JP2018062605A - Epoxy resin composition for sealing, and semiconductor device and method for producing the same - Google Patents

Epoxy resin composition for sealing, and semiconductor device and method for producing the same Download PDF

Info

Publication number
JP2018062605A
JP2018062605A JP2016202712A JP2016202712A JP2018062605A JP 2018062605 A JP2018062605 A JP 2018062605A JP 2016202712 A JP2016202712 A JP 2016202712A JP 2016202712 A JP2016202712 A JP 2016202712A JP 2018062605 A JP2018062605 A JP 2018062605A
Authority
JP
Japan
Prior art keywords
epoxy resin
sealing
resin composition
group
metal hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202712A
Other languages
Japanese (ja)
Other versions
JP6838345B2 (en
Inventor
孝文 伊東
Takafumi Ito
孝文 伊東
酒井 裕行
Hiroyuki Sakai
裕行 酒井
高士 山本
Takashi Yamamoto
高士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016202712A priority Critical patent/JP6838345B2/en
Publication of JP2018062605A publication Critical patent/JP2018062605A/en
Application granted granted Critical
Publication of JP6838345B2 publication Critical patent/JP6838345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing that can form a cured product having a high shrinkage rate at the mold temperature in order to reduce the difference in heat response behavior between a semiconductor element and a substrate.SOLUTION: An epoxy resin composition for sealing contains (A) an epoxy resin, (B) a curing agent and (C) a metal hydroxide, the content of (C) metal hydroxide being 40-80 mass%.SELECTED DRAWING: None

Description

本発明は、封止用エポキシ樹脂組成物、並びに半導体装置及びその製造方法に関する。   The present invention relates to an epoxy resin composition for sealing, a semiconductor device, and a manufacturing method thereof.

電子機器の小型・薄型化による高密度実装の要求が、近年、急激に増加している。このため、半導体パッケージは、従来のピン挿入型に代わり、高密度実装に適した表面実装型が主流になっている。この表面実装型は、リードをプリント基板等に直接はんだ付けする。実装時の加熱方法としては、赤外線リフロー、ベーパーフェーズリフロー、はんだディップ等があり、これらの加熱方法では、パッケージ全体を加熱して半導体が実装される。   In recent years, the demand for high-density packaging due to the miniaturization and thinning of electronic devices has increased rapidly. For this reason, the surface mount type suitable for high-density mounting is the mainstream of the semiconductor package instead of the conventional pin insertion type. In this surface mount type, the lead is soldered directly to a printed circuit board or the like. As a heating method at the time of mounting, there are infrared reflow, vapor phase reflow, solder dipping and the like. In these heating methods, the entire package is heated to mount the semiconductor.

表面実装型のうち、片面樹脂封止型パッケージでは、その形状が片面封止であるために、封止樹脂、基板等のパッケージ構成部材間の線膨張係数の差、弾性率の差等によって発生する熱応力による反りが発生し、搬送性の低下、リフロー工程時の実装信頼性の低下等の問題を引き起こしている。   Among surface mount types, single-sided resin-encapsulated packages have a single-sided shape, which is caused by differences in linear expansion coefficient and elastic modulus between package components such as sealing resin and substrates. Warpage due to thermal stress is generated, causing problems such as a decrease in transportability and a decrease in mounting reliability during the reflow process.

このことから、封止樹脂、基板等のパッケージ構成部材間の線膨張係数の差、弾性率の差等によって発生する熱応力の低減化が要望されている。特に、最近の半導体パッケージでは、封止樹脂層の厚みが薄いパッケージが増えつつある。このため、半導体素子の上部側に封止樹脂層が形成されているパッケージ形態において、常温時に上方に反り(以下、「Cry反り」という。)が発生し、リフロー時に下方に反り(以下、「Smile反り」という。)が発生する傾向にある。   For this reason, reduction of thermal stress generated by differences in linear expansion coefficients, elastic moduli, etc. between package constituent members such as sealing resins and substrates is desired. In particular, in recent semiconductor packages, an increasing number of packages have a thin sealing resin layer. For this reason, in the package form in which the sealing resin layer is formed on the upper side of the semiconductor element, warping occurs upward (hereinafter referred to as “Cry warping”) at room temperature, and warping downward (hereinafter referred to as “Cry warping”). "Smil warp").

そのため、加熱時のパッケージ収縮量を増加させ、基板によるCry反りを抑制し、リフロー時の加熱下におけるパッケージの信頼性を向上させることが強く要求されている。そこで、例えば、反りを低減するために充填剤量を増加することによって、熱膨張率を低減し、反りを抑制する検討が進められている(特許文献1参照)。しかし、充填剤量の増加には限界があり、曲げ弾性率の低下によって、実装時にクラックが発生することがある。   Therefore, there is a strong demand for increasing the package shrinkage during heating, suppressing Cry warping due to the substrate, and improving the reliability of the package under heating during reflow. Therefore, for example, studies are being made to reduce the coefficient of thermal expansion and suppress warpage by increasing the amount of filler in order to reduce warpage (see Patent Document 1). However, there is a limit to the increase in the amount of filler, and cracks may occur during mounting due to a decrease in flexural modulus.

また、半導体装置の小型化・薄型化には半導体素子の厚みを薄くすることが求められるが、半導体素子の薄型化が進むにつれて、半導体素子に対する熱応答挙動の影響(反り、膨張等)が大きくなってくる。これは一般的に基板等の熱膨張係数の方が、半導体素子の熱膨張係数よりも大きいことに起因する。特に、半導体素子と基板とを接続するはんだバンプ等の接続部材には半導体素子及び基板の熱応答挙動の相違に起因する応力が集中しやすく、場合によっては接合部に破断が生じることがある。   Further, in order to reduce the size and thickness of a semiconductor device, it is required to reduce the thickness of the semiconductor element. However, as the semiconductor element becomes thinner, the influence of the thermal response behavior (warping, expansion, etc.) on the semiconductor element increases. It becomes. This is because the coefficient of thermal expansion of the substrate or the like is generally larger than the coefficient of thermal expansion of the semiconductor element. In particular, stresses due to differences in the thermal response behavior of the semiconductor element and the substrate tend to concentrate on the connection member such as a solder bump that connects the semiconductor element and the substrate, and in some cases, the joint may be broken.

特開2006−225464号公報JP 2006-225464 A

本発明は、このような事情に基づいてなされたものであり、半導体素子と基板との熱応答挙動の差を緩和するため、成形温度時に高い収縮率を有する硬化物を形成することができる封止用エポキシ樹脂組成物を提供することを目的とする。また、反りが低減された半導体装置及びその製造方法を提供することを目的とする。   The present invention has been made based on such circumstances, and in order to alleviate the difference in the thermal response behavior between the semiconductor element and the substrate, a sealed product capable of forming a cured product having a high shrinkage rate at the molding temperature. It aims at providing the epoxy resin composition for a stop. It is another object of the present invention to provide a semiconductor device with reduced warpage and a method for manufacturing the same.

本発明の一側面は、(A)エポキシ樹脂、(B)硬化剤及び(C)金属水酸化物を含有し、(C)金属水酸化物が組成物全量基準で40〜80質量%である、封止用エポキシ樹脂組成物を提供する。このような封止用エポキシ樹脂組成物によれば、成形温度時に高い収縮率を有する硬化物を形成することができる。これによって、半導体装置の製造に用いられたときに、半導体素子と基板との熱応答挙動の差を緩和することができる。したがって、半導体素子、バンプ等の金属、及び基板を一体成形して半導体装置を製造したときに、反りの発生を十分に抑制することができる。   One aspect of the present invention contains (A) an epoxy resin, (B) a curing agent, and (C) a metal hydroxide, and (C) the metal hydroxide is 40 to 80% by mass based on the total amount of the composition. An epoxy resin composition for sealing is provided. According to such an epoxy resin composition for sealing, a cured product having a high shrinkage rate at the molding temperature can be formed. Thereby, the difference in thermal response behavior between the semiconductor element and the substrate can be alleviated when used in the manufacture of a semiconductor device. Therefore, when a semiconductor device is manufactured by integrally molding a semiconductor element, a metal such as a bump, and a substrate, warping can be sufficiently suppressed.

