JP6798115B2 - Chemical heat storage reactor and chemical heat storage system - Google Patents
Chemical heat storage reactor and chemical heat storage system Download PDFInfo
- Publication number
- JP6798115B2 JP6798115B2 JP2016048626A JP2016048626A JP6798115B2 JP 6798115 B2 JP6798115 B2 JP 6798115B2 JP 2016048626 A JP2016048626 A JP 2016048626A JP 2016048626 A JP2016048626 A JP 2016048626A JP 6798115 B2 JP6798115 B2 JP 6798115B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage material
- reaction medium
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本発明は、化学反応によって蓄熱する化学蓄熱反応器、及び化学蓄熱システムに関する。 The present invention relates to a chemical heat storage reactor and a chemical heat storage system that store heat by a chemical reaction.
特許文献1に記載の構成では、蓄熱材層、フィルタ、反応媒体拡散層、及び熱交換部が積層されることで化学蓄熱反応器の積層体が形成されており、その積層体が複数個積層された積層ユニットが容器内に収容されている。
積層ユニットの側面の外側には、熱交換部に外部から熱媒体を供給する配管等の熱媒流路が設けられている。また、蓄熱材で生じた積層方向の膨張力によってフィルタ、反応媒体拡散層、及び熱交換部が変形しないように積層ユニットの外側に配置した拘束部材で蓄熱材層、フィルタ、反応媒体拡散層、及び熱交換部を拘束している。
In the configuration described in Patent Document 1, a laminated body of a chemical heat storage reactor is formed by laminating a heat storage material layer, a filter, a reaction medium diffusion layer, and a heat exchange portion, and a plurality of the laminated bodies are laminated. The laminated unit is housed in the container.
On the outside of the side surface of the laminating unit, a heat medium flow path such as a pipe for supplying a heat medium from the outside is provided to the heat exchange portion. Further, the heat storage material layer, the filter, the reaction medium diffusion layer, and the heat storage material layer, the filter, and the reaction medium diffusion layer are restrained members arranged outside the lamination unit so that the filter, the reaction medium diffusion layer, and the heat exchange portion are not deformed by the expansion force in the lamination direction generated by the heat storage material. And the heat exchange part is restrained.
ところで、積層ユニットの側面の外側に、熱交換部に外部から熱媒体を供給する配管等の熱媒流路を設けると、積層ユニットの側面から配管等の熱媒流路が突出することになるため、熱媒流路が容器内面に当たらないようにするためには容器を大型化する必要があり、容器の内容積が大きくなる。容器の内容積が大きくなると、容器の内容積に占める蓄熱材の蓄熱量である蓄熱密度が低下する。
また、積層体に、熱媒流路と拘束部材とを取り付ける必要があるため、部品点数が多く、重量が増加する。
By the way, if a heat medium flow path such as a pipe for supplying a heat medium from the outside is provided on the outside of the side surface of the laminated unit, the heat medium flow path such as a pipe protrudes from the side surface of the laminated unit. Therefore, in order to prevent the heat medium flow path from hitting the inner surface of the container, it is necessary to increase the size of the container, and the internal volume of the container becomes large. As the internal volume of the container increases, the heat storage density, which is the amount of heat storage of the heat storage material in the internal volume of the container, decreases.
Further, since it is necessary to attach the heat medium flow path and the restraining member to the laminated body, the number of parts is large and the weight is increased.
本願発明の課題は、化学蓄熱反応器、及び化学蓄熱システムにおいて、蓄熱密度を高くし、且つ軽量化を図ることである。 An object of the present invention is to increase the heat storage density and reduce the weight in a chemical heat storage reactor and a chemical heat storage system.
