JP2018062798A - Truss frame - Google Patents

Truss frame Download PDF

Info

Publication number
JP2018062798A
JP2018062798A JP2016201877A JP2016201877A JP2018062798A JP 2018062798 A JP2018062798 A JP 2018062798A JP 2016201877 A JP2016201877 A JP 2016201877A JP 2016201877 A JP2016201877 A JP 2016201877A JP 2018062798 A JP2018062798 A JP 2018062798A
Authority
JP
Japan
Prior art keywords
truss
small
diagonal
oblique
truss frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016201877A
Other languages
Japanese (ja)
Other versions
JP6934290B2 (en
Inventor
暢之 小田島
Nobuyuki Odajima
暢之 小田島
智章 石川
Tomoaki Ishikawa
智章 石川
和田 純一
Junichi Wada
純一 和田
祥子 岡村
Shoko Okamura
祥子 岡村
幸作 三橋
Kosaku Mitsuhashi
幸作 三橋
淳也 亀森
Junya Kamemori
淳也 亀森
純 岡本
Jun Okamoto
純 岡本
遥 矢嶌
Haruka Yajima
遥 矢嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016201877A priority Critical patent/JP6934290B2/en
Publication of JP2018062798A publication Critical patent/JP2018062798A/en
Application granted granted Critical
Publication of JP6934290B2 publication Critical patent/JP6934290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the robustness against seismic force of a building to which a truss frame is applied.SOLUTION: A truss frame 10 comprises: a large truss 30 that includes an upper beam material 22 having both ends supported by columns 14, a lower beam material 24 having both ends supported by the columns 14, and a large diagonal material 32 jointed to the upper beam material 22 and the lower beam material 24; and a small truss 40 that includes a middle beam material 26 arranged between the upper beam material 22 and the lower beam material 24 and having both ends supported by the columns 14, and a small diagonal material 42 jointed with the upper beam material 22 and the middle beam material 26 or the lower beam material 24 and the middle beam material 26 without overlapping the large diagonal material 32 in the same structure plane.SELECTED DRAWING: Figure 1

Description

本発明は、トラス架構に関する。   The present invention relates to a truss frame.

下記特許文献1には、鉄骨架構を大スパン化するためにトラス梁を設けた構成が開示されている。   Patent Document 1 below discloses a configuration in which a truss beam is provided to increase the span of a steel frame.

特開平10−212840号公報Japanese Patent Laid-Open No. 10-212840

上記特許文献1の鉄骨架構では、地震時にトラス梁の構成要素が1本でも降伏すると、鉄骨架構の耐力が著しく減少する可能性がある。   In the steel frame of Patent Document 1 described above, if even one truss beam component yields during an earthquake, the strength of the steel frame may be significantly reduced.

本発明は上記事実を考慮して、トラス架構が適用された建物の地震力に対するロバスト性を確保することを目的とする。   In view of the above fact, an object of the present invention is to ensure robustness against seismic force of a building to which a truss frame is applied.

請求項1のトラス架構は、両端部が柱に支持された上梁材と、両端部が柱に支持された下梁材と、前記上梁材と前記下梁材に接合された大斜材と、を備えた大トラスと、前記上梁材と前記下梁材の間に配置され両端部が柱に支持された中梁材と、同一構面で前記大斜材と重ならず、前記上梁材と前記中梁材、又は下梁材と前記中梁材に接合された小斜材と、を備えた小トラスと、を有する。   The truss frame according to claim 1 includes an upper beam member whose both ends are supported by columns, a lower beam member whose both ends are supported by columns, and a large diagonal member joined to the upper beam member and the lower beam member. And a large truss provided with the intermediate beam material arranged between the upper beam material and the lower beam material and supported at both ends by a column, and does not overlap the large diagonal material in the same composition plane, A small truss including an upper beam member and the middle beam member, or a lower beam member and a small oblique member joined to the middle beam member.

請求項1のトラス架構では、長期荷重を大トラスで支持する設計とすることで、小トラスで長期荷重を支持する設計と比較して、トラス架構全体の部材断面を小さくすることができる。また、大トラスは、小トラスと比較してたわみ量が小さく、長期荷重を安全に支持できる。   In the truss frame of claim 1, the cross section of the truss frame as a whole can be made smaller by designing the truss frame to support a long-term load with a large truss as compared to the design supporting a long-term load with a small truss. The large truss has a smaller amount of deflection than the small truss and can safely support a long-term load.