(C)金属水酸化物の平均粒径は、1.0〜10.0μmであることが好ましい。また、(C)金属水酸化物の比表面積は、1.0〜6.0m/gであることが好ましい。 (C) It is preferable that the average particle diameter of a metal hydroxide is 1.0-10.0 micrometers. Moreover, it is preferable that the specific surface area of (C) metal hydroxide is 1.0-6.0 m < 2 > / g.

(C)金属水酸化物は、マグネシウム又は亜鉛を含むことが好ましく、マグネシウム及び亜鉛の両方を含むことがより好ましい。   (C) The metal hydroxide preferably contains magnesium or zinc, and more preferably contains both magnesium and zinc.

本発明の別の側面は、上述の封止用エポキシ樹脂組成物の硬化物で封止されている素子を備える半導体装置を提供する。この半導体装置における封止用エポキシ樹脂組成物の硬化物は、成形温度時に高い収縮率を有する。このため、反りの発生が十分に低減されている。素子としては、例えば半導体素子が挙げられる。   Another aspect of the present invention provides a semiconductor device including an element sealed with a cured product of the above-described sealing epoxy resin composition. The cured product of the epoxy resin composition for sealing in this semiconductor device has a high shrinkage rate at the molding temperature. For this reason, generation | occurrence | production of curvature is fully reduced. Examples of the element include a semiconductor element.

本発明のさらに別の側面は、上述の封止用エポキシ樹脂組成物を用いて、トランスファー成形又はコンプレッション成形によって、素子を封止する工程を備える、半導体装置の製造方法を提供する。封止用エポキシ樹脂組成物の硬化物は、成形温度時に高い収縮率を有する。このため、反りの発生が十分に低減された半導体装置を製造することができる。   Still another aspect of the present invention provides a method for manufacturing a semiconductor device, comprising a step of sealing an element by transfer molding or compression molding using the above-described sealing epoxy resin composition. The cured product of the epoxy resin composition for sealing has a high shrinkage rate at the molding temperature. For this reason, it is possible to manufacture a semiconductor device in which the occurrence of warpage is sufficiently reduced.

本発明によれば、成形温度時に高い収縮率を有する硬化物を形成することができる封止用エポキシ樹脂組成物が提供される。また、上記封止用エポキシ樹脂組成物を用いることによって、反りが低減された半導体装置、及びそのような半導体装置の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition for sealing which can form the hardened | cured material which has a high shrinkage rate at the time of shaping | molding temperature is provided. In addition, by using the sealing epoxy resin composition, a semiconductor device with reduced warpage and a method for manufacturing such a semiconductor device are provided.

以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

<封止用エポキシ樹脂組成物>
一実施形態に係る封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤及び(C)金属水酸化物を含有する。以下、各成分について詳細に説明する。
<Epoxy resin composition for sealing>
The epoxy resin composition for sealing which concerns on one Embodiment contains (A) epoxy resin, (B) hardening | curing agent, and (C) metal hydroxide. Hereinafter, each component will be described in detail.

[(A)エポキシ樹脂]
(A)エポキシ樹脂は、封止用エポキシ樹脂組成物に一般的に使用されているもので特に制限はない。エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリフェニルメタン骨格を有するエポキシ樹脂(トリフェニルメタン型エポキシ樹脂)をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類と、α−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものが挙げられる。
[(A) Epoxy resin]
(A) The epoxy resin is generally used in the epoxy resin composition for sealing and is not particularly limited. Examples of the epoxy resin include biphenyl type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, epoxy resin having triphenylmethane skeleton (triphenylmethane type epoxy resin), phenol, cresol, and xylenol. , Phenols such as resorcin, catechol, bisphenol A and bisphenol F, naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene, and compounds having aldehyde groups such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde And an epoxidized novolak resin obtained by condensation or cocondensation under an acidic catalyst.

また、エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換若しくは非置換のビフェノール等のジグリシジルエーテル、又はスチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物(ジシクロペンタジエン型エポキシ樹脂)、ナフタレン環を有するエポキシ樹脂(ナフタレン型エポキシ樹脂)、フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、硫黄原子含有エポキシ樹脂が挙げられる。   The epoxy resin includes bisphenol A, bisphenol F, bisphenol S, diglycidyl ether such as alkyl-substituted or unsubstituted biphenol, or polybasic acids such as stilbene-type epoxy resin, hydroquinone-type epoxy resin, phthalic acid, and dimer acid. Glycidyl ester type epoxy resin obtained by the reaction of chlorohydrin and epichlorohydrin, diaminodiphenylmethane, isocyanuric acid and other polyamines obtained by the reaction of epichlorohydrin and epoxidized products of dicyclopentadiene and phenol co-condensation resins (dicyclohexane) Pentadiene type epoxy resins), epoxy resins having a naphthalene ring (naphthalene type epoxy resins), phenol / aralkyl resins, naphthol / aralkyl resins, etc. Epoxy compounds of sulfhydryl phenol resins, trimethylolpropane epoxy resins, terpene modified epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, alicyclic epoxy resins, sulfur atoms Contains epoxy resins.

これらは1種を単独で含んでいてもよく、2種以上を組み合わせて含んでいてもよい。これらのエポキシ樹脂のうち、信頼性・成形性の点から、ビフェニル型エポキシ樹脂、又は、低級アルキル基をフェニル環に付加したような低吸湿型のエポキシ樹脂を含むことが好ましい。このようなエポキシ樹脂としては、例えば、エポキシ当量150〜250g/eqであり、軟化点又は融点が50〜130℃のものが好適である。   These may contain 1 type independently and may contain 2 or more types in combination. Among these epoxy resins, from the viewpoint of reliability and moldability, it is preferable to include a biphenyl type epoxy resin or a low moisture absorption type epoxy resin in which a lower alkyl group is added to a phenyl ring. As such an epoxy resin, for example, those having an epoxy equivalent of 150 to 250 g / eq and a softening point or melting point of 50 to 130 ° C. are suitable.

充填性及び耐リフロー性の観点からは、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂及び硫黄原子含有エポキシ樹脂が好ましく、ビスフェノールF型エポキシ樹脂比率を高くすることがより好ましい。硬化性の観点からは、ノボラック型エポキシ樹脂が好ましく、低吸湿性の観点からは、ジシクロペンタジエン型エポキシ樹脂が好ましく、耐熱性及び低反り性の観点からは、ナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂が好ましく、エポキシ樹脂は、これらのエポキシ樹脂の少なくとも1種を含んでいることが好ましい。   From the viewpoints of filling properties and reflow resistance, biphenyl type epoxy resins, bisphenol F type epoxy resins, stilbene type epoxy resins and sulfur atom-containing epoxy resins are preferable, and it is more preferable to increase the ratio of bisphenol F type epoxy resins. From the viewpoint of curability, a novolac type epoxy resin is preferable. From the viewpoint of low hygroscopicity, a dicyclopentadiene type epoxy resin is preferable. From the viewpoint of heat resistance and low warpage, naphthalene type epoxy resin and triphenylmethane are preferable. Type epoxy resin is preferable, and the epoxy resin preferably contains at least one of these epoxy resins.

