JP2018071581A - Slide device - Google Patents

Slide device Download PDF

Info

Publication number
JP2018071581A
JP2018071581A JP2016208917A JP2016208917A JP2018071581A JP 2018071581 A JP2018071581 A JP 2018071581A JP 2016208917 A JP2016208917 A JP 2016208917A JP 2016208917 A JP2016208917 A JP 2016208917A JP 2018071581 A JP2018071581 A JP 2018071581A
Authority
JP
Japan
Prior art keywords
graphite particles
sliding
particles
volume
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208917A
Other languages
Japanese (ja)
Other versions
JP6704832B2 (en
Inventor
貴文 山内
Takafumi Yamauchi
貴文 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2016208917A priority Critical patent/JP6704832B2/en
Publication of JP2018071581A publication Critical patent/JP2018071581A/en
Application granted granted Critical
Publication of JP6704832B2 publication Critical patent/JP6704832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide device in which a shaft member having a slide surface made of resin composition and a slide member having a slide surface made of resin composition are combined to each other that shows a superior abrasion resistance at a slide layer even under non-lubrication condition and shows a fast stable state in its slide performance.SOLUTION: A shaft member has hard particles of 5 to 50 vol.% dispersed in synthetic resin, a slide member includes a rear alloy layer and a slide layer, a slide layer has graphite particles of 5 to 50 vol.% and PTFE particles of 0.2 vol.% to 1 vol.% or less dispersed in the synthetic resin. Graphite particles are composed of long spheroidal graphite particles and scaly graphite particles, a volumetric rate of the scaly graphite particles in respect to the entire graphite particles is 10 to 40 vol.%. A cross section texture of long spheroidal graphite particles shows that several AB planes of graphite crystals are laminated in a curved line shape along a round shape of the particle surfaces from the particle surface toward the central direction and the scaly graphite particles show that several AB planes are laminated in a thickness direction of thin plate shape. Average particle diameter of the long spheroidal graphite particles is 3 to 50 μm, average particle diameter of the scaly graphite particles is 1 to 25 μm and average particle diameter of PTTFE particles is 1 to 25 μm, respectively.SELECTED DRAWING: Figure 2

Description

本発明は、摺動装置に関するものであり、詳細には、合成樹脂製の軸部材と、裏金層上に合成樹脂および黒鉛からなる摺動層を備え、軸部材を支承する摺動部材とを有する摺動装置に係るものである。   The present invention relates to a sliding device. Specifically, a shaft member made of synthetic resin, and a sliding member that includes a sliding layer made of synthetic resin and graphite on a back metal layer and supports the shaft member. The present invention relates to a sliding device.

互いに摺動接触する摺動面がともに樹脂組成物である二つの摺動部材を組合わせた構造の摺動装置が用いられている。二つの摺動部材のうち、一方は、回転動作、あるいは、往復動作を行う軸部材であり、他方は、この軸部材を支承する摺動層を有する摺動部材である。軸部材としては、強度を高めるために、合成樹脂にカーボン繊維、ガラス繊維、金属粒子、セラミックス粒子等の硬質粒子を含有させたものが、従来より知られている(特許文献1、特許文献2参照)。   A sliding device having a structure in which two sliding members whose sliding surfaces that are in sliding contact with each other are resin compositions is combined is used. Of the two sliding members, one is a shaft member that performs a rotating operation or a reciprocating operation, and the other is a sliding member having a sliding layer that supports the shaft member. As the shaft member, one in which hard particles such as carbon fiber, glass fiber, metal particle, ceramic particle and the like are contained in a synthetic resin in order to increase the strength is conventionally known (Patent Document 1, Patent Document 2). reference).

他方、摺動部材としては、合成樹脂に固体潤滑剤として鱗片状の黒鉛を添加した樹脂組成物を有するものが、従来より用いられている(特許文献3)。天然黒鉛は、一般的に、その性状によって、鱗片状黒鉛、鱗状黒鉛、土壌黒鉛に分けられる。黒鉛化度は、鱗状黒鉛が100%と最も高く、次いで鱗片状黒鉛の99.9%であり、土壌黒鉛は28%と低い。従来、摺動部材用の固体潤滑剤としての黒鉛は、黒鉛化度が高い鱗状黒鉛または鱗片状黒鉛の天然黒鉛を機械的に粉砕した鱗片状粒子が用いられてきた。   On the other hand, as a sliding member, what has the resin composition which added scaly graphite as a solid lubricant to a synthetic resin is used conventionally (patent document 3). Natural graphite is generally classified into scaly graphite, scaly graphite, and soil graphite depending on its properties. The degree of graphitization is the highest at 100% for scaly graphite, then 99.9% for scaly graphite, and 28% for soil graphite. Conventionally, as a solid lubricant for a sliding member, scaly graphite having a high degree of graphitization or scaly particles obtained by mechanically grinding natural graphite of scaly graphite has been used.

この鱗片形状の黒鉛は、炭素原子が規則正しく網目構造を形成して平面状に広がるAB面(六角網面平面、ベーサル面)が多数積層し、AB面に垂直なC軸方向に厚みを有する結晶である。積層したAB面相互間のファンデルワールス力による結合力がAB面の面内方向の結合力に比べてはるかに小さいため、AB面間でせん断が起きやすい。そのため、この黒鉛は、AB面の広がりに対して積層の厚みが薄いため、全体としては薄板状を呈している。なお、鱗片状黒鉛粒子は、外力を受けた場合にAB面間のせん断が起こることにより固体潤滑剤として機能すると考えられている。   This scaly graphite is a crystal in which carbon atoms regularly form a network structure and a large number of AB planes (hexagonal plane planes, basal planes) spread in a plane and have a thickness in the C-axis direction perpendicular to the AB plane. It is. Since the bonding force due to the van der Waals force between the laminated AB surfaces is much smaller than the bonding force in the in-plane direction of the AB surface, shearing is likely to occur between the AB surfaces. Therefore, this graphite has a thin plate shape as a whole because the thickness of the laminated layer is small with respect to the spread of the AB surface. In addition, it is thought that scaly graphite particles function as a solid lubricant by shearing between AB surfaces when receiving external force.

近年、鱗片状黒鉛粒子を含有する樹脂組成物を用いた摺動部材では、鱗片状黒鉛粒子の形状が薄板状であり脆いことに起因して、摺動面となる樹脂組成物の表面を機械加工した際に鱗片状黒鉛粒子が割れて脱落してしまい、摺動層の表面の粗さが悪くなり、その結果として耐焼付性が悪くなるという問題が生じている。この問題を解決するため、合成樹脂に球状化天然黒鉛粒子を含有させ、機械加工後の表面粗さを小さくできるとする摺動材料が、たとえば特許文献4に提案されている。
ここで、球状化黒鉛粒子は、天然の鱗片状黒鉛粒子を原材料とし、鱗片状黒鉛粒子に小さな負荷を繰り返し加えて、折り曲げることにより球状に造粒したものである(特許文献5、特許文献6参照)。
In recent years, in a sliding member using a resin composition containing scaly graphite particles, the surface of the resin composition serving as a sliding surface is machined because the shape of the scaly graphite particles is thin and brittle. When processed, the flaky graphite particles break and fall off, resulting in a problem that the surface roughness of the sliding layer is deteriorated, and as a result, seizure resistance is deteriorated. In order to solve this problem, for example, Patent Document 4 proposes a sliding material capable of containing spherical natural graphite particles in a synthetic resin and reducing the surface roughness after machining.
Here, the spheroidized graphite particles are obtained by using natural scale-like graphite particles as a raw material, repeatedly applying a small load to the scale-like graphite particles, and bending the particles into a spherical shape (Patent Documents 5 and 6). reference).

特開2001‐132757号公報JP 2001-132757 A 特開平5-179277号公報JP-A-5-179277 特開2005-89514号公報JP 2005-89514 A 国際公開第2012074107号International Publication No. 201204107 国際公開第2012/137770号International Publication No. 2012/137770 特開2008−24588号公報JP 2008-24588 A

互いに摺動する摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置は、摺動面間に油の供給がなされていない条件(以下、「無潤滑条件」という)で運転がなされる場合も多く、無潤滑条件では摺動部材の摺動面と軸部材の表面とが直接、接触した摺動が起こる。特許文献4のような天然黒鉛を球状化した黒鉛粒子を合成樹脂に含有させた樹脂組成物を用いた摺動部材は、無潤滑条件で硬質粒子を含有する樹脂組成物からなる軸部材を支承する摺動部に用いると、摺動部材の摺動層の表面に傷がつき、摩耗が起きやすくなり、さらに、摺動時に摺動面に露出する黒鉛粒子に割れが生じて摺動面からの脱落がおこり摺動層の摩耗量が多くなることが判明した。   A sliding device having a structure in which a sliding member that slides relative to each other is made of a resin composition and a sliding member has a structure in which oil is not supplied between the sliding surfaces (hereinafter referred to as “non-lubricated”). In many cases, the operation is performed under the “condition”, and the sliding surface of the sliding member and the surface of the shaft member are in direct contact with each other under the non-lubricated condition. A sliding member using a resin composition in which natural graphite spheroidized graphite particles are contained in a synthetic resin as in Patent Document 4 supports a shaft member made of a resin composition containing hard particles under non-lubricating conditions. When used in sliding parts, the surface of the sliding layer of the sliding member is scratched and wear easily occurs. It has been found that the amount of wear of the sliding layer increases as a result of falling off.

また、このような摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置では、通常、摺動が開始されてから摩擦係数が増加し始め、一定時間のうちに摩擦係数が一定値に安定する。ところが、特許文献3のよう鱗片状の黒鉛粒子を合成樹脂に含有させた樹脂層を用いた摺動部材では、摺動時に摺動面から鱗片状の黒鉛粒子が脱落し、樹脂組成物である軸部材の表面に移着することがあり、このように軸部材の表面に過度に鱗片状黒鉛粒子が移着した場合には、摺動が開始されてから摩擦係数が安定するまでの時間が通常よりも長くなる、すなわち摺動性能が安定しないことが判明した。   Also, in a sliding device having a structure in which a sliding member is a combination of a shaft member and a sliding member whose both sliding surfaces are resin compositions, the friction coefficient usually starts to increase after the sliding starts, for a certain period of time. Among them, the friction coefficient is stabilized at a constant value. However, in the sliding member using the resin layer in which the scaly graphite particles are contained in the synthetic resin as in Patent Document 3, the scaly graphite particles fall off from the sliding surface during sliding, and the resin composition. If the graphite particles are excessively transferred to the surface of the shaft member as described above, the time from the start of sliding until the coefficient of friction becomes stable It has been found that it becomes longer than usual, that is, the sliding performance is not stable.

したがって、本発明の目的は、摺動面がともに樹脂組成物である軸部材と摺動部材を組合わせた構造の摺動装置において、従来技術の上記欠点を克服して、無潤滑条件でも摺動部材の摺動層の耐摩耗性に優れ、摺動性能が早期に安定する摺動装置を提供することである。   Accordingly, an object of the present invention is to overcome the above-mentioned drawbacks of the prior art in a sliding device having a structure in which a shaft member and a sliding member whose sliding surfaces are both resin compositions are combined. It is an object of the present invention to provide a sliding device that is excellent in wear resistance of a sliding layer of a moving member and that has stable sliding performance at an early stage.

本発明の一観点によれば、5〜50体積%の硬質粒子が分散された合成樹脂からなる軸部材と、軸部材を支承(支持)する摺動部材とを備えた摺動装置が提供される。
この摺動部材は、裏金層と、この裏金層上に設けられた摺動層とを備え、この摺動層は、合成樹脂と、この合成樹脂に分散された黒鉛粒子とPTFE(ポリテトラフルオロエチレン)粒子からなる。この黒鉛粒子は、摺動層の5〜50体積%を占め、PTFE粒子は、摺動層の0.2体積%以上、1体積%未満を占める。黒鉛粒子は、長球状黒鉛粒子と、薄板形状の鱗片状黒鉛粒子とからなり、黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積の割合は10〜40%である。長球状黒鉛粒子の断面組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層している。鱗片状黒鉛粒子の断面組織は、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している。長球状黒鉛粒子の平均粒径は3〜50μmであり、鱗片状黒鉛粒子の平均粒径は1〜25μmである。PTFE粒子の平均粒径は1〜25μmである。
According to one aspect of the present invention, there is provided a sliding device including a shaft member made of a synthetic resin in which 5 to 50% by volume of hard particles are dispersed, and a sliding member that supports (supports) the shaft member. The
The sliding member includes a backing metal layer and a sliding layer provided on the backing metal layer. The sliding layer comprises a synthetic resin, graphite particles dispersed in the synthetic resin, and PTFE (polytetrafluorocarbon). Ethylene) particles. The graphite particles occupy 5 to 50% by volume of the sliding layer, and the PTFE particles occupy 0.2% by volume or more and less than 1% by volume of the sliding layer. The graphite particles are composed of long spherical graphite particles and thin scaly graphite particles, and the ratio of the volume of the scaly graphite particles to the total volume of the graphite particles is 10 to 40%. As for the cross-sectional structure of the long spherical graphite particles, a plurality of AB planes of the graphite crystal are laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. As for the cross-sectional structure of the scaly graphite particles, the AB surface of the graphite crystal is laminated in the thickness direction of the thin plate shape (C-axis direction perpendicular to the AB surface of the graphite crystal). The average particle diameter of the long spherical graphite particles is 3 to 50 μm, and the average particle diameter of the scaly graphite particles is 1 to 25 μm. The average particle diameter of the PTFE particles is 1 to 25 μm.