請求項1に記載の化学蓄熱反応器は、反応媒体と結合することで膨張し発熱又は反応媒体が脱離して蓄熱する蓄熱材が内部に配置されている蓄熱材層、前記蓄熱材層の一方側に配置され、反応媒体が流れる反応媒体拡散層、前記蓄熱材層と前記反応媒体拡散層との間に配置され、複数の細孔が形成されたフィルタ、及び前記蓄熱材層の前記フィルタとは反対側に積層され、内部に熱媒体が流れる空間を有する第1の熱交換部を含んで構成される積層体と、前記積層体に対して、前記第1の熱交換部とは反対側に配置されて前記第1の熱交換部との間で前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタを挟持し、内部に熱媒体が流れる空間を有し、前記熱媒体によって前記蓄熱材への熱供給及び前記蓄熱材からの熱回収のうち少なくとも一方を行う第2の熱交換部と、を含んで構成される積層ユニットと、前記積層ユニットを内部に収容する容器と、積層された前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタを貫通して前記第1の熱交換部と前記第2の熱交換部とを連結し、内部に前記第1の熱交換部の内部空間と前記第2の熱交換部の内部空間とを連通すると共に、前記第1の熱交換部の内部空間と前記第2の熱交換部の内部空間に対して前記積層体の外部から前記熱媒体を出入りさせる熱媒流路を備えた第1拘束部材と、を備え、前記第1拘束部材は、前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタの中心部を貫通すると共に、前記第1の熱交換部の中心部と前記第2の熱交換部の中心部とを連結している。 The chemical heat storage reactor according to claim 1 is one of a heat storage material layer and the heat storage material layer in which a heat storage material that expands by combining with a reaction medium and generates heat or desorbs the reaction medium to store heat is arranged inside. A reaction medium diffusion layer arranged on the side through which the reaction medium flows, a filter arranged between the heat storage material layer and the reaction medium diffusion layer and having a plurality of pores formed therein, and the filter of the heat storage material layer. Is laminated on the opposite side and includes a first heat exchange portion having a space for a heat medium to flow inside, and the laminated body on the opposite side of the first heat exchange portion. The heat storage material layer, the reaction medium diffusion layer, and the filter are sandwiched between the heat storage material layer and the first heat exchange unit, and a space through which the heat medium flows is provided, and the heat storage is provided by the heat medium. A laminated unit including a second heat exchange unit that supplies heat to the material and recovers heat from the heat storage material, and a container that houses the laminated unit are laminated. The heat storage material layer, the reaction medium diffusion layer, and the filter are penetrated to connect the first heat exchange unit and the second heat exchange unit, and the inside of the first heat exchange unit is inside. The space is communicated with the internal space of the second heat exchange unit, and the heat from the outside of the laminate with respect to the internal space of the first heat exchange unit and the internal space of the second heat exchange unit. A first restraint member provided with a heat medium flow path for allowing a medium to enter and exit is provided, and the first restraint member penetrates the heat storage material layer, the reaction medium diffusion layer, and the central portion of the filter, and the first restraint member. The central portion of the first heat exchange portion and the central portion of the second heat exchange portion are connected .
請求項1の積層ユニットでは、第1の熱交換部と第2の熱交換部との間に、蓄熱材層、反応媒体拡散層、フィルタが配置されている。蓄熱材層の蓄熱材が膨張した際、蓄熱材の膨張力が積層方向に伝達される。しかし、蓄熱材の積層方向両側方向に位置する第1の熱交換部と第2の熱交換部とが第1拘束部材で連結されているので、第1拘束部材の積層方向の引っ張り強度を利用して、第1の熱交換部と第2の熱交換部とが積層方向に離間すること、即ち、第1の熱交換部と第2の熱交換部との間隔が広くなることが抑制される。また、第1の熱交換部と第2の熱交換部との間に配置されるフィルタ、反応媒体拡散層等の変形も、これらの積層方向両側に配置される第1の熱交換部と第2の熱交換部とで抑制される。 In the laminated unit of claim 1, a heat storage material layer, a reaction medium diffusion layer, and a filter are arranged between the first heat exchange section and the second heat exchange section. When the heat storage material of the heat storage material layer expands, the expansion force of the heat storage material is transmitted in the stacking direction. However, since the first heat exchange section and the second heat exchange section located on both sides of the heat storage material in the stacking direction are connected by the first restraint member, the tensile strength of the first restraint member in the stacking direction is utilized. Therefore, it is suppressed that the first heat exchange section and the second heat exchange section are separated in the stacking direction, that is, the distance between the first heat exchange section and the second heat exchange section is widened. To. Further, deformation of the filter, the reaction medium diffusion layer, etc. arranged between the first heat exchange part and the second heat exchange part is also caused by the first heat exchange part and the first heat exchange part arranged on both sides in the stacking direction. It is suppressed by the heat exchange section of 2.
また、請求項1の積層ユニットでは、第1拘束部材が積層ユニットの側面の外側に配置されておらず、蓄熱材層、反応媒体拡散層、及びフィルタを貫通しているので、積層ユニットの側面と容器内面との間隔を狭くすることができ、積層ユニットを収容する容器を小さくして、容器の内容積を小さくすることができる。これにより、容器の内容積に占める蓄熱材の蓄熱量である蓄熱密度を高くすることができる。 Further, in the laminated unit of claim 1, since the first restraint member is not arranged outside the side surface of the laminated unit and penetrates the heat storage material layer, the reaction medium diffusion layer, and the filter, the side surface of the laminated unit. The space between the container and the inner surface of the container can be narrowed, and the container accommodating the laminating unit can be made smaller to reduce the internal volume of the container. As a result, the heat storage density, which is the amount of heat stored in the heat storage material in the internal volume of the container, can be increased.