ビフェニル型エポキシ樹脂としては、例えば、下記一般式(I)で示されるエポキシ樹脂が挙げられる。ビスフェノールF型エポキシ樹脂としては、例えば下記一般式(II)で示されるエポキシ樹脂が挙げられる。スチルベン型エポキシ樹脂としては、例えば下記一般式(III)で示されるエポキシ樹脂が挙げられる。硫黄原子含有エポキシ樹脂としては、例えば下記一般式(IV)で示されるエポキシ樹脂が挙げられる。   Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (I). Examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following general formula (II). As a stilbene type epoxy resin, the epoxy resin shown, for example by the following general formula (III) is mentioned. As a sulfur atom containing epoxy resin, the epoxy resin shown, for example by the following general formula (IV) is mentioned.

Figure 2018062605
Figure 2018062605

一般式(I)中、R〜Rは、水素原子及び置換若しくは非置換の炭素数1〜10の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。 In general formula (I), R 1 to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different. n represents an integer of 0 to 3.

Figure 2018062605
Figure 2018062605

一般式(II)中、R〜Rは水素原子、置換若しくは非置換の炭素数1〜10のアルキル基、置換若しくは非置換の炭素数1〜10のアルコキシ基、置換若しくは非置換の炭素数6〜10のアリル基、及び置換若しくは非置換の炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。 In general formula (II), R 1 to R 8 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted carbon. It is selected from an allyl group having 6 to 10 carbon atoms and a substituted or unsubstituted aralkyl group having 6 to 10 carbon atoms, and all may be the same or different. n represents an integer of 0 to 3.

Figure 2018062605
Figure 2018062605

一般式(III)中、R〜Rは水素原子及び置換若しくは非置換の炭素数1〜5の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜10の整数を示す。 In general formula (III), R 1 to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms, and all may be the same or different. n represents an integer of 0 to 10.

Figure 2018062605
Figure 2018062605

一般式(IV)中、R〜Rは水素原子、置換若しくは非置換の炭素数1〜10のアルキル基及び置換若しくは非置換の炭素数1〜10のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。 In general formula (IV), R 1 to R 8 are selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, all of which are the same But it can be different. n represents an integer of 0 to 3.

置換若しくは非置換の炭素数1〜10の一価の炭化水素基としては、置換若しくは非置換の炭素数1〜10のアルキル基及び置換若しくは非置換の炭素数6〜10のアリル基が挙げられる。   Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms include a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms and a substituted or unsubstituted allyl group having 6 to 10 carbon atoms. .

置換若しくは非置換の炭素数1〜10のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等が挙げられる。置換若しくは非置換の炭素数1〜10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。   Examples of the substituted or unsubstituted alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group. Examples of the substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.

上記一般式(I)で示されるビフェニル型エポキシ樹脂としては、例えば、4,4’−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4’−ビフェノール又は4,4’−(3,3’,5,5’−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂が挙げられる。なかでも4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。   Examples of the biphenyl type epoxy resin represented by the general formula (I) include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3. , 3 ′, 5,5′-tetramethylbiphenyl as the main component, epichlorohydrin and 4,4′-biphenol or 4,4 ′-(3,3 ′, 5,5′-tetramethyl) biphenol An epoxy resin obtained by reacting is mentioned. Among these, an epoxy resin mainly composed of 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethylbiphenyl is preferable.

上記一般式(II)で示されるビスフェノールF型エポキシ樹脂としては、例えば、R、R、R及びRがメチル基で、R、R、R及びRが水素原子であり、n=0を主成分とするYSLV−80XY(商品名、新日鐵化学株式会社製)が市販品として入手可能である。 As the bisphenol F type epoxy resin represented by the general formula (II), for example, R 1 , R 3 , R 6 and R 8 are methyl groups, and R 2 , R 4 , R 5 and R 7 are hydrogen atoms. Yes, YSLV-80XY (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) having n = 0 as a main component is commercially available.

上記一般式(III)で示されるスチルベン型エポキシ樹脂は、原料であるスチルベン系フェノール類とエピクロルヒドリンとを塩基性物質存在下で反応させて得ることができる。この原料であるスチルベン系フェノール類としては、例えば3−t−ブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、3−t−ブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジ−t−ブチル−5,5’−ジメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジ−t−ブチル−6,6’−ジメチルスチルベンが挙げられ、なかでも3−t−ブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン及び4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベンが好ましい。これらのスチルベン型フェノール類は単独で用いても2種以上を組み合わせて用いてもよい。   The stilbene type epoxy resin represented by the above general formula (III) can be obtained by reacting a raw material stilbene phenol and epichlorohydrin in the presence of a basic substance. Examples of the raw material stilbene phenols include 3-t-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene, 3-t-butyl-4,4′-dihydroxy-3. ', 5', 6-trimethylstilbene, 4,4'-dihydroxy-3,3 ', 5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-di-t-butyl-5 , 5'-dimethylstilbene, 4,4'-dihydroxy-3,3'-di-t-butyl-6,6'-dimethylstilbene, among them 3-t-butyl-4,4'-dihydroxy -3 ', 5,5'-trimethylstilbene and 4,4'-dihydroxy-3,3', 5,5'-tetramethylstilbene are preferred. These stilbene type phenols may be used alone or in combination of two or more.

上記一般式(IV)で示される硫黄原子含有エポキシ樹脂のなかでも、R、R、R及びRが水素原子で、R、R、R及びRがアルキル基であるエポキシ樹脂が好ましく、R、R、R及びRが水素原子で、R及びRがt−ブチル基で、R及びRがメチル基であるエポキシ樹脂がより好ましい。このような化合物としては、商品名YSLV−120TE(新日鐵化学株式会社製)等が市販品として入手可能である。 Among the sulfur atom-containing epoxy resins represented by the general formula (IV), R 2 , R 3 , R 6 and R 7 are hydrogen atoms, and R 1 , R 4 , R 5 and R 8 are alkyl groups. Epoxy resins are preferred, and R 2 , R 3 , R 6 and R 7 are hydrogen atoms, R 1 and R 8 are t-butyl groups, and R 4 and R 5 are methyl groups. As such a compound, a trade name YSLV-120TE (manufactured by Nippon Steel Chemical Co., Ltd.) and the like are available as commercial products.

上記一般式(I)〜(IV)で示されるエポキシ樹脂は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよい。その含有量は、その性能を発揮するためにエポキシ樹脂全量に対して合計で40質量%以上とすることが好ましく、60質量%以上がより好ましく、80質量%以上とすることがさらに好ましい。   Any one of the epoxy resins represented by the general formulas (I) to (IV) may be used alone, or two or more may be used in combination. The content is preferably 40% by mass or more, more preferably 60% by mass or more, and still more preferably 80% by mass or more based on the total amount of the epoxy resin in order to exhibit the performance.

ノボラック型エポキシ樹脂としては、例えば下記一般式(V)で示されるエポキシ樹脂が挙げられる。   As a novolak-type epoxy resin, the epoxy resin shown by the following general formula (V) is mentioned, for example.

Figure 2018062605
Figure 2018062605

一般式(V)中、Rはそれぞれ独立して、水素原子及び置換若しくは非置換の炭素数1〜10の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。   In general formula (V), each R is independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.

上記一般式(V)で示されるノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂にエピクロルヒドリンを反応させることによって容易に得られる。なかでも、一般式(V)中のRとしては、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシ基が好ましく、水素原子又はメチル基がより好ましい。nは0〜3の整数が好ましい。上記一般式(V)で示されるノボラック型エポキシ樹脂のなかでも、オルトクレゾールノボラック型エポキシ樹脂が好ましい。   The novolak type epoxy resin represented by the general formula (V) can be easily obtained by reacting a novolak type phenol resin with epichlorohydrin. Especially, as R in general formula (V), it is a C1-C10 alkyl group, such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a methoxy group, and an ethoxy group. C1-C10 alkoxy groups, such as a propoxy group and a butoxy group, are preferable, and a hydrogen atom or a methyl group is more preferable. n is preferably an integer of 0 to 3. Among the novolak epoxy resins represented by the general formula (V), orthocresol novolac epoxy resins are preferable.

