機械的強度に優れるとともに、容易に低温域の廃熱を潜熱蓄熱することが可能な潜熱蓄熱体を製造することができる。   According to this, the surface of the granular latent heat storage member prepared in the preparation step can be easily covered with the first plating layer and the second plating layer formed in the electroless plating step and the electrolytic plating step. In addition to providing the catalyst for electroless plating, by performing the powder supporting process, the electroless plating process can cover the latent heat storage member relatively uniformly and form a first plating layer in close contact with the latent heat storage member. it can. In the electrolytic plating process, the second plating layer whose film thickness is relatively easy to control can be deposited starting from the first plating layer. Therefore, the capsule which encloses the granular latent heat storage member comprised with an organic compound inside can be made of a relatively high-strength seamless metal having the first plating layer and the second plating layer. In this way, it is possible to produce a latent heat storage body that is relatively lightweight and excellent in mechanical strength and that can easily store latent heat of waste heat in a low temperature region.

なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、開示技術の範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in a claim and this clause shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The range of an indication technique is limited It is not a thing.

第1実施形態に係る潜熱蓄熱体の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the latent heat storage body which concerns on 1st Embodiment. 図1に示す潜熱蓄熱体のII部の部分拡大断面図である。It is a partial expanded sectional view of the II section of the latent heat storage body shown in FIG. 潜熱蓄熱部材が液相状態であるときの潜熱蓄熱体の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of a latent heat storage body when a latent heat storage member is a liquid phase state. 潜熱蓄熱部材が固相状態であるときの潜熱蓄熱体の概略構造の一例を示す断面図である。It is sectional drawing which shows an example of schematic structure of a latent heat storage body when a latent heat storage member is a solid-phase state. 潜熱蓄熱体の製造工程フローを示すフローチャートである。It is a flowchart which shows the manufacturing process flow of a latent heat storage body. 潜熱蓄熱部材の粒状体作製工程の説明図である。It is explanatory drawing of the granule preparation process of a latent heat storage member. 粒状体作製工程で作製された粒状体の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the granular material produced at the granular material production process. 潜熱蓄熱部材の表面に粉末を塗布する粉末塗布工程の説明図である。It is explanatory drawing of the powder application | coating process which apply | coats powder on the surface of a latent heat storage member. 粉末が塗布された潜熱蓄熱部材の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the latent heat storage member with which powder was apply | coated. 無電解めっき工程の説明図である。It is explanatory drawing of an electroless-plating process. 無電解めっきにより第1めっき層で被覆された潜熱蓄熱部材の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the latent-heat heat storage member coat | covered with the 1st plating layer by electroless plating.

以下に、図面を参照しながら開示技術を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組み合せることも可能である。   Hereinafter, a plurality of modes for carrying out the disclosed technology will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those described previously. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination is not particularly troublesome.

(第1実施形態)
開示技術を適用した第1実施形態について、図1〜図11を参照して説明する。
(First embodiment)
A first embodiment to which the disclosed technology is applied will be described with reference to FIGS.

図1に示すように、本実施形態の潜熱蓄熱体1は、有機化合物で構成される潜熱蓄熱部材10と、潜熱蓄熱部材10を内部に収容するように形成された金属皮膜20とを備えている。潜熱蓄熱体1は、例えば外形が球形をなしており、外径が約4mmの粒状体である。金属皮膜20は、めっき被膜からなり、接合部等を有しない。金属皮膜20は、本実施形態におけるシームレスカプセルに相当する。   As shown in FIG. 1, the latent heat storage body 1 of this embodiment includes a latent heat storage member 10 made of an organic compound, and a metal film 20 formed so as to accommodate the latent heat storage member 10 therein. Yes. The latent heat storage body 1 is a granular body having, for example, a spherical outer shape and an outer diameter of about 4 mm. The metal film 20 is made of a plating film and does not have a joint or the like. The metal film 20 corresponds to the seamless capsule in the present embodiment.

潜熱蓄熱体1は、例えば、車両に搭載された内燃機関の冷却水との間で熱の授受を行なう。例えば、複数の潜熱蓄熱体1が集合体となって冷却水の流通経路に配置される。潜熱蓄熱体1は、冷却水の温度が比較的高温である場合には、冷却水が有する廃熱を受け取って潜熱蓄熱部材10が固相状態から液相状態へと相変化して潜熱として蓄熱する。また、冷却水の温度が比較的低温である場合には、潜熱蓄熱部材10が液相状態から固相状態へと相変化して潜熱を冷却水へ放出する。   The latent heat storage body 1 exchanges heat with, for example, cooling water of an internal combustion engine mounted on a vehicle. For example, a plurality of latent heat storage bodies 1 are aggregated and arranged in the coolant flow path. When the temperature of the cooling water is relatively high, the latent heat storage body 1 receives the waste heat of the cooling water, and the latent heat storage member 10 changes phase from the solid phase state to the liquid phase state to store heat as latent heat. To do. When the temperature of the cooling water is relatively low, the latent heat storage member 10 changes phase from the liquid phase state to the solid phase state and releases latent heat to the cooling water.

潜熱蓄熱部材10は、例えば、炭素数32のノルマルパラフィンであるドトリアコンタンを主成分とすることができる。潜熱蓄熱部材10を構成する有機化合物をドトリアコンタンとした場合には、潜熱蓄熱部材10は69℃の融点を有する。潜熱蓄熱部材10は69℃の凝固点を有する。潜熱蓄熱部材10は、液相と固相とが共存可能な相転移温度が69℃である。融点及び凝固点は、例えばJISK7121に基づいて定義される温度である。本例の潜熱蓄熱部材10を構成する材料は、例えば、日本精蝋株式会社製のParaffin Wax - 155により提供される。   The latent heat storage member 10 can contain, for example, dotria contane, which is a normal paraffin having 32 carbon atoms, as a main component. When the organic compound constituting the latent heat storage member 10 is dotriacontane, the latent heat storage member 10 has a melting point of 69 ° C. The latent heat storage member 10 has a freezing point of 69 ° C. The latent heat storage member 10 has a phase transition temperature of 69 ° C. at which the liquid phase and the solid phase can coexist. The melting point and the freezing point are temperatures defined based on, for example, JISK7121. The material constituting the latent heat storage member 10 of this example is provided by Paraffin Wax-155 manufactured by Nippon Seiwa Co., Ltd., for example.

潜熱蓄熱体1の外表面に沿って流れる冷却水の温度が融点より高い場合には、潜熱蓄熱部材10は、金属皮膜20を介して冷却水が有する熱を受け取り融解する。また、潜熱蓄熱体1の外表面に沿って流れる冷却水の温度が融点より低い場合には、潜熱蓄熱部材10は凝固し、金属皮膜20を介して冷却水に放熱する。   When the temperature of the cooling water flowing along the outer surface of the latent heat storage body 1 is higher than the melting point, the latent heat storage member 10 receives and melts the heat of the cooling water via the metal film 20. When the temperature of the cooling water flowing along the outer surface of the latent heat storage body 1 is lower than the melting point, the latent heat storage member 10 is solidified and radiates heat to the cooling water through the metal film 20.

潜熱蓄熱部材10を構成する有機化合物は、ドトリアコンタンに限定されるものではない。潜熱蓄熱部材10を構成する有機化合物は、融点が40℃〜90℃であることが好ましい。内燃機関の熱効率等に基づいて定まる好適な温度域の下限が例えば40℃であり、上限が例えば90℃である。内燃機関が車両に搭載される場合には、例えば40℃が暖機完了時の冷却水温度として設定される。また、例えば90℃が一般的な定常走行モードにおける冷却水温度として設定される。したがって、潜熱蓄熱部材10を構成する有機化合物の融点が40℃〜90℃の範囲であれば、定常走行時の冷却水の廃熱を潜熱蓄熱部材10に蓄熱して、内燃機関再始動時等の暖機に利用することができる。   The organic compound constituting the latent heat storage member 10 is not limited to dotriacontane. The organic compound constituting the latent heat storage member 10 preferably has a melting point of 40 ° C to 90 ° C. The lower limit of a suitable temperature range determined based on the thermal efficiency of the internal combustion engine is, for example, 40 ° C., and the upper limit is, for example, 90 ° C. When the internal combustion engine is mounted on a vehicle, for example, 40 ° C. is set as the cooling water temperature when the warm-up is completed. Further, for example, 90 ° C. is set as the cooling water temperature in the general steady travel mode. Therefore, if the melting point of the organic compound constituting the latent heat storage member 10 is in the range of 40 ° C. to 90 ° C., the waste heat of the cooling water during steady running is stored in the latent heat storage member 10 to restart the internal combustion engine, etc. Can be used for warming up.

潜熱蓄熱部材10を構成する有機化合物としては、炭素数が21〜46のノルマルパラフィンを用いることができる。炭素数21のノルマルパラフィンであるヘンイコサンは、融点が40.5℃である。また、炭素数46のノルマルパラフィンであるヘキサテトラコンタンは、融点が86℃〜89℃である。したがって、炭素数が21〜46のノルマルパラフィンを単独もしくは混合して用いることで、潜熱蓄熱部材10の相転移温度を40℃〜90℃の範囲に設定することができる。   As the organic compound constituting the latent heat storage member 10, normal paraffin having 21 to 46 carbon atoms can be used. Heikosan, which is a normal paraffin having 21 carbon atoms, has a melting point of 40.5 ° C. Further, hexatetracontane, which is a normal paraffin having 46 carbon atoms, has a melting point of 86 ° C to 89 ° C. Therefore, the phase transition temperature of the latent heat storage member 10 can be set in the range of 40 ° C. to 90 ° C. by using normal paraffin having 21 to 46 carbon atoms alone or in combination.