本発明の摺動装置は、主に、摺動部材の摺動層中に分散する長球状黒鉛粒子が潤滑成分として作用する。
摺動層中に分散する長球状黒鉛粒子の断面(内部)組織は、黒鉛結晶のAB面(六角網面平面)が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しているために、摺動層の摺動面に露出する長球状黒鉛粒子の表面は、黒鉛結晶のAB面で構成されることとなる。
上記の通り、黒鉛結晶は、AB面が多数積層し、AB面に垂直方向であるC軸方向に厚みを有する結晶であり、積層したAB面相互間の結合力(ファンデルワールス力)は、AB面の面内方向の結合力に比べてはるかに小さいため、AB面間でせん断が起きやすい。摺動面に黒鉛結晶のAB面からなる面が露出した場合、摺動面では軸部材の表面に対してAB面が接触するので、軸部材からの負荷が小さい場合でも、AB面間でせん断が容易に起こり、その結果、摺動面と軸部材の表面との摩擦力が小さくなり、摺動層の摩耗量が少なくなる。
In the sliding device of the present invention, the oblong graphite particles dispersed in the sliding layer of the sliding member mainly act as a lubricating component.
The cross-sectional (internal) structure of the oblong graphite particles dispersed in the sliding layer has a plurality of curved shapes along the roundness of the particle surface with the AB surface (hexagonal network surface plane) of the graphite crystal from the particle surface toward the center. Because of the lamination, the surface of the oblong graphite particles exposed on the sliding surface of the sliding layer is composed of the AB surface of graphite crystals.
As described above, the graphite crystal is a crystal in which a large number of AB planes are laminated and has a thickness in the C-axis direction perpendicular to the AB plane, and the bonding force (van der Waals force) between the laminated AB planes is: Since the bonding force in the in-plane direction of the AB surface is much smaller, shearing is likely to occur between the AB surfaces. When the surface consisting of the AB surface of the graphite crystal is exposed on the sliding surface, the AB surface contacts the surface of the shaft member on the sliding surface, so even if the load from the shaft member is small, shearing is performed between the AB surfaces. As a result, the frictional force between the sliding surface and the surface of the shaft member is reduced, and the wear amount of the sliding layer is reduced.

また、本発明の摺動装置の摺動部材は、主に、摺動部材の摺動層中に分散する鱗片状黒鉛粒子の作用により、摺動部材の表面に傷が発生することが防がれる。   Further, the sliding member of the sliding device of the present invention can prevent the surface of the sliding member from being scratched mainly by the action of the scaly graphite particles dispersed in the sliding layer of the sliding member. It is.

軸部材との摺動により、摺動部材の摺動面に露出する鱗片状黒鉛粒子は、摺動面から摩耗し脱落するが、鱗片状黒鉛粒子は、厚みが薄いので、摺動面と軸部材の表面との間の隙間に侵入する。隙間に侵入した鱗片状黒鉛粒子は、鱗片状黒鉛粒子の平板面(AB面)が、軸部材の表面に対して平行となるように軸部材に移着する。移着した鱗片状黒鉛粒子は、軸部材の表面に対して、僅かに摺動部材の摺動面側に突出する。このような移着部が、軸部材の表面に多数形成される。軸部材の表面の鱗片状黒鉛粒子の移着部が、摺動部材の摺動面と接するので、本来の軸部材の表面に露出する硬質粒子が摺動部材の摺動面に露出する長球状黒鉛粒子と直接接触することが防がれるか、または、接触する頻度が緩和される。この結果、摺動部材の摺動面に傷が発生することが抑制される。   The scaly graphite particles exposed to the sliding surface of the sliding member due to sliding with the shaft member wear away from the sliding surface and fall off, but the scaly graphite particles are thin, so the sliding surface and shaft It penetrates into the gap between the surface of the member. The scaly graphite particles that have entered the gap are transferred to the shaft member such that the flat plate surface (AB surface) of the scaly graphite particles is parallel to the surface of the shaft member. The transferred scaly graphite particles slightly protrude toward the sliding surface of the sliding member with respect to the surface of the shaft member. Many such transfer parts are formed on the surface of the shaft member. Since the transfer part of the scaly graphite particles on the surface of the shaft member is in contact with the sliding surface of the sliding member, the hard particles exposed on the surface of the original shaft member are exposed on the sliding surface of the sliding member. Direct contact with the graphite particles is prevented or the frequency of contact is reduced. As a result, the occurrence of scratches on the sliding surface of the sliding member is suppressed.

合成樹脂と球状黒鉛粒子とからなる摺動層を有する従来の摺動部材を用いた摺動装置では、摺動部材の摩耗が起こりやすい。これは、軸部材の表面に露出する硬質粒子と摺動部材の摺動面とが、直接、接触した状態で摺動するので摺動部材の摺動面に傷がつき、摺動層の摩耗が起きやすくなるからである。   In a sliding device using a conventional sliding member having a sliding layer made of synthetic resin and spherical graphite particles, the sliding member is likely to be worn. This is because the hard particles exposed on the surface of the shaft member and the sliding surface of the sliding member slide in direct contact with each other, so that the sliding surface of the sliding member is damaged and the sliding layer wears. It is because it becomes easy to occur.

長球状黒鉛粒子の平均粒径は3〜50μmとすることが好ましい。摺動面に露出する長球状黒鉛粒子は、軸部材の表面からの負荷を支えるが、平均粒径が3μm未満であると、摺動時に、摺動面に露出する長球状黒鉛粒子の一部が摺動面から脱落しやすくなり、摺動層が負荷を支える能力が低下することがある。長球状黒鉛粒子の平均粒径が50μmを超えると、摺動層の表面に傷が発生する場合がある。   The average particle size of the long spherical graphite particles is preferably 3 to 50 μm. The oval graphite particles exposed on the sliding surface support the load from the surface of the shaft member, but if the average particle size is less than 3 μm, a part of the oval graphite particles exposed on the sliding surface when sliding May easily fall off the sliding surface, and the ability of the sliding layer to support the load may be reduced. If the average particle diameter of the long spherical graphite particles exceeds 50 μm, scratches may occur on the surface of the sliding layer.

鱗片状黒鉛粒子の平均粒径は、1〜25μmとすることが好ましい。鱗片状黒鉛粒子の平均粒径が1μm未満であると、摺動層中に鱗片状黒鉛粒子どうしの凝集部が形成されやすく、摺動層の強度が低下する場合がある。鱗片状黒鉛粒子の平均粒径が25μmを超えると、摺動時に摺動層に加わる負荷により摺動層中の鱗片状黒鉛粒子にせん断が起こり、摺動層の強度が小さくなる場合がある。   The average particle size of the scaly graphite particles is preferably 1 to 25 μm. When the average particle size of the flaky graphite particles is less than 1 μm, aggregated portions of the flaky graphite particles are easily formed in the sliding layer, and the strength of the sliding layer may be reduced. If the average particle size of the scaly graphite particles exceeds 25 μm, the scaly graphite particles in the sliding layer may be sheared by a load applied to the sliding layer during sliding, and the strength of the sliding layer may be reduced.

上記のとおり軸部材との摺動により、摺動部材の摺動面に露出する鱗片状黒鉛粒子は、軸部材の表面に移着するが、軸部材の表面に過度に鱗片状黒鉛粒子が移着した場合には、摺動が開始されてから摩擦係数が安定するまでの時間が長くなる、すなわち、摩擦係数が増加し始めて一定になるまでの時間が長くなることが判明した。   As described above, the scaly graphite particles exposed on the sliding surface of the sliding member are transferred to the surface of the shaft member by sliding with the shaft member, but the scaly graphite particles are excessively transferred to the surface of the shaft member. When worn, it has been found that the time from the start of sliding to the stabilization of the friction coefficient becomes longer, that is, the time until the friction coefficient starts to increase and becomes constant becomes longer.

本発明の摺動部材の摺動層は、PTFE粒子を、摺動層の体積に対して0.2体積%以上1体積%未満を含むことで、軸部材の表面への鱗片状黒鉛粒子の過度な移着が防がれる。軸部材に鱗片状黒鉛粒子の移着部が過度に形成されると、摺動時に加わる負荷により移着した鱗片状黒鉛がせん断されて脱落が起きやすくなり、軸部材の表面への鱗片状黒鉛粒子の移着部の形成と脱落が繰り返されることにより摩擦係数が安定し難くなる。
本発明では、PTFEは相手材への粘着性が大きいため、摺動開始時に摺動層に加わる負荷によって、摺動層の表面に露出するPTFE粒子の摩耗粉がまず最初に軸部材に移着し始め、移着膜を形成する。その後、徐々に鱗片状黒鉛粒子が軸部材に移着するが、摺動初期に一定のPTFEの移着膜が軸部材にすでに形成されるために、鱗片状黒鉛粒子の軸部材への過度な移着が抑制されて、それにより短い時間で摩擦係数が安定すると考えられる。摺動層に含まれるPTFE粒子が0.2体積%未満であると、摺動初期の軸部材表面へのPTFEの移着膜の形成が不十分となり、鱗片状黒鉛粒子の軸部材への移着が抑制され難く摩擦係数が安定するまでの時間が長くなる場合がある。他方、摺動層に含まれるPTFE粒子が1体積%以上であると、摺動初期に過度のPTFE粒子の移着膜が形成されることで、摩擦係数が下がり続けて安定するまでの時間が長くなる場合がある。
The sliding layer of the sliding member of the present invention contains PTFE particles in an amount of 0.2% by volume or more and less than 1% by volume with respect to the volume of the sliding layer. Excessive transfer is prevented. If the transfer part of the scaly graphite particles is excessively formed on the shaft member, the scaly graphite transferred by the load applied during sliding is easily sheared and falls off, and the scaly graphite on the surface of the shaft member occurs. The friction coefficient becomes difficult to be stabilized by repeating the formation and dropping of the transfer part of the particles.
In the present invention, PTFE has high adhesiveness to the mating material, and therefore, PTFE particle wear powder exposed on the surface of the sliding layer is first transferred to the shaft member due to the load applied to the sliding layer at the start of sliding. Then, a transfer film is formed. Thereafter, the scaly graphite particles gradually move to the shaft member. However, since a fixed PTFE transfer film is already formed on the shaft member in the initial stage of sliding, the scaly graphite particles are excessively applied to the shaft member. It is considered that the transfer is suppressed, so that the friction coefficient is stabilized in a short time. If the PTFE particles contained in the sliding layer are less than 0.2% by volume, the transfer film of PTFE on the surface of the shaft member at the initial stage of sliding becomes insufficient, and the scaly graphite particles are transferred to the shaft member. In some cases, the time until the friction coefficient is stabilized due to the difficulty of suppressing the adhesion is increased. On the other hand, if the PTFE particles contained in the sliding layer is 1% by volume or more, a transfer film of excessive PTFE particles is formed at the initial stage of sliding, so that the time until the friction coefficient continues to decrease and stabilizes. May be longer.

PTFE粒子の平均粒径は、1〜25μmとすることが好ましい。PTFE粒子の平均粒径が1μm未満であると、摺動時に、摺動面に露出するPTFE粒子の一部は、移着膜が形成される前に、摺動面から脱落しやすくなり、ひいては摺動面と軸部材の表面との間から脱落したPTFE粒子が排出されるために、PTFE粒子の移着膜の形成が不十分となる場合がある。PTFE粒子の平均粒径が25μmを超えると、摺動時に摺動層に加わる負荷により摺動層中のPTFE粒子にせん断が起こり、摺動層の強度が小さくなる場合がある。   The average particle size of the PTFE particles is preferably 1 to 25 μm. If the average particle size of the PTFE particles is less than 1 μm, a part of the PTFE particles exposed to the sliding surface during sliding is likely to drop off from the sliding surface before the transfer film is formed. Since the PTFE particles dropped from between the sliding surface and the surface of the shaft member are discharged, the formation of the transfer film of the PTFE particles may be insufficient. If the average particle diameter of the PTFE particles exceeds 25 μm, the PTFE particles in the sliding layer may be sheared by a load applied to the sliding layer during sliding, and the strength of the sliding layer may be reduced.

本発明の一具体例によれば、PTFE粒子の平均アスペクト比A1は1.5〜4.5であることが好ましい。PTFE粒子の平均アスペクト比は、PTFE粒子の長軸と短軸との比の平均により表される。PTFE粒子の平均アスペクト比A1が1.5以上であると、平均アスペクト比A1が1.5未満である場合よりも、軸部材の表面に移着膜が形成され易くなる。これは、PTFE粒子の表面積が大きくなることにより、合成樹脂との密着性が大きくなるために摺動時に摺動面から脱落し難くなるからと考えられる。さらに、PTFE粒子の平均アスペクト比A1は2以上が好ましい。また、PTFE粒子の平均アスペクト比A1が4.5以下であると、4.5を超える場合よりも摺動層の強度が大きくなる。これは、摺動時の負荷により摺動面に露出するPTFE粒子にせん断が起こり難くなるからである。粒子が同体積であれば、アスペクト比が大きい方が摺動面に露出する面積が大きくなりせん断が起き易くなる。   According to one embodiment of the present invention, the average aspect ratio A1 of the PTFE particles is preferably 1.5 to 4.5. The average aspect ratio of PTFE particles is represented by the average of the ratio of the major axis to the minor axis of PTFE particles. When the average aspect ratio A1 of the PTFE particles is 1.5 or more, a transfer film is more easily formed on the surface of the shaft member than when the average aspect ratio A1 is less than 1.5. This is presumably because the PTFE particles have a large surface area, so that the adhesion with the synthetic resin is increased, so that the PTFE particles do not easily fall off the sliding surface during sliding. Further, the average aspect ratio A1 of the PTFE particles is preferably 2 or more. Further, when the average aspect ratio A1 of the PTFE particles is 4.5 or less, the strength of the sliding layer becomes larger than when the average aspect ratio exceeds 4.5. This is because shearing does not easily occur in the PTFE particles exposed on the sliding surface due to a load during sliding. If the particles have the same volume, the larger the aspect ratio, the larger the area exposed on the sliding surface, and shearing tends to occur.

本発明の一具体例によれば、長球状黒鉛粒子の平均アスペクト比A2は1.5〜4.5であることが好ましい。長球状黒鉛粒子の平均アスペクト比は、長球状黒鉛粒子の長軸と短軸との比の平均により表される。長球状黒鉛粒子の平均アスペクト比A2が1.5以上であると、平均アスペクト比A2が1.5未満である場合よりも、耐摩耗性がさらに向上する。これは、長球状黒鉛粒子の表面積が大きくなることにより、合成樹脂との長球状黒鉛粒子の接触面積が大きくなり、合成樹脂との密着性が大きくなるために摺動時に摺動面から脱落し難くなるからと考えられる。さらに、長球状黒鉛粒子の平均アスペクト比A2は2以上が好ましい。   According to one embodiment of the present invention, the average aspect ratio A2 of the oblong graphite particles is preferably 1.5 to 4.5. The average aspect ratio of the long spherical graphite particles is represented by the average ratio of the long axis and the short axis of the long spherical graphite particles. When the average aspect ratio A2 of the long spherical graphite particles is 1.5 or more, the wear resistance is further improved as compared with the case where the average aspect ratio A2 is less than 1.5. This is because the contact area of the oblong graphite particles with the synthetic resin is increased by increasing the surface area of the oblong graphite particles, and the adhesion with the synthetic resin is increased. This is thought to be difficult. Furthermore, the average aspect ratio A2 of the long spherical graphite particles is preferably 2 or more.

