JP2018059684A - Chemical heat storage reactor and chemical heat storage system - Google Patents

Chemical heat storage reactor and chemical heat storage system Download PDF

Info

Publication number
JP2018059684A
JP2018059684A JP2016198359A JP2016198359A JP2018059684A JP 2018059684 A JP2018059684 A JP 2018059684A JP 2016198359 A JP2016198359 A JP 2016198359A JP 2016198359 A JP2016198359 A JP 2016198359A JP 2018059684 A JP2018059684 A JP 2018059684A
Authority
JP
Japan
Prior art keywords
heat
heat storage
frame
reaction medium
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016198359A
Other languages
Japanese (ja)
Other versions
JP6733482B2 (en
Inventor
美代 望月
Miyo Mochizuki
美代 望月
山内 崇史
Takashi Yamauchi
崇史 山内
真彦 山下
Masahiko Yamashita
真彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016198359A priority Critical patent/JP6733482B2/en
Publication of JP2018059684A publication Critical patent/JP2018059684A/en
Application granted granted Critical
Publication of JP6733482B2 publication Critical patent/JP6733482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve improvement in bond strength between a lamination unit and piping in a chemical heat storage system.SOLUTION: A reactor 20 includes: a lamination unit 24 in which a plurality of laminates 51 are laminated constituted by including a heat storage material compact 40, a frame part 44 for storing a heat storage material inside and having a first space and a second space in which a heating medium flows, a heat exchange part 42 which is bonded with the frame part 44, which is formed to be thinner than the frame part 44 and in which the heating medium flows, a reaction medium dissipation layer 36 which is arranged on one side of the heat storage material compact 40 and in which a reaction medium flows, and a filter 34 arranged between the heat storage material compact 40 and the reaction medium dissipation layer 36; and a reaction vessel 22 for storing the lamination unit 24. As the first space and the second space in which the heating medium flows are provided at the frame part 44, piping communicating with the first space and the second space can be connected to a side part of the frame part 44 which is formed to be thicker than the heat exchange part 42. Thus, bond strength can be improved compared to the case in which the piping is connected to the side part of the heat exchange part 42.SELECTED DRAWING: Figure 7

Description

本発明は、化学反応によって蓄熱する化学蓄熱反応器、及び化学蓄熱システムに関する。   The present invention relates to a chemical heat storage reactor that stores heat by a chemical reaction, and a chemical heat storage system.

特許文献1に記載の構成では、枠部の内部に蓄熱材を収容した蓄熱材層、フィルタ、反応媒体拡散層、及び熱交換部が積層されることで化学蓄熱反応器の積層体が形成されており、その積層体が複数個積層されて一体化された積層ユニットが容器内に収容されている。
積層ユニットの側部には、熱交換部に外部から熱媒体を供給する配管が配置されており、該配管が分岐用の配管を介して熱交換部の側面に接合されている。
In the configuration described in Patent Document 1, a heat storage material layer containing a heat storage material, a filter, a reaction medium diffusion layer, and a heat exchange unit are stacked inside the frame to form a stack of chemical heat storage reactors. A laminated unit in which a plurality of laminated bodies are laminated and integrated is accommodated in a container.
A pipe for supplying a heat medium from the outside to the heat exchanging unit is disposed on the side of the laminated unit, and the pipe is joined to a side surface of the heat exchanging unit via a branching pipe.

特開2014−126293号公報JP 2014-126293 A

ところで、熱交換部は、枠部に比較して薄く形成されているため、枠部の側部に配管を接続することが難しく、枠部の側部と配管との接合面積を大きくとることができず、枠部と配管との接合強度、即ち、積層ユニットと配管との接合強度を向上することが困難であった。   By the way, since the heat exchanging part is formed thinner than the frame part, it is difficult to connect the pipe to the side part of the frame part, and the joining area between the side part of the frame part and the pipe can be increased. However, it was difficult to improve the bonding strength between the frame portion and the pipe, that is, the bonding strength between the laminated unit and the pipe.

本願発明の課題は、化学蓄熱反応器、及び化学蓄熱システムにおいて、積層ユニットと配管との接合強度の向上を図ることである。   The subject of this invention is aiming at the improvement of the joint strength of a lamination | stacking unit and piping in a chemical thermal storage reactor and a chemical thermal storage system.

請求項1に記載の化学蓄熱反応器は、反応媒体と結合することで発熱又は反応媒体が脱離して蓄熱する蓄熱材と、内側に前記蓄熱材を収容する枠部と、枠部よりも薄く形成され内部に流れる熱媒体によって前記蓄熱材への熱供給及び前記蓄熱材からの熱回収を行う平板状の熱交換部と、前記蓄熱材の一方の側に配置され反応媒体が流れる反応媒体拡散層と、前記蓄熱材と前記反応媒体拡散層との間に配置され複数の孔が形成されたフィルタと、を含んで構成される積層体が複数積層された積層ユニットと、前記積層ユニットを内部に収容する容器と、を備え、前記枠部は、前記熱媒体が流れ前記熱交換部の上流側と連通する第1空間と、前記第1空間と対向して配置され前記熱媒体が流れると共に、前記熱交換部の下流側と連通する第2空間とを有する。   The chemical heat storage reactor according to claim 1, wherein the chemical heat storage reactor is combined with a reaction medium to generate heat or desorb the reaction medium to store heat, a frame part that houses the heat storage material inside, and a thinner part than the frame part. A flat plate heat exchanging unit that supplies heat to the heat storage material and recovers heat from the heat storage material by a heat medium that is formed and flows inside, and reaction medium diffusion that is arranged on one side of the heat storage material and through which the reaction medium flows A laminate unit in which a plurality of laminates including a layer, a filter disposed between the heat storage material and the reaction medium diffusion layer and formed with a plurality of holes are laminated, and the laminate unit inside The frame portion is disposed opposite to the first space, the first space communicating with the upstream side of the heat exchange portion, and the heat medium flowing therethrough. The second space communicated with the downstream side of the heat exchange unit Having.

請求項1の化学蓄熱反応器では、枠部に、熱媒体が流れるように熱交換部の上流側と連通する第1空間が設けられると共に、熱媒体が流れるように熱交換部の下流側と連通する第2空間が第1空間と対向する位置に設けられている。   In the chemical heat storage reactor according to claim 1, the frame portion is provided with a first space communicating with the upstream side of the heat exchange unit so that the heat medium flows, and with the downstream side of the heat exchange unit so that the heat medium flows. The communicating second space is provided at a position facing the first space.

このため、枠部の側部に配管を接続して、配管から枠部の第1空間、熱交換部の内部、及び枠部の第2空間に熱媒体を流すことが可能となり、これにより、蓄熱材と、熱交換部及び枠部との間で、熱交換を行うことができる。また、熱交換部の平面部分に配管を接続して、配管から熱交換部の内部、枠部の第1空間、及び枠部の第2空間に熱媒体を流すことが可能となり、これにより、蓄熱材と、熱交換部及び枠部との間で、熱交換を行うことができる。   For this reason, it is possible to connect a pipe to the side part of the frame part, and to flow a heat medium from the pipe to the first space of the frame part, the inside of the heat exchange part, and the second space of the frame part. Heat exchange can be performed between the heat storage material, the heat exchange unit, and the frame unit. In addition, it is possible to connect a pipe to the flat portion of the heat exchange part, and to flow a heat medium from the pipe to the inside of the heat exchange part, the first space of the frame part, and the second space of the frame part. Heat exchange can be performed between the heat storage material, the heat exchange unit, and the frame unit.

ここで、熱媒体を出入りさせる配管を枠部の側部に接合した場合、枠部よりも薄い平板部の側部と接合した場合に比較して、接合面積を大きくとれるので、配管と枠部の側部との接合強度は、配管と熱交換部の側部との接合強度に比較して高くすることができる。   Here, when the pipe for allowing the heat medium to enter and exit is joined to the side part of the frame part, the joining area can be increased compared to the case of joining the side part of the flat plate part thinner than the frame part. The bonding strength with the side portion can be higher than the bonding strength between the pipe and the side portion of the heat exchange portion.

また、配管を、熱交換部の平面部分に接合した場合、熱交換部の側部に接合した場合に比較して、配管と熱交換部との接合面積を確保することができ、配管と熱交換部の平面部分との接合強度は、配管と熱交換部の側部との接合強度に比較して高くすることができる。   In addition, when the pipe is joined to the flat portion of the heat exchange part, the joint area between the pipe and the heat exchange part can be secured as compared with the case where the pipe is joined to the side part of the heat exchange part. The bonding strength between the exchange portion and the flat portion can be made higher than the bonding strength between the pipe and the side portion of the heat exchange portion.

請求項2に記載の発明は、請求項1に記載の化学蓄熱反応器において、前記枠部の内側には、前記蓄熱材、前記フィルタ、及び前記反応媒体拡散層が積層されており、一方の前記枠部と他方の前記枠部との間には、前記熱交換部が配置されて接合されており、一方、及び他方の前記枠部の第1空間と前記熱交換部の上流側とが連通し、一方、及び他方の前記枠部の第2空間と前記熱交換部の下流側とが連通している。   The invention according to claim 2 is the chemical heat storage reactor according to claim 1, wherein the heat storage material, the filter, and the reaction medium diffusion layer are laminated inside the frame portion, The heat exchange part is disposed and joined between the frame part and the other frame part, and the first space of the one and the other frame part and the upstream side of the heat exchange part are connected to each other. The second space of the one and the other frame part and the downstream side of the heat exchange part communicate with each other.

請求項2に記載の化学蓄熱反応器では、一方の枠部と他方の枠部との間に、熱交換部が配置されて接合されており、一方、及び他方の枠部の第1空間と熱交換部の上流側とが連通し、一方、及び他方の枠部の第2空間と熱交換部の下流側とが連通しているため、複数の熱交換部、及び枠部が互いに接合され、かつ複数の熱交換部の内部、及び複数の枠部の内部(第1空間、第2空間)が互いに連通するので、熱媒体を流す配管は、何れ一つの枠部、または熱交換部と接続されていれば、各々の枠部及び熱交換部に熱媒体を出入りさせることができる。このため、各々の枠部毎、または熱交換部毎に配管を接続する必要がなく、配管の部品点数を低減でき、小型化、且つ軽量な化学蓄熱反応器を実現できる。また、部品点数を低減することで、顕熱ロス分が減り、熱の利用効率を向上することができる。さらに、全ての熱交換部と枠部とが互いに接合されているので、熱交換部と枠部とを単に接触させている場合に比較して、部材間の熱の伝わりを妨げる接触熱抵抗を無くすことができる。   In the chemical heat storage reactor according to claim 2, a heat exchange part is arranged and joined between one frame part and the other frame part, and the first space of one and the other frame part and Since the upstream side of the heat exchanging part communicates and the second space of one and the other frame part communicates with the downstream side of the heat exchanging part, the plurality of heat exchanging parts and the frame part are joined to each other. Since the inside of the plurality of heat exchange units and the inside of the plurality of frame units (the first space and the second space) communicate with each other, the pipe through which the heat medium flows is connected to any one of the frame units or the heat exchange unit. If it is connected, the heat medium can be made to go in and out of each frame part and the heat exchange part. For this reason, it is not necessary to connect piping for every frame part or for every heat exchange part, the number of parts of piping can be reduced, and a chemical heat storage reactor which is small in size and lightweight can be realized. In addition, by reducing the number of parts, the sensible heat loss can be reduced and the heat utilization efficiency can be improved. Furthermore, since all the heat exchanging parts and the frame part are joined to each other, compared to the case where the heat exchanging part and the frame part are simply in contact with each other, the contact thermal resistance that hinders the transfer of heat between members is reduced. It can be lost.

請求項3に記載の発明は、請求項2に記載の化学蓄熱反応器において、全ての前記枠部の積層方向両側に前記熱交換部が接合されている。   According to a third aspect of the present invention, in the chemical heat storage reactor according to the second aspect, the heat exchanging portions are joined to both sides in the stacking direction of all the frame portions.

請求項3に記載の化学蓄熱反応器では、蓄熱材を収容する枠部の積層方向両側に熱交換部が接合されているので、蓄熱材は2つの熱交換部の間に配置されることになる。したがって、蓄熱材は、積層方向の両側の熱交換部で熱交換を行うことができ、熱交換効率を高めることができる。   In the chemical heat storage reactor according to claim 3, since the heat exchange parts are joined to both sides in the stacking direction of the frame part that houses the heat storage material, the heat storage material is disposed between the two heat exchange parts. Become. Therefore, the heat storage material can perform heat exchange at the heat exchange portions on both sides in the stacking direction, and heat exchange efficiency can be improved.

請求項4に記載の発明は、請求項2または請求項3に記載の化学蓄熱反応器において、前記熱交換部、及び前記枠部は金属製であり、前記熱交換部と前記枠部とは、ろう付け、または溶接により接合されている。   The invention according to claim 4 is the chemical heat storage reactor according to claim 2 or claim 3, wherein the heat exchange part and the frame part are made of metal, and the heat exchange part and the frame part are , Brazing, or welding.

請求項4に記載の化学蓄熱反応器では、熱交換部、及び枠部が金属製であり、熱交換部と枠部とがろう付け、または溶接により接合されているため、強度と軽量化を両立した熱交換効率を向上した積層ユニットが実現できる。   In the chemical heat storage reactor according to claim 4, since the heat exchange part and the frame part are made of metal, and the heat exchange part and the frame part are joined by brazing or welding, strength and weight reduction are achieved. A laminated unit with improved heat exchange efficiency can be realized.

請求項5に記載の化学蓄熱システムは、請求項1〜4の何れか1項に記載の化学蓄熱反応器と、前記化学蓄熱反応器の前記反応媒体拡散層への反応媒体の供給及び前記反応媒体拡散層からの反応媒体の受け取りを行う蒸発凝縮器と、を有する。   The chemical heat storage system according to claim 5 is the chemical heat storage reactor according to any one of claims 1 to 4, the supply of the reaction medium to the reaction medium diffusion layer of the chemical heat storage reactor, and the reaction. An evaporative condenser for receiving the reaction medium from the medium diffusion layer.

請求項5に記載の化学蓄熱システムは、請求項1〜4の何れか1項に記載の化学蓄熱反応器を備えているため、配管と熱交換部との接合強度の高い化学蓄熱システムとなり、高い耐久性を得ることが出来る。   Since the chemical heat storage system of Claim 5 is equipped with the chemical heat storage reactor of any one of Claims 1-4, it becomes a chemical heat storage system with high joint strength of piping and a heat exchange part, High durability can be obtained.

本発明の化学蓄熱反応器、及び化学蓄熱システムによれば、積層ユニットと配管との接合強度の向上を図ることが可能となる。   According to the chemical heat storage reactor and the chemical heat storage system of the present invention, it is possible to improve the bonding strength between the laminated unit and the pipe.

(A)、(B)は、第1実施形態に係る化学蓄熱システムを示した構成図である。(A) and (B) are the block diagrams which showed the chemical thermal storage system which concerns on 1st Embodiment. 第1実施形態に係る反応器に備えられた積層ユニットを示した斜視図である。It is the perspective view which showed the lamination | stacking unit with which the reactor which concerns on 1st Embodiment was equipped. 積層体を示す分解斜視図である。It is a disassembled perspective view which shows a laminated body. (A)は熱流動部を示した斜視図であり、(B)は熱流動部を示した分解斜視図であり、(C)は枠部の下面側を示した斜視図である。(A) is the perspective view which showed the heat flow part, (B) is the disassembled perspective view which showed the heat flow part, (C) is the perspective view which showed the lower surface side of the frame part. (A)は平板部の本体部を示した平面図であり、(B)は図5(A)に示した平面部の5(B)−5(B)線断面図である。(A) is the top view which showed the main-body part of the flat plate part, (B) is the 5 (B) -5 (B) sectional view taken on the plane part shown to FIG. 5 (A). (A)は反応媒体拡散層を示した斜視図であり、(B)は6(A)に示した反応媒体拡散層の6(B)−6(B)線断面図である。(A) is the perspective view which showed the reaction medium diffusion layer, (B) is the 6 (B) -6 (B) sectional view taken on the line of the reaction medium diffusion layer shown to 6 (A). 第1実施形態に係る反応器に備えられた積層ユニットを示す縦断面図である。It is a longitudinal cross-sectional view which shows the lamination | stacking unit with which the reactor which concerns on 1st Embodiment was equipped. (A)は第2実施形態に係る熱流動部を示した分解斜視図であり、(B)は第2実施形態に係る熱流動部の平板部の本体部を示した平面図であり、(C)は第2実施形態に係る熱流動部を示した斜視図である。(A) is the disassembled perspective view which showed the heat fluid part which concerns on 2nd Embodiment, (B) is the top view which showed the main-body part of the flat plate part of the heat fluid part which concerns on 2nd Embodiment, ( (C) is the perspective view which showed the heat | fever fluid part which concerns on 2nd Embodiment. (A)は第3実施形態に係る熱流動部を示した分解斜視図であり、(B)は第3実施形態に係る熱流動部の平板部の本体部を示した平面図であり、(C)は第3実施形態に係る熱流動部を積層した状態を示した斜視図である。(A) is the disassembled perspective view which showed the heat fluid part which concerns on 3rd Embodiment, (B) is the top view which showed the main-body part of the flat plate part of the heat fluid part which concerns on 3rd Embodiment, ( (C) is the perspective view which showed the state which laminated | stacked the heat-fluid part which concerns on 3rd Embodiment. 第3実施形態に係る積層ユニットを示した斜視図である。It is the perspective view which showed the lamination | stacking unit which concerns on 3rd Embodiment. (A)〜(C)は、第3実施形態に係る積層ユニットの組立手順を示す斜視図である。(A)-(C) are perspective views which show the assembly procedure of the lamination | stacking unit which concerns on 3rd Embodiment. 第3実施形態に係る熱流動部を示した分解斜視図である。It is the disassembled perspective view which showed the heat flow part which concerns on 3rd Embodiment.

[第1実施形態]
図1乃至図7にしたがって、本発明の第1実施形態に係る化学蓄熱システム10を説明する。なお、図中に示す矢印Hは装置上下方向(鉛直方向、積層方向)を示し、矢印Wは装置幅方向(水平方向)を示し、矢印Dは装置奥行方向(水平方向)を示す。
[First Embodiment]
A chemical heat storage system 10 according to the first embodiment of the present invention will be described with reference to FIGS. In addition, the arrow H shown in the drawing indicates the vertical direction of the apparatus (vertical direction, stacking direction), the arrow W indicates the apparatus width direction (horizontal direction), and the arrow D indicates the apparatus depth direction (horizontal direction).

(全体構成)
図1(A)、(B)に示すように、本実施形態に係る化学蓄熱システム10は、水を蒸発させる蒸発器と水蒸気(反応媒体の一例)Wを凝縮させる凝縮器とが一体化された蒸発凝縮器12と、化学蓄熱反応器の一例としての反応器20と、蒸発凝縮器12と反応器20とを連通する連通路14とを含んで構成されている。
(overall structure)
As shown in FIGS. 1A and 1B, the chemical heat storage system 10 according to the present embodiment includes an evaporator that evaporates water and a condenser that condenses water vapor (an example of a reaction medium) W. The evaporative condenser 12, the reactor 20 as an example of a chemical heat storage reactor, and the communication path 14 that connects the evaporative condenser 12 and the reactor 20 are configured.

(蒸発凝縮器)
蒸発凝縮器12は、貯留した水を蒸発させて反応器20に供給する(水蒸気Wを生成する)蒸発部、反応器20から受け取った水蒸気Wを凝縮する凝縮部、及び水蒸気Wが凝縮された水を貯留する貯留部、としての各機能を備えている。
(Evaporation condenser)
The evaporative condenser 12 evaporates the stored water and supplies it to the reactor 20 (generates water vapor W), a condensing unit that condenses the water vapor W received from the reactor 20, and the water vapor W is condensed. Each function as a storage part for storing water is provided.

また、蒸発凝縮器12は、内部に水が貯留される容器16を備えており、この容器16内には、水蒸気Wを凝縮する、又は水を蒸発するのに用いる熱媒流路17の一部が配置されている。さらに、熱媒流路17は、容器16内における少なくとも気相部16Aを含む部分で熱交換を行うように配置されている。そして、凝縮時には低温媒体、蒸発時には中温媒体が、熱媒流路17を流れるようになっている。   In addition, the evaporation condenser 12 includes a container 16 in which water is stored. In the container 16, one of the heat medium channels 17 used for condensing the water vapor W or evaporating the water. The part is arranged. Further, the heat medium flow path 17 is arranged so as to perform heat exchange in a portion including at least the gas phase portion 16 </ b> A in the container 16. A low temperature medium flows through the heat medium passage 17 during condensation and a medium temperature medium during evaporation.

(連通路)
連通路14は、蒸発凝縮器12(容器16)と反応器20(後述する反応容器22)との連通、非連通を切り替えるための開閉弁19を備えている。そして、容器16、反応容器22、連通路14、及び開閉弁19は、互いの接続部位が気密に構成されており、これらの内部空間が予め真空脱気されている。
(Communication passage)
The communication path 14 includes an opening / closing valve 19 for switching between communication and non-communication between the evaporative condenser 12 (container 16) and the reactor 20 (reaction container 22 described later). The container 16, the reaction container 22, the communication path 14, and the on-off valve 19 are configured such that their connection portions are hermetically sealed, and these internal spaces are pre-evacuated in advance.

(反応器)
反応器20は、反応容器22を備え、反応容器22の内部に図2に示す積層ユニット24が収容されている。
(Reactor)
The reactor 20 includes a reaction vessel 22, and a laminated unit 24 shown in FIG. 2 is accommodated in the reaction vessel 22.

(反応容器)
図1に示すように、反応容器22は、直方体状とされ、上方側が開放される箱状の本体部22Aと、蓋部材22Bとを備えている。そして、反応容器22の内部は、水蒸気(反応媒体の一例)が流れる反応媒体流動部26とされ、前述したように内部が真空脱気されている。
(Reaction vessel)
As shown in FIG. 1, the reaction vessel 22 has a rectangular parallelepiped shape, and includes a box-shaped main body portion 22A whose upper side is opened and a lid member 22B. The inside of the reaction vessel 22 is a reaction medium flow section 26 through which water vapor (an example of a reaction medium) flows, and the inside is evacuated as described above.

(積層ユニットの全体構成)
図2に示すように、積層ユニット24は、積層体51が装置上下方向に複数個(本実施形態では3個)積層されている。なお、積層ユニット24の積層方向両側には、矩形の挟持プレート98が配置されており、積層ユニット24は、金属製のバンドである拘束部材58で巻回されて各部材が分離したり、各部材間に隙間ができたり、各部材がずれないように拘束されている。
(Overall structure of laminated unit)
As shown in FIG. 2, the laminated unit 24 includes a plurality of laminated bodies 51 (three in this embodiment) laminated in the vertical direction of the apparatus. In addition, rectangular sandwiching plates 98 are disposed on both sides of the stacking unit 24 in the stacking direction, and the stacking unit 24 is wound around a restraining member 58 that is a metal band so that each member is separated, It is restrained so that a gap is formed between the members and each member is not displaced.

図3に示すように、積層体51は、熱流動部50と、熱流動部50に上方側から積層されるフィルタ34と、フィルタ34に上方側から積層される反応媒体拡散層36とを含んで構成されている。   As shown in FIG. 3, the multilayer body 51 includes a heat fluid portion 50, a filter 34 that is laminated on the heat fluid portion 50 from above, and a reaction medium diffusion layer 36 that is laminated on the filter 34 from above. It consists of

そして、フィルタ34、反応媒体拡散層36、及び熱流動部50は、装置上下方向から見て同様の矩形状(本実施形態では正方形)とされ、本実施形態においては、装置上下方向に並んで非接合状態(溶接などで固定されていない状態)で積層されている(所謂積層構造)。   The filter 34, the reaction medium diffusion layer 36, and the heat flow unit 50 have the same rectangular shape (square in the present embodiment) when viewed from the vertical direction of the device, and are aligned in the vertical direction of the device in the present embodiment. They are laminated in a non-joined state (state that is not fixed by welding or the like) (so-called laminated structure).

(熱流動部)
図4に示すように、熱流動部50は、金属製の平板状に形成された熱交換部42と、熱交換部42とろう付け、または溶接等で一体となるように接合された金属製の枠部44とを含んで構成されている。
(Heat flow part)
As shown in FIG. 4, the heat-fluid portion 50 is made of a metal heat exchange portion 42 formed in a metal flat plate shape, and is joined to the heat exchange portion 42 by brazing or welding so as to be integrated. The frame portion 44 is included.

熱交換部42は、上方が開口した略箱形状とされ、装置上下方向から見て矩形状の本体部52と、本体部52の開口部を覆い本体部52の内部を密閉する蓋部材54とを含んで構成されている。なお、蓋部材54で閉塞された本体部52の内部に熱媒体が流れるようになっている。   The heat exchanging portion 42 has a substantially box shape with an upper opening, a rectangular main body portion 52 as viewed from the vertical direction of the apparatus, and a lid member 54 that covers the opening portion of the main body portion 52 and seals the inside of the main body portion 52. It is comprised including. Note that the heat medium flows through the inside of the main body 52 closed by the lid member 54.

図5(A),(B)に示すように、本体部52の底部には、複数の放熱フィン62が、装置幅方向(矢印W方向)に間隔を開けて溶接されている。放熱フィン62は、上方側(蓋部材側)が開放された略U字状とされている。   As shown in FIGS. 5A and 5B, a plurality of radiating fins 62 are welded to the bottom of the main body 52 at intervals in the apparatus width direction (arrow W direction). The radiating fins 62 are substantially U-shaped with the upper side (the lid member side) opened.

図4に示すように、蓋部材54には、装置奥行方向(矢印D方向)の一方側にスリット状の第1の開口部76が形成され、他方側にスリット状の第2の開口部78が形成されている。なお、本体部52と蓋部材54とは、ろう付け、または溶接にて接合されている。   As shown in FIG. 4, the lid member 54 has a slit-like first opening 76 formed on one side in the apparatus depth direction (arrow D direction), and a slit-like second opening 78 on the other side. Is formed. In addition, the main-body part 52 and the cover member 54 are joined by brazing or welding.

枠部44には、装置奥行方向(矢印D方向)の一方側の下面に、装置幅方向に延びると共に下側に向けて開口する第1凹部45が形成されており、装置奥行方向(矢印D方向)の他方側の下面に、装置幅方向に延びると共に下側に向けて開口する第2凹部46が形成されている。蓋部材54で閉塞された第1凹部45、及び第2凹部46が本発明の第1空間、及び第2空間に相当する。   The frame 44 is formed with a first recess 45 extending in the apparatus width direction and opening downward on the lower surface on one side in the apparatus depth direction (arrow D direction). A second recess 46 that extends in the apparatus width direction and opens downward is formed on the lower surface of the other direction. The first recess 45 and the second recess 46 closed by the lid member 54 correspond to the first space and the second space of the present invention.

枠部44には、装置奥行方向の一方側の側面に第1凹部45と連通する第1連通口47が形成され、装置奥行方向の他方側の側面に第2凹部46と連通する第2連通口48が形成されている。枠部44は、第1凹部45、及び第2凹部46を下側に向けて蓋部材54の上面にろう付け、または溶接にて接合されている。   The frame portion 44 has a first communication port 47 communicating with the first recess 45 on one side surface in the apparatus depth direction, and a second communication communicating with the second recess 46 on the other side surface in the apparatus depth direction. A mouth 48 is formed. The frame portion 44 is joined to the upper surface of the lid member 54 by brazing or welding with the first concave portion 45 and the second concave portion 46 facing downward.

枠部44は、熱交換部42よりも厚く形成されており、枠部44の厚さ寸法t1は、熱交換部42の厚さ寸法t2より大となっている。また、枠部44の側部は、蓋部材54の側部よりも剛性が高く形成されている。   The frame part 44 is formed thicker than the heat exchange part 42, and the thickness dimension t1 of the frame part 44 is larger than the thickness dimension t2 of the heat exchange part 42. Further, the side portion of the frame portion 44 is formed to have higher rigidity than the side portion of the lid member 54.

図2、及び図7に示すように、積層ユニット24の装置奥行方向の一方側の側部には、上下方向に延びる第1角パイプ64が配置され、積層ユニット24の装置奥行方向の他方側の側部には、上下方向に延びる第2角パイプ66が配置されている。   As shown in FIGS. 2 and 7, a first square pipe 64 extending in the vertical direction is disposed on one side of the stacking unit 24 in the apparatus depth direction, and the other side of the stacking unit 24 in the apparatus depth direction. A second square pipe 66 extending in the up-down direction is disposed on the side portion.

第1角パイプ64、及び第2角パイプ66は、枠部44の側部にろう付け、または溶接等で接合されている。第1角パイプ64には、枠部44の第1連通口47に連通する第1孔64Aが形成され、第2角パイプ66には、枠部44の第2連通口48に連通する第2孔66Aが形成されている。   The 1st square pipe 64 and the 2nd square pipe 66 are joined to the side part of the frame part 44 by brazing or welding. The first square pipe 64 has a first hole 64 </ b> A that communicates with the first communication port 47 of the frame portion 44, and the second square pipe 66 has a second hole that communicates with the second communication port 48 of the frame portion 44. A hole 66A is formed.

第1角パイプ64の下端、及び第2角パイプ66の下端は夫々閉塞されており、第1角パイプ64の上端は配管70Aに接続され、第2角パイプ66の上端は配管70Bに接続されている。   The lower end of the first square pipe 64 and the lower end of the second square pipe 66 are closed, the upper end of the first square pipe 64 is connected to the pipe 70A, and the upper end of the second square pipe 66 is connected to the pipe 70B. ing.

これにより、本実施形態の熱流動部50は、例えば、熱源104(又は熱利用対象物106)から熱媒体を供給すると、熱媒体は、図7に矢印Aで示すように、第1角パイプ64、第1孔64A、第1連通口47、第1凹部45、第1の開口部76、本体部52の内部、第2の開口部78、第2凹部46、第2連通口48、第2孔66A、及び第2角パイプ66を流れて熱源104(熱利用対象物106)へ戻される。この熱流動部50は、熱媒体が流れる熱交換部42が熱交換器として機能していると共に、熱媒体が流れる枠部44も熱交換器として機能している。   Thereby, when the heat fluidizing part 50 of this embodiment supplies a heat medium from the heat source 104 (or heat utilization object 106), for example, as shown by the arrow A in FIG. 64, the first hole 64A, the first communication port 47, the first recess 45, the first opening 76, the inside of the main body 52, the second opening 78, the second recess 46, the second communication port 48, the first It flows through the two holes 66A and the second square pipe 66 and is returned to the heat source 104 (the heat utilization object 106). In the heat fluidizing section 50, the heat exchanging section 42 through which the heat medium flows functions as a heat exchanger, and the frame section 44 through which the heat medium flows also functions as a heat exchanger.

(蓄熱材反応部の蓄熱材層の構成)
図3、及び図4に示すように、枠部44の内側には、蓄熱成形体40が配置されている。蓄熱成形体40には、一例として、アルカリ土類金属の酸化物の1つである酸化カルシウム(CaO:蓄熱材の一例)の成形体が用いられている。この成形体は、例えば、酸化カルシウム粉体をバインダ(例えば粘土鉱物等)と混練し、焼成することで、略矩形ブロック状に形成されている。
(Configuration of heat storage material layer of heat storage material reaction part)
As shown in FIGS. 3 and 4, the heat storage molded body 40 is disposed inside the frame portion 44. As an example of the heat storage molded body 40, a molded body of calcium oxide (CaO: an example of a heat storage material) which is one of oxides of alkaline earth metals is used. This molded body is formed into a substantially rectangular block shape by, for example, kneading calcium oxide powder with a binder (for example, clay mineral) and firing.

ここで、蓄熱成形体40は、水和に伴って膨張して放熱(発熱)し、脱水に伴って蓄熱(吸熱)するものであり、以下に示す反応で放熱、蓄熱を可逆的に繰り返し得る構成とされている。   Here, the heat storage molded body 40 expands with hydration and dissipates heat (heat generation), and stores heat (heat absorption) with dehydration, and can reversibly repeat heat dissipation and heat storage by the following reaction. It is configured.

CaO + H2O ⇔ Ca(OH)2
この式に蓄熱量、発熱量Qを併せて示すと、
CaO + H2O → Ca(OH)2 + Q
Ca(OH)2 + Q → CaO + H2O
となる。
CaO + H2O Ca Ca (OH) 2
When the heat storage amount and the heat generation amount Q are shown together in this equation,
CaO + H2O → Ca (OH) 2 + Q
Ca (OH) 2 + Q → CaO + H2O
It becomes.

なお、一例として、蓄熱成形体40の1kg当たりの蓄熱容量は、1.86[MJ/kg]とされている。   As an example, the heat storage capacity per kg of the heat storage molded body 40 is 1.86 [MJ / kg].

また、本実施形態において、蓄熱成形体40を構成する蓄熱材の粒径とは、蓄熱材が粉体の場合はその平均粒径、粒状の場合は造粒前の粉体の平均粒径とする。これは、粒が崩壊する場合、前工程の状態に戻ると推定されるためである。   In this embodiment, the particle size of the heat storage material constituting the heat storage molded body 40 is the average particle size when the heat storage material is powder, and the average particle size of the powder before granulation when granular. To do. This is because it is estimated that when the grains collapse, it returns to the state of the previous process.

(蓄熱材反応部、フィルタ)
フィルタ34は、熱流動部50と反応媒体拡散層36との間に挟まれ、一例としてφ200〔μm〕の微小貫通孔(図示せず)が、フィルタ全面に多数形成された金属材料からなるエッチングフィルターである。
(Heat storage material reaction part, filter)
The filter 34 is sandwiched between the heat-fluid portion 50 and the reaction medium diffusion layer 36, and as an example, an etching made of a metal material in which a large number of through holes (not shown) of φ200 [μm] are formed on the entire surface of the filter. It is a filter.

そして、フィルタ34は、蓄熱成形体40を構成する蓄熱材の平均粒径より小さいろ過精度を有している。これにより、フィルタ34は、蓄熱成形体40を構成する蓄熱材の平均粒径より小さい流路を水蒸気が通過するのを許容する一方、平均粒径よりも大きい蓄熱材の通過を制限するようになっている。   The filter 34 has a filtration accuracy smaller than the average particle size of the heat storage material constituting the heat storage molded body 40. Thus, the filter 34 allows water vapor to pass through the flow path smaller than the average particle diameter of the heat storage material constituting the heat storage molded body 40, while restricting passage of the heat storage material larger than the average particle diameter. It has become.

ろ過精度とは、ろ過効率が50〜98%となる粒子径のことであり、ろ過効率とは、ある粒子径の粒子に対する除去効率である。   The filtration accuracy is a particle diameter at which the filtration efficiency is 50 to 98%, and the filtration efficiency is a removal efficiency for particles having a certain particle diameter.

(蓄熱材反応部の反応媒体拡散層)
反応媒体拡散層36は、図6(A)に示すように、金属材料からなる矩形状の天板37と、天板37に固定される金属材料からなる複数の流路部材38とを備えている。流路部材38は、水蒸気が流れる装置幅方向に延び、装置奥行方向に間隔をあけて並んでいる(図6(B)参照)。
(Reaction medium diffusion layer of heat storage material reaction part)
As shown in FIG. 6A, the reaction medium diffusion layer 36 includes a rectangular top plate 37 made of a metal material and a plurality of flow path members 38 made of a metal material fixed to the top plate 37. Yes. The flow path members 38 extend in the apparatus width direction in which water vapor flows and are arranged at intervals in the apparatus depth direction (see FIG. 6B).

夫々の流路部材38は、図6(B)に示すように、天板37に対して下方側に配置され、装置幅方向(矢印W方向)から見てフィルタ34(図3参照)側が開放されたU字状とされている。そして、上壁38Bが天板37の下面に溶接されている。   As shown in FIG. 6B, each flow path member 38 is disposed on the lower side with respect to the top plate 37, and the filter 34 (see FIG. 3) side is opened as viewed from the device width direction (arrow W direction). It is made U-shaped. The upper wall 38B is welded to the lower surface of the top plate 37.

これにより、流路部材38の内側、及び隣り合う流路部材38の間に、蓄熱成形体40へ供給される水蒸気、又は蓄熱成形体40から排出される水蒸気が装置幅方向に沿って流れるようになっている。   As a result, water vapor supplied to the heat storage molded body 40 or water vapor discharged from the heat storage molded body 40 flows along the apparatus width direction between the flow path member 38 and between the adjacent flow path members 38. It has become.

(他の部材)
図1に示すように、反応容器22の外部には、熱流動部50の連通先を熱源104とするか、熱利用対象物106とするかを切り替える切替部材108が備えられている。切替部材108と第1角パイプ64,及び第2角パイプ66とは、配管70A,及び70Bを介して接続されている。
(Other parts)
As shown in FIG. 1, a switching member 108 that switches between a heat source 104 and a heat utilization target object 106 is provided outside the reaction vessel 22 as a communication destination of the heat flow unit 50. The switching member 108, the first square pipe 64, and the second square pipe 66 are connected via pipes 70A and 70B.

これにより、熱源104からの熱媒体を、切替部材108、配管70A、及び第1角パイプ64を介して熱流動部50の内部に流入させ、熱流動部50を通過した後の熱媒体を、第2角パイプ66、及び配管70Bを介して熱源104へ戻すことができる。   Thereby, the heat medium from the heat source 104 is caused to flow into the heat fluid portion 50 via the switching member 108, the pipe 70A, and the first square pipe 64, and the heat medium after passing through the heat fluid portion 50 is The heat can be returned to the heat source 104 through the second square pipe 66 and the pipe 70B.

また、切替部材108の切り替えにより、熱利用対象物106からの熱媒体を、切替部材108、配管70A、及び第1角パイプ64を介して熱流動部50の内部に流入させ、熱流動部50を通過した後の熱媒体を、第2角パイプ66、及び配管70Bを介して熱利用対象物106へ戻すことができる。   Further, by switching the switching member 108, the heat medium from the heat utilization target object 106 is caused to flow into the heat fluid portion 50 via the switching member 108, the pipe 70 </ b> A, and the first square pipe 64, and the heat fluid portion 50. The heat medium after passing through can be returned to the heat utilization object 106 through the second square pipe 66 and the pipe 70B.

(化学蓄熱システムの作用、効果)
次に、化学蓄熱システム10の作用、効果について説明する。
化学蓄熱システム10において反応器20に蓄熱された熱を蓄熱成形体40から発熱(放熱)させる際には、図1(B)に示すように、切替部材108により配管70A,70Bの各通路の連通先が熱利用対象物106に切り替えられる。さらに、開閉弁19を開放し、この状態で、蒸発凝縮器12の熱媒流路17に中温媒体を流し、液相部16Bの水を蒸発させる。そして、生成された水蒸気Wが連通路14内を矢印D方向に移動して、反応容器22内に供給される。
(Operation and effect of chemical heat storage system)
Next, the operation and effect of the chemical heat storage system 10 will be described.
When the heat stored in the reactor 20 in the chemical heat storage system 10 is generated (dissipated) from the heat storage molded body 40, as shown in FIG. The communication destination is switched to the heat utilization target object 106. Further, the on-off valve 19 is opened, and in this state, an intermediate temperature medium is caused to flow through the heat medium flow path 17 of the evaporation condenser 12 to evaporate the water in the liquid phase part 16B. The generated water vapor W moves in the direction of the arrow D in the communication path 14 and is supplied into the reaction vessel 22.

続いて、反応容器22内では、供給された水蒸気Wが反応媒体流動部26を通り、反応媒体拡散層36を流れる。そして、水蒸気Wがフィルタ34を通過して蓄熱成形体40と接触することにより、蓄熱成形体40は、水和反応を生じつつ発熱(放熱)する。この熱は、熱流動部50の内部を流れる熱媒体によって、熱利用対象物106に輸送される。   Subsequently, in the reaction vessel 22, the supplied water vapor W flows through the reaction medium flow portion 26 and flows through the reaction medium diffusion layer 36. Then, when the water vapor W passes through the filter 34 and comes into contact with the heat storage molded body 40, the heat storage molded body 40 generates heat (heat radiation) while causing a hydration reaction. This heat is transported to the heat utilization object 106 by the heat medium flowing inside the heat fluidizing part 50.

図7の矢印Aで示すように、熱媒体は、枠部44、及び熱交換部42の内部を流れるので、蓄熱成形体40の下面、及び側面から熱を受けることができ、蓄熱成形体40の熱を効率的に熱媒体に伝達することができる。   As shown by the arrow A in FIG. 7, the heat medium flows through the inside of the frame portion 44 and the heat exchanging portion 42, so that heat can be received from the lower surface and the side surface of the heat storage molded body 40, and the heat storage molded body 40. Can be efficiently transferred to the heat medium.

一方、化学蓄熱システム10において蓄熱成形体40に熱を蓄熱させる際には、図1(A)に示すように、切替部材108により配管70A,70Bの各通路の連通先が熱源104に切り替えられる。さらに、開閉弁19を開放し、この状態で、熱流動部50の内部に、熱源104によって加熱された熱媒体が流れる。   On the other hand, when heat is stored in the heat storage molded body 40 in the chemical heat storage system 10, as shown in FIG. 1A, the communication member of each passage of the pipes 70 </ b> A, 70 </ b> B is switched to the heat source 104 by the switching member 108. . Further, the on-off valve 19 is opened, and in this state, the heat medium heated by the heat source 104 flows inside the heat flow unit 50.

この場合においても、熱流動部50の内部では、図7の矢印Aで示すように、熱媒体が、枠部44、及び熱交換部42の内部を流れるので、蓄熱成形体40の下面、及び側面へ熱を伝達することができ、熱媒体の熱を効率的に蓄熱成形体40に伝達することができる。   Even in this case, as shown by the arrow A in FIG. 7, the heat medium flows inside the frame portion 44 and the heat exchanging portion 42 inside the heat fluidizing portion 50, so that the bottom surface of the heat storage molded body 40 and Heat can be transmitted to the side surface, and the heat of the heat medium can be efficiently transmitted to the heat storage molded body 40.

そして、熱流動部50を流れる熱媒体の熱によって蓄熱成形体40が脱水反応を生じ、この熱が蓄熱成形体40に蓄熱される。なお、蓄熱成形体40から離脱された水蒸気Wは、フィルタ34から反応媒体拡散層36に流れ込む。反応媒体拡散層36に流れ込んだ水蒸気Wは、反応媒体流動部26を通り、図1(A)に示すように、連通路14を矢印E方向に流れて蒸発凝縮器12内に流れ込む。そして、蒸発凝縮器12の気相部16Aにおいて、熱媒流路17を流れる冷媒によって水蒸気Wが冷却され、凝縮された水が容器16の液相部16Bに貯留される。   Then, the heat storage molded body 40 undergoes a dehydration reaction due to the heat of the heat medium flowing through the heat fluidizing portion 50, and this heat is stored in the heat storage molded body 40. The water vapor W separated from the heat storage molded body 40 flows from the filter 34 into the reaction medium diffusion layer 36. The water vapor W that has flowed into the reaction medium diffusion layer 36 passes through the reaction medium flow portion 26, flows through the communication path 14 in the direction of arrow E, and flows into the evaporative condenser 12 as shown in FIG. Then, in the vapor phase portion 16 </ b> A of the evaporation condenser 12, the water vapor W is cooled by the refrigerant flowing through the heat medium flow path 17, and the condensed water is stored in the liquid phase portion 16 </ b> B of the container 16.

本実施形態の積層ユニット24では、熱流動部50に対して熱媒体を出入りさせる第1角パイプ64、及び第2角パイプ66が、熱交換部42よりも厚く形成されて熱交換部42の側部よりも剛性の高い枠部44の側部に接合されており、また、第1角パイプ64、及び第2角パイプ66は、熱交換部42の側部との接触面積に比較して、枠部44の側部との接触面積が大きくされているので、第1角パイプ64、及び第2角パイプ66と枠部44の側部との接合面積を大きくとることができ、第1角パイプ64、及び第2角パイプ66と枠部44の側部との接合強度を、第1角パイプ64、及び第2角パイプ66を熱交換部42の側部に接合した場合の接合強度に比較して高くすることができる。   In the laminated unit 24 of the present embodiment, the first square pipe 64 and the second square pipe 66 that allow the heat medium to enter and exit the heat fluidizing part 50 are formed thicker than the heat exchanging part 42, and The first square pipe 64 and the second square pipe 66 are joined to the side part of the frame part 44 having a rigidity higher than that of the side part, and compared with the contact area with the side part of the heat exchange part 42. Since the contact area with the side portion of the frame portion 44 is increased, the joining area between the first square pipe 64 and the second square pipe 66 and the side portion of the frame portion 44 can be increased. The joining strength between the square pipe 64 and the second square pipe 66 and the side portion of the frame portion 44 is the joining strength when the first square pipe 64 and the second square pipe 66 are joined to the side portion of the heat exchanging portion 42. Can be higher than.

また、熱交換部42の側部よりも剛性の高い枠部44の側部に第1角パイプ64、及び第2角パイプ66を接合したので、第1角パイプ64、及び第2角パイプ66と熱流動部50との接合部分周辺の熱流動部50の変形が抑えられ、熱流動部50の変形に起因して熱流動部50と他部材との間に隙間が出来ることが抑制され、蓄熱材の漏れを抑制することができる。   In addition, since the first square pipe 64 and the second square pipe 66 are joined to the side part of the frame part 44 having higher rigidity than the side part of the heat exchange part 42, the first square pipe 64 and the second square pipe 66 are joined. The deformation of the heat fluid portion 50 around the joint portion between the heat fluid portion 50 and the heat fluid portion 50 is suppressed, and the formation of a gap between the heat fluid portion 50 and the other member due to the deformation of the heat fluid portion 50 is suppressed, Leakage of the heat storage material can be suppressed.

また、本実施形態の積層ユニット24では、熱流動部50の枠部44の側部に第1角パイプ64、及び第2角パイプ66を直に溶接で接合しているので、一例として、第1角パイプ64、及び第2角パイプ66と熱流動部50とを分岐用の配管で連結する場合に比較して、作業工数が低減されると共に、部品点数が低減され、部品点数が低減された分は軽量化される。さらに、部品点数の低減により、第1角パイプ64、及び第2角パイプ66を組み付けた積層ユニット24のサイズを小型化することができので、反応容器22を小型化することができる。したがって、反応容器22を小さくして、反応容器22の内容積を小さくすることで、反応容器22の内容積に占める蓄熱材の蓄熱量である蓄熱密度を高くすることができる。また、部品点数が低減されることでコストも低減できる。   Further, in the laminated unit 24 of the present embodiment, the first square pipe 64 and the second square pipe 66 are directly joined to the side part of the frame part 44 of the heat fluid part 50 by welding. Compared to the case where the single square pipe 64 and the second square pipe 66 and the heat flow portion 50 are connected by a branch pipe, the number of work steps is reduced, the number of parts is reduced, and the number of parts is reduced. The weight is reduced. Furthermore, since the size of the laminated unit 24 assembled with the first square pipe 64 and the second square pipe 66 can be reduced by reducing the number of parts, the reaction vessel 22 can be reduced in size. Therefore, by reducing the reaction vessel 22 and reducing the internal volume of the reaction vessel 22, the heat storage density, which is the heat storage amount of the heat storage material occupying the internal volume of the reaction vessel 22, can be increased. Further, the cost can be reduced by reducing the number of parts.

また、積層ユニット24の部品点数を低減することで、顕熱ロス分が減り、熱の利用効率を向上することができる。これにより、蓄熱材と反応媒体とが反応する反応時間を短縮することができ、高性能な反応器20を実現できる。   Further, by reducing the number of parts of the laminated unit 24, the sensible heat loss can be reduced and the heat utilization efficiency can be improved. Thereby, the reaction time in which the heat storage material and the reaction medium react can be shortened, and the high-performance reactor 20 can be realized.

[第2実施形態]
次に、図8にしたがって、本発明の第2実施形態について説明する。なお、第1実施形態と同一部材等については、同一符号を付してその説明を省略し、第1実施形態と異なる部分を主に説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and a different part from 1st Embodiment is mainly demonstrated.

本実施形態の反応器20は、第1実施形態の積層ユニット24の変形例であり、最上部の積層体51の熱流動部50の構成が異なっている。図8に示すように、最上部の熱流動部50の上側には、熱交換器である熱交換部42が積層されて接合されている。   The reactor 20 of the present embodiment is a modification of the stack unit 24 of the first embodiment, and the configuration of the heat flow unit 50 of the uppermost stacked body 51 is different. As shown in FIG. 8, a heat exchanging portion 42 that is a heat exchanger is laminated and joined to the upper side of the uppermost heat fluidizing portion 50.

最上部の熱流動部50の枠部44は、第1凹部45、及び第2凹部46が上下方向に開口している。最上部の熱流動部50の枠部44は、第1凹部45、及び第2凹部46の形成されている枠辺44Aと、第1凹部45、及び第2凹部46の形成されていない枠辺44Bとから構成されている。なお、枠辺44Bは、枠辺44Aよりも薄く形成されている。   As for the frame part 44 of the uppermost heat-fluid part 50, the 1st recessed part 45 and the 2nd recessed part 46 are opened to the up-down direction. The frame portion 44 of the uppermost heat flow portion 50 includes a frame side 44A where the first recess 45 and the second recess 46 are formed, and a frame side where the first recess 45 and the second recess 46 are not formed. 44B. The frame side 44B is formed thinner than the frame side 44A.

枠部44の内部には、薄い枠辺44Bと同じ厚さの蓄熱成形体40が配置されており、蓄熱成形体40と上側の熱交換部42との間、及び枠辺44Bと上側の熱交換部42との間には、空間(隙間)が形成され、本実施形態では、この空間にフィルタ34と反応媒体拡散層36とが配置されている。   Inside the frame portion 44, a heat storage molded body 40 having the same thickness as that of the thin frame side 44B is disposed, and between the heat storage molded body 40 and the upper heat exchanging portion 42 and between the frame side 44B and the upper side heat. A space (gap) is formed between the exchange unit 42, and in this embodiment, the filter 34 and the reaction medium diffusion layer 36 are disposed in this space.

また、最上部の熱交換部42の本体部52には、第1凹部45、及び第2凹部46と連通する開口52Aが形成されている。
本実施形態の反応器20は、以上のように最上部の積層体51の構成されているため、熱媒体を最上部の熱交換部42にも流すことができる。
In addition, the main body 52 of the uppermost heat exchanging section 42 is formed with an opening 52 </ b> A that communicates with the first recess 45 and the second recess 46.
Since the reactor 20 of the present embodiment includes the uppermost layered body 51 as described above, the heat medium can also flow through the uppermost heat exchanging unit 42.

このように、本実施形態の反応器20の最上部の積層体51では、蓄熱成形体40の上側にも熱交換部としての熱交換部42が配置されており、蓄熱成形体40の積層方向両側に熱交換部42が配置されているので、該蓄熱成形体40は、両側の熱交換部42との間で熱交換を行うので、蓄熱成形体40の上側に熱交換部42が配置されていない場合に比較して、熱交換効率を高めることができる。   Thus, in the uppermost laminate 51 of the reactor 20 of the present embodiment, the heat exchange part 42 as the heat exchange part is also arranged on the upper side of the heat storage molded body 40, and the heat accumulation molded body 40 is laminated in the stacking direction. Since the heat exchange parts 42 are arranged on both sides, the heat storage molded body 40 exchanges heat with the heat exchange parts 42 on both sides, so the heat exchange part 42 is arranged on the upper side of the heat storage molded body 40. Compared with the case where it is not, heat exchange efficiency can be improved.

[第3実施形態]
次に、図9乃至図11にしたがって、本発明の第3実施形態について説明する。なお、前述した実施形態と同一部材等については、同一符号を付してその説明を省略し、前述した実施形態と異なる部分を主に説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. In addition, about the same member as embodiment mentioned above, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and a different part from embodiment mentioned above is mainly demonstrated.

図9、及び図10に示すように、本実施形態の積層ユニット24では、第2実施形態の最上部の積層体51と略同一構成のものを上下方向に積層して、複数の熱流動部50を互いにろう付け、または溶接にて接合させている。   As shown in FIGS. 9 and 10, in the laminated unit 24 of the present embodiment, a plurality of heat-fluid portions are formed by vertically laminating the same configuration as the uppermost laminated body 51 of the second embodiment. 50 are joined to each other by brazing or welding.

なお、各熱流動部50の本体部52には、装置奥行き方向両側に円形の開口52Aが形成されている。本実施形態の枠部44の枠辺44Aは、下側が開口しており、上部には貫通孔68が形成されている。また、本実施形態の熱交換部42の蓋部材54には、装置奥行き方向両側に貫通孔79が形成されている。   In addition, circular openings 52A are formed in the main body portion 52 of each heat flow portion 50 on both sides in the apparatus depth direction. The lower side of the frame side 44A of the frame portion 44 of the present embodiment is open, and a through hole 68 is formed in the upper portion. Moreover, the through-hole 79 is formed in the cover member 54 of the heat exchange part 42 of this embodiment on both sides of the apparatus depth direction.

本実施形態の積層ユニット24では、前述した実施形態の積層ユニット24で用いられていた第1角パイプ64、及び第2角パイプ66が省かれており、最上部の熱交換部42の蓋部材54に形成された貫通孔79に通じるように配管70A、配管70Bが蓋部材54の上面にろう付け、または溶接等で接合されている。   In the laminated unit 24 of the present embodiment, the first square pipe 64 and the second square pipe 66 used in the laminated unit 24 of the above-described embodiment are omitted, and the lid member of the uppermost heat exchange unit 42 is omitted. A pipe 70 </ b> A and a pipe 70 </ b> B are joined to the upper surface of the lid member 54 by brazing or welding so as to communicate with the through hole 79 formed in 54.

図10に示すように、本実施形態の積層ユニット24では、矢印Aで示すように、熱交換部42、及び枠辺44Aの内部に熱媒体が流れ、蓄熱成形体40との間で熱交換が行われる。   As shown in FIG. 10, in the laminated unit 24 of the present embodiment, as indicated by an arrow A, a heat medium flows inside the heat exchanging portion 42 and the frame side 44 </ b> A, and heat exchange is performed with the heat storage molded body 40. Is done.

本実施形態の積層ユニット24では、第1角パイプ64、及び第2角パイプ66が省かれて部品点数が低減されており、部品点数が低減された分が軽量化されている。さらに、部品点数の低減により、積層ユニット24のサイズを更に小型化することができので、反応容器22を更に小型化(横幅を狭くできる)することができる。したがって、反応容器22をより小型化して、反応容器22の内容積をより小さくすることで、蓄熱密度をより高くすることができる。また、部品点数が低減されることでコストも低減できる。   In the laminated unit 24 of the present embodiment, the first square pipe 64 and the second square pipe 66 are omitted to reduce the number of parts, and the amount of the reduced number of parts is reduced. Furthermore, since the size of the laminated unit 24 can be further reduced by reducing the number of parts, the reaction vessel 22 can be further reduced in size (the width can be reduced). Therefore, the heat storage density can be further increased by downsizing the reaction vessel 22 and reducing the internal volume of the reaction vessel 22. Further, the cost can be reduced by reducing the number of parts.

また、積層ユニット24の部品点数を低減することで、顕熱ロス分が減り、熱の利用効率を向上することができる。これにより、蓄熱材と反応媒体とが反応する反応時間を短縮することができ、さらに高性能な反応器20を実現できる。   Further, by reducing the number of parts of the laminated unit 24, the sensible heat loss can be reduced and the heat utilization efficiency can be improved. Thereby, the reaction time in which a heat storage material and a reaction medium react can be shortened, and the further high-performance reactor 20 can be realized.

本実施形態の積層ユニット24では、配管70A、及び配管70Bを、枠部44よりも薄く形成された熱交換部42の側部に接合せず、熱交換部42の蓋部材54の平面部分に接合しているので、配管70A、及び配管70Bと熱交換部42との接合面積を確保することができ、配管70A、及び配管70Bと熱交換部42との接合強度を高めることができる。なお、図10に示す積層ユニット24は、構成を分かりやすく説明するために模式的に記載したものであり、実際の熱交換部42の厚さとしては、例えば、2mm程度のものであり、熱交換部42の側部に配管等を接合する場合の接合面積を大きく確保することが困難である。   In the laminated unit 24 of the present embodiment, the pipe 70 </ b> A and the pipe 70 </ b> B are not joined to the side part of the heat exchanging part 42 formed thinner than the frame part 44, but on the flat part of the lid member 54 of the heat exchanging part 42. Since it joins, the joining area of piping 70A and piping 70B and the heat exchange part 42 can be ensured, and the joint strength of piping 70A and piping 70B and the heat exchange part 42 can be raised. Note that the stacked unit 24 shown in FIG. 10 is schematically described for easy understanding of the configuration, and the actual thickness of the heat exchanging portion 42 is, for example, about 2 mm. It is difficult to ensure a large joining area when piping or the like is joined to the side of the exchange part 42.

しかしながら、蓋部材54の平面部分においては、熱交換部42の側部に比較して大きな接合面積をとることが可能であるため、配管70A、及び配管70Bの外周部分を蓋部材54の平面部分にろう付け、または溶接等することで、接合面積を確保することができる。また、図10(B)に示すように、配管70A(及び配管70B)の端部に、径方向外側に延設されるフランジ70Af(70Bf)を形成することで、蓋部材54との接合面積を更に増やし、接合強度を更に高めることもできる。   However, since it is possible to take a large joining area in the flat portion of the lid member 54 as compared with the side portion of the heat exchanging portion 42, the outer peripheral portions of the pipe 70 </ b> A and the pipe 70 </ b> B are connected to the flat portion of the lid member 54. The joint area can be secured by brazing or welding. Further, as shown in FIG. 10B, a flange 70Af (70Bf) extending outward in the radial direction is formed at the end of the pipe 70A (and the pipe 70B), thereby joining the lid member 54. It is possible to further increase the bonding strength.

なお、図11にしたがって、本実施形態の積層ユニット24の組立手順を簡単に説明する。
先ず、図11(A)、(B)に示すように、片側の枠辺44Bを組み付けていない熱流動部50を積層し、図11(A)に示すように、側部の開口から枠部44の中に分割した蓄熱成形体40を挿入し、その後、図11(C)に示すように、開口部分から蓄熱成形体40の上がフィルタ34、及び反応媒体拡散層36を挿入する。
そして、最後に、開口部分に枠辺44Bを挿入し、枠辺44Bを熱交換部42、及び枠辺44Aに接合する。
In addition, according to FIG. 11, the assembly procedure of the lamination | stacking unit 24 of this embodiment is demonstrated easily.
First, as shown in FIGS. 11 (A) and 11 (B), the heat-fluidized portion 50 not assembled with the frame side 44B on one side is laminated, and the frame portion is opened from the side opening as shown in FIG. 11 (A). The divided heat storage molded body 40 is inserted into 44, and then, as shown in FIG. 11C, the filter 34 and the reaction medium diffusion layer 36 are inserted over the heat storage molded body 40 from the opening.
Finally, the frame side 44B is inserted into the opening, and the frame side 44B is joined to the heat exchange part 42 and the frame side 44A.

本実施形態の積層ユニット24では、各熱流動部50が互いにろう付け、または溶接にて接合されているため、熱流動部50を単に積層した場合に比較して、熱流動部50同士のずれが生じず、熱流動部50と熱流動部50の間に隙間が生じることも抑制されるので、蓄熱材の漏れを抑制することができる。   In the lamination unit 24 of this embodiment, since each heat fluid part 50 is mutually joined by brazing or welding, compared with the case where the heat fluid part 50 is merely laminated | stacked, the shift | offset | difference of heat fluid parts 50 is mutually. Is not generated, and the occurrence of a gap between the heat fluidized portion 50 and the heat fluidized portion 50 is also suppressed, so that leakage of the heat storage material can be suppressed.

また、本実施形態の積層ユニット24では、蓄熱成形体40がフィルタ34、及び反応媒体拡散層36と共に、積層方向の両側から熱交換部42で挟持して拘束することができ、蓄熱成形体40の膨張力による変形を抑制することができる。   Moreover, in the lamination | stacking unit 24 of this embodiment, the thermal storage molded object 40 can be pinched and restrained with the heat exchange part 42 from the both sides of the lamination direction with the filter 34 and the reaction medium diffusion layer 36, and the thermal storage molded object 40 The deformation due to the expansion force can be suppressed.

さらに、本実施形態の積層ユニット24では、予め複数の熱流動部50を接合して一体化させておくことにより、熱交換部42と熱交換部42との間の空間部分に、蓄熱成形体40、フィルタ34、及び反応媒体拡散層36を挿入する作業が容易になり、蓄熱成形体40、フィルタ34、及び反応媒体拡散層36の組み付け効率も向上し、人工を減らすことができ、製造コストの低減になる。   Furthermore, in the laminated unit 24 of the present embodiment, the heat storage molded body is formed in the space portion between the heat exchanging portion 42 and the heat exchanging portion 42 by previously joining and integrating the plurality of heat flowing portions 50. 40, the filter 34, and the reaction medium diffusion layer 36 can be easily inserted, the assembly efficiency of the heat storage molded body 40, the filter 34, and the reaction medium diffusion layer 36 can be improved, and man-hours can be reduced. Reduction.

[第4実施形態]
次に、図12にしたがって、本発明の第4実施形態について説明する。なお、前述した実施形態と同一部材等については、同一符号を付してその説明を省略し、前述した実施形態と異なる部分を主に説明する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the same member as embodiment mentioned above, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and a different part from embodiment mentioned above is mainly demonstrated.

図12には、熱流動部50の枠部44の変形例であり、枠部44が、枠辺44A、枠辺44B、及び四隅のL字形状の枠辺44Cから構成されているものである。このように、枠部44は、複数の部材から構成されていてもよい。この枠部44は、装置奥行方向(矢印D方向)の一方側の2つの枠辺44Cと枠辺44Aとが中空構造とされ、装置奥行方向(矢印D方向)の他方側の2つの枠辺44Cと枠辺44Aとが中空構造とされている。そして、一方側の2つの枠辺44Cと枠辺44Aの内部は、図示しない孔を介して熱交換部42と連通しており、他方側の2つの枠辺44Cと枠辺44Aの内部は、図示しない別の孔を介して熱交換部42と連通している。また、全ての熱交換部42と枠部44とは、図示しない孔によって連通している。最上部の枠部44には、一方の角部に配管70Aと連通する孔60Aが形成され、孔60Aとは対角方向の角部に配管70Bと連通する孔60Bが形成されている。これにより、配管70Aから流入させた熱媒体は、各熱流動部50を通過させた後、配管70Bから排出することができる。   FIG. 12 shows a modified example of the frame portion 44 of the heat flow portion 50. The frame portion 44 is configured by a frame side 44A, a frame side 44B, and four L-shaped frame sides 44C. . Thus, the frame part 44 may be composed of a plurality of members. The frame portion 44 has a hollow structure with two frame sides 44C and 44A on one side in the apparatus depth direction (arrow D direction), and two frame sides on the other side in the apparatus depth direction (arrow D direction). 44C and the frame side 44A have a hollow structure. The insides of the two frame sides 44C and 44A on one side communicate with the heat exchange part 42 through a hole (not shown), and the insides of the two frame sides 44C and 44A on the other side are It communicates with the heat exchanging section 42 through another hole (not shown). Moreover, all the heat exchange parts 42 and the frame part 44 are connected by the hole which is not shown in figure. In the uppermost frame 44, a hole 60A communicating with the pipe 70A is formed at one corner, and a hole 60B communicating with the pipe 70B is formed at a corner in a diagonal direction with respect to the hole 60A. Thereby, the heat medium introduced from the pipe 70 </ b> A can be discharged from the pipe 70 </ b> B after passing through each heat flow portion 50.

[その他の実施形態]
なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。
[Other Embodiments]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments can be taken within the scope of the present invention. This will be apparent to those skilled in the art.

20 反応器(化学蓄熱反応器の一例)
22 反応容器(容器)
24 積層ユニット
34 フィルタ
36 反応媒体拡散層
40 蓄熱材成形体(蓄熱材)
42 熱交換部
44 枠部
45 第1凹部(第1空間)
46 第2凹部(第2空間)
51 積層体
W 水蒸気(反応媒体)
20 reactor (an example of a chemical heat storage reactor)
22 reaction vessel (container)
24 Laminated unit 34 Filter 36 Reaction medium diffusion layer 40 Heat storage material molded body (heat storage material)
42 heat exchange part 44 frame part 45 1st recessed part (1st space)
46 Second recess (second space)
51 Laminate W Water Vapor (Reaction Medium)

Claims (5)

反応媒体と結合することで発熱又は反応媒体が脱離して蓄熱する蓄熱材と、内側に前記蓄熱材を収容する枠部と、枠部よりも薄く形成され内部に流れる熱媒体によって前記蓄熱材への熱供給及び前記蓄熱材からの熱回収を行う平板状の熱交換部と、前記蓄熱材の一方の側に配置され反応媒体が流れる反応媒体拡散層と、前記蓄熱材と前記反応媒体拡散層との間に配置され複数の孔が形成されたフィルタと、を含んで構成される積層体が複数積層された積層ユニットと、
前記積層ユニットを内部に収容する容器と、を備え、
前記枠部は、前記熱媒体が流れ前記熱交換部の上流側と連通する第1空間と、前記第1空間と対向して配置され前記熱媒体が流れると共に、前記熱交換部の下流側と連通する第2空間とを有する、化学蓄熱反応器。
The heat storage material that generates heat or accumulates heat when the reaction medium is desorbed by being combined with the reaction medium, the frame portion that houses the heat storage material inside, and the heat storage material that is formed thinner than the frame portion and flows into the heat storage material A flat plate heat exchanging section that performs heat supply and heat recovery from the heat storage material, a reaction medium diffusion layer that is disposed on one side of the heat storage material and through which a reaction medium flows, the heat storage material, and the reaction medium diffusion layer A multi-layered unit in which a plurality of laminated bodies including a filter disposed between and a plurality of holes are formed, and
A container for accommodating the laminated unit therein,
The frame portion is arranged to face the first space through which the heat medium flows and communicates with the upstream side of the heat exchanging portion, and the heat medium flows through the first space and the downstream side of the heat exchanging portion. A chemical heat storage reactor having a second space in communication.
前記枠部の内側には、前記蓄熱材、前記フィルタ、及び前記反応媒体拡散層が積層されており、
一方の前記枠部と他方の前記枠部との間には、前記熱交換部が配置されて接合されており、
一方、及び他方の前記枠部の第1空間と前記熱交換部の上流側とが連通し、
一方、及び他方の前記枠部の第2空間と前記熱交換部の下流側とが連通している、請求項1に記載の化学蓄熱反応器。
Inside the frame portion, the heat storage material, the filter, and the reaction medium diffusion layer are laminated,
Between the one frame part and the other frame part, the heat exchange part is arranged and joined,
On the other hand, the first space of the other frame part communicates with the upstream side of the heat exchange part,
2. The chemical heat storage reactor according to claim 1, wherein the second space of the one and the other frame portion communicates with the downstream side of the heat exchange portion.
全ての前記枠部の積層方向両側に前記熱交換部が接合されている、請求項2に記載の化学蓄熱反応器。   The chemical heat storage reactor according to claim 2, wherein the heat exchange parts are joined to both sides of all the frame parts in the stacking direction. 前記熱交換部、及び前記枠部は金属製であり、前記熱交換部と前記枠部とは、ろう付け、または溶接により接合されている、請求項2に記載の化学蓄熱反応器。   The chemical heat storage reactor according to claim 2, wherein the heat exchange part and the frame part are made of metal, and the heat exchange part and the frame part are joined by brazing or welding. 請求項1〜4の何れか1項に記載の化学蓄熱反応器と、
前記枠部、または前記熱交換部の平面部分に接合され、前記枠部、及び前記熱交換部の内部に熱媒体を流す配管と、
前記化学蓄熱反応器の前記反応媒体拡散層への反応媒体の供給及び前記反応媒体拡散層からの反応媒体の受け取りを行う蒸発凝縮器と、
を有する化学蓄熱システム。
The chemical heat storage reactor according to any one of claims 1 to 4,
The frame part, or a pipe that is joined to the flat part of the heat exchange part, and flows the heat medium into the frame part and the heat exchange part,
An evaporative condenser for supplying the reaction medium to the reaction medium diffusion layer of the chemical heat storage reactor and receiving the reaction medium from the reaction medium diffusion layer;
Having a chemical heat storage system.
JP2016198359A 2016-10-06 2016-10-06 Chemical heat storage reactor and chemical heat storage system Active JP6733482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198359A JP6733482B2 (en) 2016-10-06 2016-10-06 Chemical heat storage reactor and chemical heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198359A JP6733482B2 (en) 2016-10-06 2016-10-06 Chemical heat storage reactor and chemical heat storage system

Publications (2)

Publication Number Publication Date
JP2018059684A true JP2018059684A (en) 2018-04-12
JP6733482B2 JP6733482B2 (en) 2020-07-29

Family

ID=61907756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198359A Active JP6733482B2 (en) 2016-10-06 2016-10-06 Chemical heat storage reactor and chemical heat storage system

Country Status (1)

Country Link
JP (1) JP6733482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079656A (en) * 2018-11-12 2020-05-28 株式会社豊田中央研究所 Heat storage body and chemical heat storage reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079656A (en) * 2018-11-12 2020-05-28 株式会社豊田中央研究所 Heat storage body and chemical heat storage reactor
JP7151396B2 (en) 2018-11-12 2022-10-12 株式会社豊田中央研究所 Heat storage medium and chemical heat storage reactor

Also Published As

Publication number Publication date
JP6733482B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP5821834B2 (en) Chemical heat storage reactor, chemical heat storage system
JP2010286202A (en) Heat exchanger
JP6733482B2 (en) Chemical heat storage reactor and chemical heat storage system
JP4516462B2 (en) Hydrogen storage container and manufacturing method thereof
JP6798115B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6838450B2 (en) Chemical heat storage reactor
JP6578747B2 (en) Reaction vessel, reactor, heat storage system
JP6613931B2 (en) Reactor body manufacturing method
JP6657807B2 (en) Reactor, heat storage system, restraint frame
JP2015178926A (en) Heat storage system
JP6411758B2 (en) Thermal storage reactor, thermal storage system
JP6593153B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6428413B2 (en) Chemical heat storage reactor, chemical heat storage system
JP6783503B2 (en) Reactor, heat storage system and restraint frame
JP6597222B2 (en) Chemical heat storage reactor, chemical heat storage system, and method of manufacturing chemical heat storage reactor
JP6578889B2 (en) Reactor, heat storage system
JP6627529B2 (en) Chemical heat storage reactor and chemical heat storage system
JP2018044702A (en) Chemical heat storage reactor and chemical heat storage system
JP6930405B2 (en) Chemical heat storage reactor
JP6511974B2 (en) Chemical heat storage reactor, chemical heat storage system
JP2016217638A (en) Chemical heat storage reactor and chemical heat storage system
JP2019120430A (en) Chemical heat storage reaction vessel
JP2017090021A (en) Chemical heat storage reactor and chemical heat storage system
JP6988664B2 (en) Chemical heat storage reactor
JP6988675B2 (en) Chemical heat storage reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150