潜熱蓄熱体1の外径すなわち金属皮膜20の外径の一例として、約4mmと上記したが、潜熱蓄熱体1の外径は、1mm〜10mmであることが好ましい。外径が1mm未満であると、潜熱蓄熱体1が微細粉末となり取り扱いが比較的困難になる。また、外径が10mmを超えると、潜熱蓄熱体1の比表面積が小さくなり、冷却水との間での熱移動が非効率的になる。したがって、潜熱蓄熱体1の外径は、1mm〜10mmであることが好ましい。また、潜熱蓄熱体1の外径は、2mm〜7mmであることがより好ましく、2.5mm〜5mmであれば更に好ましい。   As an example of the outer diameter of the latent heat storage body 1, that is, the outer diameter of the metal film 20, the outer diameter of the latent heat storage body 1 is preferably 1 mm to 10 mm. When the outer diameter is less than 1 mm, the latent heat storage body 1 becomes a fine powder and is relatively difficult to handle. Moreover, if an outer diameter exceeds 10 mm, the specific surface area of the latent heat storage body 1 will become small, and the heat transfer between cooling water will become inefficient. Therefore, the outer diameter of the latent heat storage body 1 is preferably 1 mm to 10 mm. The outer diameter of the latent heat storage body 1 is more preferably 2 mm to 7 mm, and even more preferably 2.5 mm to 5 mm.

金属皮膜20は、例えば銅製である。すなわち、金属皮膜20は、銅めっき被膜により構成される。金属皮膜20の平均厚さtは、例えば50μmである。したがって、本例では、金属皮膜20の平均厚さtは、金属皮膜20の外径の約1.25%である。金属皮膜20の平均厚さtは、金属皮膜20の外径の0.7%〜10%であることが好ましい。平均厚さtが金属皮膜20の外径の0.7%未満であると、金属皮膜20の機械的強度を確保し難い。また、平均厚さtが金属皮膜20の外径の10%を超えると、潜熱蓄熱部材10に対する金属皮膜20の体積比率が大きくなり過ぎ好ましくない。したがって、金属皮膜20の平均厚さtは外径の0.7%〜10%であることが好ましい。また、金属皮膜20の平均厚さtは外径の1%〜4%であることがより好ましい。   The metal film 20 is made of, for example, copper. That is, the metal film 20 is composed of a copper plating film. The average thickness t of the metal film 20 is, for example, 50 μm. Therefore, in this example, the average thickness t of the metal film 20 is about 1.25% of the outer diameter of the metal film 20. The average thickness t of the metal film 20 is preferably 0.7% to 10% of the outer diameter of the metal film 20. When the average thickness t is less than 0.7% of the outer diameter of the metal film 20, it is difficult to ensure the mechanical strength of the metal film 20. In addition, when the average thickness t exceeds 10% of the outer diameter of the metal film 20, the volume ratio of the metal film 20 to the latent heat storage member 10 becomes too large. Accordingly, the average thickness t of the metal film 20 is preferably 0.7% to 10% of the outer diameter. Further, the average thickness t of the metal film 20 is more preferably 1% to 4% of the outer diameter.

図2に示すように、金属皮膜20の厚さは、表面延在方向の位置により若干ばらつく場合がある。金属皮膜20の厚さのばらつきは、平均厚さtに対し±30%以内であることが好ましい。金属皮膜20の厚さが、平均厚さtに対し+30%〜−30%の範囲外にまでばらつくと、内外圧力差が大きくなったときに、金属皮膜20が座屈したり破断したりし易くなる。したがって、金属皮膜20の厚さのばらつきは、平均厚さtに対し±30%以内であることが好ましい。金属皮膜20の厚さのばらつきは、平均厚さtに対し±25%以内であることがより好ましい。   As shown in FIG. 2, the thickness of the metal film 20 may vary slightly depending on the position in the surface extending direction. The variation in the thickness of the metal film 20 is preferably within ± 30% with respect to the average thickness t. If the thickness of the metal film 20 varies outside the range of + 30% to -30% with respect to the average thickness t, the metal film 20 is likely to buckle or break when the internal / external pressure difference increases. Become. Therefore, the variation in the thickness of the metal film 20 is preferably within ± 30% with respect to the average thickness t. The variation in the thickness of the metal film 20 is more preferably within ± 25% with respect to the average thickness t.

なお、上述の説明における金属皮膜20の厚さは、図2に示す平均厚さtの範囲からも明らかなように、金属皮膜20の内側面が突出し潜熱蓄熱部材10に食い込む部分の寸法を含まない。この金属皮膜20の突出部は、後述する潜熱蓄熱体1の製造時に用いる粉末30に起因する凸部である。すなわち、金属皮膜20の好ましい平均膜厚tや厚さばらつきは、この凸部を含まない厚さ寸法に基づくものである。   In addition, the thickness of the metal film 20 in the above description includes the dimension of the portion where the inner surface of the metal film 20 protrudes and bites into the latent heat storage member 10, as is apparent from the range of the average thickness t shown in FIG. Absent. The protruding portion of the metal film 20 is a protruding portion caused by the powder 30 used when manufacturing the latent heat storage body 1 described later. That is, the preferable average film thickness t and thickness variation of the metal film 20 are based on the thickness dimension that does not include the convex portion.

図1に示すように、金属皮膜20の内部には、固相状態の潜熱蓄熱部材10が存在しない空洞11が形成されている。すなわち、潜熱蓄熱部材10が固相状態であるときには、潜熱蓄熱部材10が金属皮膜20の内部領域の一部を占めており、内部領域の残りの部分が空洞11となっている。空洞11内は、好ましくは真空である。空洞11は、若干のガスを有していてもよい。空洞11は、潜熱蓄熱部材10が相変化して液相状態となった際に、潜熱蓄熱部材10の体積膨張分を受け入れることができる。したがって、空洞11の体積は、潜熱蓄熱部材10が液相状態であるときの体積と固相状態であるときの体積の差以上であることが好ましい。   As shown in FIG. 1, a cavity 11 in which the solid phase latent heat storage member 10 does not exist is formed inside the metal film 20. That is, when the latent heat storage member 10 is in the solid phase, the latent heat storage member 10 occupies a part of the inner region of the metal film 20, and the remaining portion of the inner region is the cavity 11. The inside of the cavity 11 is preferably a vacuum. The cavity 11 may have some gas. The cavity 11 can accept the volume expansion of the latent heat storage member 10 when the latent heat storage member 10 changes phase and becomes a liquid phase. Therefore, the volume of the cavity 11 is preferably equal to or greater than the difference between the volume when the latent heat storage member 10 is in the liquid phase and the volume when it is in the solid phase.

図1に示す潜熱蓄熱体1は、潜熱蓄熱部材10が固相状態である。潜熱蓄熱部材10が潜熱蓄熱体1の外部を流れる熱輸送媒体である冷却水から吸熱して液相状態となると、例えば図3に示すように、空洞11が消滅する。図1における空洞11の体積が、潜熱蓄熱部材10の相変化に伴う体積増加分よりも大きければ、空洞11は小さくなるのみで消滅しない。潜熱蓄熱部材10が潜熱蓄熱体1の外部を流れる冷却水へ放熱して再度液相状態となると、例えば図4に示すように、潜熱蓄熱部材10と金属皮膜20との間に空洞11が形成される。潜熱蓄熱部材10が固相状態であるときの空洞11は、潜熱蓄熱部材10に内包されるように形成されてもよいし、潜熱蓄熱部材10と金属皮膜20との間に形成されてもよい。   In the latent heat storage body 1 shown in FIG. 1, the latent heat storage member 10 is in a solid phase. When the latent heat storage member 10 absorbs heat from cooling water, which is a heat transport medium flowing outside the latent heat storage body 1, and enters a liquid phase state, the cavity 11 disappears, for example, as shown in FIG. If the volume of the cavity 11 in FIG. 1 is larger than the volume increase accompanying the phase change of the latent heat storage member 10, the cavity 11 will only become small and will not disappear. When the latent heat storage member 10 radiates heat to the cooling water flowing outside the latent heat storage body 1 and enters a liquid phase again, a cavity 11 is formed between the latent heat storage member 10 and the metal film 20 as shown in FIG. Is done. The cavity 11 when the latent heat storage member 10 is in the solid phase may be formed so as to be included in the latent heat storage member 10, or may be formed between the latent heat storage member 10 and the metal film 20. .

次に、上述の構成の潜熱蓄熱体1の製造方法について説明する。潜熱蓄熱体1を製造するときには、図5に示すように、粒状体作製工程110、粉末塗布工程120、無電解めっき工程130、及び電解めっき工程140を順次実行する。   Next, a method for manufacturing the latent heat storage body 1 having the above-described configuration will be described. When manufacturing the latent heat storage body 1, as shown in FIG. 5, the granular material production process 110, the powder application process 120, the electroless plating process 130, and the electrolytic plating process 140 are sequentially performed.

粒状体作製工程110では、図6に示すように、溶融して液相状態とした潜熱蓄熱部材の粒である液滴10Aを、ノズル90の先端から冷却槽92内に貯留した冷却液である冷却水91中に滴下する。冷却液は、潜熱蓄熱部材10を構成する有機化合物と相溶性を有しない液体であることが好ましい。本例の潜熱蓄熱部材10は不水溶性のノルマルパラフィンであるので、冷却液を冷却水91としている。冷却水91に滴下された液滴10Aは、冷却水91により冷却されて外側から凝固され、粒状の潜熱蓄熱部材10となる。液滴10Aが外側から順次凝固されるため、固相状態となった潜熱蓄熱部材10には、図7に示すように、相変化に伴う数%の体積減少分の容積を有する空洞11が中央部に形成される。   In the granule preparation step 110, as shown in FIG. 6, the droplet 10A, which is a particle of a latent heat storage member that has been melted into a liquid phase, is a cooling liquid that is stored in the cooling tank 92 from the tip of the nozzle 90. It is dropped into the cooling water 91. The cooling liquid is preferably a liquid that is not compatible with the organic compound constituting the latent heat storage member 10. Since the latent heat storage member 10 of this example is a water-insoluble normal paraffin, the cooling liquid is the cooling water 91. The droplet 10 </ b> A dropped on the cooling water 91 is cooled by the cooling water 91 and solidified from the outside, and becomes a granular latent heat storage member 10. Since the droplets 10A are sequentially solidified from the outside, the latent heat storage member 10 in a solid state is provided with a cavity 11 having a volume of a volume decrease of several percent accompanying the phase change as shown in FIG. Formed in the part.