長球状黒鉛粒子の原材料である球状化黒鉛粒子は、天然の鱗片状黒鉛粒子に小さな負荷を繰り返し加えて、折り曲げることにより球状に造粒したものである。造粒時に天然の鱗片状黒鉛粒子に大きな負荷をかけると、AB面間でせん断がおこり小さい鱗片状に粉砕されてしまうので、印加する負荷は小さくせざるを得ない。このため、球状化粒子の内部で、造粒前の鱗片状黒鉛粒子の表面どうしの接触が不十分となる箇所が生じ、鱗片状黒鉛粒子の表面間に空隙が形成されやすい(特許文献5の図5(C)や特許文献6の図3〜図6参照)。
この球状化天然黒鉛粒子は、摺動部材の合成樹脂に球形状が維持された状態で分散させた場合、黒鉛粒子内には空隙が存在するために、摺動面の露出する黒鉛粒子が負荷を受けると黒鉛粒子に割れが生じ、摺動面から脱落し、軸部材表面との間の隙間に侵入して摺動部材の摺動面や軸部材表面に損傷が発生するという問題がある。
The spheroidized graphite particles, which are raw materials for the long spherical graphite particles, are granulated in a spherical shape by repeatedly applying a small load to natural scaly graphite particles and bending them. When a large load is applied to natural scaly graphite particles during granulation, shearing occurs between the AB surfaces and the particles are crushed into small scaly shapes, so the applied load must be reduced. For this reason, in the inside of the spheroidized particles, there is a portion where the contact between the surfaces of the scaly graphite particles before granulation is insufficient, and voids are easily formed between the surfaces of the scaly graphite particles (see Patent Document 5). FIG. 5C and FIG. 3 to FIG. 6 of Patent Document 6).
When the spherical natural graphite particles are dispersed in the synthetic resin of the sliding member while maintaining the spherical shape, there are voids in the graphite particles, so the graphite particles exposed on the sliding surface are loaded. When it receives, there is a problem that the graphite particles are cracked, fall off from the sliding surface, enter the gap between the shaft member surface and damage the sliding surface of the sliding member and the shaft member surface.

本発明の上記の平均アスペクト比A2を有する長球状黒鉛粒子は、後述するように原材料である球状黒鉛粒子に長球形状を付与する処理により形成されるが、この処理により、同時に、球状黒鉛粒子の内部の空隙をなくすることができる。長球状黒鉛粒子の平均アスペクト比A2が1.5であると、長球状黒鉛粒子の断面組織に空隙が少なくなり、さらに、平均アスペクト比A2が2以上であると、長球状黒鉛粒子の断面組織に空隙が(ほぼ)存在しなくなり、摺動面に露出する長球状黒鉛粒子が相手軸から負荷を受けても、長球状黒鉛粒子には割れが生じることがない。そのため、長球状黒鉛粒子が摺動面から脱落したり、または長球状黒鉛粒子の割れに伴う破片が発生して、軸部材の表面との間の隙間に侵入して摺動部材の摺動面や軸部材の表面に損傷が発生する問題がおこらない。   The long spherical graphite particles having the above average aspect ratio A2 of the present invention are formed by a process of imparting a long spherical shape to the raw spherical graphite particles as will be described later. The voids inside can be eliminated. When the average aspect ratio A2 of the long spherical graphite particles is 1.5, there are less voids in the cross-sectional structure of the long spherical graphite particles, and when the average aspect ratio A2 is 2 or more, the cross-sectional structure of the long spherical graphite particles No voids are present in the glass, and even if the oblong graphite particles exposed on the sliding surface are subjected to a load from the counterpart shaft, the oblong graphite particles are not cracked. Therefore, the oblong graphite particles fall off from the sliding surface, or fragments are generated due to cracking of the oblong graphite particles and enter the gap between the shaft member surface and the sliding surface of the sliding member. The problem of damage to the surface of the shaft member does not occur.

本発明の一具体例によれば、鱗片状黒鉛粒子は、平均アスペクト比A3が5〜10である。鱗片状黒鉛粒子の平均アスペクト比は、鱗片状黒鉛粒子の長軸と短軸との比の平均により表される。
さらに、鱗片状黒鉛粒子は、異方分散指数Sが3以上であることが好ましい。この異方分散指数Sは、各鱗片状黒鉛粒子についての比X1/Y1の値の平均として定義される。ここで、X1は、摺動層の摺動面に対して垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に平行方向の長さであり、Y1は、摺動層の摺動面に対し垂直方向の断面組織における鱗片状黒鉛粒子の摺動面に垂直方向の長さである。
According to one embodiment of the present invention, the scaly graphite particles have an average aspect ratio A3 of 5-10. The average aspect ratio of the scaly graphite particles is represented by the average ratio of the major axis to the minor axis of the scaly graphite particles.
Further, the scaly graphite particles preferably have an anisotropic dispersion index S of 3 or more. This anisotropic dispersion index S is defined as the average of the values of the ratio X1 / Y1 for each scaly graphite particle. Here, X1 is the length parallel to the sliding surface of the scaly graphite particles in the cross-sectional structure perpendicular to the sliding surface of the sliding layer, and Y1 is the sliding surface of the sliding layer. On the other hand, it is the length in the direction perpendicular to the sliding surface of the scaly graphite particles in the cross-sectional structure in the vertical direction.

摺動層内の鱗片状黒鉛粒子の平板面(AB面の広がる方向)が摺動面に略平行に配向するものの割合が大きいほど、この異方分散指数Sの値が大きくなる。上記したように摺動装置の摺動部材と軸部材との摺動により、摺動部材の摺動面に露出する鱗片状黒鉛粒子は摺動面から脱落する。鱗片状黒鉛粒子は、上記の通り平均アスペクト比A3が5〜10の薄板形状を有し、さらに、異方分散指数Sが3以上であるために平板面が摺動面に略平行に配向するものの割合が大きい。そのため、脱落した直後から、鱗片状黒鉛粒子は、その平板面が、軸部材の表面に概ね平行になり、軸部材の表面に移着しやすくなる。鱗片状黒鉛粒子の異方分散指数Sは、4以上であることがさらに好ましい。   The value of the anisotropic dispersion index S increases as the ratio of the flat surface of the scaly graphite particles in the sliding layer (in which the AB surface spreads) is oriented substantially parallel to the sliding surface increases. As described above, the scaly graphite particles exposed on the sliding surface of the sliding member fall off from the sliding surface by sliding between the sliding member and the shaft member of the sliding device. The scaly graphite particles have a thin plate shape with an average aspect ratio A3 of 5 to 10 as described above, and further, since the anisotropic dispersion index S is 3 or more, the flat plate surface is oriented substantially parallel to the sliding surface. The ratio of things is large. Therefore, immediately after falling off, the scaly graphite particles have a flat surface substantially parallel to the surface of the shaft member, and are easily transferred to the surface of the shaft member. The anisotropic dispersion index S of the scaly graphite particles is more preferably 4 or more.

本発明の一具体例によれば、摺動部材の摺動層に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one embodiment of the present invention, the synthetic resin used for the sliding layer of the sliding member is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), phenol, epoxy. , POM (polyacetal), PEEK (polyetheretherketone), PE (polyethylene), PPS (polyphenylene sulfide), and PEI (polyetherimide).

本発明の一具体例によれば、摺動部材の摺動層は、MoS、WS、およびh−BNから選ばれる1種または2種以上の固体潤滑剤1〜20体積%をさらに含むことができる。この固体潤滑剤を含有することにより、摺動層の摺動特性を高めることができる。 According to an embodiment of the present invention, the sliding layer of the sliding member further includes 1 to 20% by volume of one or more solid lubricants selected from MoS 2 , WS 2 , and h-BN. be able to. By containing this solid lubricant, the sliding characteristics of the sliding layer can be enhanced.

本発明の一具体例によれば、摺動部材の摺動層は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材を1〜10体積%をさらに含むことができる。この充填材を含有することにより、摺動層の耐摩耗性を高めることが可能となる。 According to one embodiment of the present invention, the sliding layer of the sliding member is selected from CaF 2 , CaCo 3 , talc, mica, mullite, iron oxide, calcium phosphate and Mo 2 C (molybdenum carbide). The seed or two or more fillers may further comprise 1 to 10% by volume. By containing this filler, the wear resistance of the sliding layer can be increased.

本発明の一具体例によれば、摺動部材は、裏金層と摺動層との間に多孔質金属層をさらに有することができる。裏金層の表面に多孔質金属層を設けることにより、摺動層と裏金層の接合強度を高めることができる。すなわち、多孔質金属層の空孔部に摺動層を構成する組成物が含浸されることによるアンカー効果により裏金層と摺動層との接合力の強化が可能になる。
多孔質金属層は、Cu、Cu合金、Fe、Fe合金等の金属粉末を金属板や条等の表面上に焼結することにより形成することができる。多孔質金属層の空孔率は20〜60%程度であればよい。多孔質金属層の厚さは0.05〜0.5mm程度とすればよい。この場合、多孔質金属層の表面上に被覆される摺動層の厚さは0.05〜0.4mm程度となるようにすればよい。ただし、ここで記載した寸法は一例であり、本発明がこの値の限定されるものではなく、異なる寸法に変更するも可能である。
According to one embodiment of the present invention, the sliding member may further include a porous metal layer between the back metal layer and the sliding layer. By providing the porous metal layer on the surface of the back metal layer, the bonding strength between the sliding layer and the back metal layer can be increased. That is, the bonding force between the backing metal layer and the sliding layer can be enhanced by the anchor effect by impregnating the pores of the porous metal layer with the composition constituting the sliding layer.
The porous metal layer can be formed by sintering metal powder such as Cu, Cu alloy, Fe, Fe alloy or the like on the surface of a metal plate or strip. The porosity of the porous metal layer may be about 20 to 60%. The thickness of the porous metal layer may be about 0.05 to 0.5 mm. In this case, the thickness of the sliding layer coated on the surface of the porous metal layer may be about 0.05 to 0.4 mm. However, the dimension described here is an example, and the present invention is not limited to this value, and can be changed to a different dimension.

本発明の一具体例によれば、軸部材に用いられる合成樹脂は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   According to one specific example of the present invention, the synthetic resin used for the shaft member is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy). ), POM (polyacetal), PEEK (polyetheretherketone), PE (polyethylene), PPS (polyphenylenesulfide) and PEI (polyetherimide).

本発明の一具体例によれば、軸部材に用いられる硬質粒子は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlN、およびTiOのうちから選ばれる1種または2種以上からなることができる。軸部材は、これら硬質粒子を含有することにより、軸部材の強度(剛性)が高くなる。硬質粒子の平均粒径は、1〜50μmとすることができる。 According to one embodiment of the present invention, the hard particles used for the shaft member are CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN, and TiO 2 . It can consist of 1 type, or 2 or more types chosen from. When the shaft member contains these hard particles, the strength (rigidity) of the shaft member is increased. The average particle diameter of the hard particles can be 1 to 50 μm.

なお、軸部材は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤および/または油5体積%以下をさらに含むことができる。 The shaft member, CaF 2, CaCo 3, talcum, mica, mullite, iron oxide, calcium phosphate and Mo 2 C 1 kind selected from among (molybdenum carbide) or two or more fillers 1-10% by volume Can further be included. Further, the shaft member can further include one or more solid lubricants selected from MoS 2 , WS 2 , h-BN and PTFE and / or 5% by volume or less of oil.

本発明の一例による摺動装置を示す図。The figure which shows the sliding apparatus by an example of this invention. 本発明の一例による摺動部材の断面を示す図。The figure which shows the cross section of the sliding member by an example of this invention. 本発明の一例による軸部材の断面を示す図。The figure which shows the cross section of the shaft member by an example of this invention. PTFE長球状黒鉛粒子のアスペクト比(A1)を説明する図。The figure explaining the aspect ratio (A1) of PTFE oblong graphite particles. 長球状黒鉛粒子のアスペクト比(A2)を説明する図。The figure explaining the aspect ratio (A2) of an oblong graphite particle. 鱗片状黒鉛粒子のアスペクト比(A3)および異方分散指数(S)を説明する図。The figure explaining the aspect ratio (A3) and anisotropic dispersion index (S) of scaly graphite particles. 本発明の他の例による摺動部材の断面を示す図。The figure which shows the cross section of the sliding member by the other example of this invention. 本発明の摺動装置の一具体的形態例を示す図。The figure which shows the example of 1 specific form of the sliding apparatus of this invention.

図1に本発明による摺動装置1の一例を概略的に示す。摺動装置1は、軸部材2および軸部材2を支承する摺動部材3を備える。摺動部材3は、裏金層4および摺動層5を有する。
本発明の摺動装置1の具体的形態として、円柱形状の軸部材2を円筒形状の摺動部材3が支承する摺動装置とすることができる(図8参照)。この場合は、円筒形状の摺動部材3の内面に摺動層5が形成される。しかし、本発明による摺動装置はこの形態に限定されずに、軸部材2および摺動部材3が平板である形態、その他いずれの形態であってもよい。
FIG. 1 schematically shows an example of a sliding device 1 according to the present invention. The sliding device 1 includes a shaft member 2 and a sliding member 3 that supports the shaft member 2. The sliding member 3 has a backing metal layer 4 and a sliding layer 5.
As a specific form of the sliding device 1 of the present invention, a cylindrical shaft member 2 can be a sliding device supported by a cylindrical sliding member 3 (see FIG. 8). In this case, the sliding layer 5 is formed on the inner surface of the cylindrical sliding member 3. However, the sliding device according to the present invention is not limited to this form, and the shaft member 2 and the sliding member 3 may be flat or any other form.

