JP2018070437A - PRODUCTION METHOD OF CRYSTALLINE ZrO2 FILM, AND CRYSTALLINE ZrO2 FILM - Google Patents

PRODUCTION METHOD OF CRYSTALLINE ZrO2 FILM, AND CRYSTALLINE ZrO2 FILM Download PDF

Info

Publication number
JP2018070437A
JP2018070437A JP2016216766A JP2016216766A JP2018070437A JP 2018070437 A JP2018070437 A JP 2018070437A JP 2016216766 A JP2016216766 A JP 2016216766A JP 2016216766 A JP2016216766 A JP 2016216766A JP 2018070437 A JP2018070437 A JP 2018070437A
Authority
JP
Japan
Prior art keywords
film
crystalline zro
crystalline
zro
mist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016216766A
Other languages
Japanese (ja)
Other versions
JP7065439B2 (en
Inventor
藤田 静雄
Shizuo Fujita
静雄 藤田
金子 健太郎
Kentaro Kaneko
健太郎 金子
貴博 佐々木
Takahiro Sasaki
貴博 佐々木
俊実 人羅
Toshimi Hitora
俊実 人羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Kyoto University NUC
Original Assignee
Flosfia Inc
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc, Kyoto University NUC filed Critical Flosfia Inc
Priority to JP2016216766A priority Critical patent/JP7065439B2/en
Publication of JP2018070437A publication Critical patent/JP2018070437A/en
Application granted granted Critical
Publication of JP7065439B2 publication Critical patent/JP7065439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of producing a non-granular crystalline ZrOfilm, simply, easily and industrially advantageously.SOLUTION: A precursor solution (organic solvent) of a crystalline ZrOfilm is atomized or changed into droplets by using an ultrasonic wave, and obtained mist or droplets are conveyed by carrier gas (inert gas) to a vicinity of a substrate, then, the mist or droplets are subjected to a thermal reaction at a temperature of 500°C or lower under an atmospheric pressure, to thereby form a non-granular crystalline ZrOfilm on the substrate.SELECTED DRAWING: None

Description

本発明は、光学物品、電気機器、電子部品、燃料電池、太陽電池、車両、産業用機器などに有用な結晶性ZrO膜の製造方法および結晶性ZrO膜に関する。 The present invention relates to an optical article, electric equipment, electronic components, fuel cells, solar cells, vehicles, a manufacturing method and a crystalline ZrO 2 film such useful crystalline ZrO 2 film industrial equipment.

ジルコニア(酸化ジルコニウム)膜は、高い耐熱性及び耐食性、低い熱及び電気伝導性等の特性を有し、耐熱用保護膜、耐食用保護膜、光学薄膜等として利用される。その形成方法としては、金属酸化物の薄膜形成方法として何れも従来から良く知られているプラズマスプレー法や真空蒸着法が一般に用いられる。
ジルコニアは、常温では単斜晶系であるが、温度を上げていくとその結晶系が正方晶系に相転移する。この相転移は可逆的なものであるが、単斜晶系から正方晶系への相転移は、約4%の体積収縮を伴うので、昇降温を繰り返すことによってジルコニアが破壊に至る場合がある。この破壊を防ぐために、ジルコニアに酸化イットリウム等の熱安定化ドーパントを固溶させ、熱的に安定化させたのが安定化ジルコニアである。
A zirconia (zirconium oxide) film has characteristics such as high heat resistance and corrosion resistance, low heat and electrical conductivity, and is used as a heat-resistant protective film, a corrosion-resistant protective film, an optical thin film, and the like. As its formation method, a plasma spray method or a vacuum deposition method, which are well known in the past as a metal oxide thin film formation method, is generally used.
Zirconia is monoclinic at normal temperature, but as the temperature is raised, the crystal system undergoes a phase transition to tetragonal system. Although this phase transition is reversible, the phase transition from the monoclinic system to the tetragonal system is accompanied by a volume shrinkage of about 4%, and thus zirconia may be destroyed by repeated heating and cooling. . In order to prevent this destruction, stabilized zirconia is obtained by dissolving a thermally stabilizing dopant such as yttrium oxide in zirconia and thermally stabilizing it.

特許文献1には、エアロゾル化ガスデポジション法を用いて、イットリア安定化ジルコニア(YSZ)粒子を基材上に堆積させることにより、ジルコニア膜を作製することが記載されている。また特許文献2には、スカンジア安定化ジルコニア膜の前駆体を焼成することによって、スカンジア安定化ジルコニア膜を作製することが記載されている。しかしながら、特許文献1および特許文献2のように、熱安定化ドーパントをドーピングすることによってジルコニア膜を熱的に安定化させた場合には、ジルコニア膜の機械的な特性の低下などが生じ、ジルコニア及びジルコニア膜が本来有しているはずの特性を十分に発揮することができないなどの問題があった。   Patent Document 1 describes that a zirconia film is produced by depositing yttria-stabilized zirconia (YSZ) particles on a substrate using an aerosolized gas deposition method. Patent Document 2 describes that a scandia-stabilized zirconia film is produced by firing a precursor of a scandia-stabilized zirconia film. However, as in Patent Document 1 and Patent Document 2, when the zirconia film is thermally stabilized by doping with a heat-stabilizing dopant, the mechanical characteristics of the zirconia film are deteriorated, resulting in zirconia. In addition, there is a problem that the characteristics that the zirconia film should originally have cannot be fully exhibited.