図6に示す方法で、図7に示す粒状の潜熱蓄熱部材10を形成する工程が、粒状体作製工程110である。粒状体作製工程110は、潜熱蓄熱部材の液滴10Aを冷却水91中に滴下するものに限定されない。例えば、先端が冷却液中に位置するようにノズル90を配置して、冷却水91中に液滴10Aを供給するものであってもよい。ノズル90の姿勢も図示したものに限定されず、冷却槽92に対して側方又は下方から、冷却水91中に液滴10Aを供給するものであってもよい。   The step of forming the granular latent heat storage member 10 shown in FIG. 7 by the method shown in FIG. The granular material manufacturing step 110 is not limited to the method of dropping the droplet 10A of the latent heat storage member into the cooling water 91. For example, the nozzle 90 may be disposed so that the tip is located in the cooling liquid, and the droplet 10 </ b> A may be supplied into the cooling water 91. The posture of the nozzle 90 is not limited to the illustrated one, and the droplet 10 </ b> A may be supplied into the cooling water 91 from the side or the lower side with respect to the cooling tank 92.

粒状体作製工程110は、本実施形態において、有機化合物で構成される粒状の潜熱蓄熱部材10を準備する準備工程に相当する。なお、準備工程は粒状体作製工程110に限定されず、例えば図7に示すような潜熱蓄熱部材10を準備して、後工程に供給する工程であってもよい。   In this embodiment, the granule preparation step 110 corresponds to a preparation step of preparing the granular latent heat storage member 10 made of an organic compound. In addition, a preparation process is not limited to the granule preparation process 110, For example, the process of preparing the latent heat storage member 10 as shown in FIG. 7 and supplying it to a post process may be sufficient.

粉末塗布工程120では、図8に示すように、粒状体作製工程110で作成した粒状の潜熱蓄熱部材10と粉末30とを容器93内に収容し、潜熱蓄熱部材10の表面に粉末30を塗布する。粉末塗布工程120では、潜熱蓄熱部材10の表面近傍が塑性変形する程度の付勢力で粉末30を潜熱蓄熱部材10に押し付け、図9に示すように、潜熱蓄熱部材10に粉末30を担持させる。   In the powder application step 120, as shown in FIG. 8, the granular latent heat storage member 10 and the powder 30 created in the granule preparation step 110 are accommodated in the container 93, and the powder 30 is applied to the surface of the latent heat storage member 10. To do. In the powder application step 120, the powder 30 is pressed against the latent heat storage member 10 with an urging force that causes plastic deformation of the vicinity of the surface of the latent heat storage member 10, and the latent heat storage member 10 carries the powder 30 as shown in FIG.

例えば、容器93をガラス容器とし、容器93を回転する装置により潜熱蓄熱部材10と粉末30とを混合して、回転混合に伴い粉末30を潜熱蓄熱部材10に押し付け、潜熱蓄熱部材10に粉末30を担持させることができる。また、例えば、容器93をポリエチレン袋とし、袋内で潜熱蓄熱部材10と粉末30とを混合しつつ袋の外部から押圧して粉末30を潜熱蓄熱部材10に押し付け、潜熱蓄熱部材10に粉末30を担持させることができる。   For example, the container 93 is a glass container, the latent heat storage member 10 and the powder 30 are mixed by a device that rotates the container 93, the powder 30 is pressed against the latent heat storage member 10 along with the rotary mixing, and the powder 30 is applied to the latent heat storage member 10. Can be supported. Further, for example, the container 93 is a polyethylene bag, the powder 30 is pressed against the latent heat storage member 10 by pressing the powder 30 against the latent heat storage member 10 while mixing the latent heat storage member 10 and the powder 30 in the bag and mixing the powder 30 against the latent heat storage member 10. Can be supported.

粉末30は、銅粉末及び酸化銅粉末の少なくともいずれかであればよい。粉末30は、本例では立方体形状の酸化銅粉末であり、平均粒子径が約10μmの粉末を用いている。粉末30の粒径は、1μm〜100μmであることが好ましい。粉末粒径がこの範囲にあると、潜熱蓄熱部材10に粉末30を担持させ易く、後工程である無電解めっき工程130において、めっき層を安定して形成し易い。本例では、粒径の分布範囲が1μm〜20μmであり、平均粒径が約10μmの酸化銅粉末を用いている。   The powder 30 may be at least one of copper powder and copper oxide powder. In this example, the powder 30 is a cubic copper oxide powder, and a powder having an average particle diameter of about 10 μm is used. The particle size of the powder 30 is preferably 1 μm to 100 μm. When the powder particle size is in this range, the latent heat storage member 10 is likely to carry the powder 30, and the plating layer is easily formed stably in the electroless plating step 130 which is a subsequent step. In this example, a copper oxide powder having a particle size distribution range of 1 μm to 20 μm and an average particle size of about 10 μm is used.

粉末30は、平均粒子径が潜熱蓄熱体1の金属皮膜20の平均厚さtよりも小さく、かつ多面体形状の粒子であることが好ましい。粉末30の平均粒子径を金属皮膜20の平均厚さtを小さくすることで、金属皮膜20形成時に金属皮膜20の厚さばらつきの増大を抑制できる。また、粉末30の形状を多面体形状とすることで、粉末30を潜熱蓄熱部材10に押し付けた際に角部に応力を集中させて、粉末30を潜熱蓄熱部材10に確実に担持させることができる。ここで、立方体形状を含む多面体形状の粒子径とは、径寸法長さが最長となる例えば対角寸法とすることができる。   The powder 30 is preferably a polyhedral particle having an average particle diameter smaller than the average thickness t of the metal film 20 of the latent heat storage body 1. By reducing the average particle diameter of the powder 30 and reducing the average thickness t of the metal coating 20, an increase in thickness variation of the metal coating 20 can be suppressed when the metal coating 20 is formed. Moreover, by making the shape of the powder 30 into a polyhedral shape, when the powder 30 is pressed against the latent heat storage member 10, stress can be concentrated on the corners and the powder 30 can be reliably supported on the latent heat storage member 10. . Here, the particle diameter of the polyhedral shape including the cubic shape can be, for example, a diagonal dimension having the longest diameter dimension length.

粉末塗布工程120は、本実施形態において、潜熱蓄熱部材10の表面に金属又は金属酸化物の粉末を押し付けて、潜熱蓄熱部材に粉末を担持させる粉末担持工程に相当する。   In the present embodiment, the powder application step 120 corresponds to a powder carrying step in which a metal or metal oxide powder is pressed against the surface of the latent heat storage member 10 to carry the powder on the latent heat storage member.

図5に示すように、粉末塗布工程120が終了した後、無電解めっき工程130を行なう。無電解めっき工程130は、触媒付与工程131、水洗工程132、触媒活性工程133、水洗工程134、無電解銅めっき工程135、及び水洗・乾燥工程136を有している。無電解めっき工程130では、上記した各工程を上記した順に実行する。   As shown in FIG. 5, after the powder coating process 120 is completed, an electroless plating process 130 is performed. The electroless plating process 130 includes a catalyst application process 131, a water washing process 132, a catalyst activation process 133, a water washing process 134, an electroless copper plating process 135, and a water washing / drying process 136. In the electroless plating step 130, the above steps are performed in the order described above.

触媒付与工程131では、キャタリスト溶液を用いて潜熱蓄熱部材10の表面に触媒付与を行なう。キャタリスト溶液は、例えば塩化第一スズと塩化パラジウムの混合溶液である。粉末30を担持した潜熱蓄熱部材10をパラジウム−スズ混合コロイド溶液に浸漬して、表面に触媒を付与する。粉末塗布工程120において粉末30を潜熱蓄熱部材10の表面に担持させたものの、触媒付与工程131までに一部の粉末30が潜熱蓄熱部材10の表面から脱落する場合がある。ところが、潜熱蓄熱部材10に一旦食い込んだ粉末30が脱落するので、塑性変形した潜熱蓄熱部材10には粉末脱離部位に凹部が形成される。潜熱蓄熱部材10からの粉末30の脱離があったとしても、触媒付与工程131では、この凹部も利用して触媒の確実な付与が行なわれる。   In the catalyst application step 131, a catalyst is applied to the surface of the latent heat storage member 10 using a catalyst solution. The catalyst solution is, for example, a mixed solution of stannous chloride and palladium chloride. The latent heat storage member 10 carrying the powder 30 is immersed in a palladium-tin mixed colloidal solution to give a catalyst to the surface. Although the powder 30 is supported on the surface of the latent heat storage member 10 in the powder application step 120, a part of the powder 30 may fall off the surface of the latent heat storage member 10 until the catalyst application step 131. However, since the powder 30 once biting into the latent heat storage member 10 falls off, the latent heat storage member 10 plastically deformed is formed with a recess at the powder desorption site. Even if the powder 30 is detached from the latent heat storage member 10, in the catalyst application step 131, the catalyst is surely applied using this recess.

触媒付与工程131を実行した後、水洗工程132を経て触媒活性工程133を実行する。触媒活性工程133では、例えば、パラジウム−スズ混合コロイドのスズを除去して金属パラジウムを露出させるためのアクセラレーション処理を行なう。アクセラレーション処理は、例えば希塩酸や希硫酸等の酸性水溶液に潜熱蓄熱部材10を浸漬する酸処理である。   After performing the catalyst provision process 131, the catalyst activation process 133 is performed through the water washing process 132. FIG. In the catalyst activation step 133, for example, an acceleration treatment is performed to remove tin from the palladium-tin mixed colloid to expose the metallic palladium. The acceleration treatment is an acid treatment in which the latent heat storage member 10 is immersed in an acidic aqueous solution such as dilute hydrochloric acid or dilute sulfuric acid.