図2に本発明による摺動装置の摺動部材3の一例の断面を概略的に示す。摺動部材3は、裏金層4上に、摺動層5が設けられている。摺動層5は、5〜50体積%の黒鉛粒子7と、0.2体積%以上1体積%未満PTFE粒子11とが合成樹脂6に分散している。黒鉛粒子7は、長球状形状の長球状黒鉛粒子71と薄片形状の鱗片状黒鉛粒子72とからなる。黒鉛粒子7の全体積に対する鱗片状黒鉛粒子72の体積割合は10〜40%である。長球状黒鉛粒子71の断面(内部)組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しており、長球状黒鉛粒子71の断面組織中には空隙が存在しない。鱗片状黒鉛粒子72の断面組織は、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している。PTFE粒子11の平均粒径D1は1〜25μm、長球状黒鉛粒子の平均粒径D2は3〜50μm、鱗片状黒鉛粒子の平均粒径D3は1〜25μmである。
なお、摺動層5と裏金層4との間に多孔質金属層8を設けてもよい。多孔質金属層8を設けた摺動部材の一例の断面を図7に概略的に示す。
FIG. 2 schematically shows a cross section of an example of the sliding member 3 of the sliding device according to the present invention. The sliding member 3 is provided with a sliding layer 5 on a back metal layer 4. In the sliding layer 5, 5 to 50% by volume of graphite particles 7 and 0.2% by volume or more and less than 1% by volume of PTFE particles 11 are dispersed in the synthetic resin 6. The graphite particles 7 are composed of long spherical graphite particles 71 and flaky graphite particles 72. The volume ratio of the scaly graphite particles 72 to the total volume of the graphite particles 7 is 10 to 40%. The cross-sectional (internal) structure of the oblong graphite particles 71 is such that the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. There are no voids in the tissue. As for the cross-sectional structure of the scaly graphite particles 72, a plurality of the AB surfaces of the graphite crystals are laminated in the thickness direction of the thin plate (the C-axis direction perpendicular to the AB surface of the graphite crystals). The average particle diameter D1 of the PTFE particles 11 is 1 to 25 μm, the average particle diameter D2 of the long spherical graphite particles is 3 to 50 μm, and the average particle diameter D3 of the scaly graphite particles is 1 to 25 μm.
A porous metal layer 8 may be provided between the sliding layer 5 and the back metal layer 4. FIG. 7 schematically shows a cross section of an example of the sliding member provided with the porous metal layer 8.

本明細書で用いる「長球状」の語は、幾何学的に厳密な長球形を意味するものではなく、広い意味で、一方向に長く延びており(すなわち下記のアスペクト比を有する)、角ばって不定形な形状を有さないことを表わす。
また、長球状黒鉛粒子71の組織内に空隙がないことは、摺動層5の摺動面に垂直方向の断面において、複数個(例えば、20個)の黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の長球状黒鉛71の粒子の断面組織内に空隙が形成されていないことを観察することにより確認できる。ただし、長球状黒鉛の粒子71の断面組織内に幅0.1μm以下の細線状の空隙の形成は許容されるが、この幅0.1μm以下の細線状の空隙は、その総面積が、長球状黒鉛粒子71の断面組織中での面積率が3%以下に限定される。
As used herein, the term “oval” does not mean a geometrically exact oval, but in a broad sense extends long in one direction (ie has the following aspect ratio) and has a corner. This means that it does not have an irregular shape.
Further, the absence of voids in the structure of the long spherical graphite particles 71 means that a plurality of (for example, 20) graphite particles are magnified using an electron microscope in a cross section perpendicular to the sliding surface of the sliding layer 5. This can be confirmed by taking an electronic image at 2000 times and observing that no voids are formed in the cross-sectional structure of the particles of the long spherical graphite 71 in the taken image. However, although the formation of fine-line voids having a width of 0.1 μm or less is allowed in the cross-sectional structure of the long spherical graphite particles 71, the total area of the fine-line voids having a width of 0.1 μm or less is long. The area ratio in the cross-sectional structure of the spherical graphite particles 71 is limited to 3% or less.

摺動層5内に分散するPTFE粒子11の長軸と短軸との比の平均で表される平均アスペクト比A1は1.5〜4.5であることが好ましく、2以上であることがより好ましい。   The average aspect ratio A1 represented by the average ratio of the major axis to the minor axis of the PTFE particles 11 dispersed in the sliding layer 5 is preferably 1.5 to 4.5, and preferably 2 or more. More preferred.

摺動層5内に分散する長球状黒鉛粒子71の長軸と短軸との比の平均で表される平均アスペクト比A2は1.5〜4.5であることが好ましい。
他方、鱗片状黒鉛粒子72の長軸と短軸との比の平均で表される平均アスペクト比A3は5〜10であることが好ましい。
The average aspect ratio A2 represented by the average ratio of the major axis to the minor axis of the long spherical graphite particles 71 dispersed in the sliding layer 5 is preferably 1.5 to 4.5.
On the other hand, the average aspect ratio A3 represented by the average ratio of the major axis to the minor axis of the scaly graphite particles 72 is preferably 5 to 10.

さらに、鱗片状黒鉛粒子72は、異方分散指数Sが3以上となっていることが好ましい。異方分散指数Sは、摺動層の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子72の摺動面に対して平行方向の長さをX1、摺動層の摺動面に対して垂直方向の断面組織での鱗片状黒鉛粒子72の摺動面に対して垂直方向の長さをY1としたとき(図6参照)、各鱗片状黒鉛粒子の比X1/Y1の値を全鱗片状黒鉛粒子について平均したものとして表される。さらに、異方分散指数Sは4以上とすることが好ましい。   Furthermore, it is preferable that the scale-like graphite particles 72 have an anisotropic dispersion index S of 3 or more. The anisotropic dispersion index S is X1 as the length in the direction parallel to the sliding surface of the scaly graphite particles 72 in the cross-sectional structure perpendicular to the sliding surface of the sliding layer, and the sliding of the sliding layer. When the length in the direction perpendicular to the sliding surface of the scaly graphite particles 72 in the cross-sectional structure perpendicular to the surface is Y1 (see FIG. 6), the ratio X1 / Y1 of each scaly graphite particle Values are expressed as averages for all scaly graphite particles. Furthermore, the anisotropic dispersion index S is preferably 4 or more.

上記に説明した摺動装置の摺動部材について、製造工程に沿って以下に詳細に説明する。
(1)原材料黒鉛粒子の準備
長球状黒鉛粒子の原材料として、鱗片状天然黒鉛を造粒した球状黒鉛粒子を用いることができる。この球状黒鉛粒子は、黒鉛結晶のAB面が粒の表面から内部に向かって粒子表面の丸みに沿って曲線状に複数積層した組織となっており、粒子の内部には空隙が形成されている。この原材料の球状黒鉛粒子は、レーザー回折式粒度測定装置により測定される平均粒径が2〜60μmで、円形度が0.92以上であるものを用いることが好ましい。ここで、円形度は、次式で表される。
円形度=(投影粒子形状と同一の面積を有する円の周囲長)/(投影粒子形状の周囲長)
投影粒子形状が真円をなす場合には円形度は1となる。投影粒子形状は、光学顕微鏡や走査型電子顕微鏡などを用いて得られた撮影画像から求めることができる。
原材料の球状黒鉛粒子の円形度が0.92未満のものを用いた場合、後述する混合工程での空隙を無くす処理の際に、黒鉛粒子の表面には不均質に負荷が加わりやすくなり、黒鉛粒子の表面が局部的に変形してせん断したり、内部に割れが生じて新たな空隙が形成されやすくなる。
The sliding member of the above-described sliding device will be described in detail below along the manufacturing process.
(1) Preparation of raw material graphite particles Spherical graphite particles obtained by granulating scaly natural graphite can be used as raw materials for the long spherical graphite particles. The spherical graphite particles have a structure in which a plurality of graphite crystal AB planes are laminated in a curved shape along the roundness of the particle surface from the particle surface to the inside, and voids are formed inside the particles. . As the spherical graphite particles as the raw material, those having an average particle diameter of 2 to 60 μm and a circularity of 0.92 or more as measured by a laser diffraction particle size measuring device are preferably used. Here, the circularity is expressed by the following equation.
Circularity = (perimeter of a circle having the same area as the projected particle shape) / (perimeter of the projected particle shape)
When the projected particle shape forms a perfect circle, the circularity is 1. The projected particle shape can be obtained from a photographed image obtained using an optical microscope or a scanning electron microscope.
When the raw material spherical graphite particles having a circularity of less than 0.92 are used, the surface of the graphite particles tends to be unevenly loaded during the process of eliminating voids in the mixing step described later. The surface of the particle is locally deformed and sheared, or cracks are generated inside and new voids are easily formed.

鱗片状黒鉛粒子の原材料としては、薄板形状を有する天然の鱗片状黒鉛粒子を用いる。この鱗片状黒鉛粒子は、レーザー回折式粒度測定装置により測定されるAB面に平行方向の平均粒径が1〜30μmであり、また、粒子の平均厚さが0.2〜3.5μmである粒子を用いることが好ましい。   As a raw material of the scaly graphite particles, natural scaly graphite particles having a thin plate shape are used. The scaly graphite particles have an average particle size in the direction parallel to the AB surface measured by a laser diffraction particle size measuring device of 1 to 30 μm and an average particle thickness of 0.2 to 3.5 μm. It is preferable to use particles.

(2)原材料PTFE粒子の準備
PTFE粒子の原材料として、レーザー回折式粒度測定装置により測定された平均粒径が2〜30μmである長球状のPTFE粒子を用いることが好ましい。
(2) Preparation of raw material PTFE particles As the raw material of the PTFE particles, it is preferable to use oval PTFE particles having an average particle diameter measured by a laser diffraction particle size measuring apparatus of 2 to 30 μm.

(3)合成樹脂粒子の準備
原材料である合成樹脂粒子は、球状黒鉛粒子の平均粒径の50〜150%の平均粒径を有するものを用いることが好ましい。合成樹脂としては、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上からなるものを用いることができる。
(3) Preparation of synthetic resin particle It is preferable to use what has an average particle diameter of 50 to 150% of the average particle diameter of a spherical graphite particle as the synthetic resin particle which is a raw material. As synthetic resin, what consists of 1 type (s) or 2 or more types chosen from PAI, PI, PBI, PA, a phenol, an epoxy, POM, PEEK, PE, PPS, and PEI can be used.

(4)混合
球状黒鉛粒子および鱗片状黒鉛粒子を、鱗片状黒鉛粒子の体積割合が全黒鉛粒子体積の10〜40%となるように調整する。次に、この黒鉛成分が5〜50体積%となりPTFE成分が0.2体積%以上1体積%未満となるように、球状黒鉛粒子および鱗片状黒鉛粒子と、PTFE粒子と、合成樹脂粒子との割合を調整する。この球状黒鉛粒子および鱗片状黒鉛粒子およびPTFE粒子並びに合成樹脂粒子を有機溶剤で希釈し、粘度が40000〜110000mPa・sとなる組成物を作製する。この希釈液をロールミルで混合することにより、混合時に、ほぼ球状であった球状黒鉛粒子に長球形状が付与され、同時に、球状黒鉛粒子の内部組織中の空隙が減少あるいは消滅する。
(4) Mixing Spherical graphite particles and scaly graphite particles are adjusted so that the volume ratio of the scaly graphite particles is 10 to 40% of the total graphite particle volume. Next, the spherical graphite particles and the scaly graphite particles, the PTFE particles, and the synthetic resin particles so that the graphite component is 5 to 50% by volume and the PTFE component is 0.2 to 1% by volume. Adjust the percentage. The spherical graphite particles, scaly graphite particles, PTFE particles, and synthetic resin particles are diluted with an organic solvent to prepare a composition having a viscosity of 40,000 to 110,000 mPa · s. By mixing this diluted solution with a roll mill, a long spherical shape is imparted to the spherical graphite particles that are substantially spherical during mixing, and at the same time, voids in the internal structure of the spherical graphite particles are reduced or eliminated.

この理由は、以下のように考えられる。
従来の黒鉛粒子や他の充填材粒子を含有する樹脂組成物の希釈液の粘度は、通常は、最大でも15000mPa・s程度になされていた。しかし、ここでは、希釈した組成物の粘度を40000〜110000mPa・sと通常よりも大きくする。このことにより、ロールミルによる混合時に、球状黒鉛粒子と樹脂粒子とが同時にロールミルのロール間のギャップ(間隙)を通過する頻度が高くなる。球状黒鉛粒子と樹脂粒子とが同時にロールギャップを通過するときに、球状黒鉛粒子に負荷が加わることにより黒鉛粒が変形するが、ロールから球状黒鉛粒子へ加わる負荷は、球状黒鉛粒子に接した樹脂粒子が変形することにより緩和されることで、球状黒鉛粒子の表面に局部的に過度な負荷が加わることが防がれ、黒鉛粒子をせん断させることなく変形させられる。黒鉛粒子は、合成樹脂の粒子とともにロールミルのロールギャップを通過する毎に徐々に変形し長球形状が付与され、同時に、粒子の内部の空隙が減少あるいは消失する。
組成物の粘度が110000mPa・sを超えると、溶剤の濃度が低すぎて、樹脂粒子と長球状黒鉛粒子と鱗片状黒鉛粒子とを均質に分散させ難くなるため好ましくない。さらに、ロールミルでの混合時に、鱗片状黒鉛粒子に割れが発生する場合がある。
The reason is considered as follows.
The viscosity of the diluted liquid of the resin composition containing conventional graphite particles and other filler particles is usually about 15000 mPa · s at the maximum. However, here, the viscosity of the diluted composition is set to 40,000 to 110,000 mPa · s, which is larger than usual. This increases the frequency with which the spherical graphite particles and the resin particles simultaneously pass through the gap (gap) between the rolls of the roll mill during mixing by the roll mill. When the spherical graphite particles and the resin particles pass through the roll gap at the same time, the graphite particles are deformed by applying a load to the spherical graphite particles. By being relaxed by the deformation of the particles, it is possible to prevent an excessive load from being locally applied to the surface of the spherical graphite particles and to deform the graphite particles without shearing. The graphite particles are gradually deformed and given a long spherical shape every time they pass through the roll gap of the roll mill together with the synthetic resin particles, and at the same time, voids inside the particles are reduced or eliminated.
When the viscosity of the composition exceeds 110000 mPa · s, the concentration of the solvent is too low, and it becomes difficult to uniformly disperse the resin particles, the long spherical graphite particles, and the scaly graphite particles. Furthermore, cracks may occur in the scaly graphite particles during mixing with a roll mill.