一方、YSZのように熱安定化ドーパントを添加することなく、熱的に安定化されたジルコニアを作製する方法が検討されている。非特許文献1には、エアロゾル化したジルコニアの原料溶液を、筒状の反応炉を通過させることによって、熱安定化ドーピングを行うことなく、正方晶の結晶構造を有する結晶性ZrOナノ粒子を製造することが記載されている。しかしながら、非特許文献1に記載されている方法では、溶媒が急激に蒸発するのを防ぐために、反応炉の長さを十分にとらなければならず、さらに、段階的に温度を上げて加熱するように構成する必要があるなど、製造プロセスが複雑となる問題があった。また、成膜が困難であり、粒子状になってしまう問題があった。そのため、成膜が可能であり、結晶性ジルコニア本来の性能を生かし、且つ工業上利用価値の高い結晶性ジルコニア膜が待ち望まれていた。 On the other hand, a method for producing a thermally stabilized zirconia without adding a thermally stabilizing dopant like YSZ has been studied. Non-Patent Document 1 discloses that by passing an aerosolized zirconia raw material solution through a cylindrical reactor, crystalline ZrO 2 nanoparticles having a tetragonal crystal structure are obtained without performing thermal stabilization doping. Manufacturing is described. However, in the method described in Non-Patent Document 1, in order to prevent the solvent from rapidly evaporating, it is necessary to sufficiently take the length of the reaction furnace, and further, the temperature is increased and heated in steps. There is a problem in that the manufacturing process becomes complicated, such as the need to configure. In addition, there is a problem that film formation is difficult and particles are formed. Therefore, a crystalline zirconia film that can be formed, takes advantage of the original performance of crystalline zirconia and has high industrial utility value has been awaited.

また、非特許文献2には、IBAD(Ion Beam Assisted Deposition)法を用いて、熱安定化ドーピングを行うことなく、ナノ結晶によって安定化されたZrOのナノ粒子膜を作製することが記載されている。しかしながら、非特許文献2に記載の方法で作製されたZrOのナノ粒子膜は、粒子径が10nm程度の単相の結晶粒と非晶質部分とからなる粒状混相膜であり、さらに、アルゴン等の気泡が膜中に混入するなど、結晶性ZrO相によって構成された膜ではなかった。さらに、IBAD法は、真空装置等の大掛かりな設備を用いる必要があるなど、非特許文献2に記載の方法では、工業的な課題が多く、また、結晶性ZrOの非粒状膜を得ることができず、良好な非粒状の結晶性ZrO膜を製造することが困難であった。そのため、熱安定化ドーピングを行うことなく、簡単且つ容易に、熱的に安定した非粒状の結晶性ZrO膜を作製する方法が求められており、結晶性ZrOの非粒状膜であって、膜質が良好である、工業的に有用な結晶性ZrO膜が待ち望まれていた。 Non-Patent Document 2 describes that a nanoparticle film of ZrO 2 stabilized by nanocrystals is manufactured without performing thermal stabilization doping using an IBAD (Ion Beam Assisted Deposition) method. ing. However, the ZrO 2 nanoparticle film prepared by the method described in Non-Patent Document 2 is a granular mixed-phase film composed of single-phase crystal grains having a particle diameter of about 10 nm and an amorphous portion, and further, argon The film was not composed of a crystalline ZrO 2 phase, such as bubbles mixed in the film. Furthermore, the IBAD method requires the use of large-scale equipment such as a vacuum apparatus, and the method described in Non-Patent Document 2 has many industrial problems, and obtains a non-granular film of crystalline ZrO 2. It was difficult to produce a good non-granular crystalline ZrO 2 film. Therefore, there is a need for a method for producing a thermally stable non-granular crystalline ZrO 2 film easily and easily without performing thermal stabilization doping, which is a crystalline ZrO 2 non-granular film. An industrially useful crystalline ZrO 2 film with good film quality has been awaited.

特開2011−84787号公報JP 2011-84787 A 特開2016−108165号公報JP, 2006-108165, A

Djurado, E., and E. Meunier. "Synthesis of doped and undoped nanopowders of tetragonal polycrystalline zirconia (TPZ) by spray-pyrolysis." Journal of Solid State Chemistry 141.1 (1998): 191-198.Djurado, E., and E. Meunier. "Synthesis of doped and undoped nanopowders of tetragonal porous zirconia (TPZ) by spray-pyrolysis." Journal of Solid State Chemistry 141.1 (1998): 191-198. Zhang, Yanwen, et al. "Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation." Physical Review B 82.18 (2010): 184105.Zhang, Yanwen, et al. "Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation." Physical Review B 82.18 (2010): 184105.

本発明は、工業的有利に、熱安定化ドーピングを行うことなく、熱的に安定化された結晶性ZrO膜を製造することができる製造方法を提供することを目的とする。 It is an object of the present invention to provide a production method that can produce a thermally stabilized crystalline ZrO 2 film without industrially advantageous thermal stabilization doping.

本発明者らは、上記目的を達成すべく鋭意検討した結果、スプレー熱分解法などによれば、アモルファスのZrO膜が得られていたが(基板に対して原料ミストを噴射するため、基板との衝突やその際の衝突エネルギー等がアモルファス形成に影響していたのかもしれないが)、ミストCVD法を用いて結晶性ZrO膜を成膜すると、驚くべきことに、熱安定化ドーパントを用いなくても熱的に安定化されており、室温においても相転移しない非粒状膜が得られることを見出し、特に、熱的に安定な、立方晶の結晶構造を有する結晶性ZrO膜が簡便に得られることを見出し、このような製造方法が上記従来の問題を一挙に解決できるものであることを知見した。
また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
As a result of intensive studies to achieve the above object, the present inventors have obtained an amorphous ZrO 2 film according to a spray pyrolysis method or the like (because the raw material mist is injected onto the substrate, The impact energy and the collision energy at that time may have influenced the amorphous formation), but surprisingly, when the crystalline ZrO 2 film is formed using the mist CVD method, the heat stabilizing dopant It has been found that a non-granular film that is thermally stabilized without using phase and does not undergo phase transition even at room temperature can be obtained, and in particular, a crystalline ZrO 2 film having a cubic crystal structure that is thermally stable Has been found that such a production method can solve the above conventional problems all at once.
In addition, after obtaining the above knowledge, the present inventors have further studied and completed the present invention.