ノボラック型エポキシ樹脂を使用する場合、その含有量は、その性能を発揮するためにエポキシ樹脂全量に対して20質量%以上とすることが好ましく、30質量%以上がより好ましい。   In the case of using a novolac type epoxy resin, the content is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance.

ジシクロペンタジエン型エポキシ樹脂としては、例えば下記一般式(VI)で示されるエポキシ樹脂が挙げられる。   Examples of the dicyclopentadiene type epoxy resin include an epoxy resin represented by the following general formula (VI).

Figure 2018062605
Figure 2018062605

一般式(VI)中、Rはそれぞれ独立して、水素原子又は置換若しくは非置換の炭素数1〜10の一価の炭化水素基を示し、Rはそれぞれ独立して、置換若しくは非置換の炭素数1〜10の一価の炭化水素基を示す。nは0〜10の整数を示し、mは0〜6の整数を示す。 In general formula (VI), each R 1 independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 2 independently represents a substituted or unsubstituted group. The C1-C10 monovalent hydrocarbon group of these is shown. n represents an integer of 0 to 10, and m represents an integer of 0 to 6.

上記式(VI)中のRとしては、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基の置換若しくは非置換の炭素数1〜5の一価の炭化水素基が挙げられ、なかでもメチル基、エチル基等のアルキル基及び水素原子が好ましく、水素原子又はメチル基がより好ましい。 Examples of R 1 in the formula (VI) include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and a t-butyl group, a vinyl group, an allyl group, and a butenyl group. Alkenyl group, halogenated alkyl group, amino group-substituted alkyl group, mercapto group-substituted alkyl group substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms such as methyl group, ethyl group, etc. Are preferably an alkyl group and a hydrogen atom, more preferably a hydrogen atom or a methyl group.

上記式(VI)中のRとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基などの置換若しくは非置換の炭素数1〜5の一価の炭化水素基が挙げられる。なかでもmが0であることが好ましい。 R 2 in the above formula (VI) is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group or a t-butyl group, an alkenyl group such as a vinyl group, an allyl group or a butenyl group. And a substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms such as a halogenated alkyl group, an amino group-substituted alkyl group, and a mercapto group-substituted alkyl group. Among these, m is preferably 0.

ジシクロペンタジエン型エポキシ樹脂を使用する場合、その含有量は、その性能を発揮するためにエポキシ樹脂全量に対して20質量%以上とすることが好ましく、30質量%以上がより好ましい。   When a dicyclopentadiene type epoxy resin is used, its content is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance.

ナフタレン型エポキシ樹脂としては、例えば下記一般式(VII)で示されるエポキシ樹脂が挙げられる。トリフェニルメタン型エポキシ樹脂としては、例えば下記一般式(VIII)で示されるエポキシ樹脂が挙げられる。   As a naphthalene type epoxy resin, the epoxy resin shown, for example by the following general formula (VII) is mentioned. Examples of the triphenylmethane type epoxy resin include an epoxy resin represented by the following general formula (VIII).

Figure 2018062605
Figure 2018062605

一般式(VII)中、R〜Rは置換若しくは非置換の炭素数1〜12の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。pは1又は0で、l、mはそれぞれ0〜11の整数であって、(l+m)が1〜11の整数でかつ(l+p)が1〜12の整数となるよう選ばれる。iは0〜3の整数、jは0〜2の整数、kは0〜4の整数を示す。 In general formula (VII), R 1 to R 3 are selected from substituted or unsubstituted monovalent hydrocarbon groups having 1 to 12 carbon atoms, and all may be the same or different. p is 1 or 0, l and m are each an integer of 0 to 11, and (l + m) is an integer of 1 to 11 and (l + p) is an integer of 1 to 12. i represents an integer of 0 to 3, j represents an integer of 0 to 2, and k represents an integer of 0 to 4.

上記一般式(VII)で示されるナフタレン型エポキシ樹脂としては、l個の構成単位及びm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのいずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。   The naphthalene type epoxy resin represented by the general formula (VII) includes a random copolymer containing 1 constituent unit and m constituent units at random, an alternating copolymer containing alternating units, and a copolymer containing regularly. Examples thereof include block copolymers which are included in a combined or block form, and any one of these may be used alone, or two or more may be used in combination.

Figure 2018062605
Figure 2018062605

一般式(VIII)中、Rは水素原子及び置換若しくは非置換の炭素数1〜10の一価の炭化水素基から選ばれ、nは1〜10の整数を示す。   In general formula (VIII), R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10.

上記一般式(VII)及び(VIII)で示されるエポキシ樹脂は、いずれか1種を単独で用いても両者を組み合わせて用いてもよいが、その含有量は、その性能を発揮するためにエポキシ樹脂全量に対して合わせて20質量%以上とすることが好ましく、30質量%以上がより好ましく、50質量%以上とすることがさらに好ましい。   The epoxy resins represented by the above general formulas (VII) and (VIII) may be used either alone or in combination, but the content of the epoxy resin is an epoxy in order to exhibit its performance. The total amount of the resin is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.

上記のビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよい。   The biphenyl type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin and triphenylmethane type epoxy resin These may be used alone or in combination of two or more.

エポキシ樹脂の含有量は、組成物全量基準で10〜35質量%であることが好ましく、15〜30質量%であることがより好ましい。エポキシ樹脂の含有量が10質量%以上であると、封止用エポキシ樹脂組成物の粘度上昇をより抑えることができる傾向にある。エポキシ樹脂の含有量が30質量%以下であると、封止用エポキシ樹脂組成物の粘度低下をより抑えることができ、生産性がより向上する傾向にある。   The content of the epoxy resin is preferably 10 to 35% by mass and more preferably 15 to 30% by mass based on the total amount of the composition. When the content of the epoxy resin is 10% by mass or more, an increase in the viscosity of the sealing epoxy resin composition tends to be further suppressed. When the content of the epoxy resin is 30% by mass or less, a decrease in the viscosity of the epoxy resin composition for sealing can be further suppressed, and productivity tends to be further improved.

[(B)硬化剤]
(B)硬化剤は、封止用エポキシ樹脂組成物に一般的に使用されているもので特に制限はない。硬化剤としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂、フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、耐リフロー性向上の観点から、フェノール・アラルキル樹脂を用いることが好ましい。
[(B) Curing agent]
(B) A hardening | curing agent is generally used for the epoxy resin composition for sealing, and there is no restriction | limiting in particular. As the curing agent, for example, phenols such as phenol, cresol, resorcin, catechol, bisphenol A, and bisphenol F, or naphthols such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and aldehydes such as formaldehyde are used in an acidic catalyst. Novolak resins, phenol / aralkyl resins, naphthol / aralkyl resins, and the like obtained by condensation or cocondensation with the above. These may be used alone or in combination of two or more. Among these, it is preferable to use a phenol-aralkyl resin from the viewpoint of improving reflow resistance.

硬化剤は、エポキシ樹脂のエポキシ基1当量に対して、エポキシ基との反応基(例えば、上記ノボラック樹脂のフェノール性水酸基)が0.5〜1.5当量になるように配合されることが好ましく、0.7〜1.2当量配合することがより好ましい。   The curing agent may be blended so that the reactive group with the epoxy group (for example, the phenolic hydroxyl group of the novolak resin) is 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin. Preferably, 0.7 to 1.2 equivalents are blended.