ロールミルのロール間のギャップは、球状黒鉛粒子の平均粒径の150%〜250%に相当する間隔に設定する。従来技術においては、摺動部材である黒鉛粒子や他の充填材粒子を含有する樹脂組成物をロールミルを用いて混合する場合、混合は、単に有機溶剤中に樹脂粒子と黒鉛粒子や他充填材粒子を均質分散させることを目的としており、ロールミルのロール間のギャップは、原材料である樹脂粒子や黒鉛粒子の粒径よりもかなりに大きな間隔(例えば、黒鉛粒子の平均粒径の400%程度)になされていた。   The gap between rolls of the roll mill is set to an interval corresponding to 150% to 250% of the average particle diameter of the spherical graphite particles. In the prior art, when a resin composition containing graphite particles or other filler particles that are sliding members is mixed using a roll mill, the mixing is simply performed in an organic solvent with resin particles and graphite particles or other fillers. The purpose is to uniformly disperse the particles, and the gap between rolls of the roll mill is considerably larger than the particle size of the raw material resin particles and graphite particles (for example, about 400% of the average particle size of the graphite particles). It was made to.

なお、球状黒鉛粒子のみを有機溶剤で希釈した組成物をロールミルに通しても、球状黒鉛粒子を変形させることはできない。この場合、球状黒鉛粒子にせん断や割れが発生してしまい変形は起こらない。これは、ロール間のギャップを球状黒鉛粒子が通過するとき、球状黒鉛粒子のロール表面との接触部や球状黒鉛粒子どうしの接触部に局部的に大きな負荷が加わりせん断や割れが生じるためと考えられる。   Note that even if a composition obtained by diluting only spherical graphite particles with an organic solvent is passed through a roll mill, the spherical graphite particles cannot be deformed. In this case, shearing and cracking occur in the spherical graphite particles and no deformation occurs. This is because when the spherical graphite particles pass through the gap between the rolls, a large load is locally applied to the contact portions of the spherical graphite particles with the roll surface and the contact portions of the spherical graphite particles, resulting in shearing and cracking. It is done.

上記した合成樹脂粒子の平均粒径が、球状黒鉛粒子の平均粒径の50〜150%である関係は、ロール間のギャップを通過するときに黒鉛粒子に過度な負荷が加わりせん断が発生することを防ぐために好適である。摺動層中に固体潤滑剤や充填材をさらに含有させる場合、これら固体潤滑剤や充填材の粒子は、球状黒鉛粒子の平均粒径の50%以下の平均粒径を有するものを用いることが好ましい。   The relationship that the average particle diameter of the synthetic resin particles described above is 50 to 150% of the average particle diameter of the spherical graphite particles is that an excessive load is applied to the graphite particles when passing through the gap between the rolls, and shearing occurs. It is suitable for preventing. When the sliding layer further contains a solid lubricant or filler, the solid lubricant or filler particles should have an average particle size of 50% or less of the average particle size of the spherical graphite particles. preferable.

上記した混合工程において、PTFE粒子は、原材料時の粒形状が維持される。   In the above-described mixing step, the PTFE particles maintain the grain shape at the time of the raw material.

合成樹脂粒子、球状黒鉛粒子および鱗片状黒鉛粒子の混合方法は、上記実施形態で示したロールミルを用いた混合方法に限定されないで、他の混合機を用いたり、他の混合条件を調整することも可能である。   The method of mixing the synthetic resin particles, the spherical graphite particles and the scaly graphite particles is not limited to the mixing method using the roll mill shown in the above embodiment, but using other mixers or adjusting other mixing conditions Is also possible.

(5)裏金
裏金層としては、Fe合金、Cu、Cu合金等の金属板を用いることができる。裏金層表面、すなわち摺動層との界面となる側に多孔質金属層を形成してもよいが、多孔質金属層は裏金層と同じ組成を有することも、異なる組成または材料を用いることも可能である。
(5) Back metal As a back metal layer, metal plates, such as Fe alloy, Cu, and Cu alloy, can be used. The porous metal layer may be formed on the surface of the back metal layer, that is, the side that becomes the interface with the sliding layer, but the porous metal layer may have the same composition as the back metal layer, or a different composition or material may be used. Is possible.

(6)被覆工程
混合後の組成物は、裏金層の一方の表面、あるいは裏金層上の多孔質金属層に塗布され、組成物を塗布した裏金は、組成物の厚さを均一とするため、所定の一定の間隙を有するロール間に通される。
混合後の組成物の粘度は、摺動部材の摺動層中での鱗片状黒鉛粒子の長軸方向の異方(配向)分散にも密接に関係し、この鱗片状黒鉛粒子の異方分散は、この被覆工程での条件設定が重要であることが判明した。
(6) Coating process The composition after mixing is applied to one surface of the back metal layer or the porous metal layer on the back metal layer, and the back metal applied with the composition has a uniform thickness. And passed between rolls having a predetermined constant gap.
The viscosity of the composition after mixing is also closely related to the long-axis anisotropic (orientation) dispersion of the scaly graphite particles in the sliding layer of the sliding member, and the anisotropic dispersion of the scaly graphite particles It was found that setting conditions in this coating step is important.

混合工程で組成物の粘度が大きい(有機溶剤の割合が少ない)場合、組成物を塗布した裏金層がロール間を通過するときに、組成物中の鱗片状黒鉛粒子が(その平板面が摺動面に対して平行な方向を向くように)流動しにくくなるからである。
他方、組成物の粘度が110000mPa・s以下であると、被覆工程で長球状の黒鉛粒子が有機溶剤とともに流動しやすいので、この鱗片状黒鉛粒子は、その平板面の向く方向が、摺動部材の摺動層中において配向すなわち異方に分散する。具体的には、組成物の粘度が110000mPa・s以下であると、摺動層に分散する鱗片状黒鉛粒子は、異方分散指数Sが2.5以上となる。さらに組成物の粘度が100000mPa・s以下であると異方分散指数が3以上、80000mPa・s以下であると異方分散指数が4以上となる。
When the viscosity of the composition is high in the mixing step (the ratio of the organic solvent is small), the scaly graphite particles in the composition (the flat surface of which is slid) are transferred when the back metal layer coated with the composition passes between the rolls. This is because it becomes difficult to flow (in a direction parallel to the moving surface).
On the other hand, when the viscosity of the composition is 110000 mPa · s or less, the oval graphite particles easily flow together with the organic solvent in the coating step. In the sliding layer, it is oriented, that is, anisotropically dispersed. Specifically, when the viscosity of the composition is 110000 mPa · s or less, the scale-like graphite particles dispersed in the sliding layer have an anisotropic dispersion index S of 2.5 or more. Furthermore, when the viscosity of the composition is 100,000 mPa · s or less, the anisotropic dispersion index is 3 or more, and when it is 80000 mPa · s or less, the anisotropic dispersion index is 4 or more.

(7)乾燥・焼成工程
組成物を被覆した裏金層(あるいは、裏金層および多孔質多孔質金属層)は、組成物中の有機溶剤を乾燥させるための加熱、組成物中の樹脂を焼成するための加熱を施して摺動部材が得られる。これらの加熱条件は、使用した樹脂に対して一般に用いられる条件を採用できる。
(7) Drying / firing step The backing metal layer (or backing metal layer and porous porous metal layer) coated with the composition is heated to dry the organic solvent in the composition, and the resin in the composition is fired. For this reason, the sliding member is obtained. As these heating conditions, conditions generally used for the resin used can be adopted.

(8)測定
長球状黒鉛粒子の平均粒径D2は、摺動部材の摺動面に垂直方向の断面を、電子顕微鏡を用いて電子像を200倍で撮影し、長球状黒鉛粒子の平均粒径を測定した。具体的には、長球状黒鉛粒子の平均粒径は、得られた電子像を一般的な画像解析手法(解析ソフト:Image−Pro Plus(Version4.5);(株)プラネトロン製)を用いて、各長球状黒鉛粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。
(8) Measurement The average particle diameter D2 of the oblong graphite particles is obtained by taking a cross section perpendicular to the sliding surface of the sliding member and taking an electron image at 200 times using an electron microscope. The diameter was measured. Specifically, the average particle diameter of the long spherical graphite particles is determined by using a general image analysis method (analysis software: Image-Pro Plus (Version 4.5); manufactured by Planetron Co., Ltd.). Then, the area of each oblong graphite particle is measured, and it is calculated by converting it into an average diameter when it is assumed to be a circle.

鱗片状黒鉛粒子の平均粒径D3も、上記の手法で得られた電子像を上記の像解析手法を用いて、各鱗片状黒鉛粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。ただし、電子像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。   The average particle diameter D3 of the scaly graphite particles is also the average when the area of each scaly graphite particle is measured using the image analysis method described above for the electronic image obtained by the above method and assumed to be a circle. Calculated in terms of diameter. However, the photographing magnification of the electronic image is not limited to 200 times, and can be changed to other magnifications.

PTFE粒子の平均粒径D1も、上記の手法で得られた電子像を上記の像解析手法を用いて、各PTFE粒子の面積を測定し、それを円と想定した場合の平均直径に換算して求める。ただし、電子像の撮影倍率は、200倍に限定されないで、他の倍率に変更することができる。   The average particle diameter D1 of the PTFE particles is also converted into an average diameter when the area of each PTFE particle is measured using the above-described image analysis method using the electronic image obtained by the above method and assumed to be a circle. Ask. However, the photographing magnification of the electronic image is not limited to 200 times, and can be changed to other magnifications.

PTFE粒子のアスペクト比A1は、上記の手法で得られた電子像を、上記の像解析手法を用い、各PTFE粒子の長軸の長さL1と短軸の長さS1の比(長軸の長さL1/短軸の長さS1)の平均として求める(図4参照)。なお、PTFE粒子の長軸の長さL1は、上記電子像中のPTFE粒子の長さが最大となる位置での長さを示し、PTFE粒子の短軸の長さS1は、この長軸の長さL1の方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A1 of the PTFE particles is obtained by converting the electronic image obtained by the above method into the ratio of the long axis length L1 and the short axis length S1 of each PTFE particle (the long axis It is obtained as an average of length L1 / short axis length S1) (see FIG. 4). The major axis length L1 of the PTFE particles indicates the length at the position where the length of the PTFE particles in the electronic image is maximum, and the minor axis length S1 of the PTFE particles is the length of the major axis. The length at the position where the length in the direction orthogonal to the direction of the length L1 is maximum is shown.

長球状黒鉛粒子のアスペクト比A2は、上記の手法で得られた電子像を、上記の像解析手法を用い、各長球状黒鉛粒子の長軸の長さL2と短軸の長さS2の比(長軸の長さL2/短軸の長さS2)の平均として求める(図5参照)。なお、長球状黒鉛粒子の長軸の長さL2は、上記電子像中の長球状黒鉛粒子の長さが最大となる位置での長さを示し、長球状黒鉛粒子の短軸の長さS2は、この長軸の長さL2の方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A2 of the long spherical graphite particles is obtained by using the above-described image analysis method and the ratio of the long axis length L2 to the short axis length S2 of each long spherical graphite particle. It is obtained as an average of (long axis length L2 / short axis length S2) (see FIG. 5). The long axis length L2 of the long spherical graphite particles indicates the length at the position where the length of the long spherical graphite particles in the electron image is maximum, and the short axis length S2 of the long spherical graphite particles. Indicates the length at the position where the length in the direction orthogonal to the direction of the length L2 of the long axis is maximum.

鱗片状黒鉛粒子のアスペクト比A3は、上記の手法で得られた電子像を、上記の像解析手法を用い、各鱗片状黒鉛粒子の長軸の長さL3と短軸の長さS3の比(長軸の長さL3/短軸の長さS3)の平均として求める(図6参照)。なお、鱗片状黒鉛粒子の長軸の長さL3は、上記電子像中の鱗片状黒鉛粒子の長さが最大となる位置での長さを示し、鱗片状黒鉛粒子の短軸の長さS3は、この長軸の長さL3の方向に直交する方向での長さが最大となる位置での長さを示す。   The aspect ratio A3 of the scaly graphite particles is the ratio of the major axis length L3 and the minor axis length S3 of each scaly graphite particle using the above-described image analysis technique based on the electronic image obtained by the above technique. Obtained as an average of (long axis length L3 / short axis length S3) (see FIG. 6). Note that the length L3 of the long axis of the scaly graphite particles indicates the length at the position where the length of the scaly graphite particles in the electronic image is maximum, and the length S3 of the short axis of the scaly graphite particles. Indicates the length at the position where the length in the direction orthogonal to the direction of the length L3 of the long axis is maximum.

長球状黒鉛粒子は、断面組織が、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層している組織となっていることは、摺動部材の摺動面に垂直方向の断面において、複数個(例えば20個)の長球状黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の長球状黒鉛粒子の断面組織が、粒子表面から中心方向に向けて粒子表面の丸みに沿った層状部が形成されていることが観察されることで確認できた。
原材料として球状化天然黒鉛粒子を用い、この黒鉛粒子を、上記の混合工程で黒鉛粒子の内部組織中の空隙を無くす処理を施しても、長球状黒鉛粒子の一部は、上記の観察方法により内部に、幅(組織中の黒鉛結晶のAB面に垂直方向の幅)が0.1μm以下の細線状の空隙が、空隙の総面積が長球状黒鉛粒子の断面組織中での面積率で3%以下で形成される場合があったが、このような細線状の空隙を有する長球状黒鉛粒子であれば、完全に空隙の無い長球状黒鉛粒子と同等の摺動性能を有する。
The long spherical graphite particles have a cross-sectional structure in which the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center. In a cross section perpendicular to the sliding surface, an electron image of a plurality (for example, 20) of long spherical graphite particles was photographed at a magnification of 2000 using an electron microscope, and the cross-sectional structure of the long spherical graphite particles in the photographed image However, it was confirmed by observing that a layered portion was formed along the roundness of the particle surface from the particle surface toward the center.
Even if spheroidized natural graphite particles are used as a raw material and the graphite particles are subjected to a treatment for eliminating voids in the internal structure of the graphite particles in the mixing step, a part of the long spherical graphite particles is obtained by the above observation method. Inside, fine line voids having a width (width in the direction perpendicular to the AB surface of the graphite crystal in the structure) of 0.1 μm or less, the total area of the voids is 3 in terms of the area ratio in the cross-sectional structure of the oblong graphite particles. However, the long spherical graphite particles having such fine-line voids have the same sliding performance as the long spherical graphite particles having no voids.

