JP2018065134A - Vibration fluid bed type separator of pulverulent body - Google Patents

Vibration fluid bed type separator of pulverulent body Download PDF

Info

Publication number
JP2018065134A
JP2018065134A JP2017239553A JP2017239553A JP2018065134A JP 2018065134 A JP2018065134 A JP 2018065134A JP 2017239553 A JP2017239553 A JP 2017239553A JP 2017239553 A JP2017239553 A JP 2017239553A JP 2018065134 A JP2018065134 A JP 2018065134A
Authority
JP
Japan
Prior art keywords
vibration
separation
separation container
fluidized
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017239553A
Other languages
Japanese (ja)
Other versions
JP6550119B2 (en
Inventor
三十三 上西
Misozo Uenishi
三十三 上西
和彦 雲峰
Kazuhiko Kumomine
和彦 雲峰
慎也 佃
Shinya Tsukuda
慎也 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yonden Eng Co Inc
YONDEN ENGINEERING CO Inc
Original Assignee
Yonden Eng Co Inc
YONDEN ENGINEERING CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonden Eng Co Inc, YONDEN ENGINEERING CO Inc filed Critical Yonden Eng Co Inc
Priority to JP2017239553A priority Critical patent/JP6550119B2/en
Publication of JP2018065134A publication Critical patent/JP2018065134A/en
Application granted granted Critical
Publication of JP6550119B2 publication Critical patent/JP6550119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration fluid bed type separator utilizing howl vibration which can introduce pulverulent bodies with different density differences into a separation vessel and realize separation dispersion effects even at an introduction stage.SOLUTION: A vibration fluid bed type separator comprises: a cylindrical separation vessel 1 into which pulverulent bodies with different density differences are introduced; first vibration generators 2c, 2h that make howl vibration act on the pulverulent bodies in the separation vessel 1 from outside of the vessel; second vibration generators 4a, 4b that make howl vibration act on the pulverulent bodies in the separation vessel 1 from inside of the vessel via a cylindrical inner vibrator 3; and fluidized gas supply means that supplies from the bottom part of the separation vessel 1 into the separation vessel 1. The vibration fluid bed type separator introduces pulverulent bodies with different density differences into the separation vessel via the cylindrical inner vibrator 3 and employs a dispersive fluidization structure which disperses and fluidizes the pulverulent bodies introduced into the introduction port part.SELECTED DRAWING: Figure 18

Description

この出願の発明は、密度差(比重差)の異なる粉体を唸り振動による振動、衝撃作用および微細気泡による流動化、分散作用を利用して、効率良く分離できるようにした粉体の振動流動層式分離装置に関するものである。   The invention of this application is based on vibration and flow of powders that can be separated efficiently by using vibration, impact action, fluidization by fine bubbles, and dispersion action of powders having different density differences (specific gravity differences). The present invention relates to a layer type separation apparatus.

従来から火力発電所等のボイラ設備では石炭焚きのボイラ設備が多く使用されている。この石炭焚きのボイラ設備から出る排ガス中には大量の石炭灰(ダスト)が含まれており、これをそのまま排出したのでは周辺環境に悪影響を及ぼす。このため、そのような石炭灰は、所定の集塵機(たとえば乾式集塵機、乾式電気集塵機など)を用いて回収し、多くは廃棄物として処理(埋め立て等)されている。また、一部のものは、フライアッシュと称され、フライアッシュセメントの原料、あるいはセメントの混和剤として活用されている。   Conventionally, coal-fired boiler facilities are often used in boiler facilities such as thermal power plants. The exhaust gas emitted from this coal-fired boiler facility contains a large amount of coal ash (dust), and if it is discharged as it is, the surrounding environment will be adversely affected. For this reason, such coal ash is collected using a predetermined dust collector (for example, a dry dust collector, a dry electric dust collector, etc.), and most of the coal ash is treated as waste (landfill or the like). Some are called fly ash and are used as a raw material for fly ash cement or as an admixture for cement.

しかし、上記回収された石炭灰中には、再利用可能な未燃炭分も相当量含まれており、これをそのまま焼成分と共に廃棄してしまうのはエネルギー資源の無駄となる。また、石炭灰をフライアッシュセメント等の原料として利用する場合、未燃炭量が多いと、コンクリートの表面が黒色化し、また混和剤を吸着するなどの不都合を伴う。   However, the recovered coal ash contains a considerable amount of unburned coal that can be reused, and it is wasted energy resources to discard this as it is together with the calcined portion. Further, when coal ash is used as a raw material for fly ash cement or the like, if the amount of unburnt coal is large, the surface of the concrete becomes black and admixture adsorbs.

しかるに、最近の石炭焚き火力発電所では、窒素酸化物による周辺環境への影響を考慮して、ボイラ部分の燃焼温度を低く抑えるようにしており、それが原因で余計に石炭灰中の未燃炭の含有量が増える傾向にある。   However, in recent coal-fired thermal power plants, the combustion temperature of the boiler part is kept low considering the influence of nitrogen oxides on the surrounding environment, which causes extra unburned coal in the coal ash. There is a tendency for the content of to increase.

このような事情に基づき、従来から上記回収された石炭灰中の未燃炭分を分離回収するための分離装置として、例えば静電分離方式を採用した静電式分離装置や遠心分離方式を採用した遠心式分離装置、振動による分離作用と空気流による流動化、分散作用を利用した振動流動層式分離装置などが提案されている。   Based on such circumstances, for example, an electrostatic separation device using an electrostatic separation method or a centrifugal separation method has been adopted as a separation device for separating and recovering unburned coal in the recovered coal ash. Centrifugal separators, vibratory separation actions and fluidization by airflow, vibratory fluidized bed separators utilizing dispersion action, and the like have been proposed.

しかし、静電分離方式を採用した静電式分離装置や遠心分離方式を採用した遠心式分離装置の場合、その分離性能、分離効率の点で、いまだ改善の余地がある。   However, there is still room for improvement in terms of separation performance and separation efficiency in the case of an electrostatic separation device employing an electrostatic separation method and a centrifugal separation device employing a centrifugal separation method.

これに対して振動による分離作用と空気流による流動化、分散作用を利用した振動流動層式分離装置は、たとえば未燃炭を含む使用済みの石炭灰が収容される分離容器を備えるとともに、同分離容器の底部に流動化空気供給空間、上部に石炭灰収容空間を設け、それらの間を少なくとも石炭灰粒子の径よりも小さい孔径の散気孔を有する散気板で仕切り、分離容器に対して振動モータ等の回転式の加振源を取り付けて振動させる一方、流動化気体供給空間にコンプレッサ等の流動化気体発生源からの流動化気体を供給し、散気板を介して分離容器内に流動化気体を流すように構成されている(特許文献1の構成を参照)。   On the other hand, a vibration fluidized bed type separation device using separation action by vibration, fluidization by air flow, and dispersion action includes a separation container for storing used coal ash including unburned coal, for example. A fluidized air supply space is provided at the bottom of the container, and a coal ash storage space is provided at the top. The space is partitioned by a diffuser plate having at least a hole diameter smaller than the diameter of the coal ash particles, and vibrates with respect to the separation container. Attach a rotary excitation source such as a motor to vibrate, while supplying fluidizing gas from a fluidizing gas generation source such as a compressor to the fluidizing gas supply space, and flow into the separation container via a diffuser plate It is comprised so that chemical gas may flow (refer the structure of patent document 1).

このような構成によると、加振源の駆動により、未分離の石炭灰を収容した分離容器が上下垂直方向に所定の振動数で振動し、収容された石炭灰と未燃炭が比重差により上下に密度分離される一方、流動化気体発生源の駆動により、流動化気体発生源からの流動化気体が流動化気体供給空間に導入され、散気板の散気孔を介して石炭灰中に下方から上方に向けて吹き出され、石炭灰中に所定量の気泡が発生して、石炭灰全体が流動化されて流動層を形成するとともに、石炭灰中の付着性の高い燃焼済み石炭灰と未燃炭が相互に分散される。   According to such a configuration, the drive of the excitation source causes the separation container containing unseparated coal ash to vibrate at a predetermined frequency in the vertical direction, and the stored coal ash and unburnt coal move up and down due to the specific gravity difference. On the other hand, when the fluidized gas generation source is driven, the fluidized gas from the fluidized gas generation source is introduced into the fluidized gas supply space and is lowered into the coal ash through the diffuser holes of the diffuser plate. A certain amount of bubbles are generated in the coal ash, fluidizing the entire coal ash to form a fluidized bed, and having high adhesion to the burned coal ash Fuel coal is dispersed among each other.

この結果、比重が小さい未燃炭が上層部に浮上し、比重が大きい石炭灰が下層側に沈むようになり、比較的容易に両者の分離が可能となる。   As a result, unburned coal having a small specific gravity floats to the upper layer, and coal ash having a large specific gravity sinks to the lower layer side, so that both can be separated relatively easily.

特許第3362065号公報Japanese Patent No. 3362605

しかし、上記従来の振動流動層式分離装置の構成の場合、その特許請求の範囲および明細書の記載からも明らかなように、流速0.5〜4.0cm/秒という低流速の空塔速度で粉体を流動化、分散させること、加振源の振動数を10Hz以上とすること、振幅を0.1〜2.0mmとすることが必須の要件となっており、しかも付加される振動は、垂直方向に振幅が一定の単振動である。   However, in the case of the configuration of the above conventional vibrating fluidized bed type separation apparatus, as apparent from the claims and the description of the specification, the superficial velocity of the low flow rate of 0.5 to 4.0 cm / sec. In order to fluidize and disperse the powder, the frequency of the excitation source must be 10 Hz or more, and the amplitude should be 0.1 to 2.0 mm. Is a simple vibration with a constant amplitude in the vertical direction.

本件出願人が実験により確認したところによると、このような0.5〜4.0cm/秒という低流速の空塔速度では、付着性が高い例えば粒径5〜10μm以下の微粒子が多く含まれているような石炭灰の場合には、安定した状態で石炭灰を流動化、分散させることができず、精度よく未燃炭分を分離することができない。一方、これを解消するために供給される気体の石炭灰中への流入速度を上げると、石炭灰中に大きな気泡が発生するようになり、逆に石炭灰が混合されてしまって、分離不可能となる。   According to the present applicant's confirmation by experiment, at such a superficial velocity of a low flow rate of 0.5 to 4.0 cm / sec, there are many fine particles having a high adhesion, for example, a particle size of 5 to 10 μm or less. In the case of coal ash, the coal ash cannot be fluidized and dispersed in a stable state, and the unburned coal cannot be separated accurately. On the other hand, if the inflow rate of the gas supplied to solve this problem is increased, large bubbles are generated in the coal ash, and conversely, the coal ash is mixed and separation is not possible. It becomes possible.

また、付加される振動が、垂直方向に振幅が一定の単振動の場合、たとえば付着力が大きい粒径5〜10μm以下の微粒子の付着状態を有効に断ち切って、自由に分散、流動化させることができず、必ずしも有効な密度差分離を実現することができない。   In addition, when the applied vibration is a simple vibration with a constant amplitude in the vertical direction, for example, the adhesion state of fine particles having a large particle size of 5 to 10 μm or less can be effectively cut off and freely dispersed and fluidized. Therefore, effective density difference separation cannot always be realized.

このような問題を解決しようとすると、予めネックとなっている上記粒径5〜10μm以下の微粒子を除去するか、種々の石炭灰の特性を個別に分析し、その特性に応じた試験を行って、微細な気泡と振動の組み合わせで適切に分散、分離しうる最適な気体供給速度、振動条件を求める必要があり、きわめて面倒な作業を伴う。   In order to solve such problems, the fine particles having a particle diameter of 5 to 10 μm or less, which has become a bottleneck, are removed in advance, or the characteristics of various coal ash are individually analyzed, and tests according to the characteristics are performed. Therefore, it is necessary to obtain the optimum gas supply speed and vibration conditions that can be appropriately dispersed and separated by the combination of fine bubbles and vibration, which is extremely troublesome.

そこで、このような従来の粉体の振動流動層式分離装置の課題を解決するために、本願発明者らは、各々振動数の異なる複数の振動モータを採用し、分離容器内の分離すべき密度差の異なる粉体中において、半径方向外側の分離容器外周側複数組の振動モータからの唸り振動、半径方向内側の内部振動体側複数の振動発生機からの唸り振動に加え、内部振動体および粉体を介して相互に対向する分離容器外周側複数組の振動モータ相互の間で生じる唸り振動の複数の唸り振動が相互に干渉して機械的な衝撃力を発生するようにすると共に、分離容器底部の散気孔部を介して分離容器下方側から供給される流動化気体供給装置からの流動化気体によって分離容器内の粉体中に微細な流動化気泡を発生させるようにし、分離容器内の粉体を分離容器の内外各方向から作用する唸り振動による振動とそれらの干渉による衝撃力、微細な流動化気泡の上昇により生じる流動化の促進によって、分離すべき密度差の異なる粉体間の付着力を低減して、分散化効果を高め、振動による密度差分離効果を有効に向上させるようにした粉体の振動流動層式分離装置を提案した(原出願である特願2014−79309を参照)。Therefore, in order to solve the problems of such a conventional powder vibration fluidized bed separation device, the inventors of the present application should employ a plurality of vibration motors each having a different frequency to separate them in a separation container. In powders having different density differences, in addition to the torsional vibrations from a plurality of vibration motors on the outer peripheral side of the separation container on the radially outer side, the torsional vibrations from the plurality of vibration generators on the inner vibrating body side on the radially inner side, Separation of multiple vibrations of the torsional vibration generated between multiple sets of vibration motors on the outer circumference of the separation container facing each other via powder, causing mechanical impact force by interfering with each other In the separation container, fine fluidized bubbles are generated in the powder in the separation container by the fluidizing gas from the fluidizing gas supply device supplied from the lower side of the separation container through the diffuser hole at the bottom of the container. Separating powder Reduces the adhesion force between powders with different density differences to be separated by vibrations caused by torsional vibrations acting from the inside and outside directions, impact force due to their interference, and promotion of fluidization caused by the rise of fine fluidized bubbles. Thus, there has been proposed a powder fluidized bed separation device that enhances the dispersion effect and effectively improves the density difference separation effect by vibration (see Japanese Patent Application No. 2014-79309, which is the original application).

このような振動流動層式分離装置によると、複数の唸り振動による振動およびそれら相互の干渉による機械的な衝撃力に加え、微細な流動化気泡により、分離すべき密度差の異なる粉体をそれら相互の混合状態を生じさせることなく、より効果的に流動化、分散化させることができる。According to such an oscillating fluidized bed type separation device, in addition to the vibrations caused by the multiple torsional vibrations and the mechanical impact force due to their mutual interference, fine fluidized bubbles can be used to separate powders having different density differences to be separated. It can be fluidized and dispersed more effectively without causing mutual mixing.

したがって、それら各作用の相乗効果によって、分離すべき密度差の異なる微粉体相互間の付着力がさらに効果的に低減され、流動化、分散効果が向上して、密度差の異なる粉体間の振動による効果的な密度差分離が可能となる。Therefore, due to the synergistic effect of these actions, the adhesion force between fine powders with different density differences to be separated is further effectively reduced, and the fluidization and dispersion effects are improved, so that powders with different density differences can be improved. Effective density difference separation by vibration becomes possible.

しかし、このような分離容器内における分離作用を効率よく実現するためには、当該分離容器内に分離すべき密度差の異なる微粉体を目詰まりなくスムーズに導入できるようにすることはもちろん、導入段階においても密度差の異なる粉体相互の混合を生じさせることなく、流動化、分散化させながら導入できるようにすることが必要である。However, in order to efficiently realize such a separation operation in the separation container, it is possible to introduce fine powders having different density differences to be separated into the separation container smoothly without clogging. In the stage, it is necessary to be able to introduce the powder while being fluidized and dispersed without causing mixing of powders having different density differences.

この出願の発明は、このような課題を解決するためになされたものであって、上記のような振動流動層式分離装置において、さらに分離容器内への粉体の導入を目詰まりなくスムーズに導入すると共に、導入状態においても密度差の異なる粉体相互の混合を生じさせることなく、流動化、分散化させながら導入できるようにした粉体の振動流動層式分離装置を提供することを目的とするものである。 The invention of this application was made in order to solve such issues, the vibrating fluidized bed type separation apparatus as described above, further smoothly without clogging the introduction of the powder into the separation vessel In addition, it is possible to provide an oscillating fluidized bed separation device for powder that can be introduced while being fluidized and dispersed without causing mixing of powders having different density differences even in the introduced state. It is the purpose.

この出願の発明は、上記の課題を解決するために、次のような有効な課題解決手段を備えて構成されている
(1)請求項1の発明による課題解決手段
この発明は、分離すべき密度差の異なる粉体が収容される外部振動体である円筒状の分離容器と、該分離容器の底部全面に設けられた散気孔部と、上記分離容器内の中心軸部分に位置して上方から下方に吊設された円筒状の内部振動体と、上記分離容器の外周側に設けられていて上記分離容器を振動させる各々振動数が異なる複数台の振動モ―タと、上記内部振動体側に設けられていて上記内部振動体を振動させる各々振動数が異なる複数台の振動モ―タと、上記分離容器の下方側から、上記分離容器底部の散気孔部を介して流動化気体を供給し、上記分離容器内の粉体中に微細な流動化気泡を発生させる流動化気体供給装置とを備え、上記分離容器外周側複数の振動モ―タにより上記分離容器内の粉体に対して半径方向外側から唸り振動を作用させると共に、上記内部振動体側複数の振動モータにより上記分離容器内の粉体に対して半径方向内側から唸り振動を作用させることにより唸り振動相互の干渉を生ぜしめると共に、上記分離容器底部に設けられた散気孔部を介して上記流動化気体供給装置から流動化気体を供給することにより、上記分離容器内の密度差の異なる粉体の流動化を促進することにより密度差分離を可能にしてなる振動流動層式分離装置であって、上記円筒状の内部振動体は、上端側が上記分離すべき密度差の異なる粉体の供給口に形成されていると共に、下端側が上記分離すべき密度差の異なる粉体の分離容器内への導入口に形成されており、該分離容器内への導入口は、上記円筒状の内部振動体の底部を形成しているとともに、円錐面周方向に上記流動化気体供給装置から供給される流動化気体の吹き出し口を備えた上方に凸の円錐カバーと、該円錐カバーの上記円錐面外方の上記内部振動体周壁部の周方向に形成された粉体導出孔とからなり、上記分離すべき密度差の異なる粉体は上記円筒状の内部振動体を介して上記分離容器内に分散、流動化した状態で導入されるようになっていることを特徴としている。
In order to solve the above-mentioned problems, the invention of this application comprises the following effective problem-solving means. (1) Problem-solving means according to the invention of claim 1 This invention should be separated A cylindrical separation container, which is an external vibrator that accommodates powders having different density differences, an air diffuser provided in the entire bottom surface of the separation container, and a central axis portion in the separation container A cylindrical internal vibrating body suspended downward from the outside, a plurality of vibration motors provided on the outer peripheral side of the separation container, each of which has a different frequency for vibrating the separation container, and the internal vibration body side A plurality of vibration motors each having a different frequency, each of which vibrates the internal vibrator, and fluidized gas is supplied from the lower side of the separation container through the air diffuser at the bottom of the separation container Fine fluidized bubbles in the powder in the separation container And a fluidizing gas supply device for generating a vibration, and a plurality of vibration motors on the outer peripheral side of the separation container act on the powder in the separation container from the outside in the radial direction, The vibration motor causes the vibration in the radial direction to act on the powder in the separation container from the inner side in the radial direction, thereby causing interference between the mutual vibrations, and through the air diffuser provided in the bottom of the separation container. This is a vibrating fluidized bed type separation device that enables density difference separation by promoting fluidization of powders having different density differences in the separation container by supplying fluidized gas from a fluidized gas supply device. The cylindrical internal vibrating body is formed at the upper end side of the powder supply port having different density differences to be separated, and the lower end side of separating powder having different density differences to be separated. The introduction port into the separation vessel forms the bottom of the cylindrical internal vibrator, and from the fluidizing gas supply device in the circumferential direction of the conical surface. An upward convex conical cover provided with a blowout port for the fluidized gas to be supplied, and a powder outlet hole formed in the circumferential direction of the internal vibrating body peripheral wall portion outside the conical surface of the conical cover The powders having different density differences to be separated are introduced into the separation container in a dispersed and fluidized state through the cylindrical internal vibrator.

このように、分離すべき密度差の異なる粉体が収容される外部振動体である円筒状の分離容器と、該分離容器の底部全面に設けられた散気孔部と、上記分離容器内の中心軸部分に位置して上方から下方に吊設された円筒状の内部振動体と、上記分離容器の外周側に設けられていて上記分離容器を振動させる各々振動数が異なる複数台の振動モ―タと、上記内部振動体側に設けられていて上記内部振動体を振動させる各々振動数が異なる複数台の振動モ―タと、上記分離容器の下方側から、上記分離容器底部の散気孔部を介して流動化気体を供給し、上記分離容器内の粉体中に微細な流動化気泡を発生させる流動化気体供給装置とを備えて基本となる振動流動層式分離装置を構成すると、まず次のような密度差分離作用を実現することができる。In this way, a cylindrical separation container that is an external vibrating body in which powders having different density differences to be separated are accommodated, an air diffuser provided on the entire bottom surface of the separation container, and a center in the separation container A cylindrical internal vibrator which is located on the shaft portion and is suspended from above, and a plurality of vibration modes which are provided on the outer peripheral side of the separation container and which vibrate the separation container, each having a different frequency. A plurality of vibration motors that are provided on the internal vibration body side and that vibrate the internal vibration body, each having a different frequency, and a diffuser hole at the bottom of the separation container from the lower side of the separation container. A fluidized gas supply device for supplying a fluidized gas through a fluidized gas supply device for generating fine fluidized bubbles in the powder in the separation container. The density difference separation action like

すなわち、上記分離容器外周側の各々振動数が異なる複数台の振動モ―タを用いて上記円筒状の分離容器を振動させると、上記分離容器内の粉体に対して半径方向外側から振幅が周期的に変化する唸り振動を作用させることができる。また、各々振動数が異なる上記内部振動体側複数の振動モータによって上記内部振動体を振動させるようにすると、上記分離容器内の粉体に対して半径方向内側から振幅が周期的に変化する唸り振動を作用させることができる。That is, when the cylindrical separation container is vibrated using a plurality of vibration motors having different frequencies on the outer peripheral side of the separation container, the amplitude of the powder in the separation container is increased from the outside in the radial direction. Periodic vibrations that change periodically can be applied. Further, when the internal vibration body is vibrated by a plurality of vibration motors on the internal vibration body side, each of which has a different frequency, the torsional vibration whose amplitude periodically changes from the radially inner side with respect to the powder in the separation container. Can act.

その結果、上記分離容器内の粉体部分において、上記半径方向外側の分離容器外周側複数の振動モータからの唸り振動と上記半径方向内側の内部振動体側複数の振動モータからの唸り振動が相互に干渉して、振動と共に衝撃力が発生するようになり、該衝撃力によって分離すべき密度差の異なる粉体相互の付着力が有効に低減される。As a result, in the powder part in the separation container, the torsional vibration from the plurality of vibration motors on the outer periphery side of the radially outer side and the torsional vibration from the plurality of vibration motors on the inner vibration body side in the radial direction are mutually As a result of the interference, an impact force is generated along with the vibration, and the adhesion force between the powders having different density differences to be separated by the impact force is effectively reduced.

しかも、同状態において、当該密度差の異なる粉体には、上記分離容器底部に設けられた散気孔部を介して上記流動化気体供給装置から流動化気体が供給されるようになっており、該流動化気体によって上記相互の付着力が低減せしめられた分離容器内の密度差の異なる粉体の流動化が促進される。In addition, in the same state, the fluidized gas is supplied from the fluidized gas supply device to the powders having different density differences through the air diffusion holes provided at the bottom of the separation container. The fluidization gas promotes fluidization of powders having different density differences in the separation container in which the mutual adhesion force is reduced.

これらの結果、密度差の異なる粉体の分散化効果を高めることができ、振動による密度差分離効果を大きく向上させることが可能となる。As a result, it is possible to enhance the dispersion effect of powders having different density differences, and to greatly improve the density difference separation effect due to vibration.

さらに、この発明の構成の場合、そのようにした場合において、上記円筒状の内部振動体は、その上端側が上記分離すべき密度差の異なる粉体の供給口に形成されていると共に、他方、下端側が上記分離すべき密度差の異なる粉体の分離容器内への導入口に形成されており、該分離容器内への導入口は、上記円筒状の内部振動体の底部を形成しているとともに、円錐面周方向に上記流動化気体供給装置から供給される流動化気体の吹き出し口を備えた上方に凸の円錐カバーと、該円錐カバーの上記円錐面外方の上記内部振動体周壁部の周方向に形成された粉体導出孔とからなっており、上記分離すべき密度差の異なる粉体は上記円筒状の内部振動体を介して上記分離容器内に分散、流動化した状態で導入されるようになっている。Further, in the case of the configuration of the present invention, in such a case, the cylindrical internal vibrator is formed at the upper end side of the powder supply port with different density difference to be separated, and on the other hand, The lower end side is formed at the introduction port of the powder having a different density difference to be separated into the separation container, and the introduction port into the separation container forms the bottom of the cylindrical internal vibrator. And an upward convex conical cover provided with an outlet for fluidizing gas supplied from the fluidizing gas supply device in the circumferential direction of the conical surface, and the inner vibrating body peripheral wall portion outside the conical surface of the conical cover The powder with different density differences to be separated is dispersed and fluidized in the separation container via the cylindrical internal vibrator. It has been introduced.

すなわち、同構成では、密度差の異なる粉体の導入ダクトが筒状の内部振動体により形成されることになり、それ自体が有効に振動し、かつ唸り振動源となるので、導入される粉体の分散、流動性が高まり、目詰まりが生じにくくなる。That is, in this configuration, the powder introduction ducts having different density differences are formed by the cylindrical internal vibrating body, which itself vibrates effectively and becomes a shearing vibration source. Dispersion and fluidity of the body are increased and clogging is less likely to occur.

しかも、その下端側の導入口部分は、密度差の異なる粉体の導入ダクトである円筒状の内部振動体の底部を形成しているとともに、円錐面周方向に上記流動化気体供給装置から供給される流動化気体の吹き出し口を備えた上方に凸の円錐カバーと、該円錐カバーの上記円錐面外方の上記内部振動体周壁部の周方向に形成された粉体導出孔とを備えて構成されている。In addition, the lower end side of the inlet portion forms the bottom of a cylindrical internal vibrating body that is a powder introduction duct having different density differences, and is supplied from the fluidized gas supply device in the circumferential direction of the conical surface. An upwardly projecting conical cover having a fluidized gas outlet, and a powder outlet hole formed in the circumferential direction of the peripheral wall of the internal vibrating body outside the conical surface of the conical cover. It is configured.

したがって、分離容器内に供給される分離すべき密度差の異なる粉体は、円筒状の内部振動体を介して上記分離容器内に導入される段階においても、円錐カバー円錐面の流動化気体吹き出し口から斜め上方に向けて吹き出される流動化気体によって分散化、流動化が促進され、効果的な分散、流動化状態となって導入される。Accordingly, the powders having different density differences to be separated supplied to the separation container are blown out of the fluidized gas on the conical surface of the conical cover even when they are introduced into the separation container through the cylindrical internal vibrator. Dispersion and fluidization are promoted by the fluidized gas blown obliquely upward from the mouth, and are introduced in an effective dispersion and fluidized state.
したがって、分離容器内に導入された分離すべき密度差の異なる粉体の分離効果がより向上する。Therefore, the separation effect of powders having different density differences to be separated introduced into the separation container is further improved.

以上の結果、この出願の発明によると、付着性の高い粒径10μm以下の微粒子が多く含まれているような石炭灰などの場合にも、より有効に付着力を低減して、安定した状態で石炭灰を流動化、分散させることができ、精度よく未燃炭分を分離回収することができるようになる。 As a result of the above, according to the invention of this application , even in the case of coal ash and the like containing a large amount of fine particles having a high particle size of 10 μm or less, the adhesive force is more effectively reduced and a stable state is achieved. Thus, coal ash can be fluidized and dispersed, and unburned coal can be separated and recovered with high accuracy.

その結果、未燃炭の回収効率が向上し、エネルギー資源の可及的な有効利用が図られる。また、未燃炭を分離回収した焼成済みの石炭灰をフライアッシュセメントの原料としたときにも、コンクリート表面の黒色化、混和剤の吸着などの問題を生じなくなる。As a result, the recovery efficiency of unburned coal is improved, and energy resources can be used as effectively as possible. Further, when the burned coal ash obtained by separating and recovering unburned coal is used as a raw material for fly ash cement, problems such as blackening of the concrete surface and adsorption of the admixture do not occur.

この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の装置本体部分の基本的な構成を示す断面図である。It is sectional drawing which shows the fundamental structure of the apparatus main body part of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on the 1st form for implementing invention of this application. 同装置本体部分の基本的な構成を示す上面図である。It is a top view which shows the basic composition of the apparatus main body part. 同装置本体部分の複数台の振動発生機を第1の運転台数、第1の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第1の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A first example of a combined waveform of the torsional vibration generated in the coal ash part when the plurality of vibration generators in the apparatus main body part are operated under the first operating number and the first operating condition ((a) is the amplitude, ( b) is a diagram showing an acceleration ratio). 同装置本体部分の複数台の振動発生機を第2の運転台数、第2の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第2の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A second composite waveform example of the torsional vibration generated in the coal ash part when the plurality of vibration generators of the apparatus main body part is operated under the second operating number and the second operating condition ((a) is the amplitude, ( b) is a diagram showing an acceleration ratio). 同装置本体部分の複数台の振動発生機を第3の運転台数、第3の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第3の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A third example of a combined vibration of the vibration generated in the coal ash portion when the plurality of vibration generators in the apparatus main body is operated under the third operating number and the third operating condition ((a) is the amplitude, ( b) is a diagram showing an acceleration ratio). 同装置本体部分の複数台の振動発生機を第4の運転台数、第4の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第4の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A fourth composite waveform example ((a) is the amplitude, (a) is the amplitude of the torsional vibration generated in the coal ash part when the plurality of vibration generators in the apparatus main body part are operated under the fourth operating number and the fourth operating condition.) b) is a diagram showing an acceleration ratio). 同装置本体部分の複数台の振動発生機を第5の運転台数、第5の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第5の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A fifth composite waveform example (a is amplitude) of the torsional vibration generated in the coal ash portion when a plurality of vibration generators of the apparatus main body is operated under the fifth operating number and the fifth operating condition. b) is a diagram showing an acceleration ratio). 同装置本体部分の複数台の振動発生機を第6の運転台数、第6の運転条件で運転したときに石炭灰部分に生ずる唸り振動の第6の合成波形例((a)は振幅、(b)は加速度比)を示す図である。A sixth composite waveform example (a is the amplitude, (a) is the vibration of the rolling vibration generated in the coal ash part when the plurality of vibration generators of the apparatus main body part is operated under the sixth operating condition and the sixth operating condition. b) is a diagram showing an acceleration ratio). この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の上記装置本体部分に必要な付属装置やセンサー、制御装置等を付加した制御システムの構成を示す図である。1 shows a configuration of a control system in which necessary devices, sensors, control devices, and the like are added to the device main body portion of the vibration fluidized bed separation device for powder according to the first embodiment for carrying out the invention of this application. FIG. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置における流動化空気に対して除電機能を付与した、この出願の発明を実施するための第2の形態に係る粉体の振動流動層式分離装置の装置本体および制御システム部分の構成を示す図である。On the premise of the configuration of the vibration fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application, the invention of this application provided with a static elimination function for the fluidized air in the device It is a figure which shows the structure of the apparatus main body and control system part of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on 2nd form for implementing this. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において分離容器の側部上方側に分離された未燃炭を排出する未燃炭排出ダクトを設けるとともに、分離容器内に回転可能な未燃炭押し出し用のスクレバーを設けて未燃炭を排出するようにした、この出願の発明を実施するための第3の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。On the premise of the configuration of the vibration fluidized bed separation device of the powder according to the first embodiment for carrying out the invention of this application, unburned coal separated on the upper side of the separation container in the device is discharged. A powder according to the third embodiment for carrying out the invention of this application, in which an unburnt coal discharge duct is provided and a scrubber for extruding unburnt coal that can be rotated is provided in the separation container to discharge unburnt coal. It is sectional drawing which shows the structure of the apparatus main body part of this vibration fluidized bed type | mold separation apparatus. 同図11の装置本体におけるスクレバーの構成と作用を示す上面図である。It is a top view which shows the structure and effect | action of a scrubber in the apparatus main body of the same FIG. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において分離容器の側部上方側に分離された未燃炭を排出する未燃炭排出ダクトを設けるとともに、分離容器内に未燃炭排出用のエアパイプを設けた、この出願の発明を実施するための第4の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。On the premise of the configuration of the vibration fluidized bed separation device of the powder according to the first embodiment for carrying out the invention of this application, unburned coal separated on the upper side of the separation container in the device is discharged. An apparatus main body part of the vibration fluidized bed separation apparatus for powder according to the fourth embodiment for carrying out the invention of this application, in which an unburned coal discharge duct is provided and an air pipe for discharging unburned coal is provided in the separation container It is sectional drawing which shows this structure. 同図13の装置本体におけるエアパイプ部分の構成と作用を示す上面図である。It is a top view which shows the structure and effect | action of an air pipe part in the apparatus main body of FIG. この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において分離容器の側部上方側に分離された未燃炭を排出する未燃炭排出ダクトを設けるとともに、分離容器内に未燃炭を掬い取って排出ダクト側に流す樋部材を設けた、この出願の発明を実施するための第5の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。On the premise of the configuration of the oscillating fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application, unburned coal separated from the upper side of the separation container in the device is discharged. A vibration fluidized bed type of powder according to the fifth embodiment for carrying out the invention of this application is provided with a charcoal discharge duct and a dredging member that scoops the unburned coal into the separation container and flows it to the discharge duct side. It is sectional drawing which shows the structure of the apparatus main body part of a separation apparatus. 同図15の樋部材の要部の断面図(図15のA−A断面図)である。It is sectional drawing (AA sectional drawing of FIG. 15) of the principal part of the collar member of the same FIG. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置における分離容器の側部に石炭灰投入用のダクトを設けた、この出願の発明を実施するための第6の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。On the premise of the configuration of the vibration fluidized bed separation device for powder according to the first embodiment for carrying out the invention of this application, a duct for charging coal ash was provided on the side of the separation container in the device, It is sectional drawing which shows the structure of the apparatus main-body part of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on the 6th form for implementing invention of this application. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において分離容器中央部に設けられている内部振動体を利用して分離容器内へ石炭灰を投入するようにした、この出願の発明を実施するための第7の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。Based on the configuration of the vibration fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of this application, the internal vibration body provided in the central portion of the separation container in the apparatus is utilized. It is sectional drawing which shows the structure of the apparatus main body part of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on the 7th form for implementing invention of this application which injected | thrown-in coal ash into the separation container. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、エアリフト方式で未燃炭分離後の石炭灰を外部に排出するようにした、この出願の発明を実施するための第8の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す断面図である。Assuming the configuration of the vibrating fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of this application, in this apparatus, coal ash after separation of unburnt coal is discharged to the outside by an air lift method. It is sectional drawing which shows the structure of the apparatus main body part of the oscillating fluidized bed type | mold separation apparatus of the powder which concerns on the 8th form for implementing invention of this application which was made. この出願の発明を実施するための上記第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同構成の振動流動層式分離装置を複数台段階的に組み合わせ、その分離精度を向上させた、この出願の発明を実施するための第9の形態に係る粉体の振動流動層式分離装置の装置本体部分の構成を示す全体図である。Based on the configuration of the vibrating fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application, a plurality of vibrating fluidized bed type separation devices of the same configuration are combined in stages and separated. It is a general view which shows the structure of the apparatus main body part of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on the 9th form for implementing invention of this application which improved the precision.

以下、図1〜図15を参照して、この出願の発明を実施するための幾つかの形態について、具体的に説明する。なお、以下に説明する各形態は、この出願の発明に係る粉体の振動流動層式分離装置を、一例として、例えば石炭火力発電所等のボイラ設備から出る使用済み石炭灰(以下、単に石炭灰という)中の未燃炭成分(以下、単に未燃炭という)の分離回収に適用した石炭灰未燃分分離装置の構成について示すものである。   Hereinafter, several embodiments for carrying out the invention of this application will be described in detail with reference to FIGS. In addition, each form demonstrated below uses the oscillating fluidized bed type | mold separation apparatus of the powder which concerns on invention of this application as an example, for example, used coal ash (henceforth, only coal from a boiler facility, such as a coal-fired power plant) It shows about the structure of the coal ash unburned component separator applied to the separation and collection of the unburned coal component (hereinafter simply referred to as unburned coal).

<この出願の発明を実施するための第1の形態>
まず図1および図2は、この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の装置本体部分の基本となる構成を示している。
<First embodiment for carrying out the invention of this application>
First, FIG. 1 and FIG. 2 show the basic configuration of the apparatus main body portion of the oscillating fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of this application.

(装置本体部分の構成)
すなわち、この振動流動層式分離装置の装置本体は、大別して、いったんボイラ設備で燃焼させたものではあるが、未だ所定量の未燃炭成分C2を含む使用済みの石炭灰Cが投入される被振動体(外部振動体)である所定の高さの大径筒状の分離容器1と、該分離容器1を振動可能な状態に支持する所定のバネ定数の防振部材D、D・・と、上記分離容器1の底部側外周に配設された複数台(8台)の第1の振動発生機2a~2hと、上記分離容器1内に上方側から下方に向けて挿入され、同分離容器1の中心軸O部分に位置して吊設された被振動体である所定の長さの小径筒状の内部振動体3と、該内部振動体3の上端部側外周に設けられた複数台(2台)の第2の振動発生機4a、4bとからなっている。
(Configuration of the device body)
That is, the main body of the vibrating fluidized bed separation apparatus is roughly divided and once burned in the boiler equipment, but is still covered with the used coal ash C containing a predetermined amount of the unburned coal component C2. A large-diameter cylindrical separation container 1 having a predetermined height, which is a vibrating body (external vibrating body), and anti-vibration members D, D,... Having predetermined spring constants that support the separation container 1 so as to vibrate. A plurality of (eight) first vibration generators 2a to 2h disposed on the outer periphery of the bottom side of the separation container 1, and inserted into the separation container 1 from the upper side to the lower side. A small-diameter cylindrical internal vibration body 3 having a predetermined length, which is a vibration body suspended from the central axis O portion of the container 1, and a plurality of internal vibration bodies 3 provided on the outer periphery on the upper end side. It comprises two (two) second vibration generators 4a and 4b.

分離容器1内は、多数の散気孔を有する散気板5を介して上部側大容積の石炭灰収容空間1Aと底部側小容積の流動化空気導入空間1Bとの2つの空間部に仕切られており、上部側石炭灰収容空間1A内に未燃炭C2を含む使用済みの石炭灰Cが上端側開口部付近まで収容されるようになっている一方、底部側流動化空気導入空間1B内には、後述する流動化空気発生装置14から流動化空気供給ライン18を介して流動化空気が供給されるようになっている。流動化空気導入空間1B内に供給された流動化空気は、散気板5の多数の散気孔を通して、上記石炭灰C内に吹き込まれ、上記石炭灰C中を微細な気泡となって均一に上昇し、上記石炭灰Cの全体を適切に流動化させ、石炭灰Cの流動化層を形成する。符号1fは、流動化空気導入空間1Bへの流動化空気導入口(流動化空気供給ライン18の接続口)である。   The inside of the separation container 1 is partitioned into two space portions, a large ash storage space 1A on the upper side and a fluidized air introduction space 1B on the bottom side through a diffuser plate 5 having a large number of diffuser holes. The used coal ash C including unburnt coal C2 is accommodated in the upper side coal ash accommodating space 1A up to the vicinity of the upper end side opening, while in the bottom side fluidized air introduction space 1B. The fluidized air is supplied from the fluidized air generator 14 described later via the fluidized air supply line 18. The fluidized air supplied into the fluidized air introduction space 1B is blown into the coal ash C through a large number of air holes of the diffuser plate 5, and is uniformly formed as fine bubbles in the coal ash C. Ascend, the entire coal ash C is fluidized appropriately, and a fluidized layer of coal ash C is formed. Reference numeral 1f is a fluidized air introduction port (a connection port of the fluidized air supply line 18) to the fluidized air introduction space 1B.

散気板5は、たとえば上記石炭灰C中の最も粒径が小さな微粉体の粒径5〜10μmよりも小さな孔径の散気孔を多数有する所定の厚さの高分子プレートにより構成されており、上記流動化空気導入空間1B側から圧送される所定圧の流動化空気を、上記のように石炭灰収容空間1A内に均一に吹き込んで、当該石炭灰収容空間1A中の石炭灰C中の全体に亘って、均一に、下方から上方に向けて上昇する多数の微細な気泡を発生させ、同多数の微細な上昇気泡によって上記未燃炭C2を含む石炭灰C中に多数の微細な上昇空間を形成することによって、例えば粒子径が10μm以下と小さく、そのままだと相互に付着しやすい石炭灰粒子を効果的に分散させて、流動化させる作用を果たす。   The air diffuser plate 5 is constituted by a polymer plate having a predetermined thickness having a large number of air diffuser holes having a diameter smaller than 5 to 10 μm, for example, of the fine powder having the smallest particle diameter in the coal ash C. The fluidized air having a predetermined pressure fed from the fluidized air introduction space 1B side is uniformly blown into the coal ash accommodating space 1A as described above, and the entire coal ash C in the coal ash accommodating space 1A A large number of fine bubbles rising uniformly from below to above are generated uniformly, and a large number of fine rising spaces are formed in the coal ash C containing the unburned coal C2 by the large number of fine rising bubbles. By forming, for example, the particle diameter is as small as 10 μm or less, and if it is as it is, coal ash particles that easily adhere to each other are effectively dispersed and fluidized.

第1の振動発生機2a~2hは、例えばインバータ制御方式の誘導モータ(三相または単相)のロータ軸先端に2枚の扇型偏心錘を設け、その偏心回転時に強力な遠心力振動を発生させる振動モータよりなっている。同振動モータの2枚の扇型偏心錘の一方は、ロータ軸に固定された固定ウエイト、他方は同固定ウエイトに対する相対的な取り付け角を調整することができる調整ウエイトとなっていて、それらの相対角を変えることにより、例えば0〜100%の範囲で発生する遠心力を調整することができるようになっている。この振動モータのロータ軸の図1および図2の矢印に示すような回転(偏心回転)により生じる遠心力振動は基本的に正弦波振動であり、この正弦波の遠心力振動(図1中の矢印参照)が、後述する所定の振動伝達部材7、7・・を介して被振動部である上記分離容器1に伝達されると、同分離容器1が同伝達された正弦波の遠心力振動に応じて水平面方向に正弦波振動(揺動)する。 In the first vibration generators 2a to 2h, for example, two fan-shaped eccentric weights are provided at the tip of the rotor shaft of an inverter control type induction motor (three-phase or single-phase), and strong centrifugal vibration is generated during the eccentric rotation. It consists of a vibration motor to be generated. One of the two fan-shaped eccentric weights of the vibration motor has a fixed weight fixed to the rotor shaft, and the other has an adjustment weight capable of adjusting a relative mounting angle with respect to the fixed weight. By changing the relative angle, for example, the centrifugal force generated in the range of 0 to 100% can be adjusted. Centrifugal force vibration generated by the rotation (eccentric rotation) of the rotor shaft of the vibration motor as shown by the arrows in FIGS. 1 and 2 is basically sinusoidal vibration, and this sinusoidal centrifugal vibration (in FIG. 1). (See arrow) is transmitted to the separation container 1 which is a portion to be vibrated via predetermined vibration transmission members 7, 7... Described later, the centrifugal vibration of the sine wave transmitted through the separation container 1. In response to this, a sine wave is oscillated (oscillated) in the horizontal direction.

すなわち、この第1の形態の構成の場合、上記第1の振動発生機2a~2hは、所定の振動伝達部材7、7・・を介して上記分離容器1の底部外周側取り付け部1a~1dに連結されており、上記第1の振動発生機2a~2hの正弦波の遠心力振動が振動伝達部材7および取り付け部1a〜1dを介して上記分離容器1の底部に伝達され、上記分離容器1が同正弦波の遠心力振動に応じて水平面方向に正弦波振動(揺動)する。   That is, in the case of the configuration of the first embodiment, the first vibration generators 2a to 2h are attached to the bottom outer peripheral side attaching portions 1a to 1d of the separation container 1 via the predetermined vibration transmitting members 7, 7,. The sine wave centrifugal vibration of the first vibration generators 2a to 2h is transmitted to the bottom of the separation container 1 via the vibration transmitting member 7 and the attachment parts 1a to 1d, and the separation container 1 oscillates (oscillates) in the horizontal plane according to the centrifugal vibration of the sine wave.

ところで、この実施の形態の場合、上記8台の第1の振動発生機2a~2hは、例えば図2(図1の装置本体を上方側から見た平面図)に示されるように、それぞれ2台のもの2aと2b、2cと2d、2eと2f、2gと2hがそれぞれ1組(1ユニット)となって相互に隣接する形で周方向に4組設けられており、それら隣接するもの同士が上記分離容器1の底部外周(流動化空気導入空間1B部分の外周)に周方向に90度の間隔を保って各々共通の取り付け部1a、1b、1c、1d、1eを利用して取り付けられている。   By the way, in the case of this embodiment, the eight first vibration generators 2a to 2h are each of 2 as shown in FIG. 2 (a plan view of the apparatus main body of FIG. 1 as viewed from above), for example. There are four sets in the circumferential direction in a form adjacent to each other as one set (one unit) of 2a and 2b, 2c and 2d, 2e and 2f, 2g and 2h. Are attached to the outer periphery of the bottom of the separation container 1 (the outer periphery of the fluidized air introduction space 1B) by using common attachment portions 1a, 1b, 1c, 1d, and 1e at intervals of 90 degrees in the circumferential direction. ing.

これら第1の振動発生機2a~2hそれぞれのインバータ運転周波数(振動数)は、例えば一例として、背面側2a=83Hz、2b=80Hz、右側面側2c=77Hz、2d=74Hz、正面側2e=95Hz、2f=92Hz、左側面側2g=89Hz、2h=86Hz等に設定され、上記直接隣り合う2aと2b、2cと2d、2eと2f、2gと2hの間のインバータ運転周波数の差(振動数の差)がそれぞれ3Hz、また周方向に各々90度の間隔を置いて隣り合う2bと2c、2dと2e、2fと2g、2hと2aとの間のインバータ運転周波数の差(振動数の差)がそれぞれ3Hz、21Hz、3Hz、3Hz、さらに上記分離容器1の中心軸Oを通して相互に対向する位置関係にある振動発生機2aと2e、2bと2f、2cと2g、2dと2h相互の間のインバータ運転周波数の差(振動数の差)がそれぞれ12Hz、12Hz、12Hz、12Hz,12Hzとなるように設定されている。   For example, the inverter operating frequencies (frequency) of each of the first vibration generators 2a to 2h are, for example, the back side 2a = 83 Hz, 2b = 80 Hz, the right side 2c = 77 Hz, 2d = 74 Hz, and the front side 2e = 95Hz, 2f = 92Hz, left side 2g = 89Hz, 2h = 86Hz, etc., and the difference in inverter operating frequency (vibration) between the above directly adjacent 2a and 2b, 2c and 2d, 2e and 2f, 2g and 2h The difference in the number of inverters) is 3 Hz, and the inverter operating frequency difference (frequency frequency) between 2b and 2c, 2d and 2e, 2f and 2g, 2h and 2a adjacent to each other at intervals of 90 degrees in the circumferential direction. 3), 21 Hz, 3 Hz, 3 Hz, and vibration generators 2a and 2e, 2b and 2f, 2c and 2g, The inverter operating frequency difference (frequency difference) between d and 2h is set to 12 Hz, 12 Hz, 12 Hz, 12 Hz, and 12 Hz, respectively.

いま、上記8台の第1の振動発生機2a〜2hの全てが駆動され、その運転条件が上記のような運転周波数関係(振動数関係)にあるとすると、それら各振動発生機2a〜2hで発生し、それら相互に運転周波数が僅かに異なる各振動発生機2a〜2hから、上記振動伝達部材7、7・・を介して、上記外側の振動体(外部振動体)である分離容器1に伝達される正弦波の遠心力振動は、当該分離容器1および石炭灰C部分で相互に干渉し、合成されて、同分離容器1および石炭灰C部分に、例えば図3の(a)に示すような振幅、図3の(b)に示すような加速度比で、振幅が周期的に変化する合成波よりなる唸り振動を生じさせることになる。そして、この所定の加速度比で、振幅が周期的に変化する唸り振動が、上記分離容器1を水平面方向において複雑に揺動させ、上記分離容器1内の石炭灰C部分に周期的な機械的衝撃力を発生させ、この機械的な衝撃力が焼成済みの石炭灰C1と未燃炭C2との付着力を破壊して効果的に分離するようになる。   Now, assuming that all of the eight first vibration generators 2a to 2h are driven and the operating conditions are in the operating frequency relationship (frequency relationship) as described above, the respective vibration generators 2a to 2h. The separation container 1 which is the outer vibration body (external vibration body) from the vibration generators 2a to 2h which are generated in the above and slightly different in operating frequency from each other through the vibration transmission members 7, 7. The centrifugal vibration of the sine wave transmitted to is interfered with each other in the separation container 1 and the coal ash C part, and is synthesized to be separated into the separation container 1 and the coal ash C part, for example, in FIG. With the amplitude as shown and the acceleration ratio as shown in FIG. 3 (b), the torsional vibration consisting of a synthetic wave whose amplitude changes periodically is generated. Then, the rolling vibration whose amplitude periodically changes at the predetermined acceleration ratio causes the separation container 1 to swing in a complex manner in the horizontal plane direction, and the mechanical ash C in the separation container 1 is periodically mechanically moved. An impact force is generated, and this mechanical impact force effectively separates the adhesion force between the burned coal ash C1 and the unburned coal C2 and effectively separates them.

この図3の(a)、(b)に示す唸り振動は、特に相互の間に12Hzのインバータ運転周波数の差(振動数の差)がある上記分離容器1の中心軸Oを通して相互に対向する位置関係にある振動発生機2aと2e、2bと2f、2cと2g、2dと2hの間で効果的に発生する。   The torsional vibrations shown in FIGS. 3A and 3B are opposed to each other through the central axis O of the separation vessel 1, which has a difference in inverter operating frequency of 12 Hz (frequency difference). The vibration generators 2a and 2e, 2b and 2f, 2c and 2g, and 2d and 2h in a positional relationship are effectively generated.

また、この図3の(a)、(b)に示す唸り振動の波形は、それぞれ上記のような運転条件(インバータ運転周波数(振動数))の下で、上記図1および図2のような位置関係で設置された第1の振動発生機2a〜2h(8台)のすべての台数を運転したときのものであるが、この第1の振動発生機2a〜2hの運転台数および運転条件は種々の変更が可能であり、それによって発生する唸り振動の形態(振幅、加速度比など)を所望に調整することができる。   3A and 3B show the waveform of the torsional vibration as shown in FIGS. 1 and 2 under the above operating conditions (inverter operating frequency (frequency)). This is when all the first vibration generators 2a to 2h (eight units) installed in a positional relationship are operated, and the number and operating conditions of the first vibration generators 2a to 2h are as follows. Various changes can be made, and the form of the torsional vibration (amplitude, acceleration ratio, etc.) generated thereby can be adjusted as desired.

例えば運転する第1の振動発生機を上記正面側および左側面側2e〜2hの4台とし、それらについて上記図3の(a)、(b)の場合と同じ運転条件で運転すると、例えば図4の(a)、(b)のような振幅、加速度比の唸り振動となる。   For example, if the first vibration generator to be operated is set to four units on the front side and the left side 2e to 2h, and they are operated under the same operating conditions as those in FIGS. 3 (a) and 3 (b), for example, FIG. No. 4 (a) and (b), the vibration is an oscillating vibration having an amplitude and an acceleration ratio.

また、例えば運転する第1の振動発生機を上記正面側2e、2fの2台のみとし、それらについて上記図3の(a)、(b)場合と同じ運転条件で運転すると、例えば図5の(a)、(b)のような小さな振幅、加速度比の唸り振動となる。   Further, for example, the first vibration generator to be operated is only two on the front side 2e and 2f, and when these are operated under the same operating conditions as those in FIGS. 3A and 3B, for example, FIG. As shown in (a) and (b), it becomes a small vibration with a small amplitude and acceleration ratio.

また、例えば運転する第1の振動発生機は、上記図3の(a)、(b)の場合と同じ2a〜2hの8台であるが、隣り合う第1の振動発生機2aと2b、2cと2d、2eと2f、2gと2hの間のインバータ運転周波数の差(振動数の差)を3Hzから2Hzに小さくすると、例えば図6の(a)、(b)のような振幅、加速度比の唸り振動となる。   Further, for example, the first vibration generator to be operated is eight units 2a to 2h that are the same as those in FIGS. 3 (a) and 3 (b), but the adjacent first vibration generators 2a and 2b, When the difference in inverter operation frequency (frequency difference) between 2c and 2d, 2e and 2f, 2g and 2h is reduced from 3 Hz to 2 Hz, for example, the amplitude and acceleration as shown in FIGS. It becomes the vibration of the ratio.

また、例えば運転する第1の振動発生機を正面側および左側面側2e〜2hの4台とし、それらについて上記図6の(a)、(b)の場合と同じ運転条件(インバータ運転周波数の差(振動数の差)が2Hz)で運転すると、例えば図7の(a)、(b)のような振幅、加速度比の唸り振動となる。   Further, for example, the first vibration generator to be operated is set to four units on the front side and the left side 2e to 2h, and the same operating conditions (inverter operation frequency of the inverter operating frequency) as those in FIGS. When the operation is performed with the difference (frequency difference) being 2 Hz), for example, the vibration with the amplitude and acceleration ratio as shown in (a) and (b) of FIG.

また、例えば運転する第1の振動発生機を上記正面側2e、2fの2台のみとし、それらについて上記図6の(a)、(b)の場合と同じ運転条件(インバータ運転周波数の差(振動数の差)が2Hz)で運転すると、例えば図8の(a)、(b)のような小さな振幅、加速度比の唸り振動となる。   In addition, for example, the first vibration generator to be operated is only two on the front side 2e and 2f, and the same operating conditions (difference in inverter operating frequency ( When the operation is performed at a frequency difference (2 Hz), for example, a vibration with a small amplitude and an acceleration ratio as shown in FIGS. 8A and 8B is obtained.

このように、上記第1の振動発生機2a〜2hは、その運転条件(インバータ運転周波数や同周波数の差)や運転台数などを変えることによって、具体的な制御条件に応じて適切に振動数、加速度比、振幅等の振動特性が可変され、分離効率の高い衝撃作用が実現されるようになる。   As described above, the first vibration generators 2a to 2h can appropriately change the frequency according to the specific control conditions by changing the operating conditions (inverter operating frequency or difference between the same frequencies), the number of operating units, and the like. Further, vibration characteristics such as acceleration ratio and amplitude are varied, and an impact action with high separation efficiency is realized.

一方、内部振動体3は、上下方向に長い内部が空洞の小径の筒状体よりなり、上記分離容器1の石炭灰収容空間1A内の中心軸部O分に位置して上方側から下方側に向けて挿入され、上述した散気板5に当接しない状態で吊設されている。そして、この内部振動体3の上端部外周には、上記第1の振動発生機2a〜2hと同様の振動モータよりなる複数台(2台)の第2の振動発生機4a、4bが設けられている。これら2台の第2の振動発生機4a、4bは、例えば図2に示すように、相互に180度位置を異にして内部振動体3の両側に設けられ、それぞれ上記第1の振動発生機2c、2d間および2e,2f間に対向する状態で設けられ、上記第1の振動発生機2a〜2hの場合と同様に、それぞれ振動伝達部材7、7を介して内部振動体3側の取り付け部3a、3bに連結して取り付けられている。   On the other hand, the internal vibrating body 3 is formed of a small-diameter cylindrical body whose inside is long in the vertical direction, and is located at the central shaft portion O in the coal ash containing space 1A of the separation container 1 and from the upper side to the lower side. And is suspended in a state where it does not contact the diffuser plate 5 described above. A plurality of (two) second vibration generators 4a and 4b made of vibration motors similar to the first vibration generators 2a to 2h are provided on the outer periphery of the upper end portion of the internal vibration body 3. ing. These two second vibration generators 4a and 4b are provided on both sides of the internal vibration body 3 at positions different from each other by 180 degrees as shown in FIG. 2, for example. 2c, 2d and 2e, 2f are provided facing each other, and in the same manner as in the case of the first vibration generators 2a to 2h, the attachment on the side of the internal vibrator 3 via the vibration transmitting members 7 and 7, respectively. It is connected to the parts 3a and 3b.

そして、この場合にも、同第2の振動発生機4a、4bは、そのロータ軸の偏心回転により、設定された所定の振動周波数(インバータ運転周波数)の正弦波の遠心力振動を発生し、この正弦波の遠心力振動が内部振動体3に伝達されて内部振動体3を水平面方向に正弦波振動(揺動)させるが、この第2の振動発生機4a、4b相互の間にも所定のインバータ運転周波数(振動数)の差、また、この第2の振動発生機4a、4bに対して、上記分離容器1内の石炭灰Cを介して相互に対向する位置関係にある上記隣接する第1の振動発生機2g、2hと2c、2d相互の間にも所定のインバータ運転周波数(振動数)の差を設けている。   In this case as well, the second vibration generators 4a and 4b generate a centrifugal vibration of a sine wave having a set predetermined vibration frequency (inverter operation frequency) by the eccentric rotation of the rotor shaft, The sinusoidal centrifugal vibration is transmitted to the internal vibration body 3 to cause the internal vibration body 3 to sine-wave vibrate (oscillate) in the horizontal plane direction. A predetermined amount is also present between the second vibration generators 4a and 4b. Of the inverter operating frequency (frequency) of the first and second vibration generators 4a and 4b are adjacent to each other through the coal ash C in the separation container 1 and facing each other. A difference in predetermined inverter operating frequency (frequency) is also provided between the first vibration generators 2g, 2h and 2c, 2d.

このため、同内部振動体3自体に生じる正弦波振動も、上記分離容器1の場合と同様の唸り振動になるとともに、第2の振動発生機4a、4bと石炭灰Cを介して相互に対向する2組の第1の振動発生機2g、2hと2c、2d相互の間でも同様に唸り振動を発生し、石炭灰Cそのものが効果的に衝撃を伴った振動を受けるようになる。   For this reason, the sinusoidal vibration generated in the internal vibrating body 3 itself becomes the same vibration as in the case of the separation container 1 and is opposed to each other via the second vibration generators 4a and 4b and the coal ash C. The two sets of the first vibration generators 2g, 2h and 2c, 2d generate a similar vibration, and the coal ash C itself is effectively subjected to a vibration with an impact.

これらの結果、上記分離容器1と内部振動体3が共に振幅が周期的に変化する図3〜図8のような唸り振動を起こすことになり、上記分離容器1内に収容された未燃炭C2を含む石炭灰Cは、上記半径方向外側の第1の振動発生機2a,2b、2c,2d、2e,2f、2g,2hからの唸り振動と半径方向内側の第2の振動発生機4a,4bからの唸り振動、さらには上記第2の振動発生機4a、4bと石炭灰Cを介して相互に対向する2組の第1の振動発生機2g、2hと2c、2d相互の間で生じる唸り振動による効果的な衝撃力を受けて、すでに述べたような付着性の高い5〜10μm以下の石炭灰C1と密度差(比重差)がある未燃炭C2分の付着力が効果的に断ち切られ、かつ上記散気板5を介して供給される微細な気泡によって効果的に分散され、流動化されて、密度の大きい石炭灰C1が下方に沈む一方、密度の小さい未燃炭C2が石炭灰収容空間1Aの上層部に集められるようになり、効果的な分離作用が実現される。   As a result, both the separation container 1 and the internal vibrating body 3 cause torsional vibrations as shown in FIGS. 3 to 8 in which the amplitude periodically changes, and the unburned coal C2 accommodated in the separation container 1. The coal ash C contains the torsional vibrations from the first radially outer vibration generators 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h and the second radially inner vibration generator 4a, 4b is generated between the first vibration generators 2g, 2h and 2c, 2d facing each other through the second vibration generators 4a and 4b and the coal ash C. In response to an effective impact force due to the torsional vibration, the adhesion force of unburnt coal C2 having a density difference (specific gravity difference) with the coal ash C1 of 5 to 10 μm or less having high adhesion as described above is effectively cut off. And the fine bubbles supplied through the diffuser plate 5 are effective. As a result of being dispersed and fluidized, the coal ash C1 having a high density sinks downward, while the unburnt coal C2 having a low density is collected in the upper layer of the coal ash containing space 1A. Is realized.

特に、以上の構成の場合、処理能力を大きくするために上記分離容器1内の石炭灰収容空間1Aの容積を大きくしたとしても、収容された石炭灰Cは、単に分離容器1側からだけでなく内部振動体3側からの唸り振動による衝撃、分離作用を受け、内外両方向からの効果的、かつ均一な分離作用が実現されるので、高い分離効率を維持させることができる。   In particular, in the case of the above configuration, even if the volume of the coal ash accommodating space 1A in the separation container 1 is increased in order to increase the processing capacity, the accommodated coal ash C is merely from the separation container 1 side. In addition, since an impact and separation action due to torsional vibration from the internal vibrator 3 side is received and an effective and uniform separation action from both the inside and outside directions is realized, high separation efficiency can be maintained.

このように分離容器1の外側および内側両方向から、分離すべき未燃炭C2を含む石炭灰Cに唸り振動を与えて未燃炭C2を分離する振動流動層式分離装置の場合、その分離効率を可及的に向上させるためには、上記内外の複数台の振動発生機2a〜2h、4a、4bそれぞれの振動周波数、それら振動発生機2a〜2h、4a、4b相互間の振動周波数の差、それら振動発生機2a〜2h、4a、4bの運転台数などを最適に調整することが必要であり、それによって始めて分離効率の高い振動形態、振動特性を得ることができる。   As described above, in the case of the oscillating fluidized bed type separation apparatus that separates the unburnt coal C2 by applying vibration to the coal ash C containing the unburnt coal C2 to be separated from both the outer side and the inner side of the separation container 1, the separation efficiency can be improved. In order to improve as much as possible, the vibration frequencies of the plurality of internal and external vibration generators 2a to 2h, 4a and 4b, the difference in vibration frequency between the vibration generators 2a to 2h, 4a and 4b, It is necessary to optimally adjust the number of operating the vibration generators 2a to 2h, 4a, 4b, etc., and by doing so, it is possible to obtain vibration forms and vibration characteristics with high separation efficiency only.

このために、この第1の形態の振動流動層式分離装置では、上記のような装置本体の基本構成に加え、さらに次に述べるような各種のセンサーや同センサーを用い所望の制御装置、付属装置を備えて構成されている。   For this reason, in addition to the basic structure of the apparatus main body as described above, the vibratory fluidized bed type separation apparatus of the first embodiment further includes various sensors as described below, a desired control device, and an accessory. It is configured with a device.

(センサー、制御装置、付属装置部分の構成)
すなわち、この第1の形態の振動流動層式分離装置の場合、たとえば図9に示すように、上記図1および図2の構成の装置本体には、さらに上記石炭灰収容空間1A内の石炭灰Cの温度を検出する粉体温度検出センサー11、上記石炭灰収容空間1A内の石炭灰C流動層部分の回転トルクを検出する回転トルク計12、上記石炭灰収容空間1A内の石炭灰C流動層部分の流動層圧力を検出する圧力検出器13、上記分離容器1の流動化空気導入空間1Bに供給される流動化空気を発生させる流動化空気発生装置14、上記分離槽1の流動化空気導入空間1Bに供給される流動化空気を暖める電気ヒータ15、上記粉体温度検出センサー11の石炭灰温度検出値a、上記回転トルク検出器12の回転トルク検出値b、上記流動層圧力検出器13の石炭灰C流動層部分の流動層圧力検出値cを入力し、上記第1の振動発生機2a~2h、第2の振動発生機4a、4bの駆動状態、上記流動化空気発生装置14の供給空気量、電気ヒータ15の発熱温度を制御する制御装置17等がそれぞれ付設されている。
(Configuration of sensor, control device, accessory device part)
That is, in the case of the vibration fluidized bed type separation apparatus of the first embodiment, as shown in FIG. 9, for example, the apparatus main body having the structure of FIGS. 1 and 2 further includes coal ash in the coal ash containing space 1A. A powder temperature detection sensor 11 for detecting the temperature of C, a rotational torque meter 12 for detecting the rotational torque of the coal ash C fluidized bed portion in the coal ash containing space 1A, and the coal ash C flow in the coal ash containing space 1A A pressure detector 13 for detecting the fluidized bed pressure in the layer portion, a fluidized air generator 14 for generating fluidized air to be supplied to the fluidized air introduction space 1B of the separation container 1, and the fluidized air in the separation tank 1 An electric heater 15 that warms the fluidized air supplied to the introduction space 1B, a coal ash temperature detection value a of the powder temperature detection sensor 11, a rotation torque detection value b of the rotation torque detector 12, and the fluidized bed pressure detector 13 The fluidized bed pressure detection value c of the coal ash C fluidized bed portion is inputted, the driving state of the first vibration generators 2a to 2h and the second vibration generators 4a and 4b, and the supply of the fluidized air generator 14 A control device 17 for controlling the amount of air and the heat generation temperature of the electric heater 15 are provided.

石炭灰収容空間1A内の石炭灰Cの温度を検出する粉体温度検出センサー11は、センサー本体部分から所定の長さ下方に伸びる挿入パイプ11aを有し、その先端にサーミスタ等の温度検知手段を設けて構成されている。そして、同温度検知手段部分からの電気信号を石炭灰の温度検出信号として出力する。また、石炭灰収容空間1A内の石炭灰C流動層部分の回転トルクを検出する回転トルク検出器12は、検出器本体部分から所定の長さ下方に伸びる回転軸を有し、その先端に石炭灰の流動に応じて回転する回転体12aを有し、該回転体12aの回転トルクに応じた電気信号を回転トルク検出値として出力する。また、上記石炭灰収容空間1A内の石炭灰C流動層部分の流動層圧力を検出する圧力検出器13は、検出器本体の圧力検出センサー部分を上記分離槽1の側壁部分に設けた圧力センサー取り付け口1g部分に連通させる形で取り付け、上記分離槽1内の石炭灰流動層の圧力に応じた電気信号を石炭灰流動層圧力検出信号として出力する。   The powder temperature detection sensor 11 for detecting the temperature of the coal ash C in the coal ash containing space 1A has an insertion pipe 11a extending downward from the sensor main body by a predetermined length, and a temperature detection means such as a thermistor at the tip thereof. Is provided. And the electric signal from the temperature detection means part is output as a temperature detection signal of coal ash. Further, the rotational torque detector 12 for detecting the rotational torque of the fluidized bed portion of the coal ash C in the coal ash containing space 1A has a rotating shaft extending downward from the detector main body by a predetermined length, The rotating body 12a rotates according to the flow of ash, and an electrical signal corresponding to the rotating torque of the rotating body 12a is output as a rotation torque detection value. The pressure detector 13 for detecting the fluidized bed pressure of the coal ash C fluidized bed portion in the coal ash containing space 1A is a pressure sensor in which the pressure detection sensor portion of the detector body is provided on the side wall portion of the separation tank 1. It attaches in the form connected to the attachment port 1g part, and outputs the electric signal according to the pressure of the coal ash fluidized bed in the said separation tank 1 as a coal ash fluidized bed pressure detection signal.

また、上記流動化空気発生装置14は、例えばコンプレッサ、ブロワ等からなっており、外気を所定の圧力以上に上昇させたうえで、流動化空気供給ライン18を介して、上記分離容器1底部の上記流動化空気導入空間1Bに供給する。また、上記電気ヒータ15は、例えば電源電圧の調節が可能なAC電源16により駆動され、上記所定の値に調節された上記AC電源電圧に応じて発熱し、上記流動化空気発生装置14から上記分離容器1底部の流動化空気導入空間1Bに供給される流動化空気を所定の温度に加熱する。   The fluidized air generator 14 is composed of, for example, a compressor, a blower or the like, and raises the outside air to a predetermined pressure or higher, and then via the fluidized air supply line 18, The fluidized air introduction space 1B is supplied. The electric heater 15 is driven by, for example, an AC power supply 16 capable of adjusting a power supply voltage, and generates heat according to the AC power supply voltage adjusted to the predetermined value. The fluidized air supplied to the fluidized air introduction space 1B at the bottom of the separation container 1 is heated to a predetermined temperature.

さらに、制御装置17は、例えばマイクロコンピュータその他のコンピュータ制御ユニットおよび必要なディスプレイを備えて構成されており、例えば上記石炭灰温度検出センサー11による石炭灰温度検出値a、上記回転トルク検出器12による回転トルク検出値b、上記流動層圧力検出器13による石炭灰Cの流動層部分の流動層圧力検出値cを入力し、上記第1の振動発生機2a~2h、第2の振動発生機4a、4bの駆動台数、駆動周波数、駆動周波数差、上記流動化空気発生装置14から上記流動化空気導入空間1Bの供給空気量、同供給される空気を加熱する上記電気ヒータ15の発熱温度等を最適な分離効率を実現できる状態に制御する。   Further, the control device 17 is configured to include, for example, a microcomputer or other computer control unit and a necessary display. For example, the control device 17 includes a coal ash temperature detection value a by the coal ash temperature detection sensor 11, and the rotational torque detector 12. The rotational torque detection value b and the fluidized bed pressure detection value c of the fluidized bed portion of the coal ash C by the fluidized bed pressure detector 13 are input, and the first vibration generators 2a to 2h and the second vibration generator 4a are input. 4b, the number of drives, the drive frequency, the drive frequency difference, the amount of air supplied from the fluidized air generator 14 to the fluidized air introduction space 1B, the heat generation temperature of the electric heater 15 for heating the supplied air, etc. Control to achieve optimal separation efficiency.

以上のように、分離容器1に設けた外側第1の振動発生機2a〜2hと内部振動体3に設けた内側第2の振動発生機4a,4bとの内外両方向の複数数の加振源から、分離容器1内の石炭灰Cに対して振幅が周期的に変化する唸り振動を与えるようにすると、分離容器1内の石炭灰C部分に複数の唸り振動の干渉による機械的な衝撃力が発生し、石炭灰C中の粒径が小さく、付着力が大きい未燃炭C2および燃焼済み石炭灰C1等の分離すべき密度差の異なる微粉体相互間の付着力が低減され、それらの分散性が大きく向上する。   As described above, a plurality of excitation sources in both the inner and outer directions of the outer first vibration generators 2 a to 2 h provided in the separation container 1 and the inner second vibration generators 4 a and 4 b provided in the internal vibrating body 3. From the above, when a pulsating vibration whose amplitude periodically changes is applied to the coal ash C in the separation container 1, a mechanical impact force due to the interference of a plurality of pulsation vibrations on the coal ash C part in the separation container 1. , And the adhesion between fine powders with different density differences to be separated, such as unburned coal C2 and burned coal ash C1, having a small particle size in coal ash C and a large adhesion is reduced. The characteristics are greatly improved.

一方、上記分離容器1の底部側には、未燃炭C2を含む石炭灰C中の最も粒径が小さな粒子の粒径5μmよりも孔径が小さいか、または略同等な孔径の多数の散気孔を有する散気板5を介した流動化気体の供給区間1Bを設けて、当該分離容器1内の石炭灰C中の全体に多数の微細な流動化気泡を供給させるようにしている。   On the other hand, on the bottom side of the separation container 1, a large number of air holes having a pore diameter smaller than the particle diameter 5 μm of the smallest particle in the coal ash C containing the unburned coal C2 or substantially the same diameter are provided. A fluidized gas supply section 1 </ b> B is provided via a diffuser plate 5, and a large number of fine fluidized bubbles are supplied to the entire coal ash C in the separation container 1.

このようにすると、上記唸り振動による機械的な衝撃力により、分離すべき密度差の異なる微粉体相互間の付着力が低減されて、分散性が向上した粒径の小さな未燃炭C2および燃焼済み石炭灰C1の粒子が、石炭灰C中を全体に亘って均一に上昇する多数の微細な気泡(微細空間)によって大きく流動化され、分離すべき密度差の異なる微粉体相互間の分離効果が大きく向上して、効果的な密度差分離が可能となる。   In this way, the adhesive force between the fine powders having different density differences to be separated is reduced by the mechanical impact force due to the above-mentioned torsional vibration, and the unburned coal C2 having a small particle size with improved dispersibility and burned The particles of the coal ash C1 are greatly fluidized by a large number of fine bubbles (fine spaces) that rise uniformly throughout the coal ash C, and the separation effect between fine powders having different density differences to be separated is obtained. This greatly improves the effective density difference separation.

そして、その場合において、上記唸り振動を発生させる上記第1の振動発生機2a〜2h、第2の振動発生機4a、4bは、それら各振動発生機2a〜2h、4a、4b各々の振動周波数、それら各振動発生機2a〜2h、4a、4b相互間の振動周波数の差、それら各振動発生機2a〜2h、4a、4bの駆動台数、また上記流動化空気発生装置14からの流動化空気の供給量等を制御する制御装置17を設け、上記唸り振動の発生レベル、振動特性、流動化気泡の発生量等の適切な調節制御がなされる。   In this case, the first vibration generators 2a to 2h and the second vibration generators 4a and 4b that generate the torsional vibration are the vibration frequencies of the vibration generators 2a to 2h, 4a, and 4b, respectively. The difference in vibration frequency between the vibration generators 2a to 2h, 4a and 4b, the number of driven vibration generators 2a to 2h, 4a and 4b, and the fluidized air from the fluidized air generator 14 A control device 17 is provided for controlling the supply amount and the like, and appropriate adjustment control is performed on the generation level, vibration characteristics, and generation amount of fluidized bubbles.

上述のように、この第1の形態の振動流動層式分離装置の構成では、上記分離容器1に設けた内外両方の複数数の加振源から、分離容器1内の微粉体に対して振幅が周期的に変化する唸り振動を与えて粉体部分に振動と共に機械的な衝撃力を発生させる一方、分離容器1の底部側に流動化気体の供給源を設け、その供給量を適切に調節制御することによって、分離容器1内の粉体中に混合を招くことなく微細な流動化気泡を発生させるようにし、それら唸り振動による機械的な衝撃力と微細な流動化気泡による流動化、分散促進作用の相乗効果によって、分離すべき密度差の異なる微粉体相互間の付着力を低減して、分散効果を高め、効果的な密度差分離を可能としている。   As described above, in the configuration of the oscillating fluidized bed type separation apparatus according to the first embodiment, the amplitude of the fine powder in the separation container 1 from the plurality of excitation sources, both inside and outside, provided in the separation container 1. Gives a periodic vibration that changes periodically and generates mechanical impact force along with vibration in the powder part, while providing a supply source of fluidized gas on the bottom side of the separation container 1 and appropriately adjusting the supply amount By controlling, fine fluidized bubbles are generated in the powder in the separation container 1 without inducing mixing, and mechanical impact force due to the rolling vibration and fluidization and dispersion by the fine fluidized bubbles are generated. The synergistic effect of the promoting action reduces the adhesion force between fine powders having different density differences to be separated, thereby enhancing the dispersion effect and enabling effective density difference separation.

そして、同唸り振動による機械的な衝撃力の発揮と微細な流動化気泡による流動化促進作用を、最も効果的に生ぜしめるためには、複数の加振源各々の振動周波数、複数の加振源相互間の振動周波数の差、複数の加振源の駆動台数、気体供給源からの流動化気体の供給量等を適切に制御する必要がある。   In order to generate the mechanical impact force due to the same vibration and the fluidization promoting action by the fine fluidized bubbles most effectively, the vibration frequency of each of the plurality of excitation sources, the plurality of excitations It is necessary to appropriately control the difference in vibration frequency between the sources, the number of driven excitation sources, the amount of fluidized gas supplied from the gas supply source, and the like.

このため、この第1の形態の振動流動層式分離装置では、上記複数の加振源である第1の振動発生機2a〜2h、第2の振動発生機4a、4b各々の振動周波数、それら各振動発生機2a〜2h、4a、4b相互間の振動周波数の差、それら各振動発生機2a〜2h、4a、4bの駆動台数、また上記流動化空気発生装置14からの流動化空気の供給量等を最適な状態に制御する制御装置17を設け、上記唸り振動の発生レベル、振動特性、流動化気泡の発生量等を、上記唸り振動による機械的な衝撃力の発揮と微細な流動化気泡による流動化促進作用を最も効果的に生ぜしめ、可及的に分離効果を高めることができる適切な運転条件に調節できるようにしている。   For this reason, in the vibration fluidized bed type separation device of the first embodiment, the vibration frequencies of the first vibration generators 2a to 2h and the second vibration generators 4a and 4b, which are the plurality of vibration sources, Difference in vibration frequency between the vibration generators 2a to 2h, 4a and 4b, the number of driven vibration generators 2a to 2h, 4a and 4b, and supply of fluidized air from the fluidized air generator 14 A control device 17 for controlling the amount and the like in an optimum state is provided, and the level of vibration generation, the vibration characteristics, the amount of fluidized bubbles generated, etc. are exerted by the mechanical impact force and fine fluidization due to the above-mentioned ringing vibration. The fluidization promoting action by the bubbles is most effectively generated, and it is possible to adjust to an appropriate operating condition that can enhance the separation effect as much as possible.

もちろん、このような制御をより適切に行うために、さらに上述したように分離容器1内の石炭灰Cの温度、石炭灰C流動層部分の微粉体密度、粘性などをも検出し、それらを制御パラメータとして、より効果的な制御を行うようにすることが好ましい。   Of course, in order to perform such control more appropriately, the temperature of the coal ash C in the separation container 1 as well as the fine powder density and viscosity of the fluidized bed portion of the coal ash C are also detected as described above, It is preferable to perform more effective control as the control parameter.

これらの結果、この第1の形態の粉体の振動流動層式分離装置によると、付着性の高い粒径5〜10μm以下の微粒子が多く含まれている石炭灰などの場合にも、有効に付着力を低減して、安定した状態で石炭灰を流動化、分散させることができ、精度よく未燃炭分を分離することができるようになる。したがって、必要以上に空塔速度を上げる必要もなく、また石炭灰中に大きな気泡が発生するようなこともないので、安定した運転が可能となる。   As a result, according to the vibration fluidized bed separation device of the powder of the first embodiment, it is effective even in the case of coal ash and the like containing a lot of fine particles having a particle size of 5 to 10 μm or less with high adhesion. Adhesive force can be reduced, coal ash can be fluidized and dispersed in a stable state, and unburned coal can be separated accurately. Therefore, it is not necessary to increase the superficial velocity more than necessary, and no large bubbles are generated in the coal ash, so that stable operation is possible.

その結果、未燃炭の回収効率が向上し、エネルギー資源の可及的な有効利用が図られる。また、未燃炭C2を分離回収した燃焼済みの石炭灰C1をフライアッシュセメントの原料としたときにも従来のような問題を生じなくなる。   As a result, the recovery efficiency of unburned coal is improved, and energy resources can be used as effectively as possible. Further, when the burned coal ash C1 obtained by separating and recovering the unburnt coal C2 is used as a raw material for fly ash cement, the conventional problem does not occur.

<この出願の発明を実施するための第2の形態>
次に図10は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において石炭灰中に供給される流動化空気に対して除電機能を付与した、この出願の発明を実施するための第2の形態に係る粉体の振動流動層式分離装置の構成を示している。
<Second embodiment for carrying out the invention of this application>
Next, FIG. 10 is based on the premise of the configuration of the vibration fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application, and fluidized air supplied into coal ash in the device. 1 shows a configuration of a vibrating bed separator for powder according to a second embodiment for carrying out the invention of the present application, which is provided with a charge eliminating function.

上記石炭火力発電所等のボイラ設備から出た石炭灰Cは所定のレベルの静電気を帯びており、同静電気の影響で燃焼済みの石炭灰粒子C1と未燃炭粒子C2との間に吸着力が発生し、上述した分散、流動、分離作用が低下する問題がある。   Coal ash C emitted from boiler facilities such as the above-mentioned coal-fired power plants has a predetermined level of static electricity, and the adsorption force is exerted between the burned coal ash particles C1 and the unburned coal particles C2 under the influence of the static electricity. There is a problem that the above-described dispersion, flow, and separation actions are reduced.

この第2の形態は、そのような問題を解決するために構成されたもので、図示のように、所定量の空気を吹き出すパージエア発生装置23と、このパージエア発生装置23からのパージエアを上述した分離容器1底部の流動化空気供給空間1b内に供給するパージエア供給ライン19と、このパージエア供給ライン19の途中に設けられていて、当該パージエア供給ライン19内を流れるパージエアの構成分子に正の電荷をあたえる除電器20と、上記パージエア供給ライン19の先端側に設けられたパージエア供給ノズル22とからなる除電空気供給装置が設けられている。パージエア供給ノズル22は、所定の長さを有して構成されており、その先端側ノズル口(吹き出し口)を上記分離容器1底部の流動化空気供給空間1bの側壁部に設けたノズル挿入口21から内部に所定長さ挿入される形で設置されている。その他の部分の構成は、すべて上記第1の形態のものと同様であり、同様の作用効果を有する。   The second embodiment is configured to solve such a problem. As shown in the drawing, the purge air generator 23 that blows out a predetermined amount of air and the purge air from the purge air generator 23 are described above. A purge air supply line 19 that is supplied into the fluidized air supply space 1b at the bottom of the separation container 1 and a positive charge in the constituent molecules of the purge air that are provided in the middle of the purge air supply line 19 and that flow in the purge air supply line 19 There is provided a static elimination air supply device comprising a static elimination device 20 for providing a purge air and a purge air supply nozzle 22 provided on the tip side of the purge air supply line 19. The purge air supply nozzle 22 is configured to have a predetermined length, and a nozzle insertion port in which a tip side nozzle port (blowing port) is provided in a side wall portion of the fluidized air supply space 1 b at the bottom of the separation container 1. It is installed in such a way that a predetermined length is inserted into the interior from 21. The other parts of the configuration are all the same as those in the first embodiment and have the same effects.

このような構成によると、上記パージエア発生装置23からのパージエアにより、上記分離容器1底部の流動化空気供給空間1b内に供給された流動化空気の分子が正または負いずれかの極性の電荷に帯電されることになり、同正または負に帯電した流動化空気の分子が上述した散気板5の散気孔を介して上記分離容器1の石炭灰収容空間1A内に供給されることになる。   According to such a configuration, the molecules of fluidized air supplied into the fluidized air supply space 1b at the bottom of the separation container 1 are charged with a positive or negative polarity by the purge air from the purge air generator 23. The molecules of fluidized air that are charged positively or negatively are supplied into the coal ash containing space 1A of the separation container 1 through the air diffusion holes of the air diffusion plate 5 described above. .

その結果、同空気によって、上記未燃炭を含む石炭灰Cの各構成粒子間のイオンバランスが良好になって、静電気による付着力が低下し、分散性、流動性、分離性が向上する。   As a result, the ion balance between the constituent particles of the coal ash C containing unburned coal is improved by the same air, the adhesion force due to static electricity is reduced, and dispersibility, fluidity, and separation are improved.

この場合のパージエア発生装置23からのパージエア発生量、除電器20における除電量も、上述のマイコンを備えたマイコン式制御装置17によって適正な条件に制御される。 <この出願の発明を実施するための第3の形態>
次に図11および図12は、上記この出願を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、上記分離された分離容器上層部の未燃炭を排出するためのオーバーフロー型の未燃炭排出口1Cを設けるとともに、同オーバーフロー型の未燃炭排出口1Cからの排出効率を向上させた、この出願の発明を実施するための第3の形態に係る粉体の振動流動層式分離装置の構成を示している。
In this case, the purge air generation amount from the purge air generation device 23 and the charge removal amount in the static eliminator 20 are also controlled to appropriate conditions by the microcomputer control device 17 including the above-described microcomputer. <Third embodiment for carrying out the invention of this application>
Next, FIG. 11 and FIG. 12 are based on the configuration of the vibration fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the above application, and in the apparatus, the separated separation container upper layer part. The third embodiment for carrying out the invention of this application is provided with an overflow type unburnt coal discharge port 1C for discharging unburnt coal of the present type and improving the discharge efficiency from the overflow type unburnt coal discharge port 1C. The structure of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on a form is shown.

上述のように、この出願の発明を実施するための第1の形態の粉体の振動流動層式分離装置によると、未分離の石炭灰Cを入れた筒状の分離容器1の上層部に燃焼済みの石炭灰C1から分離された未燃炭C2が次第に積層されてゆく。そこで、この未燃炭C2を順次排出、回収してゆかなければ、連続的な分離を行うことができなない。   As described above, according to the vibrating fluidized bed separation device of the powder of the first embodiment for carrying out the invention of this application, in the upper layer portion of the cylindrical separation container 1 containing unseparated coal ash C Unburnt coal C2 separated from the burned coal ash C1 is gradually laminated. Therefore, continuous separation cannot be performed unless the unburned coal C2 is sequentially discharged and recovered.

そこで、この第3の形態の構成では、まず上記分離容器1上端側の側壁部の一部に未燃炭C2を排出するためのオーバーフロー型の未燃炭排出口1Cを形成し、該未燃炭排出口1Cの外方に下方側に向けた未燃炭排出路24aを有する未燃炭排出用のダクト24を設けて、上記分離作用の進行に伴って上層部に溜まってくる未燃炭C2を重力および振動を利用して排出するように構成する。   Therefore, in the configuration of the third embodiment, first, an overflow type unburned coal discharge port 1C for discharging unburnt coal C2 is formed in a part of the side wall portion on the upper end side of the separation container 1, and the unburned coal discharge port is formed. An unburned coal discharge duct 24 having an unburned coal discharge passage 24a directed downward is provided outside 1C, and the unburnt coal C2 accumulated in the upper layer portion with the progress of the separation action is subjected to gravity and vibration. Configure to use and discharge.

しかし、未燃炭C2の場合、ある程度の流動性があるとは言え、水などに比べれば粘性も高く、重力や振動だけでは、上記分離容器1内上層部から必ずしも効率良く流れ出るわけではない。   However, in the case of the unburnt coal C2, although it has a certain degree of fluidity, the viscosity is higher than that of water and the like, and it does not necessarily flow out efficiently from the upper layer portion in the separation container 1 only by gravity and vibration.

そこで、さらに図11に示すように、上記分離容器1内に、上記内部振動体3を回転中心として水平方向に回転する回転スクレバー25を設け、その直径方向に180度の間隔を置いて配設した掃き出し羽根25a、25aを回転させることによって、上記オーバーフロー型の未燃炭排出口1Cから上記未燃炭排出用ダクト24の未燃炭排出路24a側に未燃炭C2をスムーズに掃き出して、効率よく排出させるようにしている。   Therefore, as shown in FIG. 11, a rotating scraper 25 that rotates in the horizontal direction around the internal vibrating body 3 is provided in the separation container 1, and is arranged at an interval of 180 degrees in the diameter direction. By rotating the discharge vanes 25a, 25a, the unburnt coal C2 is smoothly swept out from the overflow type unburnt coal discharge port 1C to the unburnt coal discharge passage 24a side of the unburnt coal discharge duct 24 and efficiently discharged. I am doing so.

上記スクレバー25の掃き出し羽根25a、25aは、上記内部振動体3の外周に遊嵌されたスリーブ部材25bの外周に固定され、スリーブ部材25bの上端にはプーリー25cが設けられている。このプーリー25cは、所定のベルト部材27を介してスクレバー駆動モータ26の駆動プーリー26aに連係されている。そして。同スクレバー駆動モータ26の駆動によって、上記掃き出し羽根25a、25aを回転させて未燃炭C2を効率よく連続的に排出する。   The sweeping blades 25a and 25a of the scrubber 25 are fixed to the outer periphery of a sleeve member 25b that is loosely fitted to the outer periphery of the internal vibrator 3, and a pulley 25c is provided at the upper end of the sleeve member 25b. The pulley 25 c is linked to a drive pulley 26 a of the screvers drive motor 26 via a predetermined belt member 27. And then. The scavenger drive motor 26 is driven to rotate the sweeping blades 25a, 25a to efficiently and continuously discharge the unburned coal C2.

上記掃き出し羽根25a、25aは、例えば図12に示すように、上記積層される未燃炭層の厚さに対応した上下幅を有する一方、回転方向前方側に凸となった平面視円弧形状をなして形成されていて、回転時に遠心方向への効果的な掃き出しが可能となっている。   For example, as shown in FIG. 12, the sweeping blades 25a and 25a have an up-and-down width corresponding to the thickness of the unburned coal layer to be stacked, and have a circular arc shape in plan view that is convex forward in the rotational direction. Thus, effective sweeping in the centrifugal direction during rotation is possible.

<この出願の発明を実施するための第4の形態>
次に図13および図14は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、上記分離された分離容器上層部の未燃炭を排出するためのオーバーフロー型の未燃炭排出口1Cを設けるとともに、さらに未燃炭を吹き出すオーバーフローノズルを設けて、上記オーバーフロー型の未燃炭排出口1Cからの未燃炭C2の排出効率を向上させた、この出願の発明を実施するための第4の形態に係る粉体の振動流動層式分離装置の構成を示している。
<Fourth embodiment for carrying out the invention of this application>
Next, FIG. 13 and FIG. 14 are based on the premise of the configuration of the vibration fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of the application, and in the apparatus, the separated separation container is used. An overflow type unburned coal discharge port 1C for discharging unburned coal in the upper layer portion is provided, and an overflow nozzle for blowing unburned coal is further provided to discharge the unburned coal C2 from the overflow type unburnt coal discharge port 1C. The structure of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on 4th form for implementing invention of this application which improved this is shown.

上述のように、この出願の発明を実施するための上記第1の形態の粉体の振動流動層式分離装置によると、未分離の石炭灰Cを入れた筒状の分離容器1の上層部に燃焼済みの石炭灰C1から分離された未燃炭C2が次第に積層される。そこで、この未燃炭C2を順次排出、回収してゆかなければ、連続的な分離を行うことができなない。   As described above, according to the powder fluidized bed separator of the first embodiment for carrying out the invention of this application, the upper part of the cylindrical separation container 1 containing unseparated coal ash C The unburned coal C2 separated from the burned coal ash C1 is gradually stacked. Therefore, continuous separation cannot be performed unless the unburned coal C2 is sequentially discharged and recovered.

そこで、この第4の形態の構成では、まず上記分離容器1上端側の側壁部の一部に未燃炭C2を排出するためのオーバーフロー型の未燃炭排出口1Cを形成し、該未燃炭排出口1Cの外方に下方側に向けた未燃炭排出路24aを有する未燃炭排出用のダクト24を設けて、上記分離作用の進行に伴って上層部に溜まってくる未燃炭C2を重力および振動を利用して排出するように構成する。   Therefore, in the configuration of the fourth embodiment, first, an overflow type unburnt coal discharge port 1C for discharging unburnt coal C2 is formed in a part of the side wall portion on the upper end side of the separation container 1, and the unburnt coal discharge port is formed. An unburned coal discharge duct 24 having an unburned coal discharge passage 24a directed downward is provided outside 1C, and the unburnt coal C2 accumulated in the upper layer portion with the progress of the separation action is subjected to gravity and vibration. Configure to use and discharge.

しかし、未燃炭C2の場合、先にも述べたように、ある程度の流動性があるとは言え、水などに比べれば粘性も高く、重力や振動だけでは、上記分離容器1内上層部から必ずしも効率よく流れ出るわけではない。   However, in the case of the unburned coal C2, as described above, although it has a certain degree of fluidity, the viscosity is higher than that of water or the like, and it is not always necessary to move from the upper layer in the separation container 1 only by gravity or vibration. It does not flow out efficiently.

そこで、この第4の形態の構成では、さらに図13および図14に示すように、上記分離容器1内に、当該積層される未燃炭C2を分離容器1内の周方向から排出口1C方向に吹き出すオーバーフローノズル26を設け、同オーバーフローノズル26から吹き出される空気によって未燃炭C2を上記排出口1Cからスムーズに押し出す構成を採用している。   Therefore, in the configuration of the fourth embodiment, as shown in FIGS. 13 and 14, the unburned coal C2 stacked in the separation container 1 is moved from the circumferential direction in the separation container 1 to the discharge port 1C. An overflow nozzle 26 to be blown out is provided, and a configuration in which unburnt coal C2 is smoothly pushed out from the discharge port 1C by air blown out from the overflow nozzle 26 is adopted.

すなわち、この第5の形態の構成では、例えば図13、図14に示すように、上記分離容器1上端の内部振動体3の外周部(未燃炭C2の積層部上面)に位置して、水平方向から少し下方に向けて空気を吹き出す複数個(4個)のエアノズルを有する複数本(4本)のエアパイプ26a、26a、26a、26aを90度間隔で放射状に設け、同エアパイプ26a、26aに押し出しエア供給ライン28を介してブロワ等の押し出し空気発生装置27から所定の圧力の押し出しエアを供給し、上記エアパイプ26a、26a、26a、26aの軸方向複数のエアノズル部分から所定の流速で所定の量の空気を未燃炭排出口1C方向に吹き出すことによって、未燃炭C2をスムーズに、かつ効率よく排出させる。
<この出願の発明を実施するための第5の形態>
次に図15および図16は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、上記分離された未燃炭を重力でオーバーフローさせるための未燃炭排出口および未燃炭排出ダクトを設けるとともに、同未燃炭排出口および未燃炭排出ダクトからの排出効率を向上させた、この出願の発明の第5の実施の形態に係る振動分離装置の構成を示している。
上述のように、上記第1の形態の構成の振動分離装置によると、未分離の石炭灰Cを入れた筒状の分離容器1の上層部には分離された未燃炭C2が次第に積層される。そこで、この未燃炭C2を順次排出、回収してゆかなければならない。
That is, in the configuration of the fifth embodiment, for example, as shown in FIGS. 13 and 14, it is located on the outer peripheral portion (upper surface of the unburned coal C2 stack) of the internal vibrating body 3 at the upper end of the separation container 1 and is horizontal. A plurality (four) of air pipes 26a, 26a, 26a, 26a having a plurality of (four) air nozzles that blow out air slightly downward from the direction are provided radially at intervals of 90 degrees, and the air pipes 26a, 26a Extrusion air having a predetermined pressure is supplied from an extruding air generator 27 such as a blower via an extruding air supply line 28, and a predetermined flow rate is obtained from a plurality of air nozzle portions in the axial direction of the air pipes 26a, 26a, 26a, 26a. By blowing out a quantity of air in the direction of the unburnt coal discharge port 1C, the unburnt coal C2 is discharged smoothly and efficiently.
<Fifth embodiment for carrying out the invention of this application>
Next, FIG. 15 and FIG. 16 are based on the premise of the configuration of the vibration fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of the application, and in the apparatus, the separated unburned coal is separated. The fifth embodiment of the invention of the present application is provided with an unburned coal discharge port and an unburned coal discharge duct for causing the fuel to overflow by gravity, and improving the discharge efficiency from the unburned coal discharge port and the unburned coal discharge duct The structure of the vibration isolator which concerns on is shown.
As described above, according to the vibration separation device having the configuration of the first embodiment, the separated unburnt coal C2 is gradually stacked on the upper layer portion of the cylindrical separation container 1 containing the unseparated coal ash C. . Therefore, the unburned coal C2 must be discharged and collected sequentially.

このため、この第5の形態の構成でも、上記第3、第4の形態の場合と同様に上記筒状の分離容器1上端の側壁部の一部に未燃炭排出用の開口部1Cを形成し、該開口部1Cに対して下方側に向けた未燃炭排出路29aを有する未燃炭排出ダクト29を設けて、上記分離作用の進行に伴って上層部に溜まってくる未燃炭C2を重力および振動による周方向への流動作用を利用して排出するように構成することが考えられるが、ただ単に開口部1Cおよび未燃炭排出ダクト29を設けただけでは分離容器1内上部の未燃炭C2が必ずしも効率良く排出されるわけではない。   For this reason, also in the configuration of the fifth embodiment, an unburned coal discharge opening 1C is formed in a part of the side wall portion at the upper end of the cylindrical separation container 1 as in the third and fourth embodiments. An unburned coal discharge duct 29 having an unburned coal discharge passage 29a directed downward with respect to the opening 1C is provided, and the unburnt coal C2 accumulated in the upper layer portion with the progress of the separation action is separated by gravity and Although it is conceivable to use a flow action in the circumferential direction due to vibration, the unburnt coal C2 in the upper part of the separation container 1 can be obtained simply by providing the opening 1C and the unburnt coal discharge duct 29. It is not necessarily discharged efficiently.

そこで、この第5の形態では、例えば図15および図16に示すように、上記分離容器1の開口部部分から内方側内部振動体3付近にかけて、上記うなり振動による石炭灰Cの周方向への回転移動時に未燃炭C2を掬い取る断面U状の樋部材30を設け、この樋部材30で掬い取った未燃炭C2を上記未燃炭排出用のダクト29の未燃炭排出路29aに、その下降傾斜面30aを利用して重力により排出するように構成している。   Therefore, in the fifth embodiment, for example, as shown in FIGS. 15 and 16, in the circumferential direction of the coal ash C due to the beat vibration from the opening portion of the separation container 1 to the vicinity of the inner side internal vibrating body 3. A U-shaped trough member 30 that scoops up the unburned coal C2 during the rotational movement of the unburned coal C2 is provided, and the unburned coal C2 scooped up by the saddle member 30 descends into the unburned coal discharge passage 29a of the unburned coal discharge duct 29. It discharges | emits by gravity using the inclined surface 30a.

このような構成によると、断面U状の樋部材30を設けるだけの簡単な構成で、うなり振動による石炭灰Cの周方向への回転移動(流動)および重力を利用した効果的な未燃炭C2の排出が可能となる。   According to such a configuration, an effective unburned coal C2 utilizing the rotational movement (flow) of the coal ash C in the circumferential direction due to beat vibration and gravity by a simple configuration in which the dredging member 30 having a U-shaped cross section is provided. Can be discharged.

<この出願の発明を実施するための第6の形態>
次に図17は、上記この出願の発明を実施するため第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、外部振動体である上記分離容器の側壁部側に未燃炭が未分離の石炭灰の投入口を設けた、この出願の発明を実施するための第6の形態に係る振動分離装置の構成を示している。
<Sixth embodiment for carrying out the invention of this application>
Next, FIG. 17 is based on the premise of the configuration of the vibrating fluidized bed type separation apparatus for powder according to the first embodiment for carrying out the invention of the application, and in this apparatus, the side wall of the separation container which is an external vibrating body. The structure of the vibration separation apparatus which concerns on the 6th form for implementing invention of this application which provided the inlet of the coal ash from which unburned coal is unseparated by the part side is shown.

上記第1の形態の構成の振動分離装置の構成の場合、上記分離容器1の石炭灰収容空間1A内に未燃炭分離用の石炭灰Cを投入する方法としては、例えば筒状の分離容器1の上端側開口部を利用する方法、筒状の内部振動体3を投入ダクトとして利用し、その下部に供給口を設けて投入する方法、分離容器1の側壁部に導入用の開口および投入用のダクトを設ける方法などの種々の投入方法が考えられる。   In the case of the configuration of the vibration separating apparatus having the configuration of the first embodiment, as a method for introducing coal ash C for separating unburned coal into the coal ash containing space 1A of the separation container 1, for example, a cylindrical separation container 1 A method of using the upper end side opening of the tube, a method of using the cylindrical internal vibrator 3 as a charging duct and providing a supply port at the lower part thereof, an opening for introduction and a charging for the side wall of the separation container 1 Various charging methods, such as a method of providing a duct, can be considered.

しかし、分離容器1の上端側開口部部分には分離された未燃炭C2が積層されるので、同部分から新たな未分離の石炭灰Cを投入するのは困難である。   However, since the separated unburnt coal C2 is stacked in the upper end side opening portion of the separation container 1, it is difficult to introduce new unseparated coal ash C from the same portion.

そこで、この第6の形態では、上記分離容器1の側壁部中間部分に未分離の石炭灰導入用の開口30aを設けるとともに、同石炭灰導入用の開口30aに対して未分離の石炭灰投入用のダクト30を設け、その上端部分をホッパー部30bとし、同ホッパー部30bに対して石炭灰搬入装置31を対応させて未分離の石炭灰Cを投入するようにしたものである。その他の構成は、すべて第1の形態のものと同様であり、同様に作用する。   So, in this 6th form, while providing the opening 30a for unseparated coal ash in the intermediate part of the side wall part of the said separation container 1, unseparated coal ash injection | throwing-in with respect to the opening 30a for the same coal ash introduction A duct 30 is provided, the upper end portion of which is a hopper portion 30b, and the coal ash carry-in device 31 is made to correspond to the hopper portion 30b to input unseparated coal ash C. Other configurations are all the same as those of the first embodiment and operate in the same manner.

このような構成の場合、石炭灰導入用の開口30aおよび石炭灰投入用のダクト30が、外部振動体である分離槽1と一体になっているために、ホッパー部30bから投入された石炭灰は、ダクト部30を通る段階で早々に振動を受け、分散、分離作用を生じながら分離槽1内に供給されるようになる。そのため、分散、分離効率が高くなる。   In such a configuration, since the coal ash introduction opening 30a and the coal ash introduction duct 30 are integrated with the separation tank 1 which is an external vibrator, the coal ash introduced from the hopper 30b. Is vibrated at the stage of passing through the duct part 30 and is supplied into the separation tank 1 while producing dispersion and separation actions. Therefore, dispersion and separation efficiency are increased.

<この出願の発明を実施するための第7の形態>
次に図18は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、それ自身がうなり振動する筒状の内部振動体を利用して未燃炭が未分離の状態の石炭灰を投入するようにした、この出願の発明を実施するための第7の形態に係る粉体の振動流動層式振動分離装置の構成を示している。
<Seventh embodiment for carrying out the invention of this application>
Next, FIG. 18 is based on the premise of the configuration of the vibration fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application. In this device, the cylindrical shape itself vibrates and vibrates. A powder fluidized bed fluidized vibration separation device according to a seventh embodiment for carrying out the invention of this application, in which coal ash in an unseparated state of unburned coal is introduced using an internal vibrator. The configuration is shown.

すなわち、この第7の形態の構成では、たとえば図18に示すように、上記分離容器1の石炭灰収容空間1Aの中央部に位置し、それ自身がうなり振動する筒状の内部振動体3の上端部3c側に未燃炭C2が未分離の状態の石炭灰Cを投入するためのホッパー部が形成され、また同内部振動体3の下端部3dの外周に上記ホッパー部から投入された未燃炭C2が未分離の状態の石炭灰Cを半径方向外方に向けて導入する石炭灰導入口3e、3e・・が設けられている。また、上記内部振動体3の上端部3c側ホッパー部には、上記第6の形態と同様の石炭灰搬入装置31が対応せしめられている。   That is, in the configuration of the seventh embodiment, for example, as shown in FIG. 18, the cylindrical internal vibrating body 3 that is located in the central portion of the coal ash containing space 1A of the separation container 1 and beats and vibrates itself. A hopper portion for charging coal ash C in a state where unburned coal C2 is not separated is formed on the upper end portion 3c side, and unburned coal charged from the hopper portion on the outer periphery of the lower end portion 3d of the internal vibrator 3 is formed. Coal ash inlets 3e, 3e,... Are provided through which the coal ash C in an unseparated state of C2 is introduced outward in the radial direction. In addition, a coal ash carry-in device 31 similar to that of the sixth embodiment is associated with the upper end portion 3c side hopper portion of the internal vibrator 3.

内部振動体3の下端部3d側の石炭灰導入口3e、3e・・部分には、さらに底部材として、当該内部振動体3の筒体部内側に位置して同軸状態で上方側に凸となった円錐カバー3fが設けられており、同円錐カバー3fのテーパ面部分に位置して周方向に所定の流動化空気の吹き出し口3g、3g・・が設けられており、これら流動化空気吹き出し口3g、3g・・から斜め上方に向けて流動化空気が吹き出されるようになっている(矢印参照)。   The coal ash inlets 3e, 3e,... On the lower end portion 3d side of the internal vibrator 3 are further provided as bottom members on the inner side of the cylindrical body portion of the internal vibrator 3 and projecting upward in a coaxial state. A conical cover 3f is provided, and predetermined fluidized air outlets 3g, 3g,... Are provided in the circumferential direction at the tapered surface portion of the conical cover 3f. Fluidized air is blown out from the ports 3g, 3g,... Obliquely upward (see arrows).

このため、この第7の形態の構成によると、石炭灰投入ダクトである筒状の内部振動体3自体が有効に振動することと相俟って、同部分に下方側から効果的に流動化空気が供給され、分離容器1内に供給される未分離の石炭灰Cが内部振動体3内で効果的に分散、流動化されながら、分離容器1内に供給されるようになり、上記第6の形態の構成以上に灰詰まりが生じにくくなるとともに、焼成済み石炭灰C1と未燃炭C2の分散、分離効率が高くなる。   For this reason, according to the structure of this 7th form, coupled with the fact that the cylindrical internal vibrating body 3 itself that is a coal ash charging duct vibrates effectively, the same portion is effectively fluidized from below. Air is supplied, and unseparated coal ash C supplied into the separation container 1 is supplied into the separation container 1 while being effectively dispersed and fluidized in the internal vibrator 3, and the first The ash clogging is less likely to occur than in the configuration of the sixth embodiment, and the dispersion and separation efficiency of the burned coal ash C1 and the unburnt coal C2 are increased.

<この出願の発明を実施するための第8の形態>
次に図19は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同装置において、エアリフト方式で未燃炭分離後の燃焼済み石炭灰を排出するようにした、この出願の発明を実施するための第8の形態に係る粉体の振動流動層式分離装置の構成を示している。
<Eighth embodiment for carrying out the invention of this application>
Next, FIG. 19 is based on the premise of the configuration of the vibration fluidized bed separation device of the powder according to the first embodiment for carrying out the invention of this application. The structure of the vibration fluidized bed type | mold separation apparatus of the powder which concerns on the 8th form for implementing invention of this application made to discharge spent coal ash is shown.

上述のようにして未燃炭C2を分離した燃焼済み石炭灰C1は、分離容器1の石炭灰収容空間1Aの底部に排出口と排出弁を設ければ、重量により比較的簡単に流出させることができる。しかし、装置運転状態で排出させると、燃焼済み石炭灰C1が流動化状態にあるため、流速が速く、排出弁の弁体の摩耗が早いという問題がある。   The burned coal ash C1 obtained by separating the unburned coal C2 as described above can flow out relatively easily by weight if a discharge port and a discharge valve are provided at the bottom of the coal ash containing space 1A of the separation container 1. it can. However, when discharged in the operation state of the apparatus, since the burned coal ash C1 is in a fluidized state, there is a problem that the flow rate is high and the valve body of the discharge valve is quickly worn.

そこで、この第8の形態では、例えば図19に示すように、分離容器1の側壁部下部に設けた燃焼済み石炭灰排出口1hの外部に、所定の長さでT型の散気ノズル挿入ダクト40を連結して、十分な長さの散気ノズル37を挿入設置し、同散気ノズル37に流動化空気供給ライン18bを介して第2の流動化空気発生装置14Bからの流動化空気を供給し得るように構成している。   Therefore, in the eighth embodiment, for example, as shown in FIG. 19, a T-type air diffusion nozzle having a predetermined length is inserted outside the burned coal ash discharge port 1h provided in the lower portion of the side wall of the separation container 1. The duct 40 is connected, and a sufficiently long diffuser nozzle 37 is inserted and installed. The fluidized air from the second fluidized air generator 14B is connected to the diffuser nozzle 37 via the fluidized air supply line 18b. It is comprised so that it can supply.

この場合、流動化空気供給ライン18bの途中には、フィルタレギュレータ35と空気流量調整弁36が設けられており、すでに述べたものと同様のマイコン式の制御装置17によって、供給される空気流量が適切に調整されるようになっている。   In this case, a filter regulator 35 and an air flow rate adjusting valve 36 are provided in the middle of the fluidized air supply line 18b, and the flow rate of air supplied by the microcomputer-type control device 17 similar to that already described. It is designed to be adjusted appropriately.

ところで、上記散気ノズル挿入ダクト40は、上述のように、全体としてT型の構造をなし、軸方向の一端側開口部を上記分離容器1下部の燃焼済み石炭灰C1の排出口1hに対して連結している一方、他端側の開口部に散気ノズル37を取り付けている。また、その上端側交差方向の開口部40b部分を、図示のごとく、コイル骨入りのフレキシブルホース41を介して全体としてY型の構造をなす燃焼済み石炭灰排出ダクト42の同軸状態にある空気吸引側ダクト42aの下端側開口部に接続している。   By the way, as described above, the aeration nozzle insertion duct 40 has a T-shaped structure as a whole, and has an axial one end side opening portion with respect to the burned coal ash C1 outlet 1h at the lower part of the separation vessel 1. The diffuser nozzle 37 is attached to the opening on the other end side. Further, as shown in the drawing, the air suction in the coaxial state of the burned coal ash discharge duct 42 that forms a Y-shaped structure as a whole through the flexible hose 41 with a coiled bone is formed in the opening 40b portion in the upper end crossing direction. It connects to the lower end opening of the side duct 42a.

他方、同燃焼済み石炭灰排出ダクト42の空気吸引側ダクト42aの上端側開口部は、連結部材42c、エアパイプ43を介してブロワ構造の空気吸引機44に接続されている一方、その側部の開口には、下方に向けて分岐された燃焼済み石炭灰流下ダクト42bの上端側開口部が連結されており、上記空気吸引側ダクト42aの上端側開口部と同燃焼済み石炭灰流下ダクト42bの上端側開口部との相互に分岐される連通空間により、上方側に空気が吸引され、下方側に燃焼済み石炭灰C1が流下される分離空間が形成されている。   On the other hand, the upper end side opening of the air suction side duct 42a of the burned coal ash discharge duct 42 is connected to the air suction machine 44 of the blower structure via the connecting member 42c and the air pipe 43, while The opening is connected to the upper end side opening of the burned coal ash flow down duct 42b branched downward, and the upper end side opening of the air suction side duct 42a is connected to the burned coal ash flow down duct 42b. The communication space branched from each other with the upper end side opening portion forms a separation space in which air is sucked upward and the burned coal ash C1 flows downward.

このような構成の場合、未燃炭C2と分離され、上記分離容器1の下部側から上記散気ノズル挿入ダクト40の散気空間40a内に排出された燃焼済みの石炭灰C1は、上記流動化空気発生装置14Bから供給される適切な量の流動化空気によって効率よく流動化され、同流動化空気発生装置14Bから供給される流動化空気の量と上記分離容器1内の石炭灰Cの量(ヘッド)に応じた流出圧とによって容易にフレキシブルホース41内を図示のように吹き上げられて上昇し、安定したエアリフティング状態となって、上記散気ノズル挿入ダクト40内に供給される上記散気ノズル37からの流動化空気を吸引する空気吸引側ダクト42aおよび燃焼済み石炭灰C1を外部に流下させる燃焼済み石炭灰流下ダクト42b相互の上記分離空間部分まで連続的に供給されるようになる。   In such a configuration, the burned coal ash C1 separated from the unburned coal C2 and discharged into the aeration space 40a of the aeration nozzle insertion duct 40 from the lower side of the separation container 1 is fluidized. The amount of fluidized air that is efficiently fluidized by an appropriate amount of fluidized air supplied from the air generator 14B and supplied from the fluidized air generator 14B and the amount of coal ash C in the separation container 1 The inside of the flexible hose 41 is easily blown up and lifted as shown in the figure by the outflow pressure corresponding to the (head), and enters the diffuser nozzle insertion duct 40 in a stable air lifting state. The separation space part between the air suction side duct 42a for sucking fluidized air from the air nozzle 37 and the burned coal ash flow down duct 42b for flowing down the burned coal ash C1 to the outside. Until to be continuously supplied.

そして、同供給された分離空間部分において、上記空気吸引機44により上記上方側連結部材42c側に上昇してくる流動化空気分が吸引されてスムーズに排出される一方、その重力により側方の燃焼済み石炭灰流下ダクト42b側には燃焼済みの石炭灰C1がスムーズに流下せしめられる。   Then, in the supplied separation space portion, the fluidized air rising to the upper side connecting member 42c side is sucked and smoothly discharged by the air suction unit 44, while the gravity causes the side air to flow sideways. The burned coal ash C1 flows smoothly to the burned coal ash flow down duct 42b side.

しかも、この実施の形態の構成では、上記のようにして生じるスムーズなエアリフティング作用自体が実質的に弁体機能を発揮することになり、従来のような摩耗する弁体は不要となり、前述した弁体の摩耗の問題や灰漏れなどの問題は確実に解消され、きわめて耐久性の高いものとなる。   Moreover, in the configuration of this embodiment, the smooth air lifting action itself generated as described above substantially exhibits the valve body function, and the conventional valve body that wears out becomes unnecessary. Problems such as valve wear and ash leakage are reliably eliminated, making it extremely durable.

また、同時に上記燃焼済み石炭灰C1の排出量は、基本的に上記散気ノズル37に供給される流動化空気量の調整によって容易に調整できるので、排出量の調節も容易である。   At the same time, the discharge amount of the burned coal ash C1 can be easily adjusted basically by adjusting the amount of fluidized air supplied to the diffuser nozzle 37, so that the discharge amount can be easily adjusted.

なお、上記燃焼済み石炭灰C1の排出時以外には、上記散気ノズル37に流動化空気を供給する流動化空気発生装置14Bを停止し、それによって上記燃焼済み石炭灰流下ダクト42bをマテリアルシールすればよい。   In addition, when the burned coal ash C1 is not discharged, the fluidized air generator 14B that supplies the fluidized air to the diffuser nozzle 37 is stopped, whereby the burned coal ash flow down duct 42b is material-sealed. do it.

また、図19では、分離容器1底部の流動化空気供給空間1Bに流動化空気を供給する流動化空気発生装置を符号14A、同装置からの流動化空気供給ラインの符号を18aで示したが、これは前述の図9の構成の符号14、18に対応するものである。   In FIG. 19, the fluidized air generator for supplying fluidized air to the fluidized air supply space 1B at the bottom of the separation container 1 is denoted by reference numeral 14A, and the fluidized air supply line from the apparatus is denoted by reference numeral 18a. This corresponds to the reference numerals 14 and 18 in the configuration shown in FIG.

<この出願の発明を実施するための第9の形態>
次に図20は、上記この出願の発明を実施するための第1の形態に係る粉体の振動流動層式分離装置の構成を前提とし、同構成の振動流動層式分離装置を複数台使用することによって、未燃炭C2、燃焼済み石炭灰C1共に、より分離精度の高い粉体の振動流動層式分離システムを構成した、この出願の発明を実施するための第9の形態に係る粉体の振動流動層式分離装置の構成を示している。
<Ninth embodiment for carrying out the invention of this application>
Next, FIG. 20 is based on the premise of the configuration of the vibrating fluidized bed type separation device for powder according to the first embodiment for carrying out the invention of this application, and a plurality of vibrating fluidized bed type separation devices having the same configuration are used. The powder according to the ninth embodiment for carrying out the invention of this application, in which both the unburnt coal C2 and the burned coal ash C1 constitute a vibration fluidized bed separation system of powder with higher separation accuracy. 1 shows the configuration of a vibrating fluidized bed type separation device.

上述の第1の形態に係る振動流動層式分離装置は、1台でも十分に実用に耐える分離性能を有している。しかし、そうは言っても用途によっては可及的に高い分離精度が要求されるケースも考えられる。また、大量の処理を想定した場合、1台で長時間運転するより効率よく分離も、複数台の分離装置を複数の段階に組み合わせ、複数の段階で順次分離していった方ができ、処理能力を向上させることができる。   The vibratory fluidized bed type separation apparatus according to the first embodiment described above has a separation performance enough to withstand practical use. However, there are cases where separation accuracy as high as possible is required depending on the application. In addition, when a large amount of processing is assumed, separation can be performed more efficiently than when one unit is operated for a long time. Multiple separation devices can be combined in multiple stages and separated sequentially in multiple stages. Ability can be improved.

この第9の形態は、このような観点から構成されたものであり、例えば図20に示すように、上述した第1の形態の構成の振動流動層式分離装置(ただし、石炭灰Cの投入方式としては、上記第8の形態に係る投入方式を採用)を第1〜第3の3台採用し、同第1〜第3の振動分離装置A1〜A3を、例えば図20に示すように、第1の振動流動層式分離装置A1で燃焼済み石炭灰C1から分離された未燃炭C2を再び第2の振動流動層式分離装置A2に供給して燃焼済み石炭灰C1と未燃炭C2に分離する第1のシステム、上記第1の振動流動層式分離装置A1で未燃炭C2と分離された燃焼済み石炭灰C1を再び第3の振動流動層式分離装置A3に供給して未燃炭C2と燃焼済み石炭灰C1とに分離する第2のシステムとの2段階のシステムを構成し、未燃炭C2および燃焼済み石炭灰C1各々の分離精度を向上させるとともに、分離効率、分離能力をアップしたことを特徴としている。   The ninth embodiment is configured from such a viewpoint. For example, as shown in FIG. 20, the vibration fluidized bed type separation apparatus having the configuration of the first embodiment described above (however, charging of coal ash C is performed. As the method, the first to third three adopting the charging method according to the eighth embodiment is adopted, and the first to third vibration separating devices A1 to A3 are, for example, as shown in FIG. The unburned coal C2 separated from the burned coal ash C1 by the first oscillating fluidized bed separation device A1 is supplied again to the second oscillating fluidized bed separation device A2 to be converted into the burned coal ash C1 and the unburned coal C2. The first system for separation, the burned coal ash C1 separated from the unburned coal C2 by the first vibrating fluidized bed separator A1 is supplied again to the third vibrating fluidized bed separator A3 to supply the unburned coal C2. And a second system that separates the coal ash into burned coal ash C1 Configure beam, improves the unburned C2 and burnt coal ash C1 each separation accuracy, separation efficiency is characterized in that up the separation performance.

すなわち、同システムでは、まず石炭火力発電所等のボイラ設備60Aで発生し、貯留槽61に貯留されている未燃炭C2を含む石炭灰Cを、第1段目の第1の振動流動層式分離装置A1の内部振動体3から投入して、第1次的に未燃炭C2と燃焼済み石炭灰C1とに分離する。次に、同第1段目の第1の振動流動層式分離装置A1で分離した未燃炭C2を第2段目の第2の振動流動層式分離装置A2の内部振動体3から投入して、再び燃焼済み石炭灰C1と未燃炭C2に分離する。これにより、上記1次的に分離回収された未だ一定量の燃焼済み石炭灰C1を含んでいる未燃炭C2中から、さらに高精度に同石炭灰C1が除去され、より純度の高い未燃炭C2が回収される。この高純度の未燃炭C2は、未燃炭貯留槽62に供給されて貯留され、必要に応じて未燃炭供給用のブロワ48を設けた燃料供給ライン中に燃料導入部49を介して導入され、ボイラ設備60Bに供給される。   That is, in the system, firstly, the first oscillating fluidized bed type coal ash C generated in the boiler facility 60A such as a coal-fired power plant and containing unburned coal C2 stored in the storage tank 61 is used. It inputs from the internal vibrating body 3 of the separation apparatus A1, and is primarily separated into unburned coal C2 and burned coal ash C1. Next, the unburned coal C2 separated by the first oscillating fluidized bed separator A1 in the first stage is introduced from the internal vibrator 3 of the second oscillating fluidized bed separator A2 in the second stage. Then, it is separated again into burned coal ash C1 and unburned coal C2. As a result, the coal ash C1 is removed with higher accuracy from the unburned coal C2 that still contains a certain amount of the burned coal ash C1 that has been primarily separated and recovered, and the unburned coal C2 having a higher purity. Is recovered. This high-purity unburnt coal C2 is supplied to and stored in the unburnt coal storage tank 62, and is introduced into the fuel supply line provided with the blower 48 for supplying unburnt coal as needed via the fuel introduction unit 49. It is supplied to the boiler facility 60B.

また、同第2段目の第2の振動流動層式分離装置A2で分離された高純度の燃焼済み石炭灰C1は、例えばフライアッシュセメントなどの原料として、所定の貯留槽63に貯留され、やがてトラック等の運送手段50の収容部50aに積み込まれて搬送される。   Further, the high-purity burned coal ash C1 separated by the second oscillating fluidized bed separator A2 in the second stage is stored in a predetermined storage tank 63 as a raw material such as fly ash cement, for example. Eventually, it is loaded and transported into the accommodating portion 50a of the transport means 50 such as a truck.

他方、上記第1段目の第1の振動流動層式分離装置A1で分離された燃焼済み石炭灰C1は、第2段目の第3の振動流動層式分離装置A3の内部振動体3から投入されて、より高精度に未燃炭C2が分離される。そして、同分離された高純度の未燃炭C2は、上述の未燃炭貯留槽62に供給されて貯留され、その後、上記同様に燃料導入部49を介してボイラ設備60Bに供給される。また、そのようにして高精度に未燃炭C2が分離除去された第2段目の第3の振動流動層式分離装置A3からの高純度の燃焼済み石炭灰C1は、上記第2の振動流動層式分離装置A2からの燃焼済み石炭灰C1と同様に上記フライアッシュセメントなどの原料として、所定の搬送用貯留槽63に貯留される。   On the other hand, the burned coal ash C1 separated by the first oscillating fluidized bed separator A1 in the first stage is separated from the internal vibrator 3 of the third oscillating fluidized bed separator A3 in the second stage. The unburnt coal C2 is separated with higher accuracy. The separated high-purity unburnt coal C2 is supplied and stored in the unburnt coal storage tank 62, and then supplied to the boiler facility 60B through the fuel introduction portion 49 in the same manner as described above. Further, the high-purity burned coal ash C1 from the second-stage third fluidized fluidized bed separator A3 from which the unburned coal C2 has been separated and removed with high accuracy in this way is the second vibratory fluid. Similar to the burned coal ash C1 from the stratified separator A2, it is stored in a predetermined storage tank 63 as a raw material such as fly ash cement.

このような構成によると、上述のような可及的に高い分離精度が要求されるケースや、また、大量の処理が必要な場合に対応して、効率のよい分離性能を実現し、有効に処理能力を向上させることができる。   According to such a configuration, efficient separation performance is realized and effective in cases where separation accuracy as high as possible as described above is required, or when a large amount of processing is required. The processing capacity can be improved.

1は分離容器、1Aは石炭灰収容空間、1Bは流動化空気導入空間、2a〜2hは第1の振動発生機、3は内部振動体、4a、4bは第2の振動発生機、5は散気板、11は粉体温度検出手段、12は流動層粘性検出手段、13は流動層圧力検出手段、14は流動化空気発生装置、15は温度ヒータ、17は制御装置である。   1 is a separation container, 1A is a coal ash containing space, 1B is a fluidized air introduction space, 2a to 2h are first vibration generators, 3 is an internal vibrator, 4a and 4b are second vibration generators, A diffuser plate, 11 is a powder temperature detecting means, 12 is a fluidized bed viscosity detecting means, 13 is a fluidized bed pressure detecting means, 14 is a fluidized air generator, 15 is a temperature heater, and 17 is a control device.

Claims (1)

分離すべき密度差の異なる粉体が収容される外部振動体である円筒状の分離容器と、該分離容器の底部全面に設けられた散気孔部と、上記分離容器内の中心軸部分に位置して上方から下方に吊設された円筒状の内部振動体と、上記分離容器の外周側に設けられていて上記分離容器を振動させる各々振動数が異なる複数台の振動モ―タと、上記内部振動体側に設けられていて上記内部振動体を振動させる各々振動数が異なる複数台の振動モ―タと、上記分離容器の下方側から、上記分離容器底部の散気孔部を介して流動化気体を供給し、上記分離容器内の粉体中に微細な流動化気泡を発生させる流動化気体供給装置とを備え、上記分離容器外周側複数の振動モ―タにより上記分離容器内の粉体に対して半径方向外側から唸り振動を作用させると共に、上記内部振動体側複数の振動モータにより上記分離容器内の粉体に対して半径方向内側から唸り振動を作用させることにより、密度差分離を可能にしてなる振動流動層式分離装置であって、上記円筒状の内部振動体は、上端側が上記分離すべき密度差の異なる粉体の供給口に形成されていると共に、下端側が上記分離すべき密度差の異なる粉体の分離容器内への導入口に形成されており、該分離容器内への導入口は、上記円筒状の内部振動体の底部を形成しているとともに、円錐面周方向に上記流動化気体供給装置から供給される流動化気体の吹出口を備えた上方に凸の円錐カバーと、該円錐カバーの上記円錐面外方の上記内部振動体周壁部の周方向に形成された粉体導出孔とからなっており、上記分離すべき密度差の異なる粉体は上記円筒状の内部振動体を介して上記分離容器内に分散、流動化した状態で導入されるようになっていることを特徴とする粉体の振動流動層式分離装置。 A cylindrical separation container, which is an external vibrating body that contains powders having different density differences to be separated, a diffuser hole provided in the entire bottom surface of the separation container, and a central axis portion in the separation container A cylindrical internal vibrating body suspended downward from above, a plurality of vibration motors provided on the outer peripheral side of the separation container and having different frequencies for vibrating the separation container, Fluidized from the lower side of the separation container through the air diffuser holes at the bottom of the separation container, provided on the internal vibration body side, and each having a plurality of vibration motors each having a different frequency to vibrate the internal vibration body A fluidized gas supply device for supplying gas and generating fine fluidized bubbles in the powder in the separation container, and the powder in the separation container by a plurality of vibration motors on the outer peripheral side of the separation container When a torsional vibration is applied from the outside in the radial direction In addition, a vibrating fluidized bed type separation device that enables density difference separation by applying a whirling vibration from the radially inner side to the powder in the separation container by a plurality of vibration motors on the internal vibration body side. The cylindrical internal vibrating body has an upper end formed at the powder supply port with different density differences to be separated and a lower end with the powder having different density differences to be separated into the separation container. Formed in the inlet, and the inlet into the separation container forms the bottom of the cylindrical internal vibrator, and the flow supplied from the fluidized gas supply device in the circumferential direction of the conical surface An upwardly convex conical cover provided with a gasification gas outlet, and a powder outlet hole formed in the circumferential direction of the peripheral wall portion of the internal vibrating body outside the conical surface of the conical cover, Powders with different density differences to be separated are Through a cylindrical internal vibrator dispersed in the separation vessel, vibrating fluidized bed type separation apparatus of the powder is characterized in that is adapted to be introduced in a fluidized state.
JP2017239553A 2017-12-14 2017-12-14 Vibratory fluidized bed separator for powder Active JP6550119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017239553A JP6550119B2 (en) 2017-12-14 2017-12-14 Vibratory fluidized bed separator for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017239553A JP6550119B2 (en) 2017-12-14 2017-12-14 Vibratory fluidized bed separator for powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014079309A Division JP6266416B2 (en) 2014-04-08 2014-04-08 Vibrating fluidized bed separator for powder

Publications (2)

Publication Number Publication Date
JP2018065134A true JP2018065134A (en) 2018-04-26
JP6550119B2 JP6550119B2 (en) 2019-07-24

Family

ID=62085371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239553A Active JP6550119B2 (en) 2017-12-14 2017-12-14 Vibratory fluidized bed separator for powder

Country Status (1)

Country Link
JP (1) JP6550119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210417A1 (en) 2020-04-12 2021-10-21 由城 紫垣 Packed bed, moving bed, and multistage fluidized bed device having swing mechanism and enabling uniform contact between gas and powder
CN114377623A (en) * 2021-12-30 2022-04-22 江苏维尤纳特精细化工有限公司 Chlorination fluidized bed reactor is used in chlorothalonil production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701853B (en) * 2020-06-23 2022-07-01 新奥科技发展有限公司 Fine powder separation device and chemical chain coal gasification system and method
CN112076835B (en) * 2020-09-07 2021-04-06 德州中联大坝水泥有限公司 Cement production preparation process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630523A (en) * 1979-08-20 1981-03-27 Ebara Corp Fluidized bed type thermal reaction furnace
JPH08299909A (en) * 1995-05-12 1996-11-19 Ishikawajima Harima Heavy Ind Co Ltd Box type fluidized bed classifier
JP2007216171A (en) * 2006-02-17 2007-08-30 Meiji Univ Apparatus and method for separating powder
JP2015199031A (en) * 2014-04-08 2015-11-12 四電エンジニアリング株式会社 Vibrating fluidized bed separation device of powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630523A (en) * 1979-08-20 1981-03-27 Ebara Corp Fluidized bed type thermal reaction furnace
JPH08299909A (en) * 1995-05-12 1996-11-19 Ishikawajima Harima Heavy Ind Co Ltd Box type fluidized bed classifier
JP2007216171A (en) * 2006-02-17 2007-08-30 Meiji Univ Apparatus and method for separating powder
JP2015199031A (en) * 2014-04-08 2015-11-12 四電エンジニアリング株式会社 Vibrating fluidized bed separation device of powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210417A1 (en) 2020-04-12 2021-10-21 由城 紫垣 Packed bed, moving bed, and multistage fluidized bed device having swing mechanism and enabling uniform contact between gas and powder
CN114377623A (en) * 2021-12-30 2022-04-22 江苏维尤纳特精细化工有限公司 Chlorination fluidized bed reactor is used in chlorothalonil production

Also Published As

Publication number Publication date
JP6550119B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP2018065134A (en) Vibration fluid bed type separator of pulverulent body
JP6266416B2 (en) Vibrating fluidized bed separator for powder
CN1083545A (en) Powder is plated to method and apparatus on the workpiece
JP6550118B2 (en) How to separate powder
CN206435464U (en) A kind of ternary spin vibration sieve
CN109675794A (en) Rotate classifying screen and screening system
RU2294795C2 (en) Method of mixing of the bulk materials and the aerodynamic device for its realization
CN100451511C (en) Dynamic vertical dryer
CN109107721A (en) A kind of new-type grinding screening plant of architectural engineering
JP6550120B2 (en) Vibratory fluidized bed separator for powder
WO2014026618A1 (en) Centrifugal separation device
CN107570410A (en) A kind of Multi-stage screening machine of automatic charging
CN107744937A (en) A kind of vibrating screen classifier with dedusting function
CN1210746A (en) Centrifugal degradation separating method and device for airosol
JP4753387B2 (en) Airflow classifier
CN206549550U (en) A kind of many vibrating bunker automatic blenders of granular material
CN108889233A (en) The dust reclaimer of raw material mixing machine in refractory brick production
CN206747022U (en) A kind of vibratory sieve with automatically cleaning screen cloth
JP4684506B2 (en) Separation apparatus and method of using the same
CN102161016A (en) Air heavy-media dry-process sorting equipment
RU2189280C2 (en) Centrifugal vibro-separator
CN205673173U (en) A kind of industrial material vibration screening device
CN206071498U (en) Pulsed negative pressure vibratory equipment
CN206731520U (en) Air drying type straight line shaker
CN107930231A (en) A kind of trommelling machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6550119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250