硬化剤の含有量は、組成物全量基準で7〜17質量%であることが好ましく、9〜14質量%であることがより好ましい。硬化剤の含有量が7質量%以上であると、封止用エポキシ樹脂組成物の粘度上昇をより抑えることができる傾向にある。硬化剤の含有量が15質量%以下であると、封止用エポキシ樹脂組成物の粘度低下をより抑えることができ、生産性がより向上する傾向にある。   The content of the curing agent is preferably 7 to 17% by mass and more preferably 9 to 14% by mass based on the total amount of the composition. When the content of the curing agent is 7% by mass or more, an increase in the viscosity of the epoxy resin composition for sealing tends to be further suppressed. When the content of the curing agent is 15% by mass or less, a decrease in viscosity of the epoxy resin composition for sealing can be further suppressed, and productivity tends to be further improved.

[(C)金属水酸化物]
(C)金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、複合金属水酸化物等の金属化合物が挙げられる。(C)金属水酸化物は、構成元素としてマグネシウム又は亜鉛を含むことが好ましく、マグネシウム及び亜鉛の両方を含むことがより好ましい。
[(C) Metal hydroxide]
(C) As a metal hydroxide, metal compounds, such as aluminum hydroxide, magnesium hydroxide, zinc hydroxide, a composite metal hydroxide, are mentioned. (C) The metal hydroxide preferably contains magnesium or zinc as a constituent element, and more preferably contains both magnesium and zinc.

複合金属水酸化物は、下記組成式(XX)で示される化合物が好ましい。

Figure 2018062605
The composite metal hydroxide is preferably a compound represented by the following composition formula (XX).
Figure 2018062605

組成式(XX)中、M、M及びMは互いに異なる金属元素を示し、a、b、c、d、e、f、p、q及びmは正の整数、rは0又は正の整数を示す。 In the composition formula (XX), M 1 , M 2 and M 3 represent different metal elements, a, b, c, d, e, f, p, q and m are positive integers, r is 0 or positive Indicates an integer.

これらの中でも、上記組成式(XX)中のrが0である化合物、すなわち、下記組成式(XXI)で示される化合物がより好ましい。   Among these, a compound in which r in the composition formula (XX) is 0, that is, a compound represented by the following composition formula (XXI) is more preferable.

Figure 2018062605
Figure 2018062605

組成式(XXI)中、M及びMは、互いに異なる金属元素を示し、a、b、c、d、p、q及びmは正の整数を示す。 In the composition formula (XXI), M 1 and M 2 represent different metal elements, and a, b, c, d, p, q, and m represent positive integers.

上記組成式(XX)及び(XXI)中のM及びMは、互いに異なる金属元素であれば特に制限はないが、難燃性の観点からは、MとMが同一とならないように、Mが第3周期の金属元素、アルカリ土類金属元素、及び3族、4族、8〜14族に属する金属元素、Mが3〜12族の遷移金属元素からそれぞれ選ばれることが好ましい。Mがマグネシウム、カルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅及び亜鉛、Mが鉄、コバルト、ニッケル、銅及び亜鉛からそれぞれ選ばれることがより好ましい。流動性の観点から、Mがマグネシウム、Mが亜鉛又はニッケルであることが好ましく、MがマグネシウムでMが亜鉛であることがより好ましい。 M 1 and M 2 in the composition formulas (XX) and (XXI) are not particularly limited as long as they are different metal elements, but from the viewpoint of flame retardancy, M 1 and M 2 are not the same. M 1 is selected from a metal element of the third period, an alkaline earth metal element, a metal element belonging to Group 3, 4 or 8 to 14, and M 2 is selected from a transition metal element of Group 3 to 12, respectively. Is preferred. More preferably, M 1 is selected from magnesium, calcium, aluminum, tin, titanium, iron, cobalt, nickel, copper and zinc, and M 2 is selected from iron, cobalt, nickel, copper and zinc. From the viewpoint of fluidity, M 1 is preferably magnesium and M 2 is preferably zinc or nickel, more preferably M 1 is magnesium and M 2 is zinc.

上記組成式(XX)中のp、q及びrのモル比は、本発明の効果が阻害されない範囲で適宜設定することができる。例えば、r=0のとき、qに対するpのモル比(p/q)を99/1〜50/50とすることができる。すなわち、上記組成式(XXI)中のnに対するmのモル比(m/n)を99/1〜50/50とすることができる。   The molar ratio of p, q, and r in the composition formula (XX) can be appropriately set within a range in which the effects of the present invention are not inhibited. For example, when r = 0, the molar ratio of p to q (p / q) can be 99/1 to 50/50. That is, the molar ratio (m / n) of m to n in the composition formula (XXI) can be 99/1 to 50/50.

金属水酸化物の形状は、特に制限されないが、流動性、充填性の観点から、平板状よりも適度の厚みを有する多面体形状が好ましい。複合金属水酸化物は、単独の金属からなる水酸化物よりも多面体形状の結晶を得やすい傾向にある。   The shape of the metal hydroxide is not particularly limited, but from the viewpoint of fluidity and filling properties, a polyhedral shape having an appropriate thickness rather than a flat plate shape is preferable. A composite metal hydroxide tends to obtain polyhedral crystals more easily than a hydroxide made of a single metal.

金属水酸化物の平均粒径は、1.0〜10.0μmであることが好ましく、1.1〜9.0μmであることがより好ましい。平均粒径が1.0μm以上であると、封止用エポキシ樹脂組成物の粘度上昇をより抑えることができる傾向にある。平均粒径が10.0μm以下であると、封止用エポキシ樹脂組成物が狭いギャップへより充填されやすくなる傾向にある。ここで、平均粒径は、レーザー回折/散乱式粒子径分布測定装置によって測定される値を意味する。   The average particle size of the metal hydroxide is preferably 1.0 to 10.0 μm, and more preferably 1.1 to 9.0 μm. When the average particle size is 1.0 μm or more, an increase in the viscosity of the epoxy resin composition for sealing tends to be further suppressed. When the average particle size is 10.0 μm or less, the sealing epoxy resin composition tends to be more easily filled into a narrow gap. Here, the average particle size means a value measured by a laser diffraction / scattering particle size distribution measuring apparatus.

金属水酸化物の比表面積は、1.0〜6.0m/gであることが好ましく、1.5〜5.5m/gであることがより好ましい。比表面積が1.0m/g以上であると、封止用エポキシ樹脂組成物が狭いギャップへより充填されやすくなる傾向にある。平均粒径が6.0m/g以下であると、封止用エポキシ樹脂組成物の粘度上昇をより抑えることができる傾向にある。ここで、比表面積は、粉体粒子の表面に吸着占有面積が既知のガス分子を吸着させ、その量から比表面積を算出するBET法によって測定される値を意味する。 The specific surface area of the metal hydroxide is preferably 1.0~6.0m 2 / g, more preferably 1.5~5.5m 2 / g. When the specific surface area is 1.0 m 2 / g or more, the sealing epoxy resin composition tends to be more easily filled into a narrow gap. When the average particle size is 6.0 m 2 / g or less, the viscosity increase of the sealing epoxy resin composition tends to be further suppressed. Here, the specific surface area means a value measured by a BET method in which a gas molecule having a known adsorption occupation area is adsorbed on the surface of the powder particles and the specific surface area is calculated from the amount.

金属水酸化物の含有量は、組成物全量基準で40〜80質量%である。金属水酸化物の含有量は、43〜78質量%であることが好ましく、45〜75質量%であることがより好ましい。金属水酸化物の含有量が40質量%以上であると、成形温度時に高い収縮率が得られる。金属水酸化物の含有量が80質量%以下であること、良好な流動性を確保することができる。   The content of the metal hydroxide is 40 to 80% by mass based on the total amount of the composition. The content of the metal hydroxide is preferably 43 to 78% by mass, and more preferably 45 to 75% by mass. When the content of the metal hydroxide is 40% by mass or more, a high shrinkage rate can be obtained at the molding temperature. The content of the metal hydroxide is 80% by mass or less, and good fluidity can be ensured.