さらに請求項1のトラス架構は小トラスも備えている。このため、想定を超える大地震が発生してトラス架構の一部が降伏しても、耐力に余裕がある小トラスが有効に作用するため、ロバスト性を確保できる。なお、「ロバスト性」とは外的要因による変化を内部で阻止する仕組みや性質のことであり、ロバスト性を確保することにより、トラス架構の信頼性を増すことができる。   Furthermore, the truss frame of claim 1 also includes a small truss. For this reason, even if an unexpected large earthquake occurs and a part of the truss frame surrenders, the small truss with sufficient proof stress acts effectively, so that robustness can be ensured. Note that “robustness” refers to a mechanism or property that internally prevents changes due to external factors, and by ensuring robustness, the reliability of the truss frame can be increased.

また、小斜材は上梁材と中梁材の間の構面、又は下梁材と中梁材の間の構面にしか配置されないので、大斜材しか配置されない構面の視野を広くすることができる。   In addition, the small oblique material is only arranged on the construction surface between the upper beam material and the middle beam material, or the construction surface between the lower beam material and the middle beam material, so that the field of view of the construction surface on which only the large oblique material is arranged can be widened. can do.

請求項2のトラス架構は、前記小斜材は前記大斜材より作用力に対する断面検定比が小さく、剛性が小さい。   In the truss frame according to claim 2, the small diagonal member has a smaller section verification ratio with respect to the acting force and the rigidity is smaller than the large diagonal member.

請求項2のトラス架構では、小斜材が大斜材よりも作用力に対する断面検定比が小さい。ここで、「断面検定比」とは部材耐力(F)に対する作用力(N)の割合(N/F)である。2つの部材に働く作用力(N)が同じ場合、部材耐力(F)が大きいほうが断面検定比(N/F)は小さく、2つの部材の部材耐力(F)が同じ場合、作用力(N)が小さい方が断面検定比(N/F)は小さい。大トラスおよび小トラスが健全な状態において、小斜材は大斜材と比べて作用力(N)が小さいが、相対的に大きな部材耐力(F)を有しているため、「作用力に対する断面検定比が小さい」と言える。   In the truss frame according to claim 2, the cross section verification ratio for the acting force of the small oblique member is smaller than that of the large oblique member. Here, the “section verification ratio” is the ratio (N / F) of the acting force (N) to the member yield strength (F). When the acting force (N) acting on the two members is the same, the larger the member proof strength (F), the smaller the cross sectional verification ratio (N / F), and when the two members have the same member proof strength (F), the acting force (N ) Is smaller, the cross sectional verification ratio (N / F) is smaller. In the state where the large truss and the small truss are healthy, the small oblique member has a smaller acting force (N) than the large oblique member, but has a relatively large member strength (F). It can be said that the cross sectional verification ratio is small.

したがって、大トラスの大斜材が降伏しても、小トラスの小斜材は耐力に余裕があるため小トラスが地震力に耐えることができる。このため、トラス架構の耐力が向上する。また、大斜材を小斜材より早く降伏させることで、地震時にトラス架構の捩じれを抑制することができる。   Therefore, even if the large diagonal material of the large truss yields, the small diagonal member of the small truss has sufficient proof stress, so that the small truss can withstand the seismic force. For this reason, the strength of the truss frame is improved. In addition, it is possible to suppress the twisting of the truss frame during an earthquake by yielding the large diagonal material earlier than the small diagonal material.

また、小斜材が大斜材よりも剛性が小さくされているため、トラス架構の水平剛性が過度に大きくなることを抑制できる。このため、地震時に建物の捩れを抑制することができる。さらに、建物の剛性バランスをとるために、同様のトラス架構を建物の重心を挟んで反対側に設けたりする必要がなく、建物の設計自由度が高くなる。   In addition, since the small diagonal member is less rigid than the large diagonal member, it is possible to prevent the horizontal rigidity of the truss frame from becoming excessively large. For this reason, the twist of a building can be suppressed at the time of an earthquake. Furthermore, in order to balance the rigidity of the building, it is not necessary to provide a similar truss frame on the opposite side across the center of gravity of the building, and the design flexibility of the building is increased.

請求項3のトラス架構は、前記小斜材が配置されていない構面の前記大斜材の断面積は、前記小斜材が配置されている構面の前記大斜材の断面積より小さい。   The truss frame according to claim 3, wherein a cross-sectional area of the large diagonal material of the structural surface where the small diagonal material is not disposed is smaller than a cross-sectional area of the large diagonal material of the structural surface where the small diagonal material is disposed. .

請求項3のトラス架構では、小斜材が配置されていない構面における大斜材の断面積が小さい。これにより、トラス架構に地震力が加わった際に、小斜材が設置されていない構面における大斜材を先行降伏させることができる。このため、小斜材と大斜材の一部で構成された構面を健全に保つことができ、地震に対するトラス架構のロバスト性を向上させることができる。   In the truss frame of claim 3, the cross-sectional area of the large diagonal member is small in the structural surface where the small diagonal member is not arranged. As a result, when a seismic force is applied to the truss frame, it is possible to yield the large diagonal material on the structural surface where the small diagonal material is not installed. For this reason, it is possible to maintain a sound structure composed of a small oblique material and a part of the large oblique material, and to improve the robustness of the truss frame against an earthquake.

本発明に係るトラス架構によると、トラス架構が適用された建物の地震力に対するロバスト性を確保することができる。   According to the truss frame according to the present invention, it is possible to ensure the robustness against the seismic force of the building to which the truss frame is applied.

本発明の実施形態に係るトラス架構を示す正面立面図である。It is a front elevation view showing a truss frame according to an embodiment of the present invention. 本発明の実施形態に係るトラス架構に接合された直交梁を示す図1における2−2線断面図である。FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1 showing orthogonal beams joined to a truss frame according to an embodiment of the present invention. 本発明の実施形態に係るトラス架構における大斜材及び小斜材の構成を示す正面立面図である。It is a front elevation view which shows the structure of the large diagonal material and the small diagonal material in the truss frame which concerns on embodiment of this invention. 本発明の実施形態に係るトラス架構、トラス架構を構成する大トラス及び小トラスに対して、地震時に短期荷重が作用したときのそれぞれの変形量を示すグラフである。It is a graph which shows each deformation amount when a short-term load acts on the truss frame which concerns on embodiment of this invention, the large truss which comprises a truss frame, and a small truss at the time of an earthquake.

(トラス架構)
図1に示すように、本実施形態に係るトラス架構10は、鉄骨造の建物12において上下に連続する2層に亘って配置された大トラス30と、大トラス30が配置された2層のうち上層に配置された小トラス40と、を備えた架構である。大トラス30及び小トラス40の端部は柱14に接合されており、柱14間には大トラス30の下方に無柱空間Vが形成されている。
(Truss frame)
As shown in FIG. 1, the truss frame 10 according to the present embodiment includes a large truss 30 that is disposed over two layers that are continuous in a vertical direction in a steel building 12 and a two-layer structure in which the large truss 30 is disposed. The frame includes a small truss 40 disposed in the upper layer. End portions of the large truss 30 and the small truss 40 are joined to the column 14, and a column-free space V is formed between the columns 14 below the large truss 30.

(大トラス)
大トラス30は、上弦材としての上梁材22と、下弦材としての下梁材24と、両端部がそれぞれ上梁材22と下梁材24に接合された大斜材32と、を備えている。
(Large truss)
The large truss 30 includes an upper beam member 22 as an upper chord member, a lower beam member 24 as a lower chord member, and a large oblique member 32 having both ends joined to the upper beam member 22 and the lower beam member 24, respectively. ing.

上梁材22及び下梁材24は、それぞれH型鋼で形成された建物12の梁であり、端部22E、24Eが柱14に支持されている。   The upper beam member 22 and the lower beam member 24 are beams of the building 12 each formed of H-shaped steel, and the end portions 22E and 24E are supported by the column 14.

上梁材22と下梁材24との間には、中梁材26が配置されている。中梁材26は、上梁材22及び下梁材24と同様にH型鋼で形成された建物12の梁であり、大斜材32の中間部が接合されている。なお、上梁材22、下梁材24、中梁材26はそれぞれボックス型断面の鋼材としてもよい。   A middle beam member 26 is disposed between the upper beam member 22 and the lower beam member 24. The middle beam member 26 is a beam of the building 12 formed of H-shaped steel like the upper beam member 22 and the lower beam member 24, and an intermediate portion of the large diagonal member 32 is joined. The upper beam member 22, the lower beam member 24, and the middle beam member 26 may each be a steel material having a box-type cross section.

大斜材32は、上梁材22と下梁材24との間において柱14間に複数架け渡されている。そのうち両端に配置された大斜材32の上端部は柱14と上梁材22との接合部に接合されている。また、両端に配置された大斜材32の下端部は、隣接する大斜材32の下端部と下梁材24との接合部に接合されている。   A plurality of large diagonal members 32 are bridged between the columns 14 between the upper beam member 22 and the lower beam member 24. Among them, the upper end portions of the large diagonal members 32 disposed at both ends are joined to the joint portion between the column 14 and the upper beam member 22. Further, the lower end portions of the large diagonal members 32 arranged at both ends are joined to the joint portion between the lower end portion of the adjacent large oblique member 32 and the lower beam member 24.

そして、両端以外に配置された大斜材32の上端部は、隣接する大斜材32の上端部と上梁材22との接合部に接合されている。また、両端以外に配置された大斜材32の下端部は、隣接する大斜材32の下端部と下梁材24との接合部に接合されている。   The upper end portions of the large oblique members 32 arranged at both ends are joined to the joint portion between the upper end portion of the adjacent large oblique member 32 and the upper beam member 22. Further, the lower end portions of the large diagonal members 32 arranged at both ends are joined to the joint portion between the lower end portion of the adjacent large oblique member 32 and the lower beam member 24.

これにより大斜材32は、上梁材22、下梁材24及び柱14で囲まれた構面において、V字状の配置が横方向に2つ連続した略W字状の配置とされている。なお、大斜材32は、V字状の配置を横方向に3つ以上連続するように配置してもよい。   As a result, the large diagonal member 32 has a substantially W-shaped arrangement in which the V-shaped arrangement is continuous in the horizontal direction on the construction surface surrounded by the upper beam material 22, the lower beam material 24, and the column 14. Yes. The large diagonal members 32 may be arranged so that three or more V-shaped arrangements are continued in the horizontal direction.

図2には、図1における2−2線断面図が示されている。なお、図1は図2における1−1線断面図である。図2に示すように、上梁材22には、大トラス30が形成する構面と直交する方向(Y方向)へ延出された直交梁52が接合されている。また、下梁材24には、大トラス30から見て直交梁52と反対方向へ延出された直交梁54が接合されている。これにより、大トラス30の下方の無柱空間Vは、大トラス30と直交する方向にも広げられている。なお、図3に示すように、直交梁52は上梁材22に大斜材32が接合される接点及び上梁材22に小斜材42が接合される接点に接合されている。   2 shows a cross-sectional view taken along line 2-2 in FIG. 1 is a cross-sectional view taken along line 1-1 in FIG. As shown in FIG. 2, the upper beam member 22 is joined with an orthogonal beam 52 extending in a direction (Y direction) orthogonal to the construction surface formed by the large truss 30. In addition, an orthogonal beam 54 extending in a direction opposite to the orthogonal beam 52 when viewed from the large truss 30 is joined to the lower beam member 24. Thereby, the columnar space V below the large truss 30 is also expanded in a direction orthogonal to the large truss 30. As shown in FIG. 3, the orthogonal beam 52 is joined to a contact point where the large diagonal member 32 is joined to the upper beam member 22 and a contact point where the small oblique member 42 is joined to the upper beam member 22.

大斜材32は、下端部が中梁材26に接合された上部材32Uと、上端部が中梁材26に接合された下部材32Dと、中梁材26の上下フランジ間において上部材32Uのフランジ下端部から下部材32Dのフランジ上端部まで延設されたプレート状の軸力伝達部材32Mと、を備えている。   The large diagonal member 32 includes an upper member 32U having a lower end joined to the intermediate beam member 26, a lower member 32D having an upper end joined to the intermediate beam member 26, and an upper member 32U between the upper and lower flanges of the intermediate beam member 26. A plate-shaped axial force transmission member 32M extending from the lower end of the flange to the upper end of the flange of the lower member 32D.

下部材32Dの断面積は上部材32Uの断面積よりも小さく形成されており、下部材32Dのフランジ間距離は上部材32Uのフランジ間距離よりも小さい。このため、下部材32Dと上部材32Uの上フランジ間、下部材32Dと上部材32Uの下フランジ間で軸力を伝達する軸力伝達部材32Mは、互いに下部材32D及び上部材32Uの軸線CLに対して角度を有して中梁材26のウェブに溶接されている。   The cross-sectional area of the lower member 32D is smaller than the cross-sectional area of the upper member 32U, and the distance between the flanges of the lower member 32D is smaller than the distance between the flanges of the upper member 32U. For this reason, the axial force transmission member 32M that transmits axial force between the lower flange 32D and the upper flange of the upper member 32U and between the lower member 32D and the lower flange of the upper member 32U is mutually connected to the axis CL of the lower member 32D and the upper member 32U. Is welded to the web of medium beam member 26 at an angle to the web.

なお、本実施形態においては下部材32Dのフランジ間距離が上部材32Uのフランジ間距離よりも小さく形成されているが、本発明の実施形態はこれに限らない。例えば下部材32Dのフランジ間距離と、上部材32Uのフランジ間距離とを等しく形成してもよい。この場合、下部材32Dの板厚を上部材32Uの板厚よりも薄く形成することで、下部材32Dの断面積を、上部材32Uの断面積よりも小さく形成できる。   In the present embodiment, the distance between the flanges of the lower member 32D is formed to be smaller than the distance between the flanges of the upper member 32U, but the embodiment of the present invention is not limited to this. For example, the distance between the flanges of the lower member 32D and the distance between the flanges of the upper member 32U may be formed equally. In this case, by forming the plate thickness of the lower member 32D thinner than the plate thickness of the upper member 32U, the cross-sectional area of the lower member 32D can be formed smaller than the cross-sectional area of the upper member 32U.

(小トラス)
図1に示すように、小トラス40は、上弦材としての上梁材22と、下弦材としての中梁材26と、両端部がそれぞれ上梁材22と中梁材26に接合された小斜材42及び上部材32Uと、を備えている。
(Small truss)
As shown in FIG. 1, the small truss 40 includes an upper beam member 22 as an upper chord member, a middle beam member 26 as a lower chord member, and a small beam whose both ends are joined to the upper beam member 22 and the middle beam member 26, respectively. The diagonal member 42 and the upper member 32U are provided.

小斜材42は、大斜材32における上部材32Uが配置された構面と等しい構面に配置されている。小斜材42の上端部は、隣接する小斜材42の上端部と上梁材22との接合部に接合されている。また下端部は、大斜材32における上部材32Uの下端部と中梁材26との接合部に接合されている。   The small oblique material 42 is disposed on a surface equal to the surface on which the upper member 32U of the large oblique material 32 is disposed. The upper end portion of the small oblique material 42 is joined to the joint portion between the upper end portion of the adjacent small oblique material 42 and the upper beam material 22. Further, the lower end portion is joined to the joint portion between the lower end portion of the upper member 32 </ b> U and the middle beam member 26 in the large diagonal member 32.

すなわち、上梁材22は大トラス30の上弦材であり小トラス40の上弦材でもある。また、大斜材32における上部材32Uは、大トラス30を構成する斜材(大斜材32)の一部であり、また、小トラス40を構成する斜材でもある。   In other words, the upper beam member 22 is an upper chord member of the large truss 30 and an upper chord member of the small truss 40. Further, the upper member 32 </ b> U in the large diagonal member 32 is a part of the diagonal member (large oblique member 32) constituting the large truss 30 and is also an oblique member constituting the small truss 40.

小斜材42は、上梁材22、中梁材26及び2本の上部材32Uで囲まれる台形状の構面を、3つの三角形状の構面に分割するように配置されている。   The small oblique material 42 is arranged so as to divide the trapezoidal shape surface surrounded by the upper beam material 22, the middle beam material 26 and the two upper members 32U into three triangular shape surfaces.

図3に示すように、小斜材42は、H型鋼の芯材42Aと、芯材42Aが挿入された補剛管42Bと、を備えている。補剛管42Bは、芯材42Aの座屈を抑制する座屈抑制部材である。また、詳しくは後述するが、小斜材42は、大斜材32における下部材32Dよりも作用力に対する断面検定比が小さく、剛性が小さく形成されている。なお、小斜材42は、補剛管42Bを設けない構成にすることもできる。   As shown in FIG. 3, the small oblique member 42 includes an H-shaped steel core member 42A and a stiffening tube 42B into which the core member 42A is inserted. The stiffening tube 42B is a buckling suppressing member that suppresses the buckling of the core member 42A. Further, as will be described in detail later, the small diagonal material 42 is formed to have a smaller cross sectional verification ratio with respect to the acting force and lower rigidity than the lower member 32D in the large diagonal material 32. Note that the small oblique material 42 may be configured without the stiffening tube 42B.

(作用・効果)
図1に示すように、本実施形態に係るトラス架構10は、上下に連続する2層に亘って配置された大トラス30を備えている。このため、例えば1層のみにトラスが配置された建物と比較して、長期荷重を安全に支持できる。
(Action / Effect)
As shown in FIG. 1, the truss frame 10 according to the present embodiment includes a large truss 30 arranged over two layers that are continuous in the vertical direction. For this reason, a long-term load can be safely supported as compared with, for example, a building in which a truss is arranged in only one layer.

また図3に示すように、本実施形態に係るトラス架構10では、大斜材32における下部材32Dの断面積が上部材32Uの断面積よりも小さく形成されている。このため、下部材32Dは上部材32Uよりも耐力が小さい。   As shown in FIG. 3, in the truss frame 10 according to the present embodiment, the cross-sectional area of the lower member 32D in the large diagonal member 32 is formed smaller than the cross-sectional area of the upper member 32U. For this reason, the lower member 32D has a lower yield strength than the upper member 32U.

さらにトラス架構10は、大トラス30のほか、小トラス40を備えている。小トラス40における小斜材42は、下部材32Dよりも作用力に対する断面検定比が小さい。   Further, the truss frame 10 includes a small truss 40 in addition to the large truss 30. The small diagonal member 42 in the small truss 40 has a smaller cross sectional verification ratio for the acting force than the lower member 32D.

このため、大トラス30の下部材32D、上部材32U、小トラス40の小斜材42の中では、下部材32Dの断面検定比が最も大きく、トラス架構10に地震力が加わった際には下部材32Dが先行して降伏する。これにより、小トラス40を構成する上部材32U、小斜材42の降伏を遅らせ、小トラス40の健全性を維持させることができる。   Therefore, among the lower member 32D, the upper member 32U of the large truss 30, and the small diagonal member 42 of the small truss 40, the sectional verification ratio of the lower member 32D is the largest, and when the seismic force is applied to the truss frame 10 The lower member 32D yields in advance. Thereby, the yielding of the upper member 32U and the small oblique member 42 constituting the small truss 40 can be delayed, and the soundness of the small truss 40 can be maintained.

図4には、地震による水平力(短期荷重P)に対する小トラス40の変形量を示す荷重・変形曲線B1と、大トラス30の変形量を示す荷重・変形曲線B2と、小トラス40と大トラス30とを組み合わせたトラス架構10の変形量を示す荷重・変形曲線B3が示されている(以下、単に曲線B1、B2、B3と称す)。   FIG. 4 shows a load / deformation curve B1 indicating the amount of deformation of the small truss 40 with respect to a horizontal force (short-term load P) due to an earthquake, a load / deformation curve B2 indicating the amount of deformation of the large truss 30, a small truss 40 and a large A load / deformation curve B3 indicating the amount of deformation of the truss frame 10 combined with the truss 30 is shown (hereinafter simply referred to as curves B1, B2, B3).

曲線B2における点C2は、大斜材32における下部材32Dの降伏点を示しており、降伏点を超える水平力が作用した場合、下部材32Dは塑性変形を開始する。曲線B1における点C1は、小斜材42の降伏点を示している。   A point C2 in the curve B2 indicates the yield point of the lower member 32D in the large diagonal member 32. When a horizontal force exceeding the yield point is applied, the lower member 32D starts plastic deformation. A point C1 in the curve B1 indicates the yield point of the small oblique material 42.

また、曲線B3に示すように、大トラス30と小トラス40とが組み合わされたトラス架構10は、トラス架構10に水平力が作用した際に、大トラス30と小トラス40の双方が耐力を発揮するので、大トラス30における大斜材32(下部材32D)が降伏する荷重P3は、小トラス40を設けない場合に大斜材32が降伏する荷重P2と比較して、大きくなっている。   Further, as shown by the curve B3, the truss frame 10 in which the large truss 30 and the small truss 40 are combined has a strength when both the large truss 30 and the small truss 40 have a strength when a horizontal force acts on the truss frame 10. Therefore, the load P3 at which the large diagonal member 32 (lower member 32D) yields in the large truss 30 is larger than the load P2 at which the large diagonal member 32 yields when the small truss 40 is not provided. .

また、トラス架構10に荷重P3を超える水平力が作用した場合でも、小トラス40の小斜材42が耐力を発揮する。このため小斜材42が降伏する荷重P4まで、トラス架構10が耐えられる水平力が大きくなる。   Further, even when a horizontal force exceeding the load P3 is applied to the truss frame 10, the small diagonal member 42 of the small truss 40 exhibits the proof stress. For this reason, the horizontal force that the truss frame 10 can withstand up to the load P4 at which the small diagonal material 42 yields increases.

このように、トラス架構10は、大トラス30と小トラス40とを備えた構成により、大トラス30のみを設ける構成と比較して、ロバスト性が向上されている。   As described above, the truss frame 10 is provided with the large truss 30 and the small truss 40, so that the robustness is improved as compared with the configuration in which only the large truss 30 is provided.

また、本実施形態に係るトラス架構10は、小斜材42が大斜材32の下部材32Dよりも剛性が小さくされているため、トラス架構10の水平剛性が過度に大きくなることを抑制できる。   Further, in the truss frame 10 according to the present embodiment, the rigidity of the small diagonal member 42 is smaller than that of the lower member 32D of the large diagonal member 32, so that the horizontal rigidity of the truss frame 10 can be suppressed from being excessively increased. .

トラス架構10の水平剛性が大きくなりすぎると、建物の剛心の位置がずれて地震時の建物の捩れが大きくなる。この捩れを抑制するためには、例えばトラス架構10を別の場所(建物12の重心を挟んで反対側など)にも設ける必要がある。このため、建物12の設計自由度に影響を及ぼす。これに対して、トラス架構10の水平剛性が過度に大きくならなければ、建物の設計自由度が高くなる。   If the horizontal rigidity of the truss frame 10 becomes too large, the position of the building's rigid center will shift and the torsion of the building during an earthquake will increase. In order to suppress this twist, for example, the truss frame 10 needs to be provided in another place (such as the opposite side of the center of gravity of the building 12). This affects the design freedom of the building 12. On the other hand, if the horizontal rigidity of the truss frame 10 does not become excessively large, the design freedom of the building is increased.

また、本実施形態においては図3に示すように、上梁材22は大トラス30および小トラス40の上弦材とされているため、上梁材22には大トラス30における大斜材32が接合される箇所の他、小トラス40における小斜材42が接合される箇所にも、斜材の接点が形成される。このため、小トラス40を設けない場合と比較して、上梁材22に接合させる直交梁52の本数を増やすことができるので、図2に示す直交梁52の上部の荷重を支持しやすくなり、無柱空間VのY方向幅を広く確保することができる。   Further, in the present embodiment, as shown in FIG. 3, the upper beam member 22 is the upper chord member of the large truss 30 and the small truss 40, and therefore, the upper beam member 22 has the large diagonal member 32 in the large truss 30. In addition to the parts to be joined, the oblique material contacts are also formed in the small truss 40 where the small oblique material 42 is joined. For this reason, compared with the case where the small truss 40 is not provided, since the number of the orthogonal beams 52 to be joined to the upper beam material 22 can be increased, it becomes easier to support the load on the upper portion of the orthogonal beams 52 shown in FIG. The width in the Y direction of the columnar space V can be secured widely.

なお、本実施形態においては、図1に示すように上梁材22の上部に柱が立設されていない構成とされているが、本発明の実施形態はこれに限らない。例えば上梁材22において、図3に示す直交梁52が接合された部分には、適宜柱を立設することができる。柱を立設した場合、柱からの鉛直荷重は大斜材32又は小斜材へ流すことができる。   In addition, in this embodiment, as shown in FIG. 1, it is set as the structure by which the pillar is not standingly arranged by the upper part of the upper beam material 22, However, Embodiment of this invention is not restricted to this. For example, in the upper beam member 22, a column can be appropriately set up at a portion where the orthogonal beam 52 shown in FIG. 3 is joined. When the column is erected, the vertical load from the column can flow to the large diagonal material 32 or the small diagonal material.

また、本実施形態においては図1に示すように、小斜材42は上梁材22と中梁材26の間の構面にしか配置されないので、大斜材32しか配置されない構面(中梁材26と下梁材24の間の構面)の視野を広くすることができる。   Further, in the present embodiment, as shown in FIG. 1, the small oblique member 42 is arranged only on the construction surface between the upper beam member 22 and the middle beam member 26, so that the construction surface (medium) in which only the large oblique member 32 is arranged. The field of view of the construction between the beam member 26 and the lower beam member 24 can be widened.

なお、本実施形態においては小斜材42を上梁材22と中梁材26の間の構面に配置しているが、本発明の実施形態はこれに限らない。例えば小斜材42は中梁材26と下梁材24の間の構面に配置してもよい。この場合、大トラス30の大斜材32については、図3に示す上部材32Uと下部材32Dの構成を入れ替える。すわなち、上部材32Uの断面積を下部材32Dの断面積よりも小さくして、小斜材42が配置されていない構面における大斜材32の耐力を小さくする。このような構成によっても、トラス架構10のロバスト性を確保できる。   In this embodiment, the small oblique member 42 is disposed on the surface between the upper beam member 22 and the middle beam member 26, but the embodiment of the present invention is not limited to this. For example, the small oblique member 42 may be disposed on the surface between the middle beam member 26 and the lower beam member 24. In this case, the configuration of the upper member 32U and the lower member 32D shown in FIG. That is, the cross-sectional area of the upper member 32U is made smaller than the cross-sectional area of the lower member 32D, thereby reducing the proof stress of the large oblique material 32 on the construction surface where the small oblique material 42 is not disposed. Even with such a configuration, the robustness of the truss frame 10 can be ensured.

また、本実施形態において小斜材42は、大斜材32における下部材32Dより剛性を小さく形成したが、本発明の実施形態はこれに限らず、剛性は任意に設定することができる。剛性を任意に設定しても、小トラス40を備えない構成と比較して、トラス架構全体の耐力を大きくすることができる。   In the present embodiment, the small oblique material 42 is formed to have a lower rigidity than the lower member 32D in the large oblique material 32. However, the embodiment of the present invention is not limited to this, and the rigidity can be arbitrarily set. Even if the rigidity is arbitrarily set, the proof strength of the entire truss frame can be increased as compared with the configuration without the small truss 40.

また、本実施形態において大斜材32における下部材32Dの断面積を上部材32Uの断面積より小さくすることで下部材32Dの耐力を上部材32Uの耐力よりも小さくしたが、本発明の実施形態はこれに限らない。下部材32Dの断面積と上部材32Uの断面積とを等しくした場合でも、例えば下部材32Dの材料強度を下部材32Dの材料強度よりも小さくすることで、下部材32Dの耐力を上部材32Uの耐力よりも小さくすることができる。   Further, in this embodiment, the proof strength of the lower member 32D is made smaller than the proof strength of the upper member 32U by making the cross-sectional area of the lower member 32D in the large diagonal member 32 smaller than the cross-sectional area of the upper member 32U. The form is not limited to this. Even when the cross-sectional area of the lower member 32D and the cross-sectional area of the upper member 32U are made equal, for example, by making the material strength of the lower member 32D smaller than the material strength of the lower member 32D, the proof strength of the lower member 32D can be increased. It can be made smaller than the yield strength.

10 トラス架構
14 柱
22 上梁材
24 下梁材
26 中梁材
30 大トラス
32 大斜材
40 小トラス
42 小斜材
10 Truss frame 14 Column 22 Upper beam material 24 Lower beam material 26 Middle beam material 30 Large truss 32 Large oblique material 40 Small truss material 42 Small oblique material

Claims (3)

両端部が柱に支持された上梁材と、両端部が柱に支持された下梁材と、前記上梁材と前記下梁材に接合された大斜材と、を備えた大トラスと、
前記上梁材と前記下梁材の間に配置され両端部が柱に支持された中梁材と、同一構面で前記大斜材と重ならず、前記上梁材と前記中梁材、又は下梁材と前記中梁材に接合された小斜材と、を備えた小トラスと、
を有するトラス架構。
A large truss comprising: an upper beam member supported at both ends by a column; a lower beam member supported by a column at both ends; and a large oblique member joined to the upper beam member and the lower beam member; ,
The middle beam material arranged between the upper beam material and the lower beam material and supported at both ends by a column, does not overlap the large diagonal material in the same construction surface, the upper beam material and the middle beam material, Or a small truss provided with a lower beam material and a small oblique material joined to the medium beam material,
Truss frame with.
前記小斜材は前記大斜材より作用力に対する断面検定比が小さく、剛性が小さい、請求項1に記載のトラス架構。   The truss frame according to claim 1, wherein the small diagonal member has a smaller section verification ratio with respect to acting force and a lower rigidity than the large diagonal member. 前記小斜材が配置されていない構面の前記大斜材の断面積は、前記小斜材が配置されている構面の前記大斜材の断面積より小さい、請求項1又は請求項2に記載のトラス架構。   The cross-sectional area of the large diagonal material of the construction surface where the small oblique material is not disposed is smaller than the sectional area of the large oblique material of the structural surface where the small oblique material is disposed. The truss frame described in 1.
JP2016201877A 2016-10-13 2016-10-13 Truss frame Active JP6934290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201877A JP6934290B2 (en) 2016-10-13 2016-10-13 Truss frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201877A JP6934290B2 (en) 2016-10-13 2016-10-13 Truss frame

Publications (2)

Publication Number Publication Date
JP2018062798A true JP2018062798A (en) 2018-04-19
JP6934290B2 JP6934290B2 (en) 2021-09-15

Family

ID=61967614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201877A Active JP6934290B2 (en) 2016-10-13 2016-10-13 Truss frame

Country Status (1)

Country Link
JP (1) JP6934290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143497A (en) * 2019-03-06 2020-09-10 日鉄エンジニアリング株式会社 Space truss structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481127Y1 (en) * 1970-07-16 1973-01-12
JPH03103560A (en) * 1989-09-19 1991-04-30 Shimizu Corp Truss structure
JP2002167901A (en) * 2000-12-01 2002-06-11 Ohbayashi Corp Trussed girder and its construction method
JP2015151805A (en) * 2014-02-18 2015-08-24 大成建設株式会社 Construction method for truss beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481127Y1 (en) * 1970-07-16 1973-01-12
JPH03103560A (en) * 1989-09-19 1991-04-30 Shimizu Corp Truss structure
JP2002167901A (en) * 2000-12-01 2002-06-11 Ohbayashi Corp Trussed girder and its construction method
JP2015151805A (en) * 2014-02-18 2015-08-24 大成建設株式会社 Construction method for truss beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143497A (en) * 2019-03-06 2020-09-10 日鉄エンジニアリング株式会社 Space truss structure

Also Published As

Publication number Publication date
JP6934290B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5786627B2 (en) Double tube structure using spiral tube
JP2007191987A (en) Earthquake resisting brace
JP7007937B2 (en) Truss beam
JP5491256B2 (en) Bending deformation control structure
JP6169486B2 (en) Buckling restraint brace
JP5603741B2 (en) Buckling restraint brace
JP2018062798A (en) Truss frame
JP5992263B2 (en) X type compression brace
JP2017166123A (en) Steel beam and column-beam joint structure
JP6872891B2 (en) Reinforcement structure of beam-column joint
JP2017166122A (en) Steel beam and column-beam joint structure
JP2019210781A (en) Truss beam
JP5492163B2 (en) Reinforced concrete wall column
JP6126941B2 (en) Structure
JP6979283B2 (en) Steel column beam frame of steel pipe column and H-shaped steel beam
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP6313067B2 (en) Damping damper
JP6038550B2 (en) Reinforcement structure of steel beam made of H-shaped steel
JP4559793B2 (en) Multi-story shear wall
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure
JP7127244B2 (en) Seismic reinforcement structure
JP5379590B2 (en) Diagonal column frame
JP7334385B2 (en) Unit building ceiling structure
JP6988046B2 (en) building
JP2017145593A (en) Steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6934290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150