すなわち、本発明は、以下の発明に関する。
[1] 結晶性ZrO膜の前駆体溶液を霧化または液滴化し、得られたミストまたは液滴を用いて、基体上に結晶性ZrO膜を製造する方法であって、前記の霧化または液滴化後、前記ミストまたは前記液滴をキャリアガスを用いて前記基体近傍まで搬送し、ついで、前記ミストまたは前記液滴を熱反応させることにより、前記基体上に、非粒状の結晶性ZrO膜を形成することを特徴とする結晶性ZrO膜の製造方法。
[2] 前記前駆体溶液がジルコニウムの有機金属錯体を含む前記[1]記載の製造方法。
[3] 前記前駆体溶液の溶媒が有機溶媒を含む前記[1]または[2]に記載の製造方法。
[4] 前記熱反応を、大気圧下で行う前記[1]〜[3]のいずれかに記載の製造方法。
[5] 前記熱反応を、500℃以下の温度で行う前記[1]〜[4]のいずれかに記載の製造方法。
[6] 前記熱反応を、前記搬送後、前記ミストまたは液滴を加熱することにより行う前記[1]〜[5]のいずれかに記載の製造方法。
[7] 前記[1]〜[6]のいずれかに記載の製造方法により得られた結晶性ZrO膜。
[8] 立方晶の結晶構造を有する前記[7]記載の結晶性ZrO膜。
[9] 室温において立方晶の結晶構造を有する前記[7]または[8]に記載の結晶性
ZrO膜。
[10] 多結晶膜である前記[7]〜[9]のいずれかに記載の結晶性ZrO膜。
[11] 膜厚が0.5μm以上である前記[7]〜[10]のいずれかに記載の結晶性ZrO膜。
[12] 熱安定化ドーパントを用いずに熱的に安定化された結晶性ZrO膜であって、非粒状膜であることを特徴とする結晶性ZrO膜。
[13] 立方晶の結晶構造を有する前記[12]記載の結晶性ZrO膜。
[14] 結晶性ZrO膜を熱安定化させる方法であって、前記結晶性ZrO膜の成膜にミストCVD法を用いることを特徴とする結晶性ZrO膜の熱安定化方法。
[15] 前記[14]記載の方法により熱安定化された結晶性ZrO膜。
That is, the present invention relates to the following inventions.
[1] A method for producing a crystalline ZrO 2 film on a substrate by atomizing or dropping a precursor solution of a crystalline ZrO 2 film and using the obtained mist or liquid droplets, After the formation or droplet formation, the mist or the droplet is transported to the vicinity of the substrate using a carrier gas, and then the mist or the droplet is subjected to a thermal reaction to thereby form non-granular crystals on the substrate. A method for producing a crystalline ZrO 2 film, comprising forming a crystalline ZrO 2 film.
[2] The method according to [1], wherein the precursor solution contains an organometallic complex of zirconium.
[3] The production method according to [1] or [2], wherein the solvent of the precursor solution includes an organic solvent.
[4] The production method according to any one of [1] to [3], wherein the thermal reaction is performed under atmospheric pressure.
[5] The production method according to any one of [1] to [4], wherein the thermal reaction is performed at a temperature of 500 ° C. or lower.
[6] The manufacturing method according to any one of [1] to [5], wherein the thermal reaction is performed by heating the mist or droplets after the conveyance.
[7] A crystalline ZrO 2 film obtained by the production method according to any one of [1] to [6].
[8] The crystalline ZrO 2 film according to [7], which has a cubic crystal structure.
[9] The crystalline ZrO 2 film according to [7] or [8], which has a cubic crystal structure at room temperature.
[10] The crystalline ZrO 2 film according to any one of [7] to [9], which is a polycrystalline film.
[11] The crystalline ZrO 2 film according to any one of [7] to [10], wherein the film thickness is 0.5 μm or more.
[12] A thermally stabilized crystalline ZrO 2 film without using the heat stabilization dopant, crystalline ZrO 2 film, which is a non-particulate film.
[13] The crystalline ZrO 2 film according to [12], which has a cubic crystal structure.
[14] The crystalline ZrO 2 film A method of heat-stabilized, heat stabilizing method of a crystalline ZrO 2 film, which comprises using a mist CVD method in the film forming of the crystalline ZrO 2 film.
[15] A crystalline ZrO 2 film thermally stabilized by the method described in [14].

本発明の製造方法によれば、工業的有利に、熱安定化ドーピングを行うことなく、熱的に安定した非粒状の結晶性ZrO膜を製造することができる。 According to the manufacturing method of the present invention, a thermally stable non-granular crystalline ZrO 2 film can be manufactured industrially advantageously without performing thermal stabilization doping.

本発明において用いられる成膜装置(ミストCVD)の概略構成図である。It is a schematic block diagram of the film-forming apparatus (mist CVD) used in this invention. 実施例1におけるXRDの測定結果を示す図である。FIG. 6 is a diagram showing a result of XRD measurement in Example 1. 実施例1におけるTEM観察の結果(TEM断面図)を示す図である。FIG. 3 is a diagram showing a result of TEM observation (TEM cross-sectional view) in Example 1.

本発明の結晶性ZrO膜は、熱安定化ドーパントを用いずに熱的に安定化された結晶性ZrO膜であって、非粒状膜であることを特長とする。前記結晶性ZrO膜は、ZrO結晶またはその混晶を主成分として含む膜であればそれでよく、「主成分」とは、例えば前記結晶性ZrO膜がZrO結晶である場合、膜中の金属元素中のZrの原子比が0.5以上の割合でZrO結晶が含まれていればそれでよい。本発明においては、前記膜中の金属元素中のZrの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。 Crystalline ZrO 2 film of the present invention, there is provided a thermally stabilized crystalline ZrO 2 film without using the heat stabilization dopant, featuring that it is non-granular film. The crystalline ZrO 2 film may be any film that includes a ZrO 2 crystal or a mixed crystal thereof as a main component. For example, when the crystalline ZrO 2 film is a ZrO 2 crystal, the “main component” is a film. If the ZrO 2 crystal is contained in the atomic ratio of Zr in the metal element in the ratio of 0.5 or more, it is sufficient. In the present invention, the atomic ratio of Zr in the metal element in the film is preferably 0.7 or more, and more preferably 0.8 or more.

本発明において、「熱的に安定化された」とは、室温だけでなく、加熱しても、結晶性ZrO膜が相転移しないことをいい、より具体的には、例えば、室温(例えば、25℃)〜500℃においても結晶性ZrO膜が相転移しないことをいう。「相転移」とは、固相間の相転移のうち、結晶構造が変化する構造相転移をいう。通常、相転移の有無の確認は、X線回析法を用いて行う。 In the present invention, “thermally stabilized” means that the crystalline ZrO 2 film does not undergo phase transition even when heated, and more specifically, for example, at room temperature (for example, 25 ° C.) to 500 ° C. means that the crystalline ZrO 2 film does not undergo phase transition. "Phase transition" refers to a structural phase transition in which the crystal structure changes among the phase transitions between solid phases. Usually, the presence or absence of the phase transition is confirmed using an X-ray diffraction method.