[その他の成分]
一実施形態の封止用エポキシ樹脂組成物には、上記(A)〜(C)成分以外に必要に応じて、無機充填剤、カップリング剤、硬化促進剤、離型剤、着色剤等を他の成分として含有していてもよい。
[Other ingredients]
In addition to the components (A) to (C), the epoxy resin composition for sealing according to one embodiment includes an inorganic filler, a coupling agent, a curing accelerator, a release agent, a colorant, and the like as necessary. You may contain as another component.

無機充填剤としては、シリカ粉末、アルミナ粉末等が挙げられる。シリカ粉末としては、溶融シリカ粉末、結晶性シリカ粉末等が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填剤は、高充填性及び高流動性の観点から溶融シリカ粉末であることが好ましい。溶融シリカ粉末としては、例えば、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられる。溶融シリカ粉末は、流動性の観点から、球状溶融シリカ粉末であることが好ましい。また、熱伝導性が要求される場合には、アルミナ粉末を用いることが好ましい。   Examples of the inorganic filler include silica powder and alumina powder. Examples of the silica powder include fused silica powder and crystalline silica powder. These may be used alone or in combination of two or more. The inorganic filler is preferably a fused silica powder from the viewpoint of high filling properties and high fluidity. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. The fused silica powder is preferably a spherical fused silica powder from the viewpoint of fluidity. When thermal conductivity is required, it is preferable to use alumina powder.

カップリング剤は、封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はない。そのようなカップリング剤としては、例えば、1級及び/又は2級及び/又は3級アミノ基を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物が挙げられる。より具体的には、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アニリノプロピルトリメトキシシラン、γ−(N−エチル)アニリノプロピルトリメトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アニリノプロピルトリエトキシシラン、γ−(N−エチル)アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、γ−(N−メチル)アニリノプロピルメチルジメトキシシラン、γ−(N−エチル)アニリノプロピルメチルジメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、充填性の観点から、(メタ)クリロイル基を有するγ−(メタ)クリロキシプロピルトリメトキシシラン等のシランカップリング剤であることが好ましい。このようなシランカップリング剤を用いると、(A)エポキシ樹脂及び(B)硬化剤と、(C)金属水酸化物との濡れ性が向上し、樹脂組成物全体の流動性がより向上する傾向にある。   The coupling agent is not particularly limited as it is generally used in an epoxy resin composition for sealing. Examples of such a coupling agent include various silane compounds such as silane compounds having primary and / or secondary and / or tertiary amino groups, epoxy silane, mercapto silane, alkyl silane, ureido silane, and vinyl silane, Examples thereof include titanium compounds, aluminum chelates, and aluminum / zirconium compounds. More specifically, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- Glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-amino Propyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropyltrimethoxysilane Γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxysilane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N -Ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N-dibutyl) amino Propyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxysilane, γ- (N, N-diethyl) aminopropylmethyldimethoxysilane, γ- (N, N-dibutyl) aminopropylmethyl Tildimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) Silane coupling agents such as ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, isopropyltri Isostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl (Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, Isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyltri (dioctylphosphate) titanate, isopropyltricumylphenyl titanate, tetraisopropylbis (dioctylphosphite) titanate And titanate coupling agents such as These may be used alone or in combination of two or more. Among these, from the viewpoint of filling properties, a silane coupling agent such as γ- (meth) acryloxypropyltrimethoxysilane having a (meth) acryloyl group is preferable. When such a silane coupling agent is used, the wettability of (A) the epoxy resin and (B) curing agent and (C) the metal hydroxide is improved, and the fluidity of the entire resin composition is further improved. There is a tendency.

カップリング剤を用いる場合、その含有量は、組成物全量基準で0.1〜1.0質量%であることが好ましく、0.2〜0.7質量%であることがより好ましい。   When using a coupling agent, it is preferable that the content is 0.1-1.0 mass% on the composition whole quantity basis, and it is more preferable that it is 0.2-0.7 mass%.

硬化促進剤は、封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はない。そのような硬化促進剤としては、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5,6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物;これらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体;2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類;これらの有機ホスフィン類に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体が挙げられる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、充填性及び耐リフロー性の観点から、1,8−ジアザビシクロ(5.4.0)ウンデセン−7、1,5−ジアザビシクロ(4.3.0)ノネンのジアザビシクロアルケン系化合物等を用いることが好ましい。   A hardening accelerator is generally used for the epoxy resin composition for sealing and is not particularly limited. Examples of such a curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, and 5,6-dibutyl. Cycloamidine compounds such as amino-1,8-diaza-bicyclo (5,4,0) undecene-7; maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone A compound having intramolecular polarization formed by adding a compound having a π bond such as a quinone compound such as diazophenylmethane or a phenol resin; benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and derivatives thereof; Imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and the like Derivatives; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine; maleic anhydride, quinone compounds, diazophenylmethane A phosphorus compound having intramolecular polarization formed by adding a compound having a π bond such as a phenol resin; tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetrapheny Borate, 2-ethyl-4-methylimidazole tetraphenyl borate, tetraphenyl boron salts and derivatives thereof such as N- methylmorpholine tetraphenylborate and the like. These may be used alone or in combination of two or more. Among these, diazabicycloalkene compounds of 1,8-diazabicyclo (5.4.0) undecene-7,1,5-diazabicyclo (4.3.0) nonene from the viewpoints of filling property and reflow resistance. Etc. are preferably used.

硬化促進剤を用いる場合、硬化促進効果が達成される量であれば特に制限されないが、その含有量は、組成物全量基準で0.005〜2質量%であることが好ましく、0.01〜0.5であることがより好ましい。   When a curing accelerator is used, it is not particularly limited as long as the curing acceleration effect is achieved, but the content is preferably 0.005 to 2% by mass based on the total amount of the composition, 0.01 to More preferably, it is 0.5.

離型剤としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸カルシウム等の化合物が挙げられる。例えば、カルナバワックス、ポリエチレン系ワックスが挙げられる。これらは1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。   Examples of the release agent include compounds such as higher fatty acids, higher fatty acid esters, and higher fatty acid calcium. Examples thereof include carnauba wax and polyethylene wax. These may contain 1 type independently and may contain 2 or more types in combination.

一実施形態の封止用エポキシ樹脂組成物は、例えば、以下のように製造することができる。すなわち、(A)エポキシ樹脂、(B)硬化剤、(C)金属水酸化物、及び必要に応じて他の成分を常法に準じて適宜配合し、ミキシングロール機等の混練機を用いて加熱状態で溶融混練して混練物を得る。その後、混練物を室温下で冷却固化させる。その後、公知の手段により粉砕し、必要に応じて打錠する。このような一連の工程により目的とする封止用エポキシ樹脂組成物を製造することができる。   The epoxy resin composition for sealing of one embodiment can be manufactured as follows, for example. That is, (A) an epoxy resin, (B) a curing agent, (C) a metal hydroxide, and other components as needed are appropriately blended according to a conventional method, and using a kneader such as a mixing roll machine. Melted and kneaded in a heated state to obtain a kneaded product. Thereafter, the kneaded product is cooled and solidified at room temperature. Then, it grind | pulverizes by a well-known means and it compresses as needed. The target sealing epoxy resin composition can be produced by such a series of steps.

一実施形態に係る封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤及び(C)金属水酸化物を含有する。(C)金属水酸化物が組成物全量基準で40〜80質量%である。これにより、封止用エポキシ樹脂組成物の硬化物の線膨張係数を高くすることができ、さらに成形収縮率を高くすることができる。このため、金属及び基板を一体成形された半導体のパッケージの反りを低減することができる。   The epoxy resin composition for sealing which concerns on one Embodiment contains (A) epoxy resin, (B) hardening | curing agent, and (C) metal hydroxide. (C) A metal hydroxide is 40-80 mass% on the basis of the total amount of the composition. Thereby, the linear expansion coefficient of the hardened | cured material of the epoxy resin composition for sealing can be made high, and also a molding shrinkage rate can be made high. For this reason, it is possible to reduce the warpage of the semiconductor package in which the metal and the substrate are integrally formed.