さらに、請求項1の積層ユニットでは、第1拘束部材が、第1の熱交換部と第2の熱交換部に対して外部から熱媒体を供給する熱媒流路としての機能と、蓄熱材層、フィルタ、反応媒体拡散層を熱交換部で拘束するための拘束部材としての機能とを有しているため、熱媒流路と拘束部材とを別々の部品で構成する場合に比較して部品点数が少なくなり、軽量化を図ることができる。 Further, in the laminated unit of claim 1, the first restraining member functions as a heat medium flow path for supplying a heat medium from the outside to the first heat exchange part and the second heat exchange part, and a heat storage material. Since it has a function as a restraining member for restraining the layer, the filter, and the reaction medium diffusion layer by the heat exchange portion, it is compared with the case where the heat medium flow path and the restraining member are composed of separate parts. The number of parts is reduced, and the weight can be reduced.
蓄熱層の蓄熱材は、積層方向から見て、中心部の膨張力が大きくなる傾向にある。請求項1に記載の化学蓄熱反応器では、第1拘束部材が、蓄熱材層、反応媒体拡散層、及びフィルタの中心部を貫通すると共に、第1の熱交換部の中心部と第2の熱交換部の中心部とを連結しており、蓄熱材層における蓄熱材の膨張力が大きくなる部分に対応して配置されるので、蓄熱材に隣接する部材の変形を効果的に抑えることができる。 The heat storage material of the heat storage layer tends to have a large expansion force at the center when viewed from the stacking direction. In the chemical heat storage reactor according to claim 1 , the first restraint member penetrates the heat storage material layer, the reaction medium diffusion layer, and the central portion of the filter, and the central portion of the first heat exchange portion and the second. Since it is connected to the central part of the heat exchange part and is arranged corresponding to the part of the heat storage material layer where the expansion force of the heat storage material is large, it is possible to effectively suppress the deformation of the member adjacent to the heat storage material. it can.
請求項2に記載の発明は、請求項1に記載の化学蓄熱反応器において、前記積層ユニットの積層方向に向けて延びると共に前記積層ユニットの外面に沿って配置され、前記第1の熱交換部、前記第2の熱交換部、前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタの積層方向とは交差する方向に移動を拘束する第2拘束部材を有する。 According to a second aspect of the invention, the chemical heat reactor according to claim 1, wherein extends toward the stacking direction of the laminate unit is disposed along the outer surface of the laminate unit, said first heat exchanger , The second heat exchange section, the heat storage material layer, the reaction medium diffusion layer, and a second restraining member that restrains movement in a direction intersecting the stacking direction of the filter.
請求項2に記載の化学蓄熱反応器では、熱媒流路付き第1の拘束部材に加え、第2の拘束部材を備えているので、蓄熱材の膨張力による変形をより抑えることができる。なお、第2の拘束部材は、補助的に設けられているので、例えば、薄い帯状の部材で形成することができ、積層ユニットの側面から外側に突出する寸法を小さく抑えることができる。 The chemical heat storage reactor according to claim 2 includes a second restraint member in addition to the first restraint member with a heat medium flow path, so that deformation of the heat storage material due to expansion force can be further suppressed. Since the second restraint member is provided as an auxiliary, for example, it can be formed of a thin strip-shaped member, and the dimension of projecting outward from the side surface of the laminated unit can be suppressed to a small size.
請求項3に記載の発明は、請求項2に記載の化学蓄熱反応器において、前記第1拘束部材と前記第2拘束部材とが接合されている。 In the invention according to claim 3, in the chemical heat storage reactor according to claim 2, the first restraint member and the second restraint member are joined to each other.
請求項3に記載の化学蓄熱反応器では、第1拘束部材と第2拘束部材とを接合しているので、第1拘束部材と第2拘束部材とを接合しない場合に比較して、蓄熱材の膨張力による変形をより抑えることができる。 In the chemical heat storage reactor according to claim 3, since the first restraint member and the second restraint member are joined, the heat storage material is compared with the case where the first restraint member and the second restraint member are not joined. Deformation due to expansion force can be further suppressed.
請求項4に記載の化学蓄熱システムは、請求項1〜3の何れか1項に記載の化学蓄熱反応器と、前記化学蓄熱反応器の前記反応媒体拡散層への反応媒体の供給及び前記反応媒体拡散層からの反応媒体の受け取りのうち少なくとも一方を行う蒸発凝縮器と