触媒活性工程133を実行した後、水洗工程134を経て無電解銅めっき工程135を実行する。無電解銅めっき工程135では、図10に示すように、例えばバレルめっき装置を用いる。バレルめっき装置は、例えば、内部にめっき液95を貯留するめっき浴槽94内に、多孔を有し回転可能なバレル96を備えている。バレル96内において潜熱蓄熱部材10の表面に銅めっき層の形成が行なわれる。   After performing the catalyst activation process 133, the electroless copper plating process 135 is performed through the water washing process 134. FIG. In the electroless copper plating step 135, for example, a barrel plating apparatus is used as shown in FIG. The barrel plating apparatus includes, for example, a barrel 96 that is porous and rotatable in a plating bath 94 that stores a plating solution 95 therein. A copper plating layer is formed on the surface of the latent heat storage member 10 in the barrel 96.

このとき、潜熱蓄熱部材10の平均密度はめっき液95の平均密度よりも小さい。すなわち、潜熱蓄熱部材10はめっき液95内で液面95aに向かって浮上しようとする。本実施形態では、多数の粒状の潜熱蓄熱部材10を例えばポリ塩化ビリニデン製のメッシュ袋97内に収容してバレル96内に配設している。これにより、潜熱蓄熱部材10の浮上を抑制して、潜熱蓄熱部材10がめっき液95の液面95aから上方に突出しないようにしている。すなわち、潜熱蓄熱部材10をメッシュ袋97で上方から押さえ込んで、潜熱蓄熱部材10の全体がめっき液95の液面よりも下方に位置させている。粒径よりも目の細かいメッシュ袋97内に潜熱蓄熱部材10を収容することで、バレル96に形成された比較的大きな孔を介して、粒状の潜熱蓄熱部材10が流出することも抑止できる。   At this time, the average density of the latent heat storage member 10 is smaller than the average density of the plating solution 95. That is, the latent heat storage member 10 tends to float toward the liquid level 95 a in the plating solution 95. In the present embodiment, a large number of granular latent heat storage members 10 are accommodated in a mesh bag 97 made of, for example, polyvinylidene chloride and disposed in a barrel 96. This suppresses the floating of the latent heat storage member 10 so that the latent heat storage member 10 does not protrude upward from the liquid surface 95 a of the plating solution 95. That is, the latent heat storage member 10 is pressed from above by the mesh bag 97 so that the entire latent heat storage member 10 is positioned below the liquid surface of the plating solution 95. By accommodating the latent heat storage member 10 in the mesh bag 97 having a finer particle size than the particle size, it is possible to prevent the granular latent heat storage member 10 from flowing out through a relatively large hole formed in the barrel 96.

無電解銅めっき工程135では、潜熱蓄熱部材10に担持された粉末30と、潜熱蓄熱部材10の表面に付与されたパラジウム触媒とを析出起点として、図11に示すように、銅めっき層である第1めっき層21が形成される。無電解銅めっき工程135では、粉末30を構成する酸化銅が還元され、無電解銅めっきの起点として機能する。無電解銅めっき工程135を実行したら、水洗・乾燥工程136を実行する。   In the electroless copper plating step 135, the powder 30 carried on the latent heat storage member 10 and the palladium catalyst applied to the surface of the latent heat storage member 10 are the copper plating layers as shown in FIG. A first plating layer 21 is formed. In the electroless copper plating step 135, the copper oxide constituting the powder 30 is reduced and functions as a starting point for the electroless copper plating. When the electroless copper plating step 135 is executed, a water washing / drying step 136 is executed.

無電解めっき工程130では、触媒付与工程131から水洗・乾燥工程136までを通じて、潜熱蓄熱部材10の環境温度が潜熱蓄熱部材10を構成する材料の融点未満に管理される。本例のように、潜熱蓄熱部材10を構成する有機化合物をドトリアコンタンとした場合には、潜熱蓄熱部材10は69℃の融点を有する。本例では、触媒付与工程131における液温を30℃としている。また、触媒活性工程133における液温を常温である室温相当としている。また、無電解銅めっき工程135におけるめっき液95の液温を33℃としている。これらにより、無電解めっき工程130では、潜熱蓄熱部材10の粒形状を崩すことなく第1めっき層21を形成することができる。   In the electroless plating step 130, the environmental temperature of the latent heat storage member 10 is managed to be lower than the melting point of the material constituting the latent heat storage member 10 through the catalyst application step 131 to the water washing / drying step 136. As in this example, when the organic compound constituting the latent heat storage member 10 is dotriacontane, the latent heat storage member 10 has a melting point of 69 ° C. In this example, the liquid temperature in the catalyst application step 131 is 30 ° C. Further, the liquid temperature in the catalyst activation step 133 is equivalent to room temperature, which is normal temperature. Further, the temperature of the plating solution 95 in the electroless copper plating step 135 is set to 33 ° C. Accordingly, in the electroless plating step 130, the first plating layer 21 can be formed without breaking the grain shape of the latent heat storage member 10.

無電解めっき工程130により、潜熱蓄熱部材10の表面の全域に、例えば約1μmの厚さの第1めっき層21が形成される。第1めっき層21は、0.5μm〜2μmの厚さに形成することが好ましい。   By the electroless plating step 130, the first plating layer 21 having a thickness of, for example, about 1 μm is formed on the entire surface of the latent heat storage member 10. The first plating layer 21 is preferably formed to a thickness of 0.5 μm to 2 μm.

図5に示すように、無電解めっき工程130を終了した後、電解めっき工程140を行なう。電解めっき工程140は、酸活性工程141、水洗工程142、電解銅めっき工程143、及び水洗・乾燥工程144を有している。電解めっき工程140では、上記した各工程を上記した順に実行する。   As shown in FIG. 5, after the electroless plating step 130 is completed, an electrolytic plating step 140 is performed. The electrolytic plating process 140 includes an acid activation process 141, a water washing process 142, an electrolytic copper plating process 143, and a water washing / drying process 144. In the electrolytic plating step 140, the above steps are performed in the order described above.

酸活性工程141では、例えば希硫酸等の酸性水溶液を用いて第1めっき層21表面の活性化処理を行なう。酸活性工程141を実行した後、水洗工程142を経て電解銅めっき工程143を実行する。電解銅めっき工程143では、無電解銅めっき工程135と同様に、例えばバレルめっき装置を用いる。バレルめっき装置のバレル内において潜熱蓄熱部材10の全表面を覆う第1めっき層21の表面に、更に銅めっき層の形成が行なわれる。電解銅めっき工程143では、例えば、ピロリン酸銅めっき液を用いて潜熱蓄熱部材10の第1めっき層21の表面に銅を析出させる電解銅めっきが行なわれる。電解銅めっき工程143では、例えば4Aの電流が通電される。   In the acid activation step 141, the surface of the first plating layer 21 is activated using an acidic aqueous solution such as dilute sulfuric acid. After performing the acid activation process 141, the electrolytic copper plating process 143 is performed through the water washing process 142. FIG. In the electrolytic copper plating step 143, for example, a barrel plating apparatus is used as in the electroless copper plating step 135. A copper plating layer is further formed on the surface of the first plating layer 21 covering the entire surface of the latent heat storage member 10 in the barrel of the barrel plating apparatus. In the electrolytic copper plating step 143, for example, electrolytic copper plating is performed to deposit copper on the surface of the first plating layer 21 of the latent heat storage member 10 using a copper pyrophosphate plating solution. In the electrolytic copper plating step 143, for example, a current of 4A is applied.

電解銅めっき工程143においても、第1めっき層21を含む潜熱蓄熱部材10の平均密度はめっき液の平均密度よりも小さい。すなわち、第1めっき層21を含む潜熱蓄熱部材10はめっき液内で液面に向かって浮上しようとする。本実施形態では、電解銅めっき工程143においても、無電解銅めっき工程135と同様に、多数の粒状の潜熱蓄熱部材10を例えばポリ塩化ビリニデン製のメッシュ袋内に収容してバレル内に配設している。これにより、潜熱蓄熱部材10の浮上を抑制して、潜熱蓄熱部材10がめっき液の液面から上方に突出しないようにしている。すなわち、潜熱蓄熱部材10をメッシュ袋で上方から押さえ込んで、第1めっき層21の全体がめっき液の液面よりも下方に位置するようにしている。潜熱蓄熱部材10を粒径よりも目の細かいメッシュ袋内に収容することで、バレルに形成された比較的大きな孔を介して、粒状の潜熱蓄熱部材10が流出することも抑止できる。   Also in the electrolytic copper plating step 143, the average density of the latent heat storage member 10 including the first plating layer 21 is smaller than the average density of the plating solution. That is, the latent heat storage member 10 including the first plating layer 21 tends to float toward the liquid surface in the plating solution. In this embodiment, also in the electrolytic copper plating step 143, as in the electroless copper plating step 135, a large number of granular latent heat storage members 10 are accommodated in, for example, a mesh bag made of polyvinylidene chloride and disposed in the barrel. doing. Thereby, the floating of the latent heat storage member 10 is suppressed so that the latent heat storage member 10 does not protrude upward from the surface of the plating solution. That is, the latent heat storage member 10 is pressed from above with a mesh bag so that the entire first plating layer 21 is positioned below the surface of the plating solution. By storing the latent heat storage member 10 in a mesh bag having a finer particle size than the particle size, it is possible to prevent the granular latent heat storage member 10 from flowing out through a relatively large hole formed in the barrel.

電解銅めっき工程143では、潜熱蓄熱部材10の表面の全域を覆う第1めっき層21を析出起点として、図2に示すように、銅めっき層である第2めっき層22が形成される。第2めっき層22の厚さは、例えば50μmである。第1めっき層21に第2めっき層22を重ねるように形成することにより、第1めっき層21及び第2めっき層22を有する金属皮膜20が形成される。電解銅めっき工程143を実行したら、水洗・乾燥工程144を実行する。   In the electrolytic copper plating step 143, as shown in FIG. 2, the second plating layer 22 which is a copper plating layer is formed using the first plating layer 21 covering the entire surface of the latent heat storage member 10 as a deposition starting point. The thickness of the second plating layer 22 is, for example, 50 μm. By forming the second plating layer 22 so as to overlap the first plating layer 21, the metal film 20 having the first plating layer 21 and the second plating layer 22 is formed. When the electrolytic copper plating step 143 is executed, a water washing / drying step 144 is executed.