鱗片状黒鉛粒子は、断面組織が、黒鉛結晶のAB面が薄板形状の厚さ方向(黒鉛結晶のAB面に対して垂直方向であるC軸方向)に複数積層している組織となっていることは、摺動部材の摺動面に垂直方向の断面において、複数個(例えば20個)の鱗片状黒鉛粒子を電子顕微鏡を用いて倍率2000倍で電子像を撮影し、撮影画像中の鱗片状黒鉛粒子の断面組織が、薄板形状の厚さ方向に複数積層している層状部が形成されていることが観察されることにより確認できた。   The scaly graphite particles have a cross-sectional structure in which the AB surface of the graphite crystal is laminated in the thickness direction of the thin plate shape (C-axis direction perpendicular to the AB surface of the graphite crystal). That is, in a cross section perpendicular to the sliding surface of the sliding member, an electronic image of a plurality (for example, 20 pieces) of scaly graphite particles is taken at a magnification of 2000 using an electron microscope, and the scales in the photographed image are taken. It was confirmed by observing that the cross-sectional structure of the glassy graphite particles was formed as a layered portion in which a plurality of laminated layers were formed in the thickness direction of the thin plate shape.

鱗片状黒鉛粒子72の異方分散指数Sは、摺動部材の摺動面に対して垂直方向の断面を電子顕微鏡を用いて電子像を200倍で撮影した画像を、上記画像解析手法を用い、摺動層中の各鱗片状黒鉛粒子72の摺動面に対して平行方向の長さX1と、摺動面に対して垂直方向の長さY1を測定し、それら各長さの比X1/Y1の平均値を算出して求めた(図6参照)。   The anisotropic dispersion index S of the scaly graphite particles 72 is obtained by using the above image analysis method for an image obtained by photographing an electronic image at a magnification of 200 using an electron microscope with respect to a cross section perpendicular to the sliding surface of the sliding member. The length X1 in the direction parallel to the sliding surface of each scaly graphite particle 72 in the sliding layer and the length Y1 in the direction perpendicular to the sliding surface are measured, and the ratio X1 of these lengths The average value of / Y1 was calculated (see FIG. 6).

図3に本発明による摺動装置1の軸部材2の一例の断面を概略的に示す。軸部材2は、合成樹脂9に硬質粒子10が分散されている。軸部材の製造工程は、合成樹脂と硬質粒子を混合後ペレット化を行い、射出成型にて円柱状や平板状等の所定の形状に成型できる。   FIG. 3 schematically shows a cross section of an example of the shaft member 2 of the sliding device 1 according to the present invention. In the shaft member 2, hard particles 10 are dispersed in a synthetic resin 9. The manufacturing process of a shaft member can be formed into a predetermined shape such as a columnar shape or a flat plate shape by injection molding by mixing synthetic resin and hard particles and then pelletizing.

軸部材2の合成樹脂9は、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、PF(フェノール)、EP(エポキシ)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)およびPEI(ポリエーテルイミド)のうちから選ばれる1種または2種以上からなることができる。   The synthetic resin 9 of the shaft member 2 is PAI (polyamideimide), PI (polyimide), PBI (polybenzimidazole), PA (polyamide), PF (phenol), EP (epoxy), POM (polyacetal), PEEK (poly). It can be composed of one or more selected from ether ether ketone), PE (polyethylene), PPS (polyphenylene sulfide), and PEI (polyetherimide).

軸部材2は、合成樹脂9と、この合成樹脂9に分散された硬質粒子10からなり、硬質粒子10は、摺動層5の5〜50体積%を占めるようにすることができる。
軸部材2の硬質粒子10は、CF(炭素繊維)、GF(ガラス繊維)、BN、Al、SiC、SiO、AlN、およびTiOのうちから選ばれる1種または2種以上からなることができる。硬質粒子10の平均粒径は、1〜50μm程度とすることができる。
The shaft member 2 includes a synthetic resin 9 and hard particles 10 dispersed in the synthetic resin 9, and the hard particles 10 can occupy 5 to 50% by volume of the sliding layer 5.
The hard particles 10 of the shaft member 2 include one or more selected from CF (carbon fiber), GF (glass fiber), BN, Al 2 O 3 , SiC, SiO 2 , AlN, and TiO 2. Can be. The average particle diameter of the hard particles 10 can be about 1 to 50 μm.

なお、軸部材2は、CaF、CaCo、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMoC(モリブデンカーバイト)のうちから選ばれる1種または2種以上の充填材1〜10体積%をさらに含むことができる。また、軸部材2は、MoS、WS、h−BNおよびPTFEから選ばれる1種または2種以上の固体潤滑剤および/または油5体積%以下をさらに含むことができる。 The shaft member 2, CaF 2, CaCo 3, talcum, mica, mullite, one or more fillers 1-10 volume selected from among iron oxides, calcium phosphate and Mo 2 C (molybdenum carbide) % May further be included. The shaft member 2 can further include one or more solid lubricants selected from MoS 2 , WS 2 , h-BN, and PTFE and / or 5% by volume or less of oil.

本発明による軸受装置の実施例1〜10および比較例11〜22を以下に示すとおり作製した。実施例1〜10および比較例11〜22の軸部材及び摺動部材の摺動層の組成は、表1に示すとおりである。   Examples 1 to 10 and Comparative Examples 11 to 22 of the bearing device according to the present invention were produced as follows. The compositions of the sliding layers of the shaft members and the sliding members of Examples 1 to 10 and Comparative Examples 11 to 22 are as shown in Table 1.

実施例1〜10および比較例11〜22の軸部材は、表1に示す樹脂(EP、PF)と硬質粒子(CF(カーボン繊維)、SiO粒子)を混合し、ペレット化し、このペレットを射出成型機を用い平板形状に成形した。 The shaft members of Examples 1 to 10 and Comparative Examples 11 to 22 were prepared by mixing the resin (EP, PF) and hard particles (CF (carbon fiber), SiO 2 particles) shown in Table 1 into pellets. Molded into a flat plate shape using an injection molding machine.

摺動部材の原材料として用いた球状黒鉛粒子は、鱗片状天然黒鉛を球状に造粒したもので、粒子の内部組織は黒鉛結晶のAB面が粒の表面から内部に向かって粒子表面の丸みに沿って曲線状に複数積層した組織となっており、粒の内部には約10%程度の空隙が形成されていた。   The spherical graphite particles used as the raw material of the sliding member are obtained by spherically granulating scaly natural graphite, and the internal structure of the particles is such that the AB surface of the graphite crystal is rounded from the particle surface toward the inside. A structure in which a plurality of layers are laminated along a curved line, and about 10% of voids are formed inside the grains.

また、摺動部材の原材料として用いた鱗片状黒鉛粒子は、平面状に広がるAB面が多数積層しAB面に垂直方向であるC軸方向に厚みを有する組織となっており、AB面の広がりに対して積層の厚みが薄いため、粒子の形状は薄板状を呈している。この鱗片状黒鉛粒子は、断面組織内には空隙がない。   In addition, the scaly graphite particles used as the raw material of the sliding member have a structure in which a large number of AB surfaces spreading in a planar shape are laminated and have a thickness in the C-axis direction perpendicular to the AB surface. On the other hand, since the thickness of the laminate is thin, the shape of the particles is a thin plate. The scaly graphite particles have no voids in the cross-sectional structure.

また、摺動部材の原材料として用いたPTFE粒子は、長球状に造粒したPTFE粒子であり、懸濁重合法により生成したPTFE粒子、乳化重合法により生成したPTFE粒子及び再生PTFE粒子のいずれを用いても良い。   The PTFE particles used as the raw material of the sliding member are PTFE particles granulated into an oval shape, and any of PTFE particles generated by suspension polymerization, PTFE particles generated by emulsion polymerization, and regenerated PTFE particles is used. It may be used.

また、摺動部材の原材料として用いた合成樹脂(PAI、PI)粒子は、摺動部材の原材料が球状黒鉛粒子の場合は、球状黒鉛粒子の平均粒径に対して合成樹脂の平均粒径が125%であるものを用いた。摺動部材の原材料が鱗片状黒鉛粒子である比較例17では、原材料の合成樹脂の粒径は、鱗片状黒鉛粒子の平均粒径に対して125%であるものを用いた。実施例5、6の摺動部材の原材料として用いた固体潤滑剤(MoS)は粒子の平均粒径が、原材料である球状黒鉛粒子の平均粒径に対して30%のものを用い、実施例6の充填材(CaCo)の粒子は、粒子の平均粒径が球状黒鉛粒子の平均粒径に対して25%のものを用いた。 Further, the synthetic resin (PAI, PI) particles used as the raw material of the sliding member have an average particle diameter of the synthetic resin with respect to the average particle diameter of the spherical graphite particles when the raw material of the sliding member is spherical graphite particles. What was 125% was used. In Comparative Example 17 in which the raw material of the sliding member was scaly graphite particles, the raw material synthetic resin had a particle size of 125% with respect to the average particle size of the scaly graphite particles. The solid lubricant (MoS 2 ) used as the raw material for the sliding members of Examples 5 and 6 was used with an average particle size of 30% of the average particle size of the spherical graphite particles as the raw material. As the particles of the filler (CaCo 3 ) of Example 6, particles having an average particle diameter of 25% with respect to the average particle diameter of the spherical graphite particles were used.

上記の摺動部材の原材料を用いた表1に示す摺動部材の組成物を有機溶剤で希釈し、表1の「粘度(mPa・s)」欄に示す粘度の組成物を準備し、次に、ロールミルを用いて組成物の混合と球状黒鉛粒子の内部空隙を消滅させる処理(処理時間1時間)を同時に行った。なお、ロールミルのロール間のギャップは、実施例1〜10および比較例11〜16、18〜22は、摺動部材の原材料として用いた球状黒鉛粒子の平均径に対する比率が200%となるようにし、比較例17は、摺動部材の原材料として用いた鱗片状黒鉛粒子の平均径に対する比率が400%となるようにした。   The composition of the sliding member shown in Table 1 using the raw material of the sliding member is diluted with an organic solvent to prepare a composition having a viscosity shown in the “viscosity (mPa · s)” column of Table 1. In addition, the composition was mixed using a roll mill and the treatment for eliminating the internal voids of the spherical graphite particles (treatment time 1 hour) was simultaneously performed. In addition, the gap between the rolls of the roll mill was set so that the ratio of the average diameter of the spherical graphite particles used as the raw material of the sliding member in Examples 1 to 10 and Comparative Examples 11 to 16 and 18 to 22 was 200%. In Comparative Example 17, the ratio of the scaly graphite particles used as the raw material of the sliding member to the average diameter was 400%.

次に混合後の摺動部材の組成物をFe合金製の裏金層の一方の表面に塗布したのち、ロールにて組成物が所定の厚さとなるように被覆した。なお、実施例1〜9及び比較例11〜22の裏金層はFe合金を用い、実施例10は表面にCu合金の多孔質焼結部を有するFe合金を用いた。
次に、摺動部材の組成物中の溶剤を乾燥する加熱、摺動部材の組成物の合成樹脂の焼成する加熱を施して摺動部材を作製した。作製された実施例1〜10および比較例11〜22の摺動部材の摺動層の厚さは0.3mmであり、裏金層の厚さは1.7mmであった。
Next, the composition of the mixed sliding member was applied to one surface of the Fe alloy back metal layer, and then coated with a roll so that the composition had a predetermined thickness. In addition, the back metal layer of Examples 1-9 and Comparative Examples 11-22 used Fe alloy, and Example 10 used Fe alloy which has a porous sintered part of Cu alloy on the surface.
Next, heating for drying the solvent in the composition of the sliding member and heating for baking the synthetic resin of the composition of the sliding member were performed to prepare the sliding member. The thickness of the sliding layer of the manufactured sliding members of Examples 1 to 10 and Comparative Examples 11 to 22 was 0.3 mm, and the thickness of the back metal layer was 1.7 mm.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散するPTFE粒子の平均粒径の測定を行い、その結果を表1の「平均粒径D1」欄に示した。また、上記に説明したPTFE粒子の平均アスペクト比(A1)の測定行い、その結果を表1の「アスペクト比(A1)」欄に示した。比較例11〜14、16〜22は、実施例と同様の方法で平均粒径、平均アスペクト比(A1)を測定した結果を表1に示した。   The manufactured sliding member of the example was measured for the average particle diameter of the PTFE particles dispersed in the sliding layer by the measurement method described above, and the result is shown in the “average particle diameter D1” column of Table 1. Indicated. Further, the average aspect ratio (A1) of the PTFE particles described above was measured, and the result is shown in the “Aspect ratio (A1)” column of Table 1. In Comparative Examples 11 to 14 and 16 to 22, Table 1 shows the results of measuring the average particle diameter and average aspect ratio (A1) in the same manner as in the Examples.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散する長球状黒鉛粒子の平均粒径の測定を行い、その結果を表1の「平均粒径D2」欄に示した。また、上記に説明した長球状黒鉛粒子の平均アスペクト比(A2)の測定行い、その結果を表1の「アスペクト比(A2)」欄に示した。比較例11〜16、18〜22は、実施例と同様の方法で平均粒径、平均アスペクト比(A2)を測定した結果を表1に示した。   The sliding member of the produced example was measured for the average particle diameter of the long spherical graphite particles dispersed in the sliding layer by the measurement method described above, and the result is shown in Table 1 as “Average particle diameter D2”. Shown in the column. Further, the average aspect ratio (A2) of the oblong graphite particles described above was measured, and the result is shown in the “Aspect ratio (A2)” column of Table 1. In Comparative Examples 11 to 16 and 18 to 22, Table 1 shows the results of measuring the average particle diameter and average aspect ratio (A2) in the same manner as in the Examples.

作製された実施例の摺動部材は、上記に説明した測定方法による摺動層中に分散する鱗片状黒鉛粒子の平均粒径の測定を行い、その結果を表1の「平均粒径D3」欄に示した。また、上記に説明した鱗片状黒鉛粒子72の平均アスペクト比(A3)、異方分散指数(S)の測定行い、その結果を表1の「アスペクト比(A3)」欄、「異方分散指数(S)」欄に示した。比較例11〜15、17〜22は、実施例と同様の方法で平均粒径、平均アスペクト比(A3)、「異方分散指数(S)」を測定した結果を表1に示した。   The sliding member of the produced example was measured for the average particle size of the scaly graphite particles dispersed in the sliding layer by the measurement method described above, and the result is shown in Table 1 as “Average particle size D3”. Shown in the column. Further, the average aspect ratio (A3) and the anisotropic dispersion index (S) of the scale-like graphite particles 72 described above were measured, and the results are shown in the “Aspect ratio (A3)” column of Table 1, “Anisotropic dispersion index”. (S) "column. Comparative Examples 11 to 15 and 17 to 22 show the results of measuring the average particle diameter, average aspect ratio (A3), and “anisotropic dispersion index (S)” in the same manner as in Example 1.

各実施例および各比較例の摺動部材を平板形状に形成し、また軸部材を平板形状に成型し(図1参照)、表2に示す条件で摺動試験を行った。各実施例および各比較例の摺動試験後の摺動層の摩耗量を表1の「摩耗量」欄に示す。また、各実施例および各比較例は、摺動試験後の摺動部材の摺動面(摺動層の表面)の複数箇所を、粗さ測定器を用いて表面の傷の発生の有無を評価した。摺動面に深さが2μm以上の傷が測定された場合には「有」、測定されなかった場合には「無」とし、表1の「摺動面の傷有無」欄に示した。また、各実施例および各比較例は、摺動性能の安定性を評価するためにサイクル数が5000回の時の摩擦係数(K1)と試験終了時(サイクル数20000回)時の摩擦係数(K2)を測定し、摩擦係数(K2)と摩擦係数(K1)の差(K3=K2−K1)を求めた。これらの結果は、表1の「摩擦係数(K1)」欄、「摩擦係数(K2)」欄、「摩擦係数差(K3)」欄に示す。   The sliding member of each example and each comparative example was formed into a flat plate shape, and the shaft member was formed into a flat plate shape (see FIG. 1), and a sliding test was performed under the conditions shown in Table 2. The amount of wear of the sliding layer after the sliding test of each example and each comparative example is shown in the “wear amount” column of Table 1. In each example and each comparative example, the surface of the sliding member (the surface of the sliding layer) of the sliding member after the sliding test was checked for occurrence of scratches on the surface using a roughness measuring instrument. evaluated. When a scratch having a depth of 2 μm or more is measured on the sliding surface, “Yes” is indicated, and when it is not measured, “No” is indicated. In addition, in each of the examples and comparative examples, in order to evaluate the stability of the sliding performance, the friction coefficient (K1) when the number of cycles is 5000 and the friction coefficient (when the number of cycles is 20,000) ( K2) was measured, and the difference (K3 = K2−K1) between the friction coefficient (K2) and the friction coefficient (K1) was determined. These results are shown in the “Friction coefficient (K1)” column, “Friction coefficient (K2)” column, and “Friction coefficient difference (K3)” column of Table 1.

表1に示す結果から分かるとおり、実施例1〜10は、比較例11〜13、15に対して、摺動試験終了時の摩擦係数K2と途中の摩擦係数K1との差K3が小さくなった。さらに、実施例4〜9は、PTFE粒子の平均アスペクト比A1が1.5〜4.5となり、特に摩擦係数の差が小さくなった。PTFE粒子のアスペクト比が1.5以上(4.5以下)である実施例4〜9は、アスペクト比が1.5未満である実施例1〜3よりも摩擦係数の差が小さくなる結果となったが、これは上記で説明したように、PTFE粒子の表面積が大きくなったために、脱落が抑制されて、移着膜が安定して軸部材に形成されたためと考えられる。   As can be seen from the results shown in Table 1, in Examples 1 to 10, the difference K3 between the friction coefficient K2 at the end of the sliding test and the intermediate friction coefficient K1 is smaller than those in Comparative Examples 11 to 13 and 15. . Further, in Examples 4 to 9, the average aspect ratio A1 of the PTFE particles was 1.5 to 4.5, and the difference in the friction coefficient was particularly small. In Examples 4 to 9 in which the aspect ratio of the PTFE particles is 1.5 or more (4.5 or less), the difference in the friction coefficient is smaller than those in Examples 1 to 3 in which the aspect ratio is less than 1.5. However, as described above, it is considered that the surface area of the PTFE particles was increased, so that the dropping was suppressed and the transfer film was stably formed on the shaft member.

これに対し、比較例11や比較例15のように、摺動層に含まれるPTFE粒子の割合が少ない場合、あるいは全く含まれない場合、上記に説明したように軸部材に形成されるPTFEの移着膜が不十分であることにより、黒鉛粒子の移着が進行して過度となり摩擦係数が安定しなくなることで、摩擦係数の差が大きくなったと考えられる。 On the other hand, when the ratio of PTFE particles contained in the sliding layer is small or not contained as in Comparative Example 11 and Comparative Example 15, the PTFE formed on the shaft member as described above is used. It is considered that the difference in the friction coefficient was increased by the insufficient transfer film, which caused the transfer of graphite particles to proceed and become excessive and the friction coefficient became unstable.

比較例12は、摺動層に含まれるPTFE粒子の割合が2体積%と多いために、摺動初期に過度のPTFE粒子の移着膜が形成されることで、摩擦係数が下がり続けたために、摩擦係数の差が大きくなったと考えられる。 In Comparative Example 12, since the ratio of PTFE particles contained in the sliding layer is as high as 2% by volume, an excessive transfer film of PTFE particles was formed at the initial stage of sliding, and thus the friction coefficient continued to decrease. It is thought that the difference in coefficient of friction has increased.

比較例13は、摺動層に含まれるPTFE粒子の平均粒径が0.5μmと小さいために、摺動面に露出するPTFE粒子の一部が、移着膜が形成される前に摺動面から脱落しやすくなり、摺動面と軸部材の表面の両面間から脱落PTFE粒子が排出されるために、移着膜の形成が不十分となり、摩擦係数の差が大きくなったと考えられる。 In Comparative Example 13, since the average particle size of PTFE particles contained in the sliding layer is as small as 0.5 μm, some of the PTFE particles exposed on the sliding surface slide before the transfer film is formed. It is considered that the transfer film is insufficiently formed and the difference in the coefficient of friction is increased because the falling PTFE particles are discharged from both the sliding surface and the surface of the shaft member.

また、実施例1〜10は、比較例14、16〜22に対して、摺動試験後の摺動層の摩耗量が少なくなった。さらに、実施例4〜9は、長球状黒鉛粒子71の平均アスペクト比A1が1.5〜4.5となり、且つ、鱗片状黒鉛粒子72の平均アスペクト比A3が5以上であり、且つ異方分散指数Sが3以上となり、特に、摩耗量が少なくなった。長球状黒鉛粒子のアスペクト比A2が1.5以上である実施例4〜9は、アスペクト比A1が1.5未満である実施例1〜3よりも摩耗量が少なくなる結果となったが、これは、上記で説明したように長球状黒鉛粒子の表面積が大きくなることにより、合成樹脂との接触面積が増大して合成樹脂による保持が大きくなったためと考えられる。   Further, in Examples 1 to 10, the wear amount of the sliding layer after the sliding test was smaller than those of Comparative Examples 14 and 16 to 22. Further, in Examples 4 to 9, the average aspect ratio A1 of the long spherical graphite particles 71 is 1.5 to 4.5, the average aspect ratio A3 of the scaly graphite particles 72 is 5 or more, and anisotropic. The dispersion index S was 3 or more, and in particular, the amount of wear was reduced. In Examples 4 to 9 in which the aspect ratio A2 of the oblong graphite particles was 1.5 or more, the amount of wear was less than that in Examples 1 to 3 in which the aspect ratio A1 was less than 1.5. This is probably because the contact area with the synthetic resin is increased and the retention by the synthetic resin is increased by increasing the surface area of the oblong graphite particles as described above.

さらに、実施例1〜10は、摺動試験後の摺動部材の摺動面に傷の発生がなかったが、これも摩耗量が少なくなる結果に関係する。実施例1〜10が摺動部材の摺動面の傷発生を抑制する理由は、既に説明したとおり、摺動層が、長球状黒鉛粒子および鱗片状黒鉛粒子を含むことによる。   Further, in Examples 1 to 10, there was no scratch on the sliding surface of the sliding member after the sliding test, which is also related to the result that the amount of wear is reduced. The reason why Examples 1 to 10 suppress the generation of scratches on the sliding surface of the sliding member is that the sliding layer contains long spherical graphite particles and scaly graphite particles as already described.

これに対し、比較例16や比較例22のように、摺動層が長球状黒鉛粒子のみを含む場合、軸部材の表面に露出する硬質粒子と摺動面が、直接、接触し摺動が起こり摺動部材の摺動面に傷が発生する。摺動部材の摺動面に傷が発生すると、摺動層の摩耗が起きやすくなり、摩耗量が多くなる。   On the other hand, when the sliding layer contains only the oblong graphite particles as in Comparative Example 16 and Comparative Example 22, the hard particles exposed on the surface of the shaft member and the sliding surface are in direct contact with each other for sliding. As a result, scratches occur on the sliding surface of the sliding member. When scratches are generated on the sliding surface of the sliding member, the sliding layer is easily worn, and the amount of wear increases.

なお、実施例1〜4では、長球状黒鉛粒子の一部において、断面組織内に幅0.1μm以下で黒鉛結晶の層状組織に沿った細線状の空隙が、この空隙を有する長球状黒鉛粒子の断面組織の全面積に対する面積率で3%以下確認されたものを含んだが、これら実施例では、摺動試験後の摺動面からの長球状黒鉛粒子の脱落や、摺動部材の摺動面には傷の発生がなかった。   In Examples 1 to 4, in a part of the long spherical graphite particles, fine line-shaped voids having a width of 0.1 μm or less along the lamellar structure of the graphite crystal are present in the cross-sectional structure. In these examples, the oval graphite particles were removed from the sliding surface after the sliding test, or the sliding member was slid. There were no scratches on the surface.

比較例14は、摺動層に含まれるPTFE粒子の粒子径が30μmと大きいために、摺動層に加わる負荷により摺動層中のPTFE粒子にせん断が起こり、摺動層の強度が小さくなり摩耗量が多くなったと考えられる。   In Comparative Example 14, since the particle diameter of the PTFE particles contained in the sliding layer is as large as 30 μm, the PTFE particles in the sliding layer are sheared by the load applied to the sliding layer, and the strength of the sliding layer is reduced. It is thought that the amount of wear increased.

比較例16および比較例22は上記したように、軸部材の表面に露出する硬質粒子と摺動部材の摺動面が直接接触して摺動し、摺動部材の摺動面に傷が発生する。さらに、比較例11は、摺動部材の原材料である黒鉛粒子として内部に空隙を有する球状化黒鉛粒子を用いたが、黒鉛粒子を含む組成物を有機溶剤で粘度が15000mPa・sとなるよう希釈したため、組成物中の有機溶剤の割合が多く、混合工程でロールミルのロール間のギャップを球状化黒鉛粒子が通るときに同時に合成樹脂の粒子が通過する頻度が低い。このため、混合工程で原材料である球状化黒鉛粒子の変形量が少なくなり、その結果、摺動層の分散する長球状黒鉛粒子は、平均アスペクト比(A2)が小さくなり、断面組織内には、原材料である球状化黒鉛粒子の内部に形成されていた空隙が、ほぼそのまま残った。
このため、比較例11の摺動部材は、摺動試験において、摺動層の表面に露出する黒鉛粒子が、軸部材からの負荷を受けると、長球状黒鉛粒子に割れが生じたり、内部空隙が潰されて座屈が起こり、粒の表面積が小さくなり、長球状黒鉛粒子の合成樹脂による保持が十分でなくなることにより、長球状黒鉛粒子のせん断片が摺動面から脱落し、軸部材表面との間の空隙に侵入して摺動面の摩耗が促進されたと考えられる。
In Comparative Example 16 and Comparative Example 22, as described above, the hard particles exposed on the surface of the shaft member and the sliding surface of the sliding member slide in direct contact, and the sliding surface of the sliding member is scratched. To do. Further, in Comparative Example 11, spheroidized graphite particles having voids therein were used as the graphite particles as the raw material of the sliding member, but the composition containing the graphite particles was diluted with an organic solvent so that the viscosity became 15000 mPa · s. Therefore, the ratio of the organic solvent in the composition is large, and the frequency of the synthetic resin particles passing through the gap between the rolls of the roll mill in the mixing process is low at the same time as passing through the gap. For this reason, the amount of deformation of the spheroidized graphite particles as the raw material in the mixing step is reduced, and as a result, the average spherical aspect particles (A2) of the long spherical graphite particles dispersed in the sliding layer are reduced, The voids formed inside the spheroidized graphite particles as the raw material remained almost as they were.
For this reason, in the sliding member of Comparative Example 11, in the sliding test, when the graphite particles exposed on the surface of the sliding layer are subjected to a load from the shaft member, the long spherical graphite particles are cracked or the internal voids are Crushed and buckling occurs, the surface area of the grains is reduced, and the retention of the oblong graphite particles by the synthetic resin is not sufficient, so that the spheroidal fragments of the oblong graphite particles fall off from the sliding surface, and the shaft member surface It is thought that wear of the sliding surface was promoted by entering the gap between the two.

比較例17は、表1に示すように実施例とは異なり、摺動層は鱗片状黒鉛粒子のみを含む。比較例17において摺動層の摩耗量が増加した理由は以下のように考えられる。
比較例17は、摺動層は、鱗片状黒鉛粒子のみを含むので、実施例に比べて摺動面に露出する鱗片状黒鉛粒子の量が多い。このため、比較例17は、摺動時に、摺動面から軸部材表面と摺動面との間の隙間に脱落する鱗片状黒鉛粒子の量が多くなりすぎて、摺動層の表面に傷が発生し、摩耗量が多くなった。
さらに、比較例17は、摺動面に多量の鱗片状黒鉛粒子が露出するので、摺動面に露出する鱗片状黒鉛粒子のうちで脱落するものの量が多くなり、脱落した鱗片状黒鉛粒子の存在により、摺動層の摩耗量が増加した。
As shown in Table 1, Comparative Example 17 is different from the Examples, and the sliding layer includes only scaly graphite particles. The reason why the wear amount of the sliding layer increased in Comparative Example 17 is considered as follows.
Since the sliding layer contains only scaly graphite particles in Comparative Example 17, the amount of scaly graphite particles exposed on the sliding surface is larger than that in the example. For this reason, in Comparative Example 17, the amount of scaly graphite particles falling off from the sliding surface into the gap between the shaft member surface and the sliding surface during sliding is too large, and the surface of the sliding layer is scratched. The amount of wear increased.
Further, in Comparative Example 17, since a large amount of scaly graphite particles are exposed on the sliding surface, the amount of scaly graphite particles exposed on the sliding surface increases and the amount of scaly graphite particles that have dropped off increases. Due to the presence, the wear amount of the sliding layer increased.

