JP2018070397A - Silica powder, silica granulated powder with high fluidity, and method of producing the same - Google Patents

Silica powder, silica granulated powder with high fluidity, and method of producing the same Download PDF

Info

Publication number
JP2018070397A
JP2018070397A JP2016209595A JP2016209595A JP2018070397A JP 2018070397 A JP2018070397 A JP 2018070397A JP 2016209595 A JP2016209595 A JP 2016209595A JP 2016209595 A JP2016209595 A JP 2016209595A JP 2018070397 A JP2018070397 A JP 2018070397A
Authority
JP
Japan
Prior art keywords
silica
powder
particle size
fine
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016209595A
Other languages
Japanese (ja)
Other versions
JP6878829B2 (en
Inventor
明宏 桂
Akihiro Katsura
明宏 桂
学 櫻井
Manabu Sakurai
学 櫻井
将一 梅崎
Masakazu Umezaki
将一 梅崎
健一 築山
Kenichi Tsukiyama
健一 築山
国吉 実
Minoru Kuniyoshi
実 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016209595A priority Critical patent/JP6878829B2/en
Publication of JP2018070397A publication Critical patent/JP2018070397A/en
Application granted granted Critical
Publication of JP6878829B2 publication Critical patent/JP6878829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an opaque quartz glass that is stably producible on an industrial scale and has a large size and a high quality.SOLUTION: Provided is a silica powder which is obtained from a silica slurry having a solid content concentration of 10 wt% subjected to separation using centrifugal sedimentation method (rotation: 5000 rpm, rotation duration: 15 minutes, the number of operations: one time), and which contains particulate silica that is present in the upper-layer liquid, which has 50% particle size (based on number) of 0.01 to 0.9 μm, and silica that is present in a concentrated layer, which has 50% particle size (based on volume) of 2 to 20 μm and 100% particle size (based on volume) of 200 μm or less, in which the particulate silica is contained in an amount of 0.8 wt% to 15 wt% with respect to a total amount of the silica. The silica powder is granulated to give a silica granulated powder having a repose angle of 40° or less and having an untamped density of 0.8 g/cm.SELECTED DRAWING: None

Description

本発明は、不透明石英ガラスの製造に好適なシリカ粉末及び高流動性シリカ造粒粉末並びにその製造方法に関するものである。   The present invention relates to a silica powder suitable for the production of opaque quartz glass, a high-fluidity silica granulated powder, and a method for producing the same.

近年、半導体分野等で使用される不透明石英ガラス製品において、高純度、高機能、大型化の要望が高まっている。そして、不透明石英ガラスの製造方法としては、例えば、微細な高純度非晶質シリカ粉末をCIP成形し、所定の温度で焼結させる方法(例えば、特許文献1参照)が知られている。このような方法で製造された不透明石英ガラスは、微細な閉気孔を包含するため熱遮蔽性に優れる。   In recent years, there is a growing demand for high purity, high functionality, and large size in opaque quartz glass products used in the semiconductor field and the like. As a method for producing an opaque quartz glass, for example, a method in which fine high-purity amorphous silica powder is CIP-molded and sintered at a predetermined temperature (for example, see Patent Document 1) is known. The opaque quartz glass produced by such a method includes fine closed pores and thus has excellent heat shielding properties.

しかしながら、微細な非晶質シリカ粉末は凝集し易く流動性が悪いため、大型品を生産する際に成形型への均一充填が困難であり、小型品に比べて焼結体密度が低下すること、クラックが発生し易いこと、白色ムラが生じることなどの品質問題がある。このような品質問題は大型化するほど顕著になるため、成形性、焼結性に優れる粉末設計が望まれている。   However, fine amorphous silica powder is easy to agglomerate and has poor fluidity, so it is difficult to uniformly fill the mold when producing large products, and the density of the sintered body is lower than that of small products. In addition, there are quality problems such as easy cracking and uneven whiteness. Since such quality problems become more prominent as the size increases, a powder design with excellent moldability and sinterability is desired.

一般に、乾式加圧成形法で使用されるセラミックス粉末の調製法として、各種造粒法が知られている。例えば、噴霧乾燥法では、原料粉末、バインダー、分散剤、可塑剤と水を混合してスラリーを調製し、該スラリーを噴霧乾燥することにより、流動性が比較的良好な球状顆粒が得られ、成形型への均一充填性が向上し易い。   In general, various granulation methods are known as methods for preparing ceramic powders used in the dry pressure molding method. For example, in the spray drying method, a raw material powder, a binder, a dispersant, a plasticizer and water are mixed to prepare a slurry, and by spray drying the slurry, spherical granules having relatively good fluidity are obtained, Uniform filling into the mold is easy to improve.

しかしながら、スプレー造粒性を高めるために添加した、バインダー、分散剤、可塑剤等の有機系添加剤が造粒粉末に含まれるため、成形体において有機系添加剤を加熱除去する脱脂工程が新たに必要となり、生産性が劣る。更に、前記脱脂工程では有機系添加剤の分解により成形体内部でガスが放出されるため、成形体にクラックが発生し易い。また、本発明者らによって、バインダーを添加して造粒粉末を作製したところ、本発明のシリカ造粒粉末に比べて流動性が劣ることも明らかとなった。   However, since organic additives such as binders, dispersants, and plasticizers added to improve spray granulation are included in the granulated powder, a new degreasing process for heating and removing organic additives in the molded product is new. It is necessary for this, and productivity is inferior. Furthermore, in the degreasing step, gas is released inside the molded body due to decomposition of the organic additive, so that cracks are likely to occur in the molded body. Moreover, when the present inventors added the binder and produced granulated powder, it became clear that fluidity | liquidity is inferior compared with the silica granulated powder of this invention.

特開2014−88286公報JP 2014-88286 A

これまで、不透明石英ガラスの製造において、大型品の生産に好適な成形性、焼結性に優れるシリカ粉末については報告されていなかった。本発明は、不透明石英ガラス製造用の粉末に関する問題点に鑑みてなされたものであり、その目的は、成形性、焼結性に優れるシリカ造粒粉末を提供することであり、それにより、工業的規模において安定生産可能な大型かつ高品質な不透明石英ガラスを提供することである。   Until now, silica powder excellent in moldability and sinterability suitable for production of large-sized products has not been reported in the production of opaque quartz glass. The present invention has been made in view of the problems associated with powder for producing opaque quartz glass, and the object thereof is to provide a silica granulated powder having excellent moldability and sinterability. The object is to provide a large-sized and high-quality opaque quartz glass that can be stably produced on a global scale.

本発明者らは、不透明石英ガラスの成形性、焼結性について、粉末特性に着目し鋭意検討した結果、骨材となるシリカ粉末に、助剤として所定の微粒シリカを配合して、湿式混合で均一なスラリーを調製し、該スラリーを噴霧乾燥することにより、造粒性が著しく向上した高流動性シリカ造粒粉末が作製できると共に、成形性、焼結性に優れるシリカ造粒粉末が得られることを見出し、本発明を完成するに至った。   As a result of diligent investigation focusing on the powder characteristics of the formability and sinterability of the opaque quartz glass, the inventors of the present invention blended predetermined fine silica as an auxiliary agent in the silica powder to be an aggregate, and wet-mixed. By preparing a uniform slurry and spray drying the slurry, a highly fluid silica granulated powder with significantly improved granulation properties can be produced, and a silica granulated powder with excellent moldability and sinterability can be obtained. As a result, the present invention has been completed.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

本発明は、
[1]固形分濃度が10wt%のシリカスラリーを遠心沈降法(回転数5000rpm、回転時間15分、操作回数1回)で分離した、上層液中の微粒シリカの50%粒径(個数基準)が0.01〜0.9μmであり、濃縮層中のシリカの50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下であり、全シリカ量に対して前記微粒シリカを0.8wt%以上15wt%以下含んでなることを特徴とするシリカ粉末。
The present invention
[1] 50% particle size (number basis) of fine silica in the upper layer liquid obtained by separating a silica slurry having a solid content concentration of 10 wt% by centrifugal sedimentation (rotation speed: 5000 rpm, rotation time: 15 minutes, number of operations: 1) Is 0.01 to 0.9 μm, 50% particle size (volume basis) of silica in the concentrated layer is 2 to 20 μm, and 100% particle size (volume basis) is 200 μm or less. A silica powder comprising the fine silica in an amount of 0.8 wt% to 15 wt%.

[2]BET比表面積が4.5〜15m/gである上記[1]に記載のシリカ粉末。 [2] The silica powder according to [1], wherein the BET specific surface area is 4.5 to 15 m 2 / g.

[3]上記[1]または[2]に記載のシリカ粉末を造粒後の安息角が40°以下かつ軽装嵩密度が0.8g/cm以上であるシリカ造粒粉末。 [3] A silica granulated powder having an angle of repose after granulation of the silica powder of [1] or [2] of 40 ° or less and a light bulk density of 0.8 g / cm 3 or more.

[4]50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末に、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカを全シリカ量に対して7wt%以上40wt%以下の比率で湿式混合してスラリー化し、得られたスラリーを噴霧乾燥する上記[3]に記載のシリカ造粒粉末の製造方法。   [4] Silica powder having a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less, and a fine particle having a 50% particle size (number basis) of 0.01 to 0.9 μm The method for producing a granulated silica powder according to the above [3], wherein the silica is wet-mixed at a ratio of 7 wt% to 40 wt% with respect to the total amount of silica to form a slurry, and the resulting slurry is spray-dried.

[5]上記[3]に記載のシリカ造粒粉末を成形、焼結して得られる不透明石英ガラス。
に関するものである。
[5] An opaque quartz glass obtained by molding and sintering the silica granulated powder according to [3].
It is about.

ここで、50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末としては、例えば、アルコキシシランの加水分解反応、いわゆるゾルゲル法で製造した非晶質シリカ粉末、四塩化珪素やシロキサン化合物の火炎反応で製造した非晶質シリカ粉末、石英ガラスを粉砕した粉末などを用いることができる。また、微粒シリカは高純度化の面から市販の高純度非晶質シリカを用いることができる。このとき、前記シリカ粉末に、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカを全シリカ量に対して7wt%以上40wt%以下の比率で湿式混合して得たシリカスラリーを噴霧乾燥することにより、シリカ粉末の粒子間の空隙に介在した微粒により凝集力が高まり、それにより造粒性が増し、得られるシリカ造粒粉末の流動性が向上する。これに対し、前記微粒シリカの混合比率が7wt%未満の場合、シリカ粉末の造粒性が低下する。また、前記微粒シリカの混合比率が40wt%を超える場合、シリカ粉末と微粒シリカを湿式混合して得たシリカスラリーの粘性が増大し、造粒操作性が悪くなることや、シリカ造粒粉末の強度が大きくなり成形時の潰れ性が悪くなるなど、均質性の面から好ましくない。   Here, as the silica powder having a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less, for example, an amorphous produced by a hydrolysis reaction of alkoxysilane, a so-called sol-gel method Silica powder, amorphous silica powder produced by flame reaction of silicon tetrachloride or siloxane compound, powder obtained by pulverizing quartz glass, and the like can be used. As the fine silica, commercially available high-purity amorphous silica can be used from the viewpoint of high purity. At this time, silica obtained by wet-mixing fine silica having a 50% particle size (number basis) of 0.01 to 0.9 μm with the silica powder at a ratio of 7 wt% to 40 wt% with respect to the total silica amount. By spray-drying the slurry, the cohesive force is increased by the fine particles interposed in the gaps between the particles of the silica powder, thereby increasing the granulation property and improving the fluidity of the obtained silica granulated powder. On the other hand, when the mixing ratio of the fine silica is less than 7 wt%, the granulating property of the silica powder is lowered. In addition, when the mixing ratio of the fine silica exceeds 40 wt%, the viscosity of the silica slurry obtained by wet-mixing the silica powder and the fine silica is increased, and the granulation operability is deteriorated. This is not preferable from the standpoint of homogeneity, for example, the strength increases and the crushability during molding deteriorates.

微粒シリカの50%粒径(個数基準)は、骨材となる50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末の粒子間の空隙に介在できる大きさであり、本発明では0.01〜0.9μmである。   The 50% particle size (number basis) of the fine silica is a space between the silica powder particles having a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less. In the present invention, it is 0.01 to 0.9 μm.

更に、シリカ粉末と微粒シリカを混合したシリカ粉末のBET比表面積は、4.5〜15m/gであることが好ましい。BET比表面積が4.5m/g未満の場合、シリカ粉末の造粒性が低下する。また、BET比表面積が15m/gを超える場合、シリカ粉末と微粒シリカを湿式混合して得たシリカスラリーの粘性が増大し、造粒操作性が悪くなる。本発明では、シリカ粒径、前記微粒シリカの重量比率、更にはBET比表面積を制御したシリカ粉末を用いることにより、所望のシリカ造粒粉末を作製することができる。 Furthermore, it is preferable that the BET specific surface area of the silica powder which mixed the silica powder and the fine particle silica is 4.5-15 m < 2 > / g. When the BET specific surface area is less than 4.5 m 2 / g, the granulation property of the silica powder is lowered. Moreover, when a BET specific surface area exceeds 15 m < 2 > / g, the viscosity of the silica slurry obtained by wet-mixing a silica powder and a fine silica increases, and granulation operativity worsens. In the present invention, a desired silica granulated powder can be produced by using silica powder in which the silica particle size, the weight ratio of the fine silica, and the BET specific surface area are controlled.

本発明のシリカ造粒粉末は、安息角が40°以下かつ軽装嵩密度が0.8g/cm以上であることを特徴とする。安息角が40°を超えるか、軽装嵩密度が0.8g/cm未満の場合、流動性が劣るため、成形型への均一充填が困難となり、大型品を生産する際にクラックのない焼結体を得ることが困難となる。 The silica granulated powder of the present invention is characterized by an angle of repose of 40 ° or less and a light bulk density of 0.8 g / cm 3 or more. When the angle of repose exceeds 40 ° or the lightly packed bulk density is less than 0.8 g / cm 3 , the fluidity is inferior, so that uniform filling into the mold becomes difficult, and crack-free firing is produced when producing large products. It becomes difficult to obtain a knot.

本発明のシリカ造粒粉末は、Na、Ca、Al、Fe、Cr、Niの各金属不純物の含有量が1ppm以下である。   The content of each metal impurity of Na, Ca, Al, Fe, Cr, and Ni is 1 ppm or less in the silica granulated powder of the present invention.

次に、本発明のシリカ造粒粉末の製造方法について説明する。   Next, the manufacturing method of the silica granulated powder of this invention is demonstrated.

本発明のシリカ造粒粉末の製造方法は、50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末に、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカを全シリカ量に対して7wt%以上40wt%以下の比率で湿式混合してスラリー化し、得られたスラリーを噴霧乾燥することを特徴とする。   In the method for producing a silica granulated powder of the present invention, a 50% particle size (volume basis) has a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less. It is characterized in that 0.01 to 0.9 μm fine silica is wet-mixed at a ratio of 7 wt% to 40 wt% with respect to the total amount of silica to form a slurry, and the resulting slurry is spray-dried.

以下、本発明のシリカ造粒粉末の製造方法について、工程ごとに詳細に説明する。   Hereinafter, the manufacturing method of the silica granulated powder of this invention is demonstrated in detail for every process.

(1)原料粉末の選定
本発明において、骨材として用いる非晶質シリカ粉末としては、50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下の範囲であれば特に限定されないが、例えば、アルコキシシランの加水分解反応、いわゆるゾルゲル法で製造した非晶質シリカ粉末、四塩化珪素やシロキサン化合物の火炎反応で製造した非晶質シリカ粉末、石英ガラスを粉砕した粉末などを使用することができる。
(1) Selection of raw material powder In the present invention, the amorphous silica powder used as an aggregate has a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less. If there is no particular limitation, for example, hydrolyzing alkoxysilane, amorphous silica powder produced by so-called sol-gel method, amorphous silica powder produced by flame reaction of silicon tetrachloride or siloxane compound, quartz glass is crushed Used powder can be used.

前記非晶質シリカ粉末の粒径は、例えば、ジェットミル、ボールミル、ビーズミルなどで粉砕して制御することができる。この際、粉砕後の非晶質シリカ粉末の50%粒径(体積基準)を小さくしすぎると、粉砕機材質から混入する金属不純物量が増加するため好ましくない。また、粉砕条件を変えて粉砕後の非晶質シリカ粉末の50%粒径(体積基準)を大きくすると、粉砕機材質から混入する金属不純物量は少なくなるが、造粒、成形、焼結が困難になる。そこで、本発明では前記非晶質シリカ粉末の50%粒径(体積基準)を2〜20μmかつ100%粒径(体積基準)を200μm以下とし、該非晶質シリカ粉末の造粒、成形、焼結の各特性を高めるために、助剤となる微粒シリカを湿式混合する。   The particle size of the amorphous silica powder can be controlled by pulverizing with, for example, a jet mill, a ball mill, or a bead mill. At this time, if the 50% particle size (volume basis) of the pulverized amorphous silica powder is too small, the amount of metal impurities mixed from the material of the pulverizer increases, which is not preferable. Further, if the 50% particle size (volume basis) of the pulverized amorphous silica powder is increased by changing the pulverization conditions, the amount of metal impurities mixed from the pulverizer material decreases, but granulation, molding, and sintering are not possible. It becomes difficult. Therefore, in the present invention, the amorphous silica powder has a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less, and the amorphous silica powder is granulated, molded, and sintered. In order to improve each characteristic of the kneading, fine silica used as an auxiliary is wet mixed.

次に、本発明で使用する微粒シリカは、50%粒径(個数基準)が0.01〜0.9μmの範囲であれば特に限定されないが、例えば、アルコキシシランの加水分解反応、いわゆるゾルゲル法で製造したシリカ微粒子、四塩化珪素やシロキサン化合物の火炎反応で製造したシリカ微粒子などを使用することができる。   Next, the fine silica used in the present invention is not particularly limited as long as the 50% particle size (number basis) is in the range of 0.01 to 0.9 μm. For example, hydrolysis reaction of alkoxysilane, so-called sol-gel method Silica fine particles produced by the flame reaction of silicon tetrachloride or siloxane compounds can be used.

(2)原料粉末の混合
(1)で選定した非晶質シリカ粉末と微粒シリカを湿式混合する。微粒シリカの混合比率は、全シリカ量に対して7wt%以上40wt%以下であるが、好ましい範囲は用いる非晶質シリカ粉末や微粒シリカの粒度分布によって異なるため、適宜条件設定できる。非晶質シリカ粉末と微粒シリカの混合方法としては、例えば、容器回転型のロッキングミキサー、クロスミキサー、ポットミル、ボールミルなどを用い、超純水を加えて固形分濃度が30〜80wt%のスラリーを調製し、回転容器内で均一に湿式混合する方法が挙げられる。
(2) Mixing of raw material powder The amorphous silica powder selected in (1) and fine silica are wet mixed. The mixing ratio of the fine silica is 7 wt% or more and 40 wt% or less with respect to the total silica amount, but the preferable range can be appropriately set because it varies depending on the particle size distribution of the amorphous silica powder and fine silica used. As a method for mixing the amorphous silica powder and the fine silica, for example, a container rotating type rocking mixer, cross mixer, pot mill, ball mill, etc. are used, and ultrapure water is added to form a slurry having a solid content concentration of 30 to 80 wt%. The method of preparing and carrying out wet mixing uniformly in a rotation container is mentioned.

なお、本発明では不透明石英ガラス製造用原料に用いられる造孔剤粉末を選定し、非晶質シリカ粉末、微粒シリカと共に湿式混合してもよい。例えば、50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末に、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカを全シリカ量に対して7wt%以上40wt%以下、造孔剤粉末として50%粒径(体積基準)が5〜40μmの黒鉛粉末またはアモルファスカーボン粉末を全シリカ量に対して4wt%以上40wt%以下含んでなる混合シリカ粉末とすることができる。   In the present invention, a pore former powder used as a raw material for producing opaque quartz glass may be selected and wet mixed with amorphous silica powder and fine silica. For example, a silica powder having a 50% particle size (volume basis) of 2 to 20 μm and a 100% particle size (volume basis) of 200 μm or less and a fine silica having a 50% particle size (number basis) of 0.01 to 0.9 μm 7 wt% or more and 40 wt% or less with respect to the total amount of silica, and a graphite powder or amorphous carbon powder with a 50% particle size (volume basis) of 5 to 40 μm as the pore former powder is 4 wt% or more and 40 wt% with respect to the total silica amount. It can be set as the mixed silica powder containing below.

(3)造粒
(2)で得られる非晶質シリカ粉末と微粒シリカを均一混合したスラリーを用いて、噴霧乾燥法で造粒する。噴霧乾燥で使用する装置は特に限定されないが、例えば、ディスク式(アトマイザー式)、圧力ノズル式、二流体ノズル式などが挙げられる。噴霧乾燥条件は、装置の仕様(種類、乾燥室内径など)に応じて適宜条件設定する。例えば、ディスク式で乾燥室内径1.5m程のスプレードライヤーにおいては、スラリー供給速度5〜15kg/hr、ディスク回転数10000〜20000rpm、熱風入口温度100〜170℃、出口温度60〜120℃となる。
(3) Granulation Granulation is performed by a spray drying method using a slurry in which the amorphous silica powder obtained in (2) and the fine silica are uniformly mixed. Although the apparatus used by spray drying is not specifically limited, For example, a disk type (atomizer type), a pressure nozzle type, a two-fluid nozzle type etc. are mentioned. The spray drying conditions are appropriately set according to the specifications of the apparatus (type, drying chamber diameter, etc.). For example, in a spray dryer having a disk type and a drying chamber diameter of about 1.5 m, the slurry supply speed is 5 to 15 kg / hr, the disk rotation speed is 10,000 to 20000 rpm, the hot air inlet temperature is 100 to 170 ° C., and the outlet temperature is 60 to 120 ° C. .

本発明の製造方法で得られるシリカ造粒粉末は、乾式加圧成形法を用いる不透明石英ガラス用の原料などに利用することができる。   The silica granulated powder obtained by the production method of the present invention can be used as a raw material for opaque quartz glass using a dry pressure molding method.

本発明のシリカ粉末は、造粒、成形、焼結において優れた特性を有する。具体的には、該シリカ粉末で作製した造粒粉末は、有機系添加剤を一切含まず、金属不純物量が少なく、流動性に優れる球状顆粒である。また、本発明のシリカ造粒粉末を乾式加圧成形、焼結用の原料に用いれば、均一充填性、最密充填性に優れるため、工業生産において大型化しても、クラックのない、密度の高い成形体、焼結体を歩留り良く製造でき、高純度で高熱遮蔽性を有する不透明石英ガラスを提供することができる。   The silica powder of the present invention has excellent characteristics in granulation, molding and sintering. Specifically, the granulated powder produced from the silica powder is a spherical granule that does not contain any organic additives, has a small amount of metal impurities, and has excellent fluidity. In addition, if the silica granulated powder of the present invention is used as a raw material for dry pressure molding and sintering, it is excellent in uniform filling and close-packing, so even if it is increased in size in industrial production, it has no cracks and density. An opaque quartz glass having a high purity and high heat shielding property can be provided, which can produce a high molded body and a sintered body with good yield.

実施例1で作製したシリカ造粒粉末の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the silica granulated powder produced in Example 1 is shown. 実施例2で作製したシリカ造粒粉末の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the silica granulated powder produced in Example 2 is shown. 比較例1で作製したシリカ造粒粉末の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the silica granulated powder produced in Comparative Example 1 is shown. 比較例2で作製したシリカ造粒粉末の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the silica granulated powder produced in the comparative example 2 is shown.

本発明を以下の実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

造粒、成形、焼結の各特性に影響を及ぼすシリカ中の微粒に関しては、後記(a)の遠心沈降法を用いて微粒シリカを分離することにより、微粒シリカの重量比率と粒度分布を定量した。なお、実施例と比較例で調製した各シリカスラリーを、後記(a)の遠心沈降法を用いずに粒度分布を測定した場合には、粒度分布に有意差は認められず、微粒の定量評価は困難であった。   For the fine particles in silica that affect the characteristics of granulation, molding and sintering, the weight ratio and particle size distribution of fine silica are determined by separating the fine silica using the centrifugal sedimentation method described in (a) below. did. In addition, when the particle size distribution of each silica slurry prepared in Examples and Comparative Examples was measured without using the centrifugal sedimentation method described later (a), no significant difference was observed in the particle size distribution, and the quantitative evaluation of the fine particles Was difficult.

(a)遠心沈降分離の操作方法
固形分濃度(Cs)が10wt%のシリカスラリーを調製後、50ml遠沈管(樹脂製、コニカル型、内径約27mm、高さ約113mm)にシリカスラリーを30g仕込んだ。シリカスラリーは、各種粉砕装置で乾式粉砕したシリカ粉末を用いて超純水で調製した。なお、乾式粉砕したシリカ粉末に代えて湿式粉砕したシリカスラリーを用いる場合は、予め、ポットミルで均一分散させて、乾燥機にて130℃で恒量になるまで乾燥させて固形分重量を測定した後、固形分濃度(Cs)が10wt%になるように調製する。
(A) Centrifugal settling operation method After preparing a silica slurry with a solid content concentration (Cs 1 ) of 10 wt%, 30 g of silica slurry is placed in a 50 ml centrifuge tube (resin, conical type, inner diameter of about 27 mm, height of about 113 mm). Prepared. The silica slurry was prepared with ultrapure water using silica powder dry-pulverized with various pulverizers. When using wet-pulverized silica slurry instead of dry-pulverized silica powder, after uniformly dispersing in a pot mill and drying at 130 ° C. to a constant weight, and measuring the solid content weight The solid content concentration (Cs 1 ) is adjusted to 10 wt%.

次いで、固形分濃度(Cs)が10wt%のシリカスラリーを超音波ホモジナイザー((株)日本精機製作所製US−150T、チップ径φ12mm、電流値150μA、処理時間5分)で分散処理した。前記シリカスラリーを遠心器(アズワン製CN−1050、回転数5000rpm、回転時間15分、操作回数1回)で遠心沈降処理した後、続けて、上層液を2mlパスツールにて50mlガラス製サンプル瓶に採取して、濃縮層(沈降層及び圧縮層)と分離した。 Next, the silica slurry having a solid content concentration (Cs 1 ) of 10 wt% was subjected to a dispersion treatment with an ultrasonic homogenizer (US-150T manufactured by Nippon Seiki Seisakusho, chip diameter φ12 mm, current value 150 μA, treatment time 5 minutes). The silica slurry was subjected to centrifugal sedimentation with a centrifuge (CN-1050 manufactured by ASONE, rotation speed 5000 rpm, rotation time 15 minutes, number of operations 1 time), and then the upper layer liquid was sampled in a 50 ml glass sample bottle using a 2 ml Pasteur. And separated from the concentrated layer (sedimentation layer and compression layer).

(b)シリカ中の微粒シリカ重量比率の定量
(a)に記載の上層液分離後の濃縮層から適当量(約2g)を駒込ピペットでガラス製容器に採取し、乾燥機にて130℃で恒量になるまで乾燥させて濃縮層の固形分重量を測定した。全シリカ量に対する微粒シリカ重量比は、以下の式から計算した。
(B) Quantification of the weight ratio of fine silica in silica An appropriate amount (about 2 g) was collected from the concentrated layer after separation of the upper layer liquid described in (a) into a glass container with a Komagome pipette, and at 130 ° C. with a dryer. It dried until it became a constant weight, and the solid content weight of the concentration layer was measured. The weight ratio of fine silica to the total amount of silica was calculated from the following formula.

Figure 2018070397
ここで、Wは遠心沈降前のスラリー重量[g]、Wは遠心沈降後の濃縮層の重量[g]、Csは遠心沈降前のスラリーの固形分濃度[wt%]、Csは遠心沈降後の濃縮層の固形分濃度[wt%]である。W,Wは、精密天秤(天秤精度0.1mg)で秤量した値であり、Cs,Csは、固形分重量/スラリー重量×100で求めた値である。
Figure 2018070397
Here, W 1 is the slurry weight [g] before centrifugal sedimentation, W 2 is the weight of the concentrated layer after centrifugal sedimentation [g], Cs 1 is the solid content concentration [wt%] of the slurry before centrifugal sedimentation, and Cs 2. Is the solid content concentration [wt%] of the concentrated layer after centrifugal sedimentation. W 1 and W 2 are values weighed by a precision balance (balance accuracy 0.1 mg), and Cs 1 and Cs 2 are values obtained by solid content weight / slurry weight × 100.

(c)粒度分布
シリカの粒度分布は、レーザー回折・散乱法で測定(球相当径)した。測定装置は、マイクロトラック(マイクロトラック・ベル(株)製、MT3300EX)を用い、測定条件は、シリカの屈折率を1.46、溶媒を水、水の屈折率を1.33、累積分布を篩下とし、分布形式を個数基準または体積基準とした。
(C) Particle size distribution The particle size distribution of silica was measured by a laser diffraction / scattering method (sphere equivalent diameter). The measuring apparatus uses Microtrac (manufactured by Microtrac Bell Co., Ltd., MT3300EX). The measurement conditions are 1.46 for silica, water for solvent, 1.33 for water, and cumulative distribution. Under the sieve, the distribution format was based on the number or volume.

本発明では、前記(a)の遠心沈降法で分離した、上層液と濃縮層を各々超音波ホモジナイザーで2分間分散させた後、上層液中の微粒シリカの50%粒径を個数基準で評価し、濃縮層中のシリカの50%粒径と100%粒径を体積基準で評価した。   In the present invention, the upper layer liquid and the concentrated layer separated by the centrifugal sedimentation method of (a) above are dispersed with an ultrasonic homogenizer for 2 minutes, and then the 50% particle size of fine silica in the upper layer liquid is evaluated on a number basis. Then, the 50% particle size and 100% particle size of silica in the concentrated layer were evaluated on a volume basis.

他の測定は、以下の方法で行った。   Other measurements were performed by the following methods.

(d)BET比表面積
シリカのBET比表面積は、島津製作所製フローソーブII2300装置を用いて測定した。なお、脱ガス処理は、窒素ガス流通下、加熱温度200℃、加熱時間30分とし、吸着用のガスは、窒素30%とヘリウム70%(体積比)の混合ガス(BET1点法)とした。
(D) BET specific surface area The BET specific surface area of silica was measured using a Flowsorb II2300 apparatus manufactured by Shimadzu Corporation. The degassing treatment was performed under a nitrogen gas flow with a heating temperature of 200 ° C. and a heating time of 30 minutes, and the adsorption gas was a mixed gas of 30% nitrogen and 70% helium (volume ratio) (BET one-point method). .

(e)安息角と軽装嵩密度
シリカ造粒粉末の安息角と軽装嵩密度は、マルチテスター((株)セイシン企業製、MT−1001K)を用いて測定した。
(E) Repose angle and light loading bulk density The repose angle and light loading bulk density of the silica granulated powder were measured using a multi-tester (manufactured by Seishin Enterprise Co., Ltd., MT-1001K).

(f)金属不純物含有量
シリカ造粒粉末の金属不純物含有量は、誘導結合プラズマ発光分析装置(ICP−AES)を用いて測定した。
(F) Metal impurity content The metal impurity content of the silica granulated powder was measured using an inductively coupled plasma emission spectrometer (ICP-AES).

実施例1
シリカ粉末として、化学的純度が99.9wt%以上、50%粒径(体積基準)が70μmである非晶質シリカ粉末(日本化成(株)製、商品名「MKCシリカPS100」)を用い、ジェットミル粉砕機((株)アイシンナノテクノロジーズ製、商品名「NJ−100」)により、前記非晶質シリカ粉末を供給速度5kg/hrで粉砕し、50%粒径(体積基準)を4.9μmかつ100%粒径(体積基準)を52μmとした。
Example 1
As the silica powder, an amorphous silica powder having a chemical purity of 99.9 wt% or more and a 50% particle size (volume basis) of 70 μm (product name “MKC Silica PS100” manufactured by Nippon Kasei Co., Ltd.) is used. The amorphous silica powder was pulverized at a supply rate of 5 kg / hr by a jet mill pulverizer (trade name “NJ-100”, manufactured by Aisin Nano Technologies Co., Ltd.), and the 50% particle size (volume basis) was changed to 4. The 9 μm and 100% particle size (volume basis) was 52 μm.

助剤となる微粒シリカとして、化学的純度が99.9wt%以上、50%粒径(個数基準)が0.1μmである微小球状シリカ粉末((株)トクヤマ製、商品名「シルフィルNSS−3N)を用いた。   As a fine silica used as an auxiliary agent, a fine spherical silica powder having a chemical purity of 99.9 wt% or more and a 50% particle size (number basis) of 0.1 μm (trade name “Sylfil NSS-3N” manufactured by Tokuyama Corporation) ) Was used.

次に、ポリエチレン製ポットに、ジェットミル粉砕した非晶質シリカ粉末15.28kg、微小球状シリカ粉末2.70kg(全シリカ量に対して15wt%)、超純水11.26kgを投入し、ポットミルで湿式混合してスラリーを調製した。   Next, 15.28 kg of jet silica-pulverized amorphous silica powder, 2.70 kg of fine spherical silica powder (15 wt% with respect to the total amount of silica), and 11.26 kg of ultrapure water were charged into a polyethylene pot. To prepare a slurry.

前記スラリーをスプレードライヤー((株)プリス製、商品名「TR160」、ディスク式、乾燥室内径1.6m)を用い、スラリー供給速度8kg/hr、ディスク回転数18000rpm、熱風入口温度150℃、出口温度80℃で噴霧乾燥させて、シリカ造粒粉末を約18kg作製した。   The slurry was sprayed using a spray dryer (trade name “TR160” manufactured by Pris Co., Ltd., disk type, drying chamber diameter 1.6 m), slurry supply speed 8 kg / hr, disk rotation speed 18000 rpm, hot air inlet temperature 150 ° C., outlet About 18 kg of silica granulated powder was produced by spray drying at a temperature of 80 ° C.

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。得られたシリカ造粒粉末は、安息角が30°かつ軽装嵩密度が0.95g/cmであった。 Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. The obtained silica granulated powder had an angle of repose of 30 ° and a light bulk density of 0.95 g / cm 3 .

図1に、シリカ造粒粉末の電子顕微鏡写真を示す。流動性の良い約60μmの大きさの球状顆粒である。   FIG. 1 shows an electron micrograph of the silica granulated powder. It is a spherical granule having a size of about 60 μm with good fluidity.

また、表3にシリカ造粒粉末の金属不純物分析の結果を示す。この表から、本発明のシリカ造粒粉末は、Na、Ca、Al、Fe、Cr、Niの各金属不純物の含有量が各々1ppm以下であることが明らかである。   Table 3 shows the results of metal impurity analysis of the silica granulated powder. From this table, it is clear that the content of each metal impurity of Na, Ca, Al, Fe, Cr, and Ni is 1 ppm or less in the silica granulated powder of the present invention.

実施例2
実施例1と同様の非晶質シリカ粉末と微小球状シリカ粉末を用い、全シリカ量に対する微小球状シリカ粉末の混合比を10wt%とした以外は、実施例1と同様の手順で行った。
Example 2
The same procedure as in Example 1 was performed, except that the same amorphous silica powder and fine spherical silica powder as in Example 1 were used, and the mixing ratio of the fine spherical silica powder to the total silica amount was 10 wt%.

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。得られたシリカ造粒粉末は、安息角が34°かつ軽装嵩密度が0.92g/cmであった。 Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. The obtained silica granulated powder had an angle of repose of 34 ° and a light bulk density of 0.92 g / cm 3 .

実施例3
実施例1と同様の非晶質シリカ粉末と微小球状シリカ粉末を用い、全シリカ量に対する微小球状シリカ粉末の混合比を25wt%とした以外は、実施例1と同様の手順で行った。
Example 3
The same procedure as in Example 1 was performed, except that the same amorphous silica powder and fine spherical silica powder as in Example 1 were used, and the mixing ratio of the fine spherical silica powder to the total silica amount was 25 wt%.

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。得られたシリカ造粒粉末は、安息角が30°かつ軽装嵩密度が1.03g/cmであった。 Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. The obtained silica granulated powder had an angle of repose of 30 ° and a light bulk density of 1.03 g / cm 3 .

比較例1
実施例1と同様の非晶質シリカ粉末を用い、微小球状シリカ粉末を混合しない以外は、実施例1と同様の手順で行った。
Comparative Example 1
The same procedure as in Example 1 was performed, except that the same amorphous silica powder as in Example 1 was used and the fine spherical silica powder was not mixed.

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。シリカ粉末は造粒が困難で、造粒前と同様の不定形な微粉末であり、安息角が47°と高く、軽装嵩密度が0.66g/cmと低く、本発明とするシリカ造粒粉末は得られなかった。 Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. Silica powder is difficult to granulate, is an amorphous fine powder similar to that before granulation, has an angle of repose as high as 47 °, and a light bulk density as low as 0.66 g / cm 3. Granular powder was not obtained.

固形分濃度が10wt%であるシリカスラリー(超音波ホモジナイザー分散、処理時間5分)を遠心沈降法(回転数5000rpm、回転時間15分、操作回数1回)で分離したときの上層液には、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカは検出されなかった。   In the upper layer liquid when the silica slurry having a solid content concentration of 10 wt% (ultrasonic homogenizer dispersion, treatment time 5 minutes) is separated by centrifugal sedimentation (rotation speed 5000 rpm, rotation time 15 minutes, number of operations 1 time), No fine silica having a 50% particle size (number basis) of 0.01 to 0.9 μm was detected.

比較例2
実施例1と同様の非晶質シリカ粉末と微小球状シリカ粉末を用い、全シリカ量に対する微小球状シリカ粉末の混合比を5wt%とした以外は、実施例1と同様の手順で行った。
Comparative Example 2
The same procedure as in Example 1 was performed except that the same amorphous silica powder and fine spherical silica powder as in Example 1 were used, and the mixing ratio of the fine spherical silica powder to the total silica amount was 5 wt%.

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。シリカ粉末の造粒性が劣るため、造粒後の粉末が崩壊し、本発明とするシリカ造粒粉末は得られなかった。   Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. Since the granulation property of the silica powder was inferior, the granulated powder collapsed, and the silica granulated powder according to the present invention was not obtained.

固形分濃度が10wt%であるシリカスラリー(超音波ホモジナイザー分散、処理時間5分)を遠心沈降法(回転数5000rpm、回転時間15分、操作回数1回)で分離したときの上層液には、50%粒径(個数基準)が0.5μmの微粒シリカが検出されたが、全シリカ量に対する前記微粒シリカの重量比は0.7wt%であり、本発明の微粒シリカ重量比に比べて低い値であった。   In the upper layer liquid when the silica slurry having a solid content concentration of 10 wt% (ultrasonic homogenizer dispersion, treatment time 5 minutes) is separated by centrifugal sedimentation (rotation speed 5000 rpm, rotation time 15 minutes, number of operations 1 time), Fine silica having a 50% particle size (on a number basis) of 0.5 μm was detected, but the weight ratio of the fine silica to the total silica amount was 0.7 wt%, which is lower than the fine silica weight ratio of the present invention. Value.

比較例3
実施例1と同様の非晶質シリカ粉末を用い、微小球状シリカ粉末を混合せず、有機バインダー(ユケン工業(株)製、セランダーAP−5)を1.0wt%添加(対非晶質シリカ粉末)した以外は、実施例1と同様の手順で行った。
Comparative Example 3
The same amorphous silica powder as in Example 1 was used, fine spherical silica powder was not mixed, and 1.0 wt% of an organic binder (manufactured by YUKEN INDUSTRY CO., LTD., CERANDER AP-5) was added (vs. amorphous silica). The procedure was the same as in Example 1 except that (powder).

表1にシリカ調製条件、表2にシリカ物性とシリカ造粒粉末物性を示す。シリカ粉末は造粒性がやや劣り、安息角が37°と高く、軽装嵩密度が0.74g/cmと低く、本発明とするシリカ造粒粉末は得られなかった。 Table 1 shows the silica preparation conditions, and Table 2 shows the silica physical properties and the silica granulated powder physical properties. The silica powder was slightly inferior in granulation property, the angle of repose was as high as 37 °, and the light bulk density was as low as 0.74 g / cm 3 , so that the silica granulated powder according to the present invention was not obtained.

固形分濃度が10wt%であるシリカスラリー(超音波ホモジナイザー分散、処理時間5分)を遠心沈降法(回転数5000rpm、回転時間15分、操作回数1回)で分離したときの上層液には、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカは検出されなかった。   In the upper layer liquid when the silica slurry having a solid content concentration of 10 wt% (ultrasonic homogenizer dispersion, treatment time 5 minutes) is separated by centrifugal sedimentation (rotation speed 5000 rpm, rotation time 15 minutes, number of operations 1 time), No fine silica having a 50% particle size (number basis) of 0.01 to 0.9 μm was detected.

Figure 2018070397
Figure 2018070397

Figure 2018070397
Figure 2018070397

Figure 2018070397
応用例
実施例1と実施例2のシリカ造粒粉末、及び比較例1のシリカ粉末を用いて、以下の方法により成形性、焼結性について評価した。
Figure 2018070397
Application Example Using the silica granulated powder of Example 1 and Example 2 and the silica powder of Comparative Example 1, the moldability and sinterability were evaluated by the following methods.

CIP成形体の密度は、重量とサイズから計算し、焼結体の密度は、JIS R 1634に準じてアルキメデス法により測定した。   The density of the CIP compact was calculated from the weight and size, and the density of the sintered body was measured by Archimedes method according to JIS R 1634.

実施例1、実施例2、比較例1の各粉末を発泡スチロール製の型に充填した後、発泡スチロール型全体をポリエチレン製袋で減圧封入し、圧力280MPaでCIP成形した。次いで、CIP成形体を大気雰囲気下で所定の温度で焼結させて不透明石英ガラスを得た。   After filling each powder of Example 1, Example 2, and Comparative Example 1 into a foam polystyrene mold, the entire foam polystyrene mold was sealed under reduced pressure in a polyethylene bag and CIP molded at a pressure of 280 MPa. Next, the CIP compact was sintered at a predetermined temperature in an air atmosphere to obtain an opaque quartz glass.

表4に、成形体サイズ40mm×40mm×40mmにおいて、各焼結温度(保持時間4時間)で評価した焼結体密度を示す。この表から、本発明のシリカ造粒粉末は、焼結体密度が高く、焼結性に優れることが明らかである。   Table 4 shows the density of the sintered body evaluated at each sintering temperature (holding time: 4 hours) in a compact size of 40 mm × 40 mm × 40 mm. From this table, it is clear that the silica granulated powder of the present invention has a high sintered body density and excellent sinterability.

Figure 2018070397
表5に、大型サイズにおける成形性、焼結性の評価結果を示す。この表から、本発明のシリカ造粒粉末は、成形体密度が高く、1425℃(保持時間4時間)での焼結体密度も高く、クラックも発生していないことが明らかである。これに対し、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカが所定量含まれず、造粒困難であったシリカ粉末を用いた場合には、成形体密度も低く、1425℃(保持時間4時間)での焼結体にクラックが発生した。
Figure 2018070397
Table 5 shows the evaluation results of formability and sinterability in large sizes. From this table, it is clear that the silica granulated powder of the present invention has a high molded body density, a high sintered body density at 1425 ° C. (holding time 4 hours), and no cracks. On the other hand, when a predetermined amount of fine silica having a 50% particle size (number basis) of 0.01 to 0.9 μm is not included and the silica powder that is difficult to granulate is used, the compact density is low, Cracks occurred in the sintered body at 1425 ° C. (holding time 4 hours).

従って、本発明のシリカ粉末で調製したシリカ造粒粉末を用いると、CIP成形時の均一充填性、最密充填性、及び焼結性が向上するため、工業的に有益な大型で高品質な不透明石英ガラスを製造することができる。   Accordingly, when the silica granulated powder prepared with the silica powder of the present invention is used, the uniform filling property, close-packing property, and sintering property at the time of CIP molding are improved. Opaque quartz glass can be produced.

Figure 2018070397
Figure 2018070397

本発明のシリカ粉末で調製したシリカ造粒粉末は、有機系添加剤を一切含まず、高純度、高流動性を有し、成形性、焼結性に優れるため、例えば、半導体製造装置用部材などに用いられる不透明石英ガラス製造用の原料に好適であり、工業的規模において大型の不透明石英ガラスを生産性良く製造する際に極めて有用である。   The silica granulated powder prepared with the silica powder of the present invention does not contain any organic additives, has high purity and high fluidity, and is excellent in moldability and sinterability. It is suitable as a raw material for producing opaque quartz glass used in, for example, and is extremely useful when producing large opaque quartz glass with high productivity on an industrial scale.

Claims (5)

固形分濃度が10wt%のシリカスラリーを遠心沈降法(回転数5000rpm、回転時間15分、操作回数1回)で分離した、上層液中の微粒シリカの50%粒径(個数基準)が0.01〜0.9μmであり、濃縮層中のシリカの50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下であり、全シリカ量に対して前記微粒シリカを0.8wt%以上15wt%以下含んでなることを特徴とするシリカ粉末。 The silica slurry having a solid content concentration of 10 wt% was separated by a centrifugal sedimentation method (rotation speed: 5000 rpm, rotation time: 15 minutes, number of operations: 1), and the 50% particle diameter (number basis) of the fine silica in the upper layer liquid was 0.00. The fine silica is from 01 to 0.9 μm, the 50% particle size (volume basis) of the silica in the concentrated layer is 2 to 20 μm, and the 100% particle size (volume basis) is 200 μm or less. A silica powder comprising 0.8 wt% or more and 15 wt% or less. BET比表面積が4.5〜15m/gであることを特徴とする請求項1に記載のシリカ粉末。 The silica powder according to claim 1, wherein the BET specific surface area is 4.5 to 15 m 2 / g. 請求項1または2に記載のシリカ粉末を造粒後の安息角が40°以下かつ軽装嵩密度が0.8g/cm以上であることを特徴とするシリカ造粒粉末。 A silica granulated powder having an angle of repose after granulating the silica powder according to claim 1 or 2 and a light bulk density of 0.8 g / cm 3 or more. 50%粒径(体積基準)が2〜20μmかつ100%粒径(体積基準)が200μm以下のシリカ粉末に、50%粒径(個数基準)が0.01〜0.9μmの微粒シリカを全シリカ量に対して7wt%以上40wt%以下の比率で湿式混合してスラリー化し、得られたスラリーを噴霧乾燥することを特徴とする請求項3に記載のシリカ造粒粉末の製造方法。 The silica powder having a 50% particle size (volume basis) of 2 to 20 [mu] m and a 100% particle size (volume basis) of 200 [mu] m or less is completely mixed with fine silica having a 50% particle size (number basis) of 0.01 to 0.9 [mu] m. The method for producing a granulated silica powder according to claim 3, wherein the mixture is wet-mixed at a ratio of 7 wt% to 40 wt% with respect to the amount of silica to form a slurry, and the resulting slurry is spray-dried. 請求項3に記載のシリカ造粒粉末を成形、焼結して得られる不透明石英ガラス。 An opaque quartz glass obtained by molding and sintering the silica granulated powder according to claim 3.
JP2016209595A 2016-10-26 2016-10-26 Silica powder and highly fluid silica granulated powder and their manufacturing method Active JP6878829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209595A JP6878829B2 (en) 2016-10-26 2016-10-26 Silica powder and highly fluid silica granulated powder and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209595A JP6878829B2 (en) 2016-10-26 2016-10-26 Silica powder and highly fluid silica granulated powder and their manufacturing method

Publications (2)

Publication Number Publication Date
JP2018070397A true JP2018070397A (en) 2018-05-10
JP6878829B2 JP6878829B2 (en) 2021-06-02

Family

ID=62112053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209595A Active JP6878829B2 (en) 2016-10-26 2016-10-26 Silica powder and highly fluid silica granulated powder and their manufacturing method

Country Status (1)

Country Link
JP (1) JP6878829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165938A (en) * 2018-12-14 2021-07-23 东曹石英股份有限公司 Method for producing opaque quartz glass
WO2021215285A1 (en) * 2020-04-24 2021-10-28 株式会社トクヤマ Method for producing surface-treated silica powder
WO2023153356A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder
WO2023167030A1 (en) 2022-03-01 2023-09-07 東ソ-・エスジ-エム株式会社 Opaque quartz glass and production method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119621A (en) * 1994-10-28 1996-05-14 Catalysts & Chem Ind Co Ltd Production of fine spherical silica particles
JP2003508334A (en) * 1999-09-09 2003-03-04 ワツカー−ケミー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Highly-filled SiO2 dispersion, process for its preparation and its use
JP2004500299A (en) * 1999-12-22 2004-01-08 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Method for producing opaque quartz glass, SiO2 particles suitable for the method, and opaque quartz glass article
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2010504901A (en) * 2006-09-29 2010-02-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト SiO2 slurry for the production of quartz glass and use of the slurry
JP2014088286A (en) * 2012-10-30 2014-05-15 Tosoh Corp Opaque quartz glass and production method thereof
US20150143848A1 (en) * 2013-11-28 2015-05-28 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a coated component of transparent or opaque fused silica
JP2016069275A (en) * 2014-09-29 2016-05-09 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG PRODUCTION METHOD OF SYNTHETIC QUARTZ GLASS OF SiO2 GRANULATED BODY, AND SiO2 GRANULATED BODY SUITABLE FOR PRODUCTION METHOD

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119621A (en) * 1994-10-28 1996-05-14 Catalysts & Chem Ind Co Ltd Production of fine spherical silica particles
JP2003508334A (en) * 1999-09-09 2003-03-04 ワツカー−ケミー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Highly-filled SiO2 dispersion, process for its preparation and its use
JP2004500299A (en) * 1999-12-22 2004-01-08 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Method for producing opaque quartz glass, SiO2 particles suitable for the method, and opaque quartz glass article
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2010504901A (en) * 2006-09-29 2010-02-18 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト SiO2 slurry for the production of quartz glass and use of the slurry
JP2014088286A (en) * 2012-10-30 2014-05-15 Tosoh Corp Opaque quartz glass and production method thereof
US20150143848A1 (en) * 2013-11-28 2015-05-28 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a coated component of transparent or opaque fused silica
JP2016069275A (en) * 2014-09-29 2016-05-09 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG PRODUCTION METHOD OF SYNTHETIC QUARTZ GLASS OF SiO2 GRANULATED BODY, AND SiO2 GRANULATED BODY SUITABLE FOR PRODUCTION METHOD

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BECKMAN COULTER: "ベックマン博士の一口メモ|Vol.18 遠心条件の換算はどうするの? −κファクタの意味とその利用法 その1", [ONLINE], JPN6020036700, ISSN: 0004354911 *
HIMACサイエンス機器: "遠心理論と遠心力計算", [ONLINE], JPN6020036698, ISSN: 0004354910 *
TOKUYAMA: "EXCELICA(R) High-purity synthetic spherical silica", [ONLINE], JPN6020036702, ISSN: 0004354913 *
天野裕貴, 日本画像学会誌, vol. 47, no. 6, JPN6020036701, 2008, JP, pages 527 - 531, ISSN: 0004354912 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165938A (en) * 2018-12-14 2021-07-23 东曹石英股份有限公司 Method for producing opaque quartz glass
WO2021215285A1 (en) * 2020-04-24 2021-10-28 株式会社トクヤマ Method for producing surface-treated silica powder
CN115298137A (en) * 2020-04-24 2022-11-04 株式会社德山 Method for producing surface-treated silica powder
CN115298137B (en) * 2020-04-24 2023-12-19 株式会社德山 Method for producing surface-treated silica powder
WO2023153356A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder
WO2023167030A1 (en) 2022-03-01 2023-09-07 東ソ-・エスジ-エム株式会社 Opaque quartz glass and production method therefor

Also Published As

Publication number Publication date
JP6878829B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6878829B2 (en) Silica powder and highly fluid silica granulated powder and their manufacturing method
CN108025915B (en) Negative thermal expansion material and composite material containing same
KR101911566B1 (en) High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
TWI755366B (en) Negative thermal expansion material and composite material and paste containing the same
US11180375B2 (en) Porous halloysite powder and method for producing halloysite powder
TW201809311A (en) Ferrite particles, resin composition and electromagnetic shielding material
JP5608673B2 (en) Sinterable semi-coke powder with high bulk density
JP2014088286A (en) Opaque quartz glass and production method thereof
JP6771078B1 (en) Alumina particle material and its manufacturing method
WO2013153618A1 (en) Method for producing alumina
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
JP3279128B2 (en) Silicon nitride powder
JP2013095637A (en) SPHERICAL α-TYPE SILICON CARBIDE, PRODUCTION METHOD THEREOF, AND SINTERED BODY OR ORGANIC RESIN COMPOSITE USING THE SILICON CARBIDE AS RAW MATERIAL
JP7038541B2 (en) Manufacturing method of aluminum nitride granular powder
JP2010168271A (en) Method for producing alumina
JPH10194743A (en) Zirconia-alumina granule and its production
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP7474221B2 (en) Manufacturing method of spherical silica powder
JP6084510B2 (en) Dry silica fine particles
KR101486057B1 (en) The Manufacturing Method Of The Product Using Yttrium Oxide and Boron Nitride In Semiconductor Chemical Vapor Process
CN109111232A (en) A kind of Spray granulation method of silicon carbide powder
JP6129216B2 (en) Method for producing and processing pasty SiO2 material and use thereof
KR101583314B1 (en) Metal iron granule and the manufacturing method of the same
CN108218433A (en) A kind of Spray granulation method of silicon carbide powder
JPH0333046A (en) Pulverized body and its production and production of sintered compact using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6878829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151