電解めっき工程140では、酸活性工程141から水洗・乾燥工程144までを通じて、潜熱蓄熱部材10の環境温度が潜熱蓄熱部材10を構成する材料の融点未満に管理される。本例のように、潜熱蓄熱部材10を構成する有機化合物をドトリアコンタンとした場合には、潜熱蓄熱部材10は69℃の融点を有する。本例では、酸活性工程141における液温を常温である室温相当としている。また、電解銅めっき工程143におけるめっき液の液温を55℃としている。これらにより、電解めっき工程140では、第1めっき層21で覆われた潜熱蓄熱部材10の粒形状を崩すことなく第2めっき層22を形成することができる。   In the electrolytic plating process 140, the environmental temperature of the latent heat storage member 10 is managed to be lower than the melting point of the material constituting the latent heat storage member 10 through the acid activation process 141 to the water washing / drying process 144. As in this example, when the organic compound constituting the latent heat storage member 10 is dotriacontane, the latent heat storage member 10 has a melting point of 69 ° C. In this example, the liquid temperature in the acid activation step 141 is equivalent to room temperature, which is room temperature. Further, the temperature of the plating solution in the electrolytic copper plating step 143 is set to 55 ° C. As a result, in the electrolytic plating step 140, the second plating layer 22 can be formed without breaking the grain shape of the latent heat storage member 10 covered with the first plating layer 21.

上述の構成の潜熱蓄熱体1によれば、以下に述べる効果を得ることができる。   According to the latent heat storage body 1 having the above-described configuration, the following effects can be obtained.

潜熱蓄熱体1は、有機化合物で構成される潜熱蓄熱部材10と、潜熱蓄熱部材10を内部に封入する金属製のシームレスカプセルである金属皮膜20とを備えている。これによると、潜熱蓄熱部材10を、比重が比較的小さく比較的低融点の有機化合物で構成することができる。また、潜熱蓄熱部材10を内部に封入するカプセルである金属皮膜20を、接合部等のない比較的高強度のシームレスの金属製とすることができる。したがって、潜熱蓄熱体1は、比較的軽量で機械的強度に優れるとともに、容易に低温域の廃熱を潜熱蓄熱することができる。   The latent heat storage body 1 includes a latent heat storage member 10 made of an organic compound and a metal film 20 that is a metal seamless capsule that encloses the latent heat storage member 10 therein. According to this, the latent heat storage member 10 can be composed of an organic compound having a relatively small specific gravity and a relatively low melting point. Moreover, the metal film 20 which is a capsule which encloses the latent heat storage member 10 inside can be made of a relatively high-strength seamless metal having no joints or the like. Therefore, the latent heat storage body 1 is relatively lightweight and excellent in mechanical strength, and can easily store waste heat in a low temperature region as latent heat.

本実施形態のように、潜熱蓄熱体1が車両に搭載される場合には、潜熱蓄熱体1が比較的軽量であることは車両重量や車両搭載性の観点から有利である。また、潜熱蓄熱体1が軽量であるとともに機械的強度にも優れることで、比較的大きな振動が印加されることがある車両搭載環境であっても、潜熱蓄熱体1の構造を維持し易い。さらに、車両に搭載された内燃機関が運転と停止とを繰り返し、内燃機関から冷却水への放熱量が経時的に大きく変動する場合であっても、潜熱蓄熱部材10の相変化により、冷却水温を所定温度範囲に維持し易い。   When the latent heat storage body 1 is mounted on a vehicle as in this embodiment, it is advantageous from the viewpoint of vehicle weight and vehicle mountability that the latent heat storage body 1 is relatively lightweight. In addition, since the latent heat storage body 1 is lightweight and excellent in mechanical strength, it is easy to maintain the structure of the latent heat storage body 1 even in a vehicle-mounted environment where a relatively large vibration may be applied. Furthermore, even when the internal combustion engine mounted on the vehicle repeats operation and stop and the amount of heat released from the internal combustion engine to the cooling water largely fluctuates with time, the cooling water temperature is changed by the phase change of the latent heat storage member 10. Is easily maintained within a predetermined temperature range.

潜熱蓄熱部材10の相変化が頻繁に繰り返されて、金属皮膜20の内外圧力差の変動に起因する繰り返し応力印加があっても、シームレスの金属皮膜20はこれに耐えることが可能である。鉛等の金属粒子に金属皮膜を形成した比較例の場合には、金属粒子が液相に変化した際に膨張圧が金属皮膜に印加され、固液相変化が繰り返されると金属皮膜が破壊されてしまうという問題がある。本実施形態の潜熱蓄熱体1によれば、このような問題が発生し難く、高い耐久性を確保し易い。   Even if the phase change of the latent heat storage member 10 is frequently repeated and a repeated stress is applied due to fluctuations in the internal / external pressure difference of the metal film 20, the seamless metal film 20 can withstand this. In the case of a comparative example in which a metal film is formed on a metal particle such as lead, an expansion pressure is applied to the metal film when the metal particle changes to the liquid phase, and the metal film is destroyed when the solid-liquid phase change is repeated. There is a problem that it ends up. According to the latent heat storage body 1 of the present embodiment, such a problem hardly occurs and high durability can be easily ensured.

また、金属皮膜20は、外径が1mm〜10mmである。これによると、外径を10mm以下にすることで、潜熱蓄熱体の比表面積を比較的大きくして、金属皮膜20内部の潜熱蓄熱部材10と外部の熱輸送媒体との間の熱移動を容易にできる。また、外径を1mm以上にすることで、潜熱蓄熱体1の取り扱いが容易であり、製造性に優れる。   The metal film 20 has an outer diameter of 1 mm to 10 mm. According to this, by making the outer diameter 10 mm or less, the specific surface area of the latent heat storage body is made relatively large, and heat transfer between the latent heat storage member 10 inside the metal film 20 and the external heat transport medium is easy. Can be. Moreover, the handling of the latent heat storage body 1 is easy by making an outer diameter 1 mm or more, and it is excellent in manufacturability.

また、潜熱蓄熱部材10を構成する有機化合物は、融点が40℃〜90℃である。これによると、融解/凝固温度である相転移温度以上の比較的低温域の廃熱を容易に蓄熱し、比較的低温の相転移温度で放熱することができる。   The organic compound constituting the latent heat storage member 10 has a melting point of 40 ° C to 90 ° C. According to this, waste heat in a relatively low temperature region that is equal to or higher than the phase transition temperature that is the melting / solidification temperature can be easily stored and radiated at a relatively low phase transition temperature.

また、潜熱蓄熱部材10を構成する有機化合物は、炭素数が21〜46のノルマルパラフィンである。炭素数21のノルマルパラフィンであるヘンイコサンは融点が40.5℃であり、炭素数46のノルマルパラフィンであるヘキサテトラコンタンは融点が86℃〜89℃である。したがって、融解/凝固温度である相転移温度以上の比較的低温域の廃熱を容易に蓄熱し、比較的低温の相転移温度で放熱することができる。   The organic compound constituting the latent heat storage member 10 is normal paraffin having 21 to 46 carbon atoms. Heikosan, which is a normal paraffin having 21 carbon atoms, has a melting point of 40.5 ° C, and hexatetracontane, which is a normal paraffin having 46 carbon atoms, has a melting point of 86 ° C to 89 ° C. Therefore, waste heat in a relatively low temperature region that is equal to or higher than the phase transition temperature that is the melting / solidification temperature can be easily stored and radiated at a relatively low phase transition temperature.

また、潜熱蓄熱部材10が固相状態であるときには、潜熱蓄熱部材10が金属皮膜20の内方領域の一部を占めており、この内方領域の残部に空洞11が形成されている。これによると、潜熱蓄熱部材10が固相状態から液相状態に相変化した際に体積膨張しても、膨張分を空洞11部分に受け入れることが可能である。したがって、固相状態から液相状態に相変化した際の内圧上昇を抑制し易い。   Further, when the latent heat storage member 10 is in a solid phase, the latent heat storage member 10 occupies a part of the inner region of the metal film 20, and the cavity 11 is formed in the remaining portion of the inner region. According to this, even if the latent heat storage member 10 undergoes volume expansion when the phase changes from the solid phase state to the liquid phase state, the expansion can be received in the cavity 11 portion. Therefore, it is easy to suppress an increase in internal pressure when the phase is changed from the solid phase to the liquid phase.

また、空洞11の体積は、潜熱蓄熱部材10が液相状態であるときの体積と固相状態であるときの体積との体積差以上である。これによると、潜熱蓄熱部材10の固相状態から液相状態への相変化に伴う体積膨張分を、空洞11部分に確実に受け入れることができる。したがって、固相状態から液相状態に相変化した際の内圧上昇を確実に抑制できる。   The volume of the cavity 11 is not less than the volume difference between the volume when the latent heat storage member 10 is in a liquid phase and the volume when it is in a solid phase. According to this, the volume expansion part accompanying the phase change from the solid phase state of the latent heat storage member 10 to a liquid phase state can be reliably received by the cavity 11 part. Therefore, it is possible to reliably suppress an increase in internal pressure when the phase is changed from the solid phase state to the liquid phase state.

また、金属皮膜20は、銅製である。これによると、熱伝導性に優れるとともに比較的安価なシームレスカプセルである金属皮膜を提供できる。   The metal film 20 is made of copper. According to this, it is possible to provide a metal film which is excellent in thermal conductivity and is a relatively inexpensive seamless capsule.