比較例18では、摺動層は、長球状黒鉛粒子と鱗片状黒鉛粒子の両方を含むが、摺動層が含む黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積割合が5%と低すぎるため、摺動時の鱗片状黒鉛粒子の軸部材の表面への移着部の形成が不十分となり、摺動部材の摺動面に傷が発生した。このため、摺動層の摩耗量が多くなった。   In Comparative Example 18, the sliding layer includes both long spherical graphite particles and scaly graphite particles, but the volume ratio of the scaly graphite particles to the total volume of the graphite particles included in the sliding layer is too low at 5%. The formation of the transfer part of the scaly graphite particles to the surface of the shaft member during sliding was insufficient, and the sliding surface of the sliding member was damaged. For this reason, the abrasion amount of the sliding layer increased.

比較例19では、摺動層は、長球状黒鉛粒子と鱗片状黒鉛粒子の両方を含むが、摺動層が含む黒鉛粒子の全体積に対する鱗片状黒鉛粒子の体積割合が45%と大きすぎるため、摺動時に、摺動面に露出する鱗片状黒鉛粒子に割れが生じて脱落する量が多くなり、脱落した鱗片状黒鉛粒子によって、摺動層の摩耗量が増加したと考えられる。   In Comparative Example 19, the sliding layer includes both long spherical graphite particles and scaly graphite particles, but the volume ratio of the scaly graphite particles to the total volume of the graphite particles included in the sliding layer is too large at 45%. During the sliding, it is considered that the amount of flake graphite particles exposed on the sliding surface cracks and drops off, and the flake graphite particles dropped off increase the amount of wear of the sliding layer.

比較例20は、摺動層に含まれる長球状黒鉛粒子と鱗片状黒鉛粒子とからなる黒鉛粒子の量が3体積%と少ないため、摺動層と軸部材の表面との摩擦力を低くする効果が不十分となり、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 20, since the amount of the graphite particles composed of the oblong graphite particles and the scaly graphite particles contained in the sliding layer is as small as 3% by volume, the frictional force between the sliding layer and the surface of the shaft member is lowered. It is considered that the effect was insufficient and the wear amount of the sliding layer was increased.

比較例21は、摺動層に含まれる長球状黒鉛粒子と鱗片状黒鉛粒子とからなる黒鉛粒子の量が60体積%と多いため、摺動層の強度が低くなり、摺動層の摩耗量が多くなったと考えられる。   In Comparative Example 21, since the amount of the graphite particles composed of the oblong graphite particles and the scaly graphite particles contained in the sliding layer is as large as 60% by volume, the strength of the sliding layer is lowered, and the wear amount of the sliding layer is reduced. Seems to have increased.

1:摺動装置
2:軸部材
3:摺動部材
4:裏金層
5:摺動層
6:摺動部材の合成樹脂
7:黒鉛粒子
71:長球状黒鉛粒子
72:鱗片状黒鉛粒子
8:多孔質金属層
9:軸部材の合成樹脂
10:硬質粒子
11:PTFE粒子
1: Sliding device 2: Shaft member 3: Sliding member 4: Back metal layer 5: Sliding layer 6: Synthetic resin of sliding member 7: Graphite particles 71: Spherical graphite particles 72: Scale-like graphite particles 8: Porous Metallic layer 9: Synthetic resin for shaft member 10: Hard particles 11: PTFE particles

Claims (11)

軸部材と、該軸部材を支承する摺動部材とを備える摺動装置であって、
前記軸部材は、合成樹脂と、該合成樹脂中に分散された硬質粒子とからなり、前記硬質粒子の体積は、前記軸部材の体積の5〜50体積%であり、
前記摺動部材は、裏金層と、該裏金層上に設けられた摺動層とを備え、
前記摺動層は、合成樹脂と、該合成樹脂中に分散された黒鉛粒子およびPTFE粒子とからなり、該黒鉛粒子の体積は、前記摺動層の体積の5〜50体積%であり、前記PTFE粒子の体積は、前記摺動層の体積の0.2体積%以上1体積%未満であり、
前記黒鉛粒子は、長球状黒鉛粒子と薄板形状の鱗片状黒鉛粒子とからなり、前記黒鉛粒子の全体積に対する前記鱗片状黒鉛粒子の体積の割合が10〜40体積%であり、
前記長球状黒鉛粒子の断面組織は、黒鉛結晶のAB面が粒子表面から中心方向に向けて粒子表面の丸みに沿って曲線状に複数積層しており、前記鱗片状黒鉛粒子の断面組織は、黒鉛結晶のAB面が前記薄板形状の厚さ方向に複数積層しており、
前記長球状黒鉛粒子の平均粒径が3〜50μmであり、前記鱗片状黒鉛粒子の平均粒径が1〜25μmであり、前記PTFE粒子の平均粒径が1〜25μmである、摺動装置。
A sliding device comprising a shaft member and a sliding member for supporting the shaft member,
The shaft member is composed of a synthetic resin and hard particles dispersed in the synthetic resin, and the volume of the hard particles is 5 to 50% by volume of the volume of the shaft member,
The sliding member includes a backing metal layer and a sliding layer provided on the backing metal layer,
The sliding layer is composed of a synthetic resin, graphite particles and PTFE particles dispersed in the synthetic resin, and the volume of the graphite particles is 5 to 50% by volume of the volume of the sliding layer, The volume of the PTFE particles is 0.2% by volume or more and less than 1% by volume of the volume of the sliding layer,
The graphite particles are composed of long spherical graphite particles and thin plate-like scaly graphite particles, and the volume ratio of the scaly graphite particles to the total volume of the graphite particles is 10 to 40% by volume,
The cross-sectional structure of the long spherical graphite particles is such that the AB surface of the graphite crystal is laminated in a curved shape along the roundness of the particle surface from the particle surface toward the center, and the cross-sectional structure of the scaly graphite particles is: A plurality of AB surfaces of graphite crystals are laminated in the thickness direction of the thin plate shape,
The sliding device wherein the average particle diameter of the long spherical graphite particles is 3 to 50 μm, the average particle diameter of the scaly graphite particles is 1 to 25 μm, and the average particle diameter of the PTFE particles is 1 to 25 μm.
前記PTFE粒子の平均アスペクト比が1.5〜4.5である、請求項1に記載された摺動装置。   The sliding device according to claim 1, wherein an average aspect ratio of the PTFE particles is 1.5 to 4.5. 前記長球状黒鉛粒子の平均アスペクト比が1.5〜4.5である、請求項1または請求項2に記載された摺動装置。   The sliding device according to claim 1 or 2, wherein an average aspect ratio of the long spherical graphite particles is 1.5 to 4.5. 前記鱗片状黒鉛粒子の平均アスペクト比が5〜10であり、
前記鱗片状黒鉛粒子の異方分散指数が3以上であり、該異方分散指数は、各鱗片状黒鉛粒子についての比X1/Y1の平均により表され、ここで
X1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して平行方向の長さであり、
Y1は、前記摺動層の摺動面に対して垂直方向の断面組織での、前記鱗片状黒鉛粒子の前記摺動面に対して垂直方向の長さである、請求項1から請求項3までのいずれか1項に記載された摺動装置。
The scaly graphite particles have an average aspect ratio of 5 to 10,
The anisotropic dispersion index of the scaly graphite particles is 3 or more, and the anisotropic dispersion index is represented by an average of the ratio X1 / Y1 for each of the scaly graphite particles, where X1 is the value of the sliding layer. The cross-sectional structure perpendicular to the sliding surface is the length in the direction parallel to the sliding surface of the scaly graphite particles,
Y1 is a length perpendicular to the sliding surface of the scaly graphite particles in a cross-sectional structure perpendicular to the sliding surface of the sliding layer. The sliding device described in any one of the preceding items.
前記摺動層の合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPS、及びPEIから選ばれる1種または2種以上からなる、請求項1から請求項4までのいずれか1項に記載された摺動装置。   The synthetic resin of the said sliding layer consists of 1 type, or 2 or more types chosen from PAI, PI, PBI, PA, a phenol, an epoxy, POM, PEEK, PE, PPS, and PEI. The sliding device described in any one of the preceding items. 前記摺動層が、MoS2、WS2、及びh−BNから選ばれる1種または2種以上の固体潤滑剤を1〜20体積%をさらに含む、請求項1から請求項5までのいずれか1項に記載された摺動装置。   The said sliding layer further contains 1-20 volume% of 1 type, or 2 or more types of solid lubricant chosen from MoS2, WS2, and h-BN, Any one of Claim 1-5. The sliding device described in 1. 前記摺動層が、CaF2、CaCo3、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウム、及びMo2Cから選ばれる1種または2種以上の充填材を1〜10体積%さらに含む、請求項1から請求項6までのいずれか1項に記載された摺動装置。   The said sliding layer further contains 1-10 volume% of 1 type, or 2 or more types of fillers chosen from CaF2, CaCo3, talc, mica, mullite, iron oxide, calcium phosphate, and Mo2C. 7. A sliding device according to any one of items 6 to 6. 前記裏金層と前記摺動層との間に、多孔質金属層をさらに有する、請求項1から請求項7までのいずれか1項に記載された摺動装置。   The sliding device according to any one of claims 1 to 7, further comprising a porous metal layer between the back metal layer and the sliding layer. 前記軸部材の前記合成樹脂が、PAI、PI、PBI、PA、フェノール、エポキシ、POM、PEEK、PE、PPSおよびPEIのうちから選ばれる1種または2種以上である請求項1から請求項8までのいずれか1項に記載された摺動装置。   The synthetic resin of the shaft member is one or more selected from PAI, PI, PBI, PA, phenol, epoxy, POM, PEEK, PE, PPS and PEI. The sliding device described in any one of the preceding items. 前記硬質粒子が、炭素繊維、ガラス繊維、BN、Al2O3、SiC、SiO2、AlN、およびTiO2のうちから選ばれる1種または2種以上からなる請求項1から請求項9までのいずれか1項に記載された摺動装置。   The said hard particle consists of 1 type, or 2 or more types chosen from carbon fiber, glass fiber, BN, Al2O3, SiC, SiO2, AlN, and TiO2, in any one of Claim 1 to 9 The sliding device described. 前記軸部材が、
CaF2、CaCo3、タルク、マイカ、ムライト、酸化鉄、リン酸カルシウムおよびMo2Cのうちから選ばれる1種または2種以上を1〜10体積%、及び/または
MoS2、WS2、h−BNおよびPTFEから選ばれる1種または2種以上を5体積%以下
をさらに含む請求項1から請求項10までのいずれか1項に記載された摺動装置。
The shaft member is
1 to 10% by volume of one or more selected from CaF2, CaCo3, talc, mica, mullite, iron oxide, calcium phosphate and Mo2C, and / or 1 selected from MoS2, WS2, h-BN and PTFE The sliding device according to any one of claims 1 to 10, further comprising 5% by volume or less of seeds or two or more kinds.
JP2016208917A 2016-10-25 2016-10-25 Sliding device Active JP6704832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208917A JP6704832B2 (en) 2016-10-25 2016-10-25 Sliding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208917A JP6704832B2 (en) 2016-10-25 2016-10-25 Sliding device

Publications (2)

Publication Number Publication Date
JP2018071581A true JP2018071581A (en) 2018-05-10
JP6704832B2 JP6704832B2 (en) 2020-06-03

Family

ID=62115027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208917A Active JP6704832B2 (en) 2016-10-25 2016-10-25 Sliding device

Country Status (1)

Country Link
JP (1) JP6704832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112008A1 (en) * 2019-12-03 2021-06-10 大同メタル工業株式会社 Sliding member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092156A (en) * 2007-10-10 2009-04-30 Daido Metal Co Ltd Sliding bearing
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
WO2012074107A1 (en) * 2010-12-02 2012-06-07 大豊工業株式会社 Swash plate for swash plate compressor
JP2013083301A (en) * 2011-10-07 2013-05-09 Taiho Kogyo Co Ltd Slide bearing made of graphite added resin-based material, for pinion gear of planetary gear mechanism
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092156A (en) * 2007-10-10 2009-04-30 Daido Metal Co Ltd Sliding bearing
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
WO2012074107A1 (en) * 2010-12-02 2012-06-07 大豊工業株式会社 Swash plate for swash plate compressor
JP2013083301A (en) * 2011-10-07 2013-05-09 Taiho Kogyo Co Ltd Slide bearing made of graphite added resin-based material, for pinion gear of planetary gear mechanism
WO2014181562A1 (en) * 2013-05-09 2014-11-13 大豊工業株式会社 Sliding member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112008A1 (en) * 2019-12-03 2021-06-10 大同メタル工業株式会社 Sliding member
CN114585819A (en) * 2019-12-03 2022-06-03 大同金属工业株式会社 Sliding member
CN114585819B (en) * 2019-12-03 2024-02-27 大同金属工业株式会社 Sliding member
JP7498555B2 (en) 2019-12-03 2024-06-12 大同メタル工業株式会社 Sliding member

Also Published As

Publication number Publication date
JP6704832B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6300843B2 (en) Sliding member
JP6298132B1 (en) Sliding member
JP6267174B2 (en) Sliding member
JP5259544B2 (en) Sliding resin composition
JP6599756B2 (en) Sliding member
JP6649108B2 (en) Sliding device
EP3819514B1 (en) Sliding member
JP5465270B2 (en) Resin sliding member
JP6624679B2 (en) Sliding member
JP6653234B2 (en) Sliding device
JP6704832B2 (en) Sliding device
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP7149252B2 (en) Resin material for sliding member and sliding member
JP6712203B2 (en) Sliding device
JP5448009B2 (en) Resin sliding member
JP5546485B2 (en) Sliding resin composition
JP6624680B2 (en) Sliding device
JP6712202B2 (en) Sliding member
JP2014169438A (en) Solid particle, solid lubricant and metallic component
WO2023248962A1 (en) Sliding member
JP2015113457A (en) Lubrication film and slide bearing
JP2000170924A (en) Sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200513

R150 Certificate of patent or registration of utility model

Ref document number: 6704832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250