また、本発明において、「熱安定化ドーパントを用いずに熱的に安定化された」とは、熱安定化ドーパントによって熱的に安定化されていないことを意味し、形式的にドーパントが含まれていてもよく、熱安定化の目的以外の目的でドーパント(非熱安定化ドーパント)が含まれていてもよい。例えば、電気特性を付与する目的で、n型ドーパントやp型ドーパントが非熱安定化ドーパントとして含まれていてもよい。非熱安定化ドーパントが含まれている場合には、その含有量などは特に限定されないが、本発明においては、膜中の非熱安定化ドーパント濃度が、0.01原子%以下であるのが好ましい。「形式的にドーパントが含まれている」とは、ドーパントが含まれている場合であっても、含まれていない場合であっても、前記結晶性ZrO膜が熱的に安定化されていることをいう。前記非熱安定化ドーパントとしては、特に限定されないが、例えば、ニオブ、バナジウムなどが挙げられる。 Further, in the present invention, “thermally stabilized without using a heat-stabilized dopant” means that it is not thermally stabilized by a heat-stabilized dopant, and formally contains a dopant. A dopant (non-thermally stabilized dopant) may be included for purposes other than the purpose of thermal stabilization. For example, an n-type dopant or a p-type dopant may be included as a non-thermal stabilizing dopant for the purpose of imparting electrical characteristics. When a non-thermally stabilized dopant is included, the content thereof is not particularly limited, but in the present invention, the non-thermally stabilized dopant concentration in the film is 0.01 atomic% or less. preferable. “Formally containing a dopant” means that the crystalline ZrO 2 film is thermally stabilized regardless of whether or not a dopant is contained. It means being. The non-thermally stabilizing dopant is not particularly limited, and examples thereof include niobium and vanadium.

本発明において、「非粒状膜」とは、粒状ではない膜を意味し、例えばTEM観察において、粒界の確認や平均粒径の算出が困難である場合の膜をいう。また、前記結晶性ZrO膜は、通常、層状膜であり、単層状膜であってもよいし、2以上の結晶性ZrO層からなる多層状膜であってもよいが、本発明においては、多層状膜であるのが好ましい。また、前記結晶性ZrO膜は、単相膜であってもよいし、2以上の結晶相を有する多相膜であってもよい。前記単相膜は、単一の結晶構造を有するZrO相によって構成されている結晶性ZrO膜をいう。前記多相膜は、2以上の異なる結晶構造を有するZrO相によって構成されている結晶性ZrO膜をいう。前記結晶構造の種類は、本発明の目的を阻害しない限り特に限定されないが、正方晶または立方晶が好ましく、立方晶がより好ましい。また、前記結晶性ZrO膜は、単結晶からなる膜であってもよいし、多結晶からなる膜であってもよい。 In the present invention, the “non-particulate film” means a film that is not granular, and refers to a film when it is difficult to confirm grain boundaries and calculate an average particle diameter in TEM observation, for example. The crystalline ZrO 2 film is usually a layered film, may be a single layered film, or may be a multilayered film composed of two or more crystalline ZrO 2 layers. Is preferably a multilayer film. The crystalline ZrO 2 film may be a single phase film or a multiphase film having two or more crystal phases. The single phase film refers to a crystalline ZrO 2 film composed of a ZrO 2 phase having a single crystal structure. The multiphase film refers to a crystalline ZrO 2 film composed of ZrO 2 phases having two or more different crystal structures. The kind of the crystal structure is not particularly limited as long as the object of the present invention is not impaired, but tetragonal or cubic is preferable, and cubic is more preferable. The crystalline ZrO 2 film may be a single crystal film or a polycrystalline film.

前記結晶性ZrO膜の膜厚は、特に限定されないが、本発明においては、膜厚が約0.1μm以上であるのが好ましく、約0.5μm以上であるのがより好ましい。また膜厚の上限は特に限定されないが、約100μmであるのが好ましく、約50μmであるのがより好ましい。 The film thickness of the crystalline ZrO 2 film is not particularly limited, but in the present invention, the film thickness is preferably about 0.1 μm or more, and more preferably about 0.5 μm or more. The upper limit of the film thickness is not particularly limited, but is preferably about 100 μm, and more preferably about 50 μm.

本発明においては、前記結晶性ZrO膜がミストCVD法によって、熱安定化ドーピングせずに基体上に形成されたものであるのが好ましく、さらに、立方晶の結晶構造を有するものであるのがより好ましい。以下、前記結晶性ZrO膜製造の好適な態様を説明する。 In the present invention, the crystalline ZrO 2 film is preferably formed on the substrate without thermal stabilization doping by the mist CVD method, and further has a cubic crystal structure. Is more preferable. Hereinafter, a preferred embodiment of the production of the crystalline ZrO 2 film will be described.

前記結晶性ZrO膜は、結晶性ZrO膜の前駆体溶液を霧化または液滴化し(霧化・液滴化工程)、得られたミストまたは液滴をキャリアガスを用いて基体近傍まで搬送し(搬送工程)、ついで、前記ミストまたは液滴を熱反応させることにより前記基体上に前記結晶性ZrO膜を成膜する(成膜工程)ことにより、好適に得られる。 In the crystalline ZrO 2 film, the precursor solution of the crystalline ZrO 2 film is atomized or dropletized (atomization / droplet forming process), and the obtained mist or droplet is made near the substrate using a carrier gas. The crystalline ZrO 2 film is formed preferably on the substrate by carrying out the carrying (conveying step) and then causing the mist or droplets to undergo a thermal reaction (film forming step).

(霧化・液滴化工程)
霧化・液滴化工程は、前記前駆体溶液を霧化または液滴化する。霧化手段または液滴化手段は、前記前駆体溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストが、衝突エネルギーによる損傷がないためにより好ましい。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは1〜10μmである。
(Atomization / droplet forming process)
In the atomization / droplet forming step, the precursor solution is atomized or dropletized. The atomizing means or the droplet forming means is not particularly limited as long as the precursor solution can be atomized or formed into droplets, and may be a known means. In the present invention, the atomization using ultrasonic waves is used. Means or dropletizing means are preferred. Mist or droplets obtained using ultrasonic waves have a zero initial velocity and are preferable because they float in the air.For example, instead of spraying like a spray, they can be suspended in a space and transported as a gas. A possible mist is more preferred because it is not damaged by collision energy. The droplet size is not particularly limited and may be a droplet of about several mm, but is preferably 50 μm or less, and more preferably 1 to 10 μm.