金属皮膜20は、その平均厚さが、外径の0.7%〜10%である。これによると、機械的強度を確保しつつ、潜熱蓄熱部材10に対する金属皮膜20の体積比率を抑制することができる。したがって、比較的効率よく熱伝導を行なうことができるとともに、潜熱蓄熱体1を軽量化することができる。また、金属皮膜20の製造が比較的容易になる。   The average thickness of the metal film 20 is 0.7% to 10% of the outer diameter. According to this, the volume ratio of the metal film 20 to the latent heat storage member 10 can be suppressed while ensuring the mechanical strength. Therefore, heat conduction can be performed relatively efficiently, and the latent heat storage body 1 can be reduced in weight. Moreover, the metal film 20 can be manufactured relatively easily.

また、金属皮膜20は、その厚さのばらつきが、平均厚さに対し±30%以内である。これによると、金属皮膜20の内外圧力の差が比較的大きくても、金属皮膜20が破断したり座屈したりし難い。   Further, the metal film 20 has a variation in thickness within ± 30% of the average thickness. According to this, even if the difference between the internal and external pressures of the metal film 20 is relatively large, the metal film 20 is unlikely to break or buckle.

また、上述の潜熱蓄熱体1の製造方法によれば、以下に述べる効果を得ることができる。   Moreover, according to the manufacturing method of the above-mentioned latent heat storage body 1, the effect described below can be acquired.

開示された潜熱蓄熱体1の製造方法は、準備工程である粒状体作製工程110、粉末担持工程である粉末塗布工程120、無電解めっき工程130、及び電解めっき工程140を備える。準備工程では、有機化合物で構成される粒状の潜熱蓄熱部材10を準備する。粉末担持工程では、準備工程で準備した潜熱蓄熱部材10の表面に金属又は金属酸化物の粉末30を押し付けて、潜熱蓄熱部材10に粉末30を担持させる。無電解めっき工程130では、潜熱蓄熱部材10の表面にめっき触媒を付与し、粉末30及びめっき触媒を析出起点として、無電解めっき法によって潜熱蓄熱部材の表面に第1めっき層21を形成する。電解めっき工程140では、無電解めっき工程130の後に、電解めっき法によって第1めっき層21の表面に第2めっき層22を形成する。以上の工程群により、第1めっき層21及び第2めっき層22を有する金属皮膜20の内部に潜熱蓄熱部材10が封入された潜熱蓄熱体1を製造する。   The disclosed manufacturing method of the latent heat storage body 1 includes a granular material production process 110 that is a preparation process, a powder application process 120 that is a powder carrying process, an electroless plating process 130, and an electrolytic plating process 140. In the preparation step, a granular latent heat storage member 10 made of an organic compound is prepared. In the powder carrying step, the powder 30 of metal or metal oxide is pressed against the surface of the latent heat storage member 10 prepared in the preparation step, and the powder 30 is carried on the latent heat storage member 10. In the electroless plating step 130, a plating catalyst is applied to the surface of the latent heat storage member 10, and the first plating layer 21 is formed on the surface of the latent heat storage member by the electroless plating method using the powder 30 and the plating catalyst as a deposition starting point. In the electroplating step 140, after the electroless plating step 130, the second plating layer 22 is formed on the surface of the first plating layer 21 by an electrolytic plating method. Through the above process group, the latent heat storage body 1 in which the latent heat storage member 10 is sealed inside the metal film 20 having the first plating layer 21 and the second plating layer 22 is manufactured.

これによると、準備工程で準備した粒状の潜熱蓄熱部材10の表面を、無電解めっき工程130及び電解めっき工程140で形成する第1めっき層21及び第2めっき層22で容易に被覆することができる。無電解めっきの触媒付与ばかりでなく、粉末担持工程を行なうことで、無電解めっき工程130では、潜熱蓄熱部材10を比較的均一に覆うとともに、潜熱蓄熱部材10に密着した第1めっき層21を形成することができる。また、電解めっき工程140では、比較的膜厚を制御し易い第2めっき層22を、第1めっき層21を起点として析出させることができる。したがって、有機化合物で構成される粒状の潜熱蓄熱部材10を内部に封入するカプセルを、第1めっき層21及び第2めっき層22を有する比較的高強度のシームレスの金属製とすることができる。このようにして、比較的軽量で機械的強度に優れるとともに、容易に低温域の廃熱を潜熱蓄熱することが可能な潜熱蓄熱体1を製造することができる。   According to this, the surface of the granular latent heat storage member 10 prepared in the preparation step can be easily covered with the first plating layer 21 and the second plating layer 22 formed in the electroless plating step 130 and the electrolytic plating step 140. it can. In the electroless plating process 130, the first plating layer 21 that covers the latent heat storage member 10 relatively uniformly and is in close contact with the latent heat storage member 10 is formed by performing not only the electroless plating catalyst application but also the powder supporting process. Can be formed. In the electrolytic plating process 140, the second plating layer 22 whose film thickness is relatively easy to control can be deposited starting from the first plating layer 21. Therefore, the capsule encapsulating the granular latent heat storage member 10 made of an organic compound can be made of a relatively high-strength seamless metal having the first plating layer 21 and the second plating layer 22. In this way, it is possible to manufacture the latent heat storage body 1 that is relatively lightweight and excellent in mechanical strength and can easily store latent heat of waste heat in a low temperature region.

また、粉末担持工程では、第1めっき層21を形成する金属と同一金属の粉末及び同一金属の酸化物の粉末の少なくともいずれかを担持させる。これによると、無電解めっき工程130において、触媒とともに粉末も起点として第1めっき層21を析出させることが容易である。   In the powder supporting step, at least one of the same metal powder and the same metal oxide powder as the metal forming the first plating layer 21 is supported. According to this, in the electroless plating step 130, it is easy to deposit the first plating layer 21 starting from powder as well as the catalyst.

また、粉末担持工程では、粉末粒径が1μm〜100μmの粉末30を担持させる。これによると、粉末担持工程において、潜熱蓄熱部材10に粉末を担持させ易いとともに、無電解めっき工程130において、第1めっき層21を安定して形成し易い。   In the powder supporting step, the powder 30 having a powder particle size of 1 μm to 100 μm is supported. According to this, in the powder carrying process, the latent heat storage member 10 can easily carry the powder, and in the electroless plating process 130, the first plating layer 21 can be formed stably.

また、無電解めっき工程130では、潜熱蓄熱部材10を上方から押さえ込んで、潜熱蓄熱部材10の全体をめっき液95の液面95aよりも下方に位置させる。これによると、粒状の潜熱蓄熱部材10の平均密度が無電解めっき工程130のめっき液95の密度よりも小さい場合であっても、潜熱蓄熱部材10の表面の全域に亘って第1めっき層21を安定して形成することができる。   In the electroless plating step 130, the latent heat storage member 10 is pressed from above, and the entire latent heat storage member 10 is positioned below the liquid level 95 a of the plating solution 95. According to this, even if the average density of the granular latent heat storage member 10 is smaller than the density of the plating solution 95 in the electroless plating step 130, the first plating layer 21 extends over the entire surface of the latent heat storage member 10. Can be formed stably.

また、電解めっき工程140では、表面に第1めっき層21が形成された潜熱蓄熱部材10を上方から押さえ込んで、第1めっき層21の全体をめっき液の液面よりも下方に位置させる。これによると、第1めっき層21を有する潜熱蓄熱部材10の平均密度が電解めっき工程140のめっき液の密度よりも小さい場合であっても、第1めっき層21の外表面の全域に亘って第2めっき層22を安定して形成することができる。   Moreover, in the electroplating process 140, the latent heat storage member 10 with the first plating layer 21 formed on the surface is pressed from above, and the entire first plating layer 21 is positioned below the liquid surface of the plating solution. According to this, even when the average density of the latent heat storage member 10 having the first plating layer 21 is smaller than the density of the plating solution in the electroplating step 140, it covers the entire outer surface of the first plating layer 21. The second plating layer 22 can be formed stably.

また、準備工程では、潜熱蓄熱部材10の液滴10Aを冷却液である冷却水91中に供給して外側から凝固させて、粒状の潜熱蓄熱部材10を形成する。これによると、粒状の潜熱蓄熱部材10を形成する際に、液相の潜熱蓄熱部材10を外側から順次凝固させることができる。したがって、内部に空洞11を有する粒状の潜熱蓄熱部材10を容易に形成することができる。   Further, in the preparation step, the droplet 10A of the latent heat storage member 10 is supplied into the cooling water 91 that is a cooling liquid and solidified from the outside to form the granular latent heat storage member 10. According to this, when forming the granular latent heat storage member 10, the liquid phase latent heat storage member 10 can be sequentially solidified from the outside. Therefore, the granular latent heat storage member 10 having the cavity 11 inside can be easily formed.

(他の実施形態)
この明細書に開示される技術は、その開示技術を実施するための実施形態に何ら制限されることなく、種々変形して実施することが可能である。開示される技術は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。実施形態は追加的な部分をもつことができる。実施形態の部分は、省略される場合がある。実施形態の部分は、他の実施形態の部分と置き換え、または組み合わせることも可能である。実施形態の構造、作用、効果は、あくまで例示である。開示技術の技術的範囲は、実施形態の記載に限定されない。開示技術のいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
(Other embodiments)
The technology disclosed in this specification is not limited to the embodiment for carrying out the disclosed technology, and can be implemented with various modifications. The disclosed technology is not limited to the combinations shown in the embodiments, and can be implemented in various combinations. Embodiments can have additional parts. The portion of the embodiment may be omitted. The parts of the embodiments can be replaced or combined with the parts of the other embodiments. The structure, operation, and effect of the embodiment are merely examples. The technical scope of the disclosed technology is not limited to the description of the embodiments. Some technical scope of the disclosed technology is indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims. .