<半導体装置>
続いて、本実施形態の半導体装置について説明する。また、かかる半導体装置の説明を通じて本実施形態の封止用エポキシ樹脂組成物の好適な用途及び使用方法について説明する。
<Semiconductor device>
Next, the semiconductor device of this embodiment will be described. Moreover, the suitable use and usage method of the epoxy resin composition for sealing of this embodiment are demonstrated through description of this semiconductor device.

本実施形態の半導体装置は、上述の封止用エポキシ樹脂組成物の硬化物により封止された素子を備える半導体装置である。半導体装置は、例えば、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材と、支持部材上に搭載された素子と、当該素子を封止するエポキシ樹脂組成物の硬化物と、を備える。   The semiconductor device of this embodiment is a semiconductor device provided with the element sealed with the hardened | cured material of the above-mentioned epoxy resin composition for sealing. A semiconductor device is, for example, a support member such as a lead frame, a wired tape carrier, a wiring board, glass, or a silicon wafer, an element mounted on the support member, and a curing of an epoxy resin composition that seals the element. A thing.

素子としては、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、並びに、コンデンサ、抵抗体、及びコイル等の受動素子等が挙げられる。このような素子が、上記実施形態に係るエポキシ樹脂組成物を用いてトランスファー成形又はコンプレッション成形によって封止される工程を経て、半導体装置が製造される。   Examples of the element include active elements such as a semiconductor chip, a transistor, a diode, and a thyristor, and passive elements such as a capacitor, a resistor, and a coil. A semiconductor device is manufactured through a process in which such an element is sealed by transfer molding or compression molding using the epoxy resin composition according to the embodiment.

半導体装置の具体例としては、半導体チップを、上記実施形態に係るエポキシ樹脂組成物で封止したTCP(Tape Carrier Package);配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、若しくはサイリスタ等の能動素子、及び/又はコンデンサ、抵抗体、若しくはコイル等の受動素子を、上記実施形態に係るエポキシ樹脂組成物で封止したCOB(Chip On Board)モジュール;ハイブリッドIC;マルチチップモジュール;裏面に配線板接続用の端子を形成した有機基板の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と有機基板に形成された配線を接続した後、上記実施形態に係るエポキシ樹脂組成物で素子を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)などが挙げられる。また、プリント回路板においても上記実施形態に係るエポキシ樹脂組成物を有効に使用することができる。   Specific examples of the semiconductor device include a TCP (Tape Carrier Package) in which a semiconductor chip is sealed with the epoxy resin composition according to the above embodiment; wire bonding, flip chip bonding, wiring formed on a wiring board or glass; COB (in which an active element such as a semiconductor chip, transistor, diode, or thyristor connected by solder or the like and / or a passive element such as a capacitor, resistor, or coil is sealed with the epoxy resin composition according to the above-described embodiment) Chip On Board) module; hybrid IC; multi-chip module; devices are mounted on the surface of an organic substrate on which wiring board connection terminals are formed on the back surface, and the devices and wiring formed on the organic substrate are connected by bump or wire bonding After the above embodiment That the epoxy resin composition sealing the element with sealed and BGA (Ball Grid Array), and the like CSP (Chip Size Package). In addition, the epoxy resin composition according to the above embodiment can also be used effectively in a printed circuit board.

以下、本発明を以下の実施例及び比較例にてより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail by a following example and a comparative example, this invention is not limited to these Examples.

(実施例1〜3、比較例1〜3)
<封止用エポキシ樹脂組成物の調製>
(A)エポキシ樹脂
エポキシ樹脂として、以下を用いた。
エポキシ樹脂1:o−クレゾールノボラック型エポキシ樹脂、日本化薬株式会社製、商品名:EOCN−1020、エポキシ当量:195g/eq、融点:67℃
エポキシ樹脂2:エポキシ樹脂、日立化成株式会社製、商品名:PYB−3K2、エポキシ当量:192g/eq、融点:106℃
(Examples 1-3, Comparative Examples 1-3)
<Preparation of epoxy resin composition for sealing>
(A) Epoxy resin The following was used as an epoxy resin.
Epoxy resin 1: o-cresol novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name: EOCN-1020, epoxy equivalent: 195 g / eq, melting point: 67 ° C.
Epoxy resin 2: Epoxy resin, manufactured by Hitachi Chemical Co., Ltd., trade name: PYB-3K2, epoxy equivalent: 192 g / eq, melting point: 106 ° C.

(B)硬化剤
硬化剤として、以下を用いた。
硬化剤:ヒドロキシベンズアルデヒド/フェノ−ル重縮合物、明和化成株式会社製、商品名:MEH−7500−3S、水酸基当量:103g/eq
(B) Curing agent The following was used as the curing agent.
Curing agent: hydroxybenzaldehyde / phenol polycondensate, manufactured by Meiwa Kasei Co., Ltd., trade name: MEH-7500-3S, hydroxyl group equivalent: 103 g / eq

(C)金属水酸化物
金属水酸化物として、以下を用いた。
金属水酸化物:複合金属水酸化物、タテホ化学株式会社製、商品名:ECOMAG Z−10、平均粒径:1.2μm、比表面積:2.9m/g、金属元素として、マグネシウム及び亜鉛を含む
(C) Metal hydroxide The following was used as a metal hydroxide.
Metal hydroxide: Composite metal hydroxide, manufactured by Tateho Chemical Co., Ltd., trade name: ECOMAG Z-10, average particle size: 1.2 μm, specific surface area: 2.9 m 2 / g, magnesium and zinc as metal elements including

無機充填剤
無機充填剤として、以下を用いた。
無機充填剤:溶融シリカ、電気化学工業株式会社製、商品名:SFP−30M、平均粒径0.7μm
Inorganic filler The following was used as the inorganic filler.
Inorganic filler: fused silica, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: SFP-30M, average particle size 0.7 μm

カップリング剤
カップリング剤:3−グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製、商品名:KBM−403
Coupling agent Coupling agent: 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403

硬化促進剤
硬化促進剤:トリブチルホスフィンとベンゾキノンとの付加物
Curing accelerator Curing accelerator: Adduct of tributylphosphine and benzoquinone

その他の成分として、以下を使用した。
着色剤:カーボンブラック(三菱化学株式会社製、商品名:MA−600MJ)
離型剤:ヘキストワックス(クラリアント社製、商品名:HW−E)
The following were used as other components.
Colorant: Carbon Black (Mitsubishi Chemical Corporation, trade name: MA-600MJ)
Mold release agent: Hoechst wax (manufactured by Clariant, trade name: HW-E)

各成分を表1に示す割合で配合し、ミキサーにて十分に混合した後、2軸混練機を用いて約100℃にて2分間溶融混練した。この溶融物を冷却した後、固体状になったものを粉末状に粉砕して、実施例1〜3及び比較例1〜3の粉末状エポキシ樹脂組成物をそれぞれ調製した。なお、実施例1〜3の金属水酸化物量と比較例1〜3の無機充填剤量とが同量になるように調製した。表1中の配合単位は特に記載のない限り質量部である。また、「−」は未配合であることを示す。また、金属水酸化物量は、組成物全量を基準とした含有量である。   Each component was blended in the proportions shown in Table 1 and thoroughly mixed with a mixer, and then melt-kneaded at about 100 ° C. for 2 minutes using a biaxial kneader. After this melt was cooled, the solid material was pulverized into powders to prepare powdery epoxy resin compositions of Examples 1 to 3 and Comparative Examples 1 to 3, respectively. In addition, it prepared so that the metal hydroxide amount of Examples 1-3 and the inorganic filler amount of Comparative Examples 1-3 might become the same amount. The blending units in Table 1 are parts by mass unless otherwise specified. In addition, “-” indicates that it is not blended. The amount of metal hydroxide is a content based on the total amount of the composition.

ガラス転移温度及び熱膨張係数は、熱機械分析装置(ティー・エイ・インスツルメント・ジャパン株式会社、商品名:TMAQ400)を用い、エポキシ樹脂組成物を175℃で硬化した試験片を荷重1g、測定温度30℃〜240℃、昇温速度5℃/分の条件で測定した。ガラス転移温度以下の熱膨張係数をCTE−1、ガラス転移温度以上の熱膨張係数をCTE−2とした。熱膨張係数を表1に示す。   The glass transition temperature and the thermal expansion coefficient were measured using a thermomechanical analyzer (TE Instruments Japan Co., Ltd., trade name: TMAQ400), a test piece obtained by curing the epoxy resin composition at 175 ° C. with a load of 1 g, The measurement was performed under the conditions of a measurement temperature of 30 ° C. to 240 ° C. and a heating rate of 5 ° C./min. The coefficient of thermal expansion below the glass transition temperature was CTE-1, and the coefficient of thermal expansion above the glass transition temperature was CTE-2. Table 1 shows the thermal expansion coefficient.

成形収縮率は、JIS−K−6911に準拠した試験方法に従い測定した。成形収縮率を表1に示す。   The molding shrinkage was measured according to a test method based on JIS-K-6911. Table 1 shows the molding shrinkage.

Figure 2018062605
Figure 2018062605

実施例1と比較例1との対比、実施例2と比較例2との対比、及び実施例3と比較例3との対比から、実施例の封止用エポキシ樹脂組成物の硬化物が、比較例のものよりも大きな線膨張係数を有し、且つ高い成形収縮率を有することが判明した。これら結果から、本発明の封止用エポキシ樹脂組成物が、成形温度時に高い収縮率を有する硬化物を与えることが確認された。   From the comparison between Example 1 and Comparative Example 1, the comparison between Example 2 and Comparative Example 2, and the comparison between Example 3 and Comparative Example 3, the cured product of the sealing epoxy resin composition of Example was: It was found to have a linear expansion coefficient larger than that of the comparative example and to have a high molding shrinkage. From these results, it was confirmed that the epoxy resin composition for sealing of the present invention gives a cured product having a high shrinkage at the molding temperature.

Claims (7)

(A)エポキシ樹脂、(B)硬化剤及び(C)金属水酸化物を含有し、前記(C)金属水酸化物の含有量が40〜80質量%である、封止用エポキシ樹脂組成物。   (A) An epoxy resin composition for sealing, containing (B) a curing agent and (C) a metal hydroxide, wherein the content of the (C) metal hydroxide is 40 to 80% by mass. . 前記(C)金属水酸化物の平均粒径が1.0〜10.0μmである、請求項1に記載の封止用エポキシ樹脂組成物。   The epoxy resin composition for sealing according to claim 1, wherein the average particle diameter of the (C) metal hydroxide is 1.0 to 10.0 µm. 前記(C)金属水酸化物の比表面積が1.0〜6.0m/gである、請求項1又は2に記載の封止用エポキシ樹脂組成物。 The epoxy resin composition for sealing according to claim 1 or 2, wherein the (C) metal hydroxide has a specific surface area of 1.0 to 6.0 m 2 / g. 前記(C)金属水酸化物が構成元素としてマグネシウム又は亜鉛を含む、請求項1〜3のいずれか一項に記載の封止用エポキシ樹脂組成物。   The epoxy resin composition for sealing according to any one of claims 1 to 3, wherein the (C) metal hydroxide contains magnesium or zinc as a constituent element. 前記(C)金属水酸化物が構成元素としてマグネシウム及び亜鉛の両方を含む、請求項1〜4のいずれか一項に記載の封止用エポキシ樹脂組成物。   The epoxy resin composition for sealing according to any one of claims 1 to 4, wherein the (C) metal hydroxide contains both magnesium and zinc as constituent elements. 請求項1〜5のいずれか一項に記載の封止用エポキシ樹脂組成物の硬化物で封止されている素子を備える、半導体装置。   A semiconductor device provided with the element sealed with the hardened | cured material of the epoxy resin composition for sealing as described in any one of Claims 1-5. 請求項1〜5のいずれか一項に記載の封止用エポキシ樹脂組成物を用いて、トランスファー成形又はコンプレッション成形によって、素子を封止する工程を備える、半導体装置の製造方法。   The manufacturing method of a semiconductor device provided with the process of sealing an element by transfer molding or compression molding using the epoxy resin composition for sealing as described in any one of Claims 1-5.
JP2016202712A 2016-10-14 2016-10-14 Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method Active JP6838345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202712A JP6838345B2 (en) 2016-10-14 2016-10-14 Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202712A JP6838345B2 (en) 2016-10-14 2016-10-14 Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018062605A true JP2018062605A (en) 2018-04-19
JP6838345B2 JP6838345B2 (en) 2021-03-03

Family

ID=61966490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202712A Active JP6838345B2 (en) 2016-10-14 2016-10-14 Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6838345B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168428A (en) * 1986-12-29 1988-07-12 Koei Chem Co Ltd Composite material having mechanical properties
JP2006052392A (en) * 2004-07-13 2006-02-23 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic device
JP2006241281A (en) * 2005-03-02 2006-09-14 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2008063570A (en) * 2006-08-09 2008-03-21 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device
JP2012158651A (en) * 2011-01-31 2012-08-23 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2014133830A (en) * 2013-01-10 2014-07-24 Panasonic Corp Epoxy resin composition for semiconductor encapsulation and single-sided encapsulation type semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168428A (en) * 1986-12-29 1988-07-12 Koei Chem Co Ltd Composite material having mechanical properties
JP2006052392A (en) * 2004-07-13 2006-02-23 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic device
JP2006241281A (en) * 2005-03-02 2006-09-14 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2008063570A (en) * 2006-08-09 2008-03-21 Hitachi Chem Co Ltd Epoxy resin composition and electronic component device
JP2012158651A (en) * 2011-01-31 2012-08-23 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product
JP2014133830A (en) * 2013-01-10 2014-07-24 Panasonic Corp Epoxy resin composition for semiconductor encapsulation and single-sided encapsulation type semiconductor device

Also Published As

Publication number Publication date
JP6838345B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6282390B2 (en) Epoxy resin molding material for sealing and semiconductor device using the same
JP4892164B2 (en) Liquid epoxy resin composition and electronic component device
JP2004307645A (en) Sealing epoxy resin molding compound and semiconductor device
JP6384555B2 (en) Solid sealing resin composition for compression molding and semiconductor device
JP2024026589A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2004307650A (en) Epoxy resin molding material for sealing and semiconductor device
JP2024012392A (en) Epoxy resin composition, and electronic component device
JP2018172545A (en) Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2004307649A (en) Epoxy resin molding material for sealing and semiconductor device
TW202120580A (en) Epoxy resin composition, electronic component device and method of producing electronic component device
WO2020262654A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP4418165B2 (en) Epoxy resin molding material for sealing and semiconductor device
JPWO2020065872A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2004307646A (en) Sealing epoxy resin molding compound and semiconductor device
WO2021049645A1 (en) Encapsulating material for compression molding and electronic part and device
JP7343978B2 (en) Epoxy resin composition and electronic component equipment
JP6838345B2 (en) Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method
JPWO2020065873A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2004331677A (en) Epoxy resin composition for sealing and electronic part device
WO2020067016A1 (en) Sealing resin composition, electronic component device, and manufacturing method of electronic component device
JP6849115B2 (en) Epoxy resin composition for mold underfill, semiconductor device and its manufacturing method
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
JP2007092083A (en) Epoxy resin molding material for sealing and semiconductor device
JP2022011184A (en) Sealing resin composition and electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6838345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350