(前駆体溶液)
前記結晶性ZrO膜の前駆体溶液は、ジルコニウムを含み、且つ霧化または液滴化が可能な溶液または分散液であれば、特に限定されない。前記前駆体溶液としては、例えば、ジルコニウムの有機金属錯体(例えばアセチルアセトナート錯体等)やハロゲン化物(例えばフッ化物、塩化物、臭化物またはヨウ化物等)を含む溶液または分散液などが挙げられる。本発明においては、立方晶の結晶構造を有する結晶性ZrO膜を作製する場合には、前記前駆体溶液が、ジルコニウムの有機金属錯体を含むのが好ましい。ジルコニウムの有機金属錯体は、本発明の目的を阻害しない限り、特に限定されない。前記有機金属錯体としては、例えば、シアノ錯体、カルボニル錯体、シクロペンタジエン錯体、アセチルアセトナート錯体、アセチル錯体などが挙げられるが、本発明においては、前記有機金属錯体が、アセチルアセトナート錯体であるのが、より優れた膜状の立方晶ZrOが得られるため、好ましい。また、正方晶の結晶性ZrO膜を作製する場合には、前記前駆体溶液が、例えば、硝酸ジルコニウム、硫酸ジルコニウム、酢酸ジルコニウムなどの水溶性ジルコニウム化合物を含むのが好ましい。前駆体溶液中のジルコニウムの含有量は、本発明の目的を阻害しない限り特に限定されないが、好ましくは、0.001モル%〜50モル%であり、より好ましくは0.01モル%〜50モル%である。
(Precursor solution)
The precursor solution of the crystalline ZrO 2 film is not particularly limited as long as it contains zirconium and can be atomized or formed into a droplet. Examples of the precursor solution include a solution or dispersion containing a zirconium organometallic complex (eg, acetylacetonate complex) or a halide (eg, fluoride, chloride, bromide, or iodide). In the present invention, when producing a crystalline ZrO 2 film having a cubic crystal structure, the precursor solution preferably contains an organometallic complex of zirconium. The organometallic complex of zirconium is not particularly limited as long as the object of the present invention is not impaired. Examples of the organometallic complex include a cyano complex, a carbonyl complex, a cyclopentadiene complex, an acetylacetonate complex, and an acetyl complex. In the present invention, the organometallic complex is an acetylacetonate complex. However, it is preferable because a more excellent film-like cubic ZrO 2 can be obtained. Moreover, when producing a tetragonal crystalline ZrO 2 film, the precursor solution preferably contains a water-soluble zirconium compound such as zirconium nitrate, zirconium sulfate, or zirconium acetate. The zirconium content in the precursor solution is not particularly limited as long as the object of the present invention is not impaired, but is preferably 0.001 mol% to 50 mol%, more preferably 0.01 mol% to 50 mol. %.

また、前駆体溶液は、さらに、酸や塩基等のその他添加剤が含まれていてもよい。前記酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸などが挙げられる。
前駆体溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、立方晶の結晶構造を有する結晶性ZrO膜を作製する場合には、前記溶媒が有機溶媒を含むのが好ましく、アルコールを含むのがより好ましく、低級アルコール(例えば、メタノール、エタノール、プロパノール、ブタノール等)を含むのが最も好まししい。また、正方晶の結晶構造を有する結晶性ZrO膜を作製する場合には、前記溶媒が水であるのが好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明においては、超純水が好ましい。
The precursor solution may further contain other additives such as acid and base. Examples of the acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, and the like.
The solvent of the precursor solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent. . In the present invention, when producing a crystalline ZrO 2 film having a cubic crystal structure, the solvent preferably contains an organic solvent, more preferably an alcohol, and a lower alcohol (for example, methanol, (Ethanol, propanol, butanol, etc.) are most preferable. Moreover, when producing a crystalline ZrO 2 film having a tetragonal crystal structure, the solvent is preferably water. More specifically, examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. Ultrapure water is preferred.

(基体)
前記基体は、前記膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
(Substrate)
The substrate is not particularly limited as long as it can support the film. The material of the substrate is not particularly limited as long as the object of the present invention is not impaired, and may be a known substrate, an organic compound, or an inorganic compound. The shape of the substrate may be any shape and is effective for all shapes, for example, a plate shape such as a flat plate or a disk, a fiber shape, a rod shape, a columnar shape, a prismatic shape, A cylindrical shape, a spiral shape, a spherical shape, a ring shape and the like can be mentioned. In the present invention, a substrate is preferable. The thickness of the substrate is not particularly limited in the present invention.

前記基板は、板状であって、前記結晶性ZrO膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよい。前記基板としては、例えば、ガラス基板、高分子基板、金属基板、サファイア基板、YSZ基板などが挙げられるが、本発明においては、前記基板が、c面サファイア基板またはYSZ基板であるのが好ましい。 The substrate is not particularly limited as long as it is plate-like and serves as a support for the crystalline ZrO 2 film. It may be an insulator substrate, a semiconductor substrate, or a conductive substrate. Examples of the substrate include a glass substrate, a polymer substrate, a metal substrate, a sapphire substrate, and a YSZ substrate. In the present invention, the substrate is preferably a c-plane sapphire substrate or a YSZ substrate.

(搬送工程)
搬送工程では、キャリアガスでもって前記ミストまたは前記液滴を成膜室内に設置されている基体近傍まで搬送する。前記キャリアガスとしては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが好適な例として挙げられる。本発明においては、前記キャリアガスが不活性ガスであるのが好ましい。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001〜2L/分であるのが好ましく、0.1〜1L/分であるのがより好ましい。
(Conveying process)
In the transfer step, the mist or the droplets are transferred to the vicinity of the substrate installed in the film forming chamber with a carrier gas. The carrier gas is not particularly limited as long as the object of the present invention is not impaired. For example, oxygen, ozone, an inert gas such as nitrogen or argon, or a reducing gas such as hydrogen gas or forming gas is preferable. Can be mentioned. In the present invention, the carrier gas is preferably an inert gas. Further, the type of carrier gas may be one, but it may be two or more, and a diluent gas with a reduced flow rate (for example, 10-fold diluted gas) is further used as the second carrier gas. Also good. Further, the supply location of the carrier gas is not limited to one location but may be two or more locations. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min. In the case of a dilution gas, the flow rate of the dilution gas is preferably 0.001 to 2 L / min, and more preferably 0.1 to 1 L / min.

(成膜工程)
成膜工程では、成膜室内に設置されている基体近傍で前記ミストまたは液滴を熱反応させることによって、前記基体上に前記結晶性ZrO膜を成膜する。熱反応は、熱でもって前記ミストまたは前記液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。通常、前記熱反応を、前記搬送後、前記ミストまたは液滴を加熱することにより行う。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、500℃以下が最も好ましい。なお、下限は、特に限定されないが、通常、50℃以上であり、好ましくは、100℃以上であり、より好ましくは、300℃以上である。本発明の製造方法によれば、例えば、原料溶液として、アセチルアセトナート錯体を用いる場合であって、立方晶の結晶構造を有する結晶性ZrO膜を作製する場合には、500℃以下の温度であっても良質な結晶性ZrO膜を得ることができる。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、設定することができる。
(Film formation process)
In the film forming step, the crystalline ZrO 2 film is formed on the substrate by causing the mist or droplets to undergo thermal reaction in the vicinity of the substrate installed in the film forming chamber. The thermal reaction may be performed as long as the mist or the droplet reacts with heat, and the reaction conditions are not particularly limited as long as the object of the present invention is not impaired. Usually, the thermal reaction is performed by heating the mist or droplets after the transport. In this step, the thermal reaction is usually performed at a temperature not lower than the evaporation temperature of the solvent, but is preferably not too high (for example, 1000 ° C.) or less, more preferably 650 ° C. or less, and most preferably 500 ° C. or less. In addition, although a minimum is not specifically limited, Usually, it is 50 degreeC or more, Preferably, it is 100 degreeC or more, More preferably, it is 300 degreeC or more. According to the production method of the present invention, for example, when an acetylacetonate complex is used as a raw material solution and a crystalline ZrO 2 film having a cubic crystal structure is produced, the temperature is 500 ° C. or lower. Even so, a high-quality crystalline ZrO 2 film can be obtained. Further, the thermal reaction may be performed in any atmosphere of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, and an oxygen atmosphere as long as the object of the present invention is not impaired. Although it may be carried out under any conditions of reduced pressure and reduced pressure, it is preferably carried out under atmospheric pressure in the present invention. The film thickness can be set by adjusting the film formation time.

また、本発明においては、前記基体上にバッファ層や応力緩和層等の他の層を設けもよい。他の層の形成手段は特に限定されず、上記した結晶性ZrO膜の形成手段と同様であってもよいし、スパッタリング、蒸着、CVDなどの公知の手段を用いてもよい。 In the present invention, other layers such as a buffer layer and a stress relaxation layer may be provided on the substrate. The means for forming the other layers is not particularly limited, and may be the same as the means for forming the crystalline ZrO 2 film described above, or a known means such as sputtering, vapor deposition, or CVD may be used.

上記のようにして結晶性ZrO膜を製造することで、熱安定化ドーピングを行うことなく、簡単且つ容易に、熱的に安定した非粒状の結晶性ZrO膜を得ることができる。また、上記のような好適な成膜手段によれば、立方晶の結晶構造を有する非粒状の結晶性ZrO膜を得ることができる。 By manufacturing the crystalline ZrO 2 film as described above, a thermally stable non-granular crystalline ZrO 2 film can be obtained easily and easily without performing thermal stabilization doping. Moreover, according to the suitable film forming means as described above, a non-granular crystalline ZrO 2 film having a cubic crystal structure can be obtained.

本発明の結晶性ZrO膜は、結晶性酸化膜が用いられる、あらゆる分野において用いることができ、従来のZrO膜(YSZも含む)と同様にして、光学物品、電気機器、電子部品、燃料電池、太陽電池、車両、産業用機器などの種々の用途に、好適に用いることができる。 The crystalline ZrO 2 film of the present invention can be used in any field where a crystalline oxide film is used, and in the same manner as a conventional ZrO 2 film (including YSZ), an optical article, an electric device, an electronic component, It can be suitably used for various applications such as fuel cells, solar cells, vehicles, and industrial equipment.

以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(実施例1)
1.成膜装置
図1を用いて、本実施例で用いたミストCVD装置1を説明する。ミストCVD装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、前駆体溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、熱反応後のミスト、液滴および排気ガスを排出する排気口11とを備えている。なお、ホットプレート8上には、基板10が設置されている。
Example 1
1. Film Forming Apparatus A mist CVD apparatus 1 used in this example will be described with reference to FIG. The mist CVD apparatus 1 includes a carrier gas source 2a for supplying a carrier gas, a flow rate adjusting valve 3a for adjusting the flow rate of the carrier gas delivered from the carrier gas source 2a, and a mist generation source in which a precursor solution 4a is accommodated. 4, a container 5 in which water 5 a is placed, an ultrasonic transducer 6 attached to the bottom surface of the container 5, a film forming chamber 7, and a supply pipe 9 connecting the mist generating source 4 to the film forming chamber 7, A hot plate 8 installed in the film forming chamber 7 and an exhaust port 11 for discharging mist, droplets and exhaust gas after thermal reaction are provided. A substrate 10 is installed on the hot plate 8.

2.前駆体溶液の作製
メタノール溶媒に、ジルコニウムアセチルアセトナートを0.05モル/Lの濃度となるように混合して前駆体溶液を調整した。
2. Preparation of Precursor Solution A precursor solution was prepared by mixing zirconium acetylacetonate in a methanol solvent to a concentration of 0.05 mol / L.

3.成膜準備
上記2.で得られた前駆体溶液4aをミスト発生源4内に収容した。次に、基板10として、サファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を500℃にまで昇温させた。次に、流量調節弁3aを開いて、キャリアガス源であるキャリアガス供給手段2aからキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を3.0L/分に調節した。なお、キャリアガスとして窒素を用いた。
3. Preparation of film formation The precursor solution 4a obtained in the above was accommodated in the mist generation source 4. Next, a sapphire substrate was placed on the hot plate 8 as the substrate 10, and the hot plate 8 was operated to raise the temperature in the film forming chamber 7 to 500 ° C. Next, after opening the flow rate control valve 3a, supplying the carrier gas from the carrier gas supply means 2a, which is a carrier gas source, into the film forming chamber 7, and sufficiently replacing the atmosphere in the film forming chamber 7 with the carrier gas, The flow rate of the carrier gas was adjusted to 3.0 L / min. Nitrogen was used as the carrier gas.

4.ZrO膜の形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて前駆体井溶液4aに伝播させることによって、前駆体溶液4aを霧化させてミスト4bを生成させた。このミスト4bが、キャリアガスによって、供給管9内を通って、成膜室7内に導入され、大気圧下、500℃にて、成膜室7内でミストが熱反応して、基板10上にZrO膜が形成された。なお、膜厚は0.5μmであり、成膜時間は15分間であった。
4). Formation of ZrO 2 film Next, the ultrasonic vibrator 6 is vibrated at 2.4 MHz, and the vibration is propagated to the precursor well solution 4a through the water 5a, whereby the precursor solution 4a is atomized to form the mist 4b. Was generated. The mist 4b is introduced into the film forming chamber 7 by the carrier gas through the supply pipe 9, and the mist thermally reacts in the film forming chamber 7 at 500 ° C. under atmospheric pressure. A ZrO 2 film was formed thereon. The film thickness was 0.5 μm and the film formation time was 15 minutes.

5.評価
上記4.にて得られた膜は、透明な結晶膜であった。また、X線回折装置を用いて膜の同定を実施したところ、得られた膜は、立方晶の結晶構造を有する結晶性ZrO膜であった。X線回析結果を図2に示す。また、得られた結晶性ZrO膜をTEM観察した。このTEM断面写真を図3に示す。図3からも明らかなとおり、得られた結晶性ZrO膜は多層状の非粒状膜であった。
5. Evaluation 4. The film obtained in 1 was a transparent crystal film. Further, when the film was identified using an X-ray diffractometer, the obtained film was a crystalline ZrO 2 film having a cubic crystal structure. The X-ray diffraction results are shown in FIG. The obtained crystalline ZrO 2 film was observed with a TEM. This TEM cross-sectional photograph is shown in FIG. As apparent from FIG. 3, the obtained crystalline ZrO 2 film was a multilayer non-granular film.

(実施例2)
成膜時間を25分としたこと以外は、実施例1と同様にして結晶性ZrO膜を得た。得られた膜の膜厚は1.1μmであった。また、実施例1と同様にして、X線回析装置を用いて膜の同定を実施したところ、得られた膜は立方晶の結晶構造を有する結晶性ZrO膜であった。
(Example 2)
A crystalline ZrO 2 film was obtained in the same manner as in Example 1 except that the film formation time was 25 minutes. The film thickness obtained was 1.1 μm. Further, when the film was identified using an X-ray diffraction apparatus in the same manner as in Example 1, the obtained film was a crystalline ZrO 2 film having a cubic crystal structure.

本発明の結晶性ZrO膜は、従来のZrO膜(YSZも含む)と同様、光学物品、電気機器、電子部品、燃料電池、太陽電池、車両、産業用機器等に利用可能である。 The crystalline ZrO 2 film of the present invention can be used for optical articles, electrical equipment, electronic components, fuel cells, solar cells, vehicles, industrial equipment and the like, as with conventional ZrO 2 films (including YSZ).

1 ミストCVD装置
2a キャリアガス源
3a 流量調節弁
4 ミスト発生源
4a 前駆体溶液
4b ミスト
5 容器
5a 水
6 超音波振動子
7 成膜室
8 ホットプレート
9 供給管
10 基板
11 排気口

DESCRIPTION OF SYMBOLS 1 Mist CVD apparatus 2a Carrier gas source 3a Flow control valve 4 Mist generation source 4a Precursor solution 4b Mist 5 Container 5a Water 6 Ultrasonic vibrator 7 Deposition chamber 8 Hot plate 9 Supply pipe 10 Substrate 11 Exhaust port

Claims (15)

結晶性ZrO膜の前駆体溶液を霧化または液滴化し、得られたミストまたは液滴を用いて、基体上に結晶性ZrO膜を製造する方法であって、前記の霧化または液滴化後、前記ミストまたは前記液滴をキャリアガスを用いて前記基体近傍まで搬送し、ついで、前記ミストまたは前記液滴を熱反応させることにより、前記基体上に、非粒状の結晶性ZrO膜を形成することを特徴とする結晶性ZrO膜の製造方法。 The precursor solution of the crystalline ZrO 2 film is atomized or liquid droplets, by using the obtained mist or droplets, a method for producing a crystalline ZrO 2 film on a substrate, wherein the atomization or liquid After droplet formation, the mist or the droplet is transported to the vicinity of the substrate using a carrier gas, and then the mist or the droplet is subjected to a thermal reaction to thereby form non-granular crystalline ZrO 2 on the substrate. A method for producing a crystalline ZrO 2 film, comprising forming a film. 前記前駆体溶液がジルコニウムの有機金属錯体を含む請求項1記載の製造方法。   The method according to claim 1, wherein the precursor solution contains an organometallic complex of zirconium. 前記前駆体溶液の溶媒が有機溶媒を含む請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 with which the solvent of the said precursor solution contains the organic solvent. 前記熱反応を、大気圧下で行う請求項1〜3のいずれかに記載の製造方法。   The production method according to claim 1, wherein the thermal reaction is performed under atmospheric pressure. 前記熱反応を、500℃以下の温度で行う請求項1〜4のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-4 which perform the said thermal reaction at the temperature of 500 degrees C or less. 前記熱反応を、前記搬送後、前記ミストまたは液滴を加熱することにより行う請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the thermal reaction is performed by heating the mist or droplets after the conveyance. 請求項1〜6のいずれかに記載の製造方法により得られた結晶性ZrO膜。 A crystalline ZrO 2 film obtained by the production method according to claim 1. 立方晶の結晶構造を有する請求項7記載の結晶性ZrO膜。 The crystalline ZrO 2 film according to claim 7, which has a cubic crystal structure. 室温において立方晶の結晶構造を有する請求項7または8に記載の結晶性ZrO膜。 The crystalline ZrO 2 film according to claim 7 or 8, which has a cubic crystal structure at room temperature. 多結晶膜である請求項7〜9のいずれかに記載の結晶性ZrO膜。 The crystalline ZrO 2 film according to claim 7, which is a polycrystalline film. 膜厚が0.5μm以上である請求項7〜10のいずれかに記載の結晶性ZrO膜。 The crystalline ZrO 2 film according to any one of claims 7 to 10, wherein the film thickness is 0.5 µm or more. 熱安定化ドーパントを用いずに熱的に安定化された結晶性ZrO膜であって、非粒状膜であることを特徴とする結晶性ZrO膜。 A thermally stabilized crystalline ZrO 2 film without using the heat stabilization dopant, crystalline ZrO 2 film, which is a non-particulate film. 立方晶の結晶構造を有する請求項12記載の結晶性ZrO膜。 The crystalline ZrO 2 film according to claim 12, which has a cubic crystal structure. 結晶性ZrO膜を熱安定化させる方法であって、前記結晶性ZrO膜の成膜にミストCVD法を用いることを特徴とする結晶性ZrO膜の熱安定化方法。 Crystalline ZrO 2 film A method of heat-stabilized, heat stabilizing method of a crystalline ZrO 2 film, which comprises using a mist CVD method in the film forming of the crystalline ZrO 2 film. 請求項14記載の方法により熱安定化された結晶性ZrO膜。


A crystalline ZrO 2 film thermally stabilized by the method according to claim 14.


JP2016216766A 2016-11-04 2016-11-04 Method for producing crystalline ZrO2 film and crystalline ZrO2 film Active JP7065439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216766A JP7065439B2 (en) 2016-11-04 2016-11-04 Method for producing crystalline ZrO2 film and crystalline ZrO2 film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216766A JP7065439B2 (en) 2016-11-04 2016-11-04 Method for producing crystalline ZrO2 film and crystalline ZrO2 film

Publications (2)

Publication Number Publication Date
JP2018070437A true JP2018070437A (en) 2018-05-10
JP7065439B2 JP7065439B2 (en) 2022-05-12

Family

ID=62113760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216766A Active JP7065439B2 (en) 2016-11-04 2016-11-04 Method for producing crystalline ZrO2 film and crystalline ZrO2 film

Country Status (1)

Country Link
JP (1) JP7065439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048765A1 (en) * 2022-08-31 2024-03-07 株式会社Gaianixx Crystal, multilayer structure, element, electronic device, electronic apparatus and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311571A (en) * 1991-04-10 1992-11-04 Ricoh Co Ltd Method for forming metallic oxide film on substrate
JP2005305233A (en) * 2004-04-19 2005-11-04 Shizuo Fujita Atomization apparatus for forming film
JP2012089836A (en) * 2010-09-24 2012-05-10 Institute Of National Colleges Of Technology Japan Oxide film and deposition method and repair method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311571A (en) * 1991-04-10 1992-11-04 Ricoh Co Ltd Method for forming metallic oxide film on substrate
JP2005305233A (en) * 2004-04-19 2005-11-04 Shizuo Fujita Atomization apparatus for forming film
JP2012089836A (en) * 2010-09-24 2012-05-10 Institute Of National Colleges Of Technology Japan Oxide film and deposition method and repair method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THIN SOLID FILMS, vol. 340, JPN6021031425, 1999, pages 72 - 76, ISSN: 0004730802 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048765A1 (en) * 2022-08-31 2024-03-07 株式会社Gaianixx Crystal, multilayer structure, element, electronic device, electronic apparatus and system

Also Published As

Publication number Publication date
JP7065439B2 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US20190112703A1 (en) Method of manufacturing oxide crystal thin film
JP6478103B2 (en) Film forming apparatus and film forming method
Amin et al. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method
Wu et al. Effects of seed layer characteristics on the synthesis of ZnO nanowires
TWI821481B (en) Method for manufacturing gallium oxide film
JP6233959B2 (en) Method for producing oxide crystal thin film
US20120282132A1 (en) Metal and metal oxide structures and preparation thereof
JP6876893B2 (en) Method for manufacturing yttrium oxide film
Mahmood et al. Growth Parameters for Films of Hydrothermally Synthesized One‐Dimensional Nanocrystals of Zinc Oxide
Labis et al. Designing zinc oxide nanostructures (nanoworms, nanoflowers, nanowalls, and nanorods) by pulsed laser ablation technique for gas‐sensing application
Zhang et al. Orientation-dependent structural and photocatalytic properties of LaCoO3 epitaxial nano-thin films
Choopun et al. Metal-oxide nanowires by thermal oxidation reaction technique
JP7065439B2 (en) Method for producing crystalline ZrO2 film and crystalline ZrO2 film
Cheng et al. Growth kinetics and wettability conversion of vertically-aligned ZnO nanowires synthesized by a hydrothermal method
Lisha et al. Research progress of laser-assisted chemical vapor deposition
JP7478371B2 (en) Crystal film manufacturing method
Feng et al. Self-conversion from ZnO nanorod arrays to tubular structures and their applications in nanoencapsulated phase-change materials
Park et al. Growth of ZnO Nanobrushes Using a Two‐Step Aqueous Solution Method
Kubo et al. Effects of annealing on the morphology and porosity of porous TiO2 films fabricated by deposition of aerosol nanoparticles
JP2016157879A (en) Crystalline oxide semiconductor film and semiconductor device
babu Padmanaban et al. Non-equilibrium defect chemistry in oxygen-rich zinc oxide nano-tetrapods synthesized using atmospheric pressure microplasma
Papargyri et al. Review on the production and synthesis of nanosized SnO2
Li et al. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays
JP7478372B2 (en) Crystal film manufacturing method
JP7498902B2 (en) Surface treatment method for sapphire substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220408

R150 Certificate of patent or registration of utility model

Ref document number: 7065439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150