上記実施形態では、潜熱蓄熱部材10を構成する有機化合物は、ノルマルパラフィンであったが、これに限定されるものではない。例えばイソパラフィンであってもよいし、他の有機化合物であってもよい。産業界等で廃棄されている比較的低温の廃熱、例えば40℃〜200℃の廃熱に対応して、廃熱温度に対応する相転移温度を有する有機化合物を採用することができる。   In the said embodiment, although the organic compound which comprises the latent heat storage member 10 was normal paraffin, it is not limited to this. For example, it may be isoparaffin or other organic compound. An organic compound having a phase transition temperature corresponding to the waste heat temperature can be employed in response to a relatively low temperature waste heat discarded in the industry, for example, 40 to 200 ° C. waste heat.

また、上記実施形態では、金属皮膜20を構成する金属として、熱伝導性に優れ比較的安価なCuを採用した例について説明したが、金属皮膜20を構成する金属はCuに限定されるものではない。金属皮膜を構成する金属として、自己触媒的無電解反応を起こすことが可能な金属、例えば、Cu、Ni、Co、Au、Ag、Pd、Rh、Pt、In、Snのいずれかを採用することができる。上記した金属のうち、熱伝導性の観点から、Cu、Au、Agのいずれかが好ましい。また、Cu、Au、Agのうち、上記実施形態で説明した比較的安価なCuが最も好ましい。   Moreover, although the said embodiment demonstrated the example which employ | adopted comparatively cheap Cu excellent in heat conductivity as a metal which comprises the metal film 20, the metal which comprises the metal film 20 is not limited to Cu. Absent. As a metal constituting the metal film, a metal capable of causing an autocatalytic electroless reaction, for example, any one of Cu, Ni, Co, Au, Ag, Pd, Rh, Pt, In, Sn is adopted. Can do. Of the metals described above, Cu, Au, or Ag is preferable from the viewpoint of thermal conductivity. Of Cu, Au, and Ag, the relatively inexpensive Cu described in the above embodiment is most preferable.

なお、金属の種類に係らず、金属皮膜の平均厚さtは、以下の式(1)を満たすことが好ましい。   Regardless of the type of metal, the average thickness t of the metal film preferably satisfies the following formula (1).

2E/(3(1−v))(1/2)(t/R)<101.3kPa ・・・(1)
ここで、Eは金属皮膜のヤング率、vは金属皮膜のポアソン比、Rは金属皮膜の半径である。
2E / (3 (1-v 2 )) (1/2) (t / R) 2 <101.3 kPa (1)
Here, E is the Young's modulus of the metal film, v is the Poisson's ratio of the metal film, and R is the radius of the metal film.

また、上記実施形態では、粉末30は、銅粉末及び酸化銅粉末の少なくともいずれかであったが、これに限定されるものではない。粉末30は、第1めっき層21の析出起点となるものであればよい。したがって、第1めっき層21を構成する金属と同一の金属、及び、同一の金属の酸化物の少なくともいずれかからなるものであることが好ましい。   Moreover, in the said embodiment, although the powder 30 was at least any one of the copper powder and the copper oxide powder, it is not limited to this. The powder 30 only needs to be a deposition starting point of the first plating layer 21. Therefore, it is preferable that the first plating layer 21 is made of at least one of the same metal and the same metal oxide.

また、上記実施形態では、粉末30の形状は多面体形状であったが、これに限定されるものではない。粉末の形状は、例えば球形状であってもよい。また、粉末の形状は、例えば不定形状であってもよい。   Moreover, in the said embodiment, although the shape of the powder 30 was a polyhedron shape, it is not limited to this. The shape of the powder may be, for example, a spherical shape. Further, the shape of the powder may be an indefinite shape, for example.

また、上記実施形態では、無電解めっき工程130内のめっき前の触媒処理法として、パラジウム−スズ混合コロイドのスズを除去して金属パラジウムを露出させるキャタリスト−アクセレータ法を採用していたが、これに限定されるものではない。例えば、センシタイザ−アクチベータ法を採用してもよい。また、例えば、アルカリイオンキャタリスト法を採用してもかまわない。   In the above embodiment, the catalyst treatment method before plating in the electroless plating step 130 is the catalyst-accelerator method in which the palladium in the palladium-tin mixed colloid is removed to expose the metallic palladium. It is not limited to this. For example, a sensitizer-activator method may be employed. Further, for example, an alkali ion catalyst method may be adopted.

また、上記実施形態では、粉末塗布工程120の後に、無電解めっき工程130の触媒付与工程131を行なっていたが、これに限定されるものではない。例えば、潜熱蓄熱部材10への触媒付与をした後に粉末担持を行なうものであってもよい。無電解めっきを行なう際に、粉末及びめっき触媒の両者をめっき金属の析出起点とするものであればよい。   Moreover, in the said embodiment, although the catalyst provision process 131 of the electroless-plating process 130 was performed after the powder application | coating process 120, it is not limited to this. For example, the powder may be carried after the catalyst is applied to the latent heat storage member 10. What is necessary is just to use both the powder and the plating catalyst as the deposition starting point of the plating metal when performing electroless plating.

また、上記実施形態では、無電解銅めっき工程135及び電解銅めっき工程143において、メッシュ袋を用いて潜熱蓄熱部材10の全体をめっき液の液面よりも下方に位置させていたが、これに限定されるものではない。メッシュ袋以外の押さえ込み部材を用いて、液面よりも下方に潜熱蓄熱部材を押さえ込んでもよい。また、無電解銅めっき工程135及び電解銅めっき工程143以外の工程においても、押さえ込み部材を用いてもかまわない。   In the above embodiment, in the electroless copper plating step 135 and the electrolytic copper plating step 143, the entire latent heat storage member 10 is positioned below the liquid surface of the plating solution using a mesh bag. It is not limited. The latent heat storage member may be pressed below the liquid level using a pressing member other than the mesh bag. Further, the pressing member may be used in steps other than the electroless copper plating step 135 and the electrolytic copper plating step 143.

また、上記実施形態では、潜熱蓄熱体1は、車両に搭載された内燃機関の冷却水との間で熱の授受を行なうものであったが、これに限定されるものではない。例えば、産業界で用いられる他の熱輸送媒体との間で熱の授受を行なうものであってもよい。産業界で廃棄されている比較的低温の廃熱、例えば40℃〜200℃の廃熱を利用する際に、開示技術を広く適用して有効である。   Moreover, in the said embodiment, although the latent heat storage body 1 gave and received heat between the cooling water of the internal combustion engine mounted in the vehicle, it is not limited to this. For example, heat may be exchanged with other heat transport media used in the industry. When utilizing relatively low-temperature waste heat discarded in the industry, for example, waste heat of 40 ° C. to 200 ° C., the disclosed technology is widely applied and effective.

1 潜熱蓄熱体
10 潜熱蓄熱部材
20 金属皮膜(シームレスカプセル)
21 第1めっき層
22 第2めっき層
30 粉末
110 粒状体作製工程(準備工程)
120 粉末塗布工程(粉末担持工程)
130 無電解めっき工程
140 電解めっき工程
1 Latent heat storage body 10 Latent heat storage member 20 Metal film (seamless capsule)
21 1st plating layer 22 2nd plating layer 30 Powder 110 Granule preparation process (preparation process)
120 Powder application process (powder carrying process)
130 Electroless plating process 140 Electrolytic plating process

Claims (15)

有機化合物で構成される潜熱蓄熱部材(10)と、
前記潜熱蓄熱部材を内部に封入する金属製のシームレスカプセル(20)と、
を備える潜熱蓄熱体。
A latent heat storage member (10) composed of an organic compound;
A metal seamless capsule (20) enclosing the latent heat storage member therein;
A latent heat storage body comprising
前記シームレスカプセルは、外径が1mm〜10mmである請求項1に記載の潜熱蓄熱体。   The latent heat storage body according to claim 1, wherein the seamless capsule has an outer diameter of 1 mm to 10 mm. 前記有機化合物は、融点が40℃〜90℃である請求項1又は請求項2に記載の潜熱蓄熱体。   The latent heat storage body according to claim 1 or 2, wherein the organic compound has a melting point of 40C to 90C. 前記有機化合物は、炭素数が21〜46のノルマルパラフィンである請求項1又は請求項2に記載の潜熱蓄熱体。   The latent heat storage body according to claim 1, wherein the organic compound is a normal paraffin having 21 to 46 carbon atoms. 前記潜熱蓄熱部材が固相状態であるときには、前記潜熱蓄熱部材が前記シームレスカプセルの内方領域の一部を占めており、前記内方領域の残部に空洞(11)が形成されている請求項1から請求項4のいずれか一項に記載の潜熱蓄熱体。   The latent heat storage member occupies a part of the inner region of the seamless capsule when the latent heat storage member is in a solid state, and a cavity (11) is formed in the remaining portion of the inner region. The latent heat storage body according to any one of claims 1 to 4. 前記空洞の体積は、前記潜熱蓄熱部材が液相状態であるときの体積と固相状態であるときの体積との体積差以上である請求項5に記載の潜熱蓄熱体。   The latent heat storage body according to claim 5, wherein the volume of the cavity is equal to or larger than a volume difference between a volume when the latent heat storage member is in a liquid phase and a volume when the latent heat storage member is in a solid phase. 前記シームレスカプセルは、銅製である請求項1から請求項6のいずれか一項に記載の潜熱蓄熱体。   The latent heat storage body according to any one of claims 1 to 6, wherein the seamless capsule is made of copper. 前記シームレスカプセルは、その平均厚さが、外径の0.7%〜10%である請求項7に記載の潜熱蓄熱体。   The latent heat storage body according to claim 7, wherein the seamless capsule has an average thickness of 0.7% to 10% of an outer diameter. 前記シームレスカプセルは、その厚さのばらつきが、前記平均厚さに対し±30%以内である請求項8に記載の潜熱蓄熱体。   The latent heat storage body according to claim 8, wherein the seamless capsule has a thickness variation within ± 30% of the average thickness. 有機化合物で構成される粒状の潜熱蓄熱部材(10)を準備する準備工程(110)と、
前記準備工程で準備した前記潜熱蓄熱部材の表面に金属又は金属酸化物の粉末(30)を押し付けて、前記潜熱蓄熱部材に前記粉末を担持させる粉末担持工程(120)と、
前記潜熱蓄熱部材の表面にめっき触媒を付与し、前記粉末及び前記めっき触媒を析出起点として、無電解めっき法によって前記潜熱蓄熱部材の表面に第1めっき層(21)を形成する無電解めっき工程(130)と、
前記無電解めっき工程の後に、電解めっき法によって前記第1めっき層の表面に第2めっき層(22)を形成する電解めっき工程(140)と、を備え、
前記第1めっき層及び前記第2めっき層を有する金属製のシームレスカプセル(20)の内部に前記潜熱蓄熱部材が封入された潜熱蓄熱体の製造方法。
A preparation step (110) for preparing a granular latent heat storage member (10) composed of an organic compound;
A powder supporting step (120) of pressing the powder of metal or metal oxide (30) on the surface of the latent heat storage member prepared in the preparation step, and supporting the powder on the latent heat storage member;
An electroless plating process in which a plating catalyst is applied to the surface of the latent heat storage member, and the first plating layer (21) is formed on the surface of the latent heat storage member by an electroless plating method using the powder and the plating catalyst as a deposition starting point. (130),
An electroplating step (140) for forming a second plating layer (22) on the surface of the first plating layer by an electroplating method after the electroless plating step;
A method for producing a latent heat storage body in which the latent heat storage member is enclosed in a metal seamless capsule (20) having the first plating layer and the second plating layer.
前記粉末担持工程では、前記第1めっき層を形成する金属と同一金属の前記粉末及び同一金属の酸化物の前記粉末の少なくともいずれかを担持させる請求項10に記載の潜熱蓄熱体の製造方法。   The method for producing a latent heat storage body according to claim 10, wherein in the powder supporting step, at least one of the powder of the same metal as the metal forming the first plating layer and the powder of an oxide of the same metal is supported. 前記粉末担持工程では、粉末粒径が1μm〜100μmの前記粉末を担持させる請求項11に記載の潜熱蓄熱体の製造方法。   The method for producing a latent heat storage body according to claim 11, wherein in the powder supporting step, the powder having a powder particle diameter of 1 μm to 100 μm is supported. 前記無電解めっき工程では、前記潜熱蓄熱部材を上方から押さえ込んで、前記潜熱蓄熱部材の全体をめっき液(95)の液面(95a)よりも下方に位置させる請求項10から請求項12のいずれか一項に記載の潜熱蓄熱体の製造方法。   The said electroless-plating process WHEREIN: The said latent heat storage member is pressed down from upper direction, and the whole of the said latent heat storage member is located below the liquid level (95a) of a plating solution (95). A method for producing a latent heat storage body according to claim 1. 前記電解めっき工程では、表面に前記第1めっき層が形成された前記潜熱蓄熱部材を上方から押さえ込んで、前記第1めっき層の全体をめっき液の液面よりも下方に位置させる請求項13に記載の潜熱蓄熱体の製造方法。   In the electrolytic plating step, the latent heat storage member having the first plating layer formed on the surface thereof is pressed from above, and the entire first plating layer is positioned below the liquid surface of the plating solution. The manufacturing method of the latent heat storage body of description. 前記準備工程では、前記潜熱蓄熱部材の液滴(10A)を冷却液(91)中に供給して外側から凝固させて、前記粒状の前記潜熱蓄熱部材を形成する請求項10から請求項14のいずれか一項に記載の潜熱蓄熱体の製造方法。   15. In the preparation step, droplets (10A) of the latent heat storage member are supplied into a cooling liquid (91) and solidified from outside to form the granular latent heat storage member. The manufacturing method of the latent-heat storage body as described in any one of Claims.
JP2016215745A 2016-11-03 2016-11-03 Method for manufacturing latent heat storage body Expired - Fee Related JP6705365B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016215745A JP6705365B2 (en) 2016-11-03 2016-11-03 Method for manufacturing latent heat storage body
US15/800,270 US20180120036A1 (en) 2016-11-03 2017-11-01 Latent heat storage material and method for manufacturing the same
DE102017125583.4A DE102017125583A1 (en) 2016-11-03 2017-11-02 Storage material for latent heat and process for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215745A JP6705365B2 (en) 2016-11-03 2016-11-03 Method for manufacturing latent heat storage body

Publications (2)

Publication Number Publication Date
JP2018071939A true JP2018071939A (en) 2018-05-10
JP6705365B2 JP6705365B2 (en) 2020-06-03

Family

ID=61912620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215745A Expired - Fee Related JP6705365B2 (en) 2016-11-03 2016-11-03 Method for manufacturing latent heat storage body

Country Status (3)

Country Link
US (1) US20180120036A1 (en)
JP (1) JP6705365B2 (en)
DE (1) DE102017125583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645260A (en) * 2018-05-14 2018-10-12 中山大学 A method of it realizing the contained structure of the phase-changing energy storage material of low degree of supercooling and prepares the structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054839B2 (en) * 2018-07-24 2022-04-15 パナソニックIpマネジメント株式会社 Fluid heaters, prime movers, mobiles, and hydraulic systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442380A (en) * 1978-08-15 1979-04-04 Matsushita Electric Works Ltd Regenerative capsule
JP2000313963A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Plating method for resin
JP2003129247A (en) * 2001-10-22 2003-05-08 Sekisui Chem Co Ltd Method for forming conductive film and conductive circuit pattern on resin surface
JP2003329383A (en) * 2002-05-09 2003-11-19 Mitsubishi Chemical Engineering Corp Heat accumulating capsule, heat accumulator and heat accumulating tank
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same
JP2014185242A (en) * 2013-03-22 2014-10-02 Daiwa House Industry Co Ltd Heat storage material for soil modification and contaminated soil modification method using the heat storage material for soil modification
US20150284616A1 (en) * 2012-12-18 2015-10-08 University Of South Florida Encapsulation of Thermal Energy Storage Media

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513053A (en) * 1983-06-13 1985-04-23 Pennwalt Corporation Encapsulated phase change thermal energy storage materials and process
US6317321B1 (en) * 1994-11-04 2001-11-13 Compaq Computer Corporation Lap-top enclosure having surface coated with heat-absorbing phase-change material
US6251970B1 (en) * 1996-10-25 2001-06-26 Northrop Grumman Corporation Heat absorbing surface coating
JPH1123172A (en) 1997-06-30 1999-01-26 Kedeika:Kk Latent heat storage capsule
US20090076575A1 (en) * 2002-10-18 2009-03-19 Noel Thomas P Method and thermally active multi-phase heat transfer apparatus and method for abstracting heat from hemorrhoids
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
US7544416B2 (en) * 2005-08-05 2009-06-09 The United States Of America As Represented By The Secretary Of The Navy Thermally reflective encapsulated phase change pigment
US10059865B2 (en) * 2014-12-11 2018-08-28 Henry Company, Llc Phase-change materials from wax-based colloidal dispersions and their process of making

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442380A (en) * 1978-08-15 1979-04-04 Matsushita Electric Works Ltd Regenerative capsule
JP2000313963A (en) * 1999-04-28 2000-11-14 Sumitomo Metal Ind Ltd Plating method for resin
JP2003129247A (en) * 2001-10-22 2003-05-08 Sekisui Chem Co Ltd Method for forming conductive film and conductive circuit pattern on resin surface
JP2003329383A (en) * 2002-05-09 2003-11-19 Mitsubishi Chemical Engineering Corp Heat accumulating capsule, heat accumulator and heat accumulating tank
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same
US20150284616A1 (en) * 2012-12-18 2015-10-08 University Of South Florida Encapsulation of Thermal Energy Storage Media
JP2014185242A (en) * 2013-03-22 2014-10-02 Daiwa House Industry Co Ltd Heat storage material for soil modification and contaminated soil modification method using the heat storage material for soil modification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645260A (en) * 2018-05-14 2018-10-12 中山大学 A method of it realizing the contained structure of the phase-changing energy storage material of low degree of supercooling and prepares the structure

Also Published As

Publication number Publication date
DE102017125583A1 (en) 2018-05-03
US20180120036A1 (en) 2018-05-03
JP6705365B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5227084B2 (en) Granulated heat storage material and manufacturing method thereof
US11732171B2 (en) Encapsulation of thermal energy storage media
US10618808B2 (en) Catalyst support, recycle reactor and method for releasing hydrogen
CN104140786B (en) Composite phase-change thermal storage material
JP5180171B2 (en) Phase change materials encapsulated in natural microtubules and their preparation
CN101343532B (en) Method for preparing carbon nano-tube composite heat interfacial material
JP2018071939A (en) Latent heat storage body and manufacturing method of latent heat storage body
CN108251063B (en) High-performance composite phase-change material and preparation method thereof
JP6556197B2 (en) Metal particles
Muñoz-Sánchez et al. Encapsulated high temperature PCM as active filler material in a thermocline-based thermal storage system
US9136200B2 (en) Heat radiating component and method of producing same
JP2012136979A (en) Method of manufacturing engine valve containing metallic sodium, and metallic sodium supply system
Lei et al. Supercooling suppression of metal-based microencapsulated phase change material (MEPCM) for thermal energy storage
CN106102333B (en) A kind of compliant conductive circuit room temperature welding method
JP2009268647A (en) Method for sealing vacuum structure
JP6182140B2 (en) Porous body manufacturing method, porous body, and structure
JP2011058764A (en) Heat storage material and heat accumulator
JP4716269B2 (en) Vacuum structure sealing method
JP2006017436A (en) Thermal storage system
JPH1123172A (en) Latent heat storage capsule
EP3965537B1 (en) Crash protected memory unit
US20200321265A1 (en) Heat sink incorporating microencapsulated phase-change material
JPH10194701A (en) Absorption and release of hydrogen and vessel for storing hydrogen
Ki et al. Sustainable Thermal Regulation of Electronics via Mitigated Supercooling of Porous Gallium‐Based Phase Change Materials
US20220252305A1 (en) Heat-generating material, and heat-generating system and method of supplying heat using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6705365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees