JP2018063864A - 不活性ガス供給方法および燃料電池システム - Google Patents

不活性ガス供給方法および燃料電池システム Download PDF

Info

Publication number
JP2018063864A
JP2018063864A JP2016201815A JP2016201815A JP2018063864A JP 2018063864 A JP2018063864 A JP 2018063864A JP 2016201815 A JP2016201815 A JP 2016201815A JP 2016201815 A JP2016201815 A JP 2016201815A JP 2018063864 A JP2018063864 A JP 2018063864A
Authority
JP
Japan
Prior art keywords
inert gas
compound
fuel cell
gas supply
supply method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016201815A
Other languages
English (en)
Other versions
JP6776794B2 (ja
Inventor
賢志 安井
Kenji Yasui
賢志 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2016201815A priority Critical patent/JP6776794B2/ja
Publication of JP2018063864A publication Critical patent/JP2018063864A/ja
Application granted granted Critical
Publication of JP6776794B2 publication Critical patent/JP6776794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】大掛かりでない簡易な構成で、かつ安全に不活性ガスを供給できる不活性ガス供給方法を提供する。【解決手段】不活性ガス供給方法は、燃料電池2を用いて発電を行う燃料電池システム1において、発電停止時に、炭酸塩および/または炭酸水素塩からなる第1化合物と、有機酸および/または無機酸からなる第2化合物とを反応させることにより、二酸化炭素を主成分とする不活性ガスを生成し、燃料電池2の燃料極13に不活性ガスを供給する。【選択図】図1

Description

本発明は、燃料電池を用いて発電を行う燃料電池システム、および発電停止時に不活性ガスを供給する不活性ガス供給方法に関する。
燃料電池システムは、燃料の化学エネルギーを電気エネルギーに変換する燃料電池を用いており、新たな発電システムとして期待されている。現在、燃料電池は、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)の他に、固体高分子形燃料電池など、様々な種類が提案されている。
固体酸化物形燃料電池は、複数の発電セルが積層されたセルスタック構造を有している。セルスタックは、平板構造と円筒構造とに大別されるが、いずれの場合も燃料極(アノード)、空気極(カソード)、および電解質からなるセラミックス製の発電セルが、インターコネクタを介して連結された構造を有している。セルスタックに組み込まれた各発電セルにおいては、燃料極側に燃料ガス(水素含有燃料)を供給し、空気極側に酸化ガス(空気)を供給しており、内部で水素と酸素とを反応させることにより発電が行われる。
発電セルを構成する燃料極は、一般にNiとイットリア安定化ジルコニア(YSZ)との混合物が使用されているが、燃料極のNiは、高温状態で酸素と接触するとNiOに酸化されることが知られている。NiからNiOへの酸化反応は、燃料極の体積膨張を伴うため、発電セルの破損が起こりやすい。
固体酸化物形燃料電池は、700〜800℃の高温で発電動作するものであるが、燃料電池の発電中は、燃料極に燃料ガス(水素含有ガス)が流れているため、燃料極のNiは還元性雰囲気に維持されている。一方で、燃料電池の発電停止時において、理論的には燃料ガスを消費しないので、燃料極の還元性雰囲気が維持されるはずであるが、実際には、空気極からのリーク(電解質を通じた拡散)や、温度低下による後段燃焼器側からの吸込み(負圧吸引)に起因して、空気(酸素)が侵入する。空気の侵入により燃料極の酸素分圧が上昇すると、NiからNiOへの酸化反応が進行する虞がある。そこで、燃料電池の発電停止時に、燃料極を不活性ガスでパージすることが提案されている(例えば、特許文献1および特許文献2参照。)。
特開2013−171782号公報 特開2006−066244号公報
特許文献1に記載の固体酸化物形燃料電池システムでは、セル(発電セル)の燃料極側へ不活性ガスを送給する燃料極不活性ガス送給部と、セルの空気極側へ不活性ガスを送給する空気極不活性ガス送給部とを備えた構成とされている。この燃料電池発電システムは、発電停止動作の初期において、燃料極のみに不活性ガスを流し、セル電圧が所定の酸化還元平衡電位(所定電圧)に到達した以降には、燃料極と空気極の両方に不活性ガスを流すものである。不活性ガスとしては、通常、気体充填用の一般容器(ボンベ)に充填された窒素ガスが使用されるが、高圧気体の貯蔵であるためにボンベの大きさや重量が嵩んでいた。
特許文献2に記載の燃料電池システムは、特許文献1に記載の固体酸化物形燃料電池システムと同様に、緊急停止時に不活性ガスを供給する構成である。不活性ガスを供給する方法としては、炭酸ガスや窒素ガスをボンベから供給する方法、或いは燃料電池の運転中に燃料オフガスに含まれる炭酸ガスを収蔵しておき、この炭酸ガスを供給する方法が開示されている。しかしながら、前者の方法は、不活性ガスを貯蔵するボンベの大きさや重量が嵩むことになる。一方で後者の方法は、ガス吸収塔とそれに付随するガス放出機構(或いは、ガス吸着塔とそれに付随するガス脱着機構)が必要となるため、設備が大掛かりになってしまう。
本発明は、上記の課題を解決するためになされたものであり、大掛かりでない簡易な構成で、かつ安全に不活性ガスを供給できる不活性ガス供給方法および燃料電池システムを提供することを目的とする。
本発明に係る不活性ガス供給方法は、燃料電池を用いて発電を行う燃料電池システムにおいて、発電停止時に不活性ガスを供給する不活性ガス供給方法であって、炭酸塩および/または炭酸水素塩からなる第1化合物と、有機酸および/または無機酸からなる第2化合物とを反応させることにより、二酸化炭素を主成分とする不活性ガスを生成し、該不活性ガスを前記燃料電池の燃料極に供給することを特徴とする。
本発明に係る不活性ガス供給方法では、前記第1化合物は、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、および炭酸カルシウムからなる群より選ばれた1種以上の化合物であり、前記第2化合物は、クエン酸、アスコルビン酸、リン酸、塩酸、および硫酸からなる群より選ばれた1種以上の化合物である。
本発明に係る不活性ガス供給方法では、前記第1化合物および前記第2化合物は、それぞれ分離して格納され、前記燃料電池システムが発電停止した際に混合される。
本発明に係る不活性ガス供給方法は、前記第1化合物および前記第2化合物を混合する際に、水を添加することが好ましい。
本発明に係る不活性ガス供給方法では、前記第1化合物および前記第2化合物は、少なくとも一方が水溶液の状態で格納されていてもよい。
本発明に係る不活性ガス供給方法では、電気を使用せずに、不活性ガスを生成および供給する。
本発明に係る燃料電池システムは、本発明に係る不活性ガス供給方法を用いることを特徴とする。
本発明によると、発電停止時に燃料極に不活性ガスを供給させることで、燃料極の還元性雰囲気を保持し、電極材料の酸化を防いでいる。また、大掛かりでない簡易な構成で、かつ安全に不活性ガスを供給できるので、システムのコストアップを招くことなく燃料電池スタックの保護機構を構築できるという利点がある。
本発明の実施の形態に係る燃料電池システムの構成を示す概略構成図である。
以下、本発明の実施の形態に係る燃料電池システムについて、図面を参照して説明する。
図1は、本発明の実施の形態に係る燃料電池システムの構成を示す概略構成図である。
本発明の実施の形態に係る燃料電池システム1は、燃料電池2、不活性ガス供給部3、燃料改質器4、オフガス燃焼器5、熱交換器6、および凝縮水タンク7を備えている。燃料電池2、燃料改質器4、およびオフガス燃焼器5は、断熱容器内に収容された燃料電池モジュールとして構成される。一方、不活性ガス供給部3、熱交換器6、および凝縮水タンク7は、燃料電池2の動作温度環境に曝されないように、燃料電池モジュールの外部に配置される。
燃料電池2は、空気極11(カソード)、電解質12、および燃料極13(アノード)が接合された発電セル10を複数備えており、これらの発電セル10が図示しないインターコネクタを介して積層されたセルスタックとして構成されている。燃料電池2には、空気極11へ空気を供給する空気供給ラインL1と、燃料極13へ燃料ガスを供給する燃料供給ラインL2とが接続されている。燃料電池2の電池出力は、パワーコンディショナ(図示しない)で所定の発電出力(例えば、システムの定格出力)に調整されたのち、需要家の受電設備へ送られる。
本実施の形態において、燃料電池2のセルスタックを構成する発電セル10は、固体酸化物形燃料電池とされており、燃料極13がNiとイットリア安定化ジルコニア(YSZ)との混合物から形成されている。発電セル10は、燃料極13に供給される燃料ガス中の水素と、空気極11に供給される空気中の酸素とを反応させることにより、発電を行う。燃料電池2による発電時の温度(動作温度)は、600〜800℃の高温域である。
燃料改質器4は、燃料供給ラインL2に設けられており、原燃料ガス(炭化水素燃料)から燃料ガス(水素含有燃料)を生成する。具体的には、メタンを主成分とする炭化水素燃料と水蒸気を吸熱反応させ、水素と二酸化炭素を生成する。
オフガス燃焼器5は、空気極11の二次側(カソードオフガスの排気側)および燃料極13の二次側(アノードオフガスの排気側)に接続されており、アノードオフガスとカソードオフガスとを燃焼させて、水蒸気を含む排ガスを排気する。
熱交換器6は、オフガス燃焼器5の後段に接続されており、オフガス燃焼器5からの排ガスを露点温度以下に冷却して、凝縮水を生成する。また、熱交換器6には、オフガス燃焼器5からの排ガスとは別にして、冷却水が導入されており、排ガスの廃熱を回収し、冷却水から生じた温水をユーザに供給する。
凝縮水タンク7は、熱交換器6の後段に接続されており、熱交換器6から供給された凝縮水を貯蔵している。なお、熱交換器6から凝縮水タンク7へ凝縮水を送る際に、排ガスは外部へ排出されている。凝縮水タンク7は、ポンプを介して燃料改質器4に接続されており、燃料改質器4は、凝縮水タンク7から送られた凝縮水を、炭化水素燃料の水蒸気改質反応に使用している。
不活性ガス供給部3は、燃料供給ラインL2に接続されており、燃料極13へ燃料改質器4を介して不活性ガスを供給する。本実施の形態において不活性ガスは、二酸化炭素とされている。不活性ガス供給部3は、第1化合物と第2化合物とを反応させることで、不活性ガスを生成する。
燃料電池システム1は、通常とは異なる異常を検知した際や外部入力で指示された際に移行する緊急停止モードが設定されており、それによって発電停止する。具体的には、地震、過昇温、ガス漏れ検知、およびユーザ等による非常停止ボタンの操作などの際に、燃料ガスと空気の供給を遮断して発電停止する。燃料電池システム1では、発電停止した際に、適宜不活性ガスを供給することで、燃料極を還元性雰囲気に維持し、電極材料であるNiの酸化を防止している。
具体的に、不活性ガス供給部3は、第1化合物を格納する第1格納部31a、第1電磁弁31b、第1手動弁31c、第2化合物を格納する第2格納部32a、第2電磁弁32b、第2手動弁32c、およびガス発生容器8を備えた構成とされている。
第1格納部31aは、第1電磁弁31bおよび第1手動弁31cを介してガス発生容器8に接続されており、排出口が下方に設けられている。つまり、第1電磁弁31bおよび第1手動弁31cの両方を開くことで、第1格納部31aからガス発生容器8へ第1化合物が重力供給される。第1電磁弁31bは、通電により閉弁するタイプとされており、燃料電池2の発電動作中に電池出力の一部を利用して閉止され、燃料電池2の発電停止時に、電池出力の喪失により開放される。第1手動弁31cは、人為的なシステムの起動・停止時に使用され、燃料電池2の発電が行われていない状態(第1電磁弁31b:閉)で、第1化合物の重力供給を遮断するのに用いられる。なお、電磁弁(ソレノイドバルブ)は、電動弁(モータバルブ)であってもよい。
燃料電池システム1は、燃料電池2の起動時に系統電力を使って、システム内の空気ブロア、燃料ブースター、ポンプ、およびバルブなどの補機を駆動させている。また、燃料電池2の発電動作中には、電池出力の一部を使って、補機を駆動させている。このような燃料電池システム1では、系統電力の状態にもよるが、燃料ガスと空気との供給を遮断して燃料電池2を発電停止させると、それと同時に補機の駆動電力も得られなくなる可能性がある。補機の駆動電力を自立して確保するために、予め蓄電装置を組み込むことが考えられるが、この方法はシステムが大掛かりになるために好ましくない。また、駆動電力の供給自体が、発電停止の原因となった異常の種類によっては好ましくないこともある。そこで、不活性ガス供給部3においては、通電により閉弁するタイプの電磁弁を用いて薬剤が重力供給される構成とすると、補機への給電停止が生じても薬剤を自力供給することが可能になり、電気を使用せずに不活性ガスを生成することができる。
第2格納部32aは、第1格納部31aと略同様の構成とされ、第2電磁弁32bおよび第2手動弁32cを介してガス発生容器8に接続されており、排出口が下方に設けられている。つまり、第2電磁弁32bおよび第2手動弁32cの両方を開くことで、第2格納部32aからガス発生容器8へ第2化合物が重力供給される。なお、第2電磁弁32bは、第1電磁弁31bと略同様とされ、第2手動弁32cは、第1手動弁31cと略同様とされているので、説明を省略する。
ガス発生容器8は、第1化合物と第2化合物とが混合される容器であって、上方に設けられた送気口がリリーフ弁81aを介して、燃料供給ラインL2に接続されている。ガス発生容器8の内部で不活性ガスが発生した際、設定圧力以上になるとリリーフ弁81aが開く構成とされている。なお、リリーフ弁81aに替えて、通電により閉弁するタイプの電磁弁を使用し、補機への給電停止時に不活性ガスを自力送気してもよい。このように構成することにより、補機への給電停止が生じても、電気を使用せずに不活性ガスを供給することができる。
第1化合物は、炭酸塩および/または炭酸水素塩からなる。具体的に、第1化合物は、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、および炭酸カルシウムからなる群より選ばれた1種以上の化合物とされている。すなわち、第1化合物は、主に、食品添加物(指定添加物)とされており、人体に安全な化合物として容易に入手することができる。なお、炭酸水素カリウムは、日本で食品添加物として認められていないが、医薬品添加物として使用されている。
第2化合物は、有機酸および/または無機酸からなる。具体的に、第2化合物は、クエン酸、アスコルビン酸、リン酸、塩酸、および硫酸からなる群より選ばれた1種以上の化合物とされている。すなわち、第2化合物は、主に、食品添加物(指定添加物)とされており、人体に安全な化合物として容易に入手することができる。なお、塩酸や硫酸は、濃度によっては劇物に該当するので、劇物に該当しない濃度10%以下の希塩酸や希硫酸を用いるのが望ましい。
第1化合物および第2化合物は、上述した化合物から選択すればよく、本実施の形態では、例えば、炭酸水素ナトリウムとクエン酸との組み合わせや、炭酸カルシウムと希塩酸との組み合わせなどを用いている。
また、上述した凝縮水タンク7は、第3電磁弁71aおよび第3手動弁71bを介してガス発生容器8に接続されており、凝縮水をガス発生容器8へ重力供給できる構成とされている。なお、第3電磁弁71aおよび第3手動弁71bは、第1電磁弁31bおよび第1手動弁31c等と略同様であるので、説明を省略する。つまり、第1化合物および第2化合物の両方が固体である場合(例えば、炭酸水素ナトリウムとクエン酸との組み合わせ)には、第1化合物および第2化合物を混合する際に、水を添加することが好ましく、固体同士を混ぜただけでは反応しにくいので、水分として凝縮水を添加して反応を促進させる。
第1格納部31aと第2格納部32aとは、それぞれ独立した構造とされ、第1化合物と第2化合物とが分離して格納されている。つまり、第1化合物と第2化合物とが予め分離して格納されていれば、通常時に反応することを考慮する必要がなく、発電停止時には、複雑な工程を経ずに不活性ガスを生成することができる。
次に、燃料電池システム1における不活性ガス供給方法について、上述した各部の作用に基づいて具体的に説明する。
燃料電池システム1は、異常検知等により緊急停止モードに移行すると、燃料ガスと空気の供給を遮断して発電を停止する。同時に、補機への電力供給が停止され、第1電磁弁31b、第2電磁弁32b、および第3電磁弁71aが開放される。
第1電磁弁31b、第2電磁弁32b、および第3電磁弁71aが開放されると、第1格納部31a、第2格納部32a、および凝縮水タンク7から、それぞれ第1化合物、第2化合物、および凝縮水が、ガス発生容器8に対して無電力で重力供給される。ガス発生容器8内では、水の存在下で第1化合物と第2化合物とが反応(すなわち、炭酸イオンまたは炭酸水素イオンと、水素イオンとが反応)し、二酸化炭素を主成分とする不活性ガスが生成される。
第1化合物と第2化合物との反応が進行して不活性ガスの生成量が増加すると、ガス発生容器8の内部圧力が上昇する。そして、内部圧力が設定圧力以上になるとリリーフ弁81aが開き、不活性ガスが燃料供給ラインL2に向けて無電力で供給される。
燃料供給ラインL2に供給された不活性ガスは、燃料改質器4および燃料極13の内部に残留している燃料ガスを押し出しながらオフガス燃焼器5を流れ、外部に排気される。これにより、燃料改質器4および燃料極13の内部が不活性ガスで置換され、燃料電池2の降温が完了するまで還元性雰囲気に保持される。その結果、電極材料や改質触媒の酸化が防止され、燃料電池システム1の発電性能低下が回避される。
上述したように、本発明の実施の形態に係る不活性ガス供給方法は、燃料電池2を用いて発電を行う燃料電池システム1において、発電停止時に不活性ガスを供給する不活性ガス供給方法であって、炭酸塩および/または炭酸水素塩からなる第1化合物と、有機酸および/または無機酸からなる第2化合物とを反応させることにより、二酸化炭素を主成分とする不活性ガスを生成し、該不活性ガスを燃料電池2の燃料極13に供給する不活性ガス供給工程を含んでいる。
このように、燃料電池システム1では、発電停止時に燃料極13へ不活性ガスを供給することで、燃料極13の還元性雰囲気を保持し、電極材料の酸化を防いでいる。また、大掛かりでない簡易な構成で、かつ安全に不活性ガスを供給できるので、システムのコストアップを招くことなく燃料電池スタックの保護機構を構築できるという利点がある。さらに、不活性ガスの原料として、人体に無害な固体化合物や液体化合物を使用するので、補充や交換などの取扱いが容易である。
上述した燃料電池システム1は、以下に列挙する構成に変形することが可能である。
〔1〕第1化合物および第2化合物は、少なくとも一方が水溶液の状態で格納されていてもよい。例えば、第2化合物である酸が水溶液とされていれば、第1化合物である炭酸塩が固体であっても、混合により容易に溶け合って反応が進む。この場合には、凝縮水タンク7からガス発生容器8への凝縮水の供給ラインを省略してもよい。
〔2〕不活性ガス供給部3は、第1化合物と第2化合物とが仕切りなどで分離して格納されていれば、第1格納部31aと第2格納部32aとが一体とされていてもよい。また、第1格納部31aおよびガス発生容器8を接続するラインと、第2格納部32aおよびガス発生容器8を接続するラインとを途中で合流させ、この合流させたラインにバルブを1つだけ設けた構造としてもよい。
〔3〕不活性ガス供給部3は、燃料改質器4の一次側(原燃料ガスの供給側)だけに限らず、燃料改質器4の二次側であって燃料極13の一次側(改質燃料ガスの供給側)に接続されていてもよい。燃料改質器4に収容されている改質触媒が高温での酸化耐性に乏しい場合には、不活性ガス供給部3を燃料改質器4の一次側に接続するのが好ましい。一方、改質触媒が高温での酸化耐性をある程度有している場合には、不活性ガス供給部3を燃料改質器4の二次側に接続することにより、ガス流通の圧力損失が軽減される。その結果、不活性ガスの供給圧力が低くても十分なガス流量が得られるようになるので、ガス発生容器8や付随するバルブの耐圧を低くすることが可能になり、不活性ガス供給部3を安価に製作することができる。
〔4〕第1化合物と第2化合物とを混合する際には、供給量を調整するなどして、反応速度を制御してもよい。例えば、液体とされた第2化合物を第1化合物に徐々に滴下する構成として、第1格納部31aと第2格納部32aとに格納されている第1化合物および第2化合物が一斉に反応しないようにすればよい。それによって、長時間にわたって、安定して不活性ガスを供給する構成とすることができる。また、これに限らず、第1化合物と第2化合物とが接する部分を小さくすることで、反応速度を制御してもよい。
〔5〕上述した化合物の他に、第1化合物として非食品添加物の炭酸アルミニウムを用いてもよい。炭酸アルミニウムに対しては、第2化合物として酸を加えたり、酸に替えて凝縮水を単独で加えたりすることで、二酸化炭素が発生する。
なお、今回開示した実施の形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
1 燃料電池システム
2 燃料電池
3 不活性ガス供給部
4 燃料改質器
5 オフガス燃焼器
6 熱交換器
7 凝縮水タンク
8 ガス発生容器
10 発電セル
11 空気極
12 電解質
13 燃料極
31a 第1格納部
31b 第1電磁弁
31c 第1手動弁
32a 第2格納部
32b 第2電磁弁
32c 第2手動弁

Claims (7)

  1. 燃料電池を用いて発電を行う燃料電池システムにおいて、発電停止時に不活性ガスを供給する不活性ガス供給方法であって、
    炭酸塩および/または炭酸水素塩からなる第1化合物と、有機酸および/または無機酸からなる第2化合物とを反応させることにより、二酸化炭素を主成分とする不活性ガスを生成し、該不活性ガスを前記燃料電池の燃料極に供給すること
    を特徴とする不活性ガス供給方法。
  2. 請求項1に記載の不活性ガス供給方法であって、
    前記第1化合物は、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、および炭酸カルシウムからなる群より選ばれた1種以上の化合物であり、
    前記第2化合物は、クエン酸、アスコルビン酸、リン酸、塩酸、および硫酸からなる群より選ばれた1種以上の化合物であること
    を特徴とする不活性ガス供給方法。
  3. 請求項1または請求項2に記載の不活性ガス供給方法であって、
    前記第1化合物および前記第2化合物は、それぞれ分離して格納され、前記燃料電池システムが発電停止した際に混合されること
    を特徴とする不活性ガス供給方法。
  4. 請求項3に記載の不活性ガス供給方法であって、
    前記第1化合物および前記第2化合物を混合する際に、水を添加すること
    を特徴とする不活性ガス供給方法。
  5. 請求項3に記載の不活性ガス供給方法であって、
    前記第1化合物および前記第2化合物は、少なくとも一方が水溶液の状態で格納されること
    を特徴とする不活性ガス供給方法。
  6. 請求項1から請求項5までのいずれか1つに記載された不活性ガスの供給方法であって、
    電気を使用せずに、不活性ガスを生成および供給すること
    を特徴とする不活性ガス供給方法。
  7. 請求項1から請求項6までのいずれか1つに記載された不活性ガス供給方法を用いた燃料電池システム。
JP2016201815A 2016-10-13 2016-10-13 燃料電池システム Active JP6776794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201815A JP6776794B2 (ja) 2016-10-13 2016-10-13 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201815A JP6776794B2 (ja) 2016-10-13 2016-10-13 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2018063864A true JP2018063864A (ja) 2018-04-19
JP6776794B2 JP6776794B2 (ja) 2020-10-28

Family

ID=61967944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201815A Active JP6776794B2 (ja) 2016-10-13 2016-10-13 燃料電池システム

Country Status (1)

Country Link
JP (1) JP6776794B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128292A1 (ko) * 2021-12-31 2023-07-06 주식회사 카본에너지 연료전지를 이용한 탄소 포집 방법, 장치, 및 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118482A (ja) * 1996-10-25 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd 不活性ガス製造装置
JP2002509261A (ja) * 1998-01-13 2002-03-26 シーメンス アクチエンゲゼルシヤフト 容器に供給する不活性ガスの発生方法及び装置並びに原子力設備
JP2003126677A (ja) * 2001-10-24 2003-05-07 Toyota Motor Corp ガス発生装置
JP2004142831A (ja) * 2002-09-30 2004-05-20 Toshiba Corp 液体カートリッジ
JP2006066244A (ja) * 2004-08-27 2006-03-09 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
US20110059376A1 (en) * 2009-09-04 2011-03-10 Mark Vincent Scotto Method for generating a gas which may be used for startup and shutdown of a fuel cell
JP2013171782A (ja) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池の運転方法、複合発電システムの運転方法、固体酸化物形燃料電池システム及び複合発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118482A (ja) * 1996-10-25 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd 不活性ガス製造装置
JP2002509261A (ja) * 1998-01-13 2002-03-26 シーメンス アクチエンゲゼルシヤフト 容器に供給する不活性ガスの発生方法及び装置並びに原子力設備
JP2003126677A (ja) * 2001-10-24 2003-05-07 Toyota Motor Corp ガス発生装置
JP2004142831A (ja) * 2002-09-30 2004-05-20 Toshiba Corp 液体カートリッジ
JP2006066244A (ja) * 2004-08-27 2006-03-09 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
US20110059376A1 (en) * 2009-09-04 2011-03-10 Mark Vincent Scotto Method for generating a gas which may be used for startup and shutdown of a fuel cell
JP2013171782A (ja) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd 固体酸化物形燃料電池の運転方法、複合発電システムの運転方法、固体酸化物形燃料電池システム及び複合発電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128292A1 (ko) * 2021-12-31 2023-07-06 주식회사 카본에너지 연료전지를 이용한 탄소 포집 방법, 장치, 및 시스템

Also Published As

Publication number Publication date
JP6776794B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
EP3751651A1 (en) Fuel cell system and purging and draining method during shutdown/startup of said system
JP5133165B2 (ja) 燃料電池システム
US9985304B2 (en) Method for shutting down a system containing a fuel cell stack and system comprising a fuel cell stack
JP2003132924A (ja) 直接メタノール形燃料電池システム
WO2020153306A1 (ja) 反応装置及び燃料電池発電システム
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JP2012138186A (ja) 高温作動型燃料電池システム
JP2007141744A (ja) 燃料電池システム
JP2010086853A (ja) 燃料電池システム及びその運転停止方法
JP6776794B2 (ja) 燃料電池システム
JP4727642B2 (ja) 水素製造発電システムの運転方法
JP4352462B2 (ja) 液体燃料形燃料電池システムとその運転方法
JP2020077567A (ja) 反応装置、及び燃料電池発電システム
KR102316740B1 (ko) 선박용 연료전지 시스템
KR20150057240A (ko) 배출가스를 감소시킨 연료전지 시스템
JP2008146851A (ja) 燃料電池発電装置の停止方法及び燃料電池発電装置
JP2007323849A (ja) 燃料電池発電システム
JP2003223919A (ja) 直接メタノール形燃料電池システム
JP2009081112A (ja) 燃料電池発電装置の運転方法及び燃料電池発電装置
JP2000277138A (ja) 燃料電池発電システム
JP2019036407A (ja) 燃料電池システム
EP2234193B1 (en) Fuel Cell System and Method of Driving the Same
KR20180108013A (ko) 잠수함용 연료전지시스템 및 이를 이용한 전력 생산 방법
JP2011009057A (ja) 燃料電池システム
KR102316750B1 (ko) 선박용 연료전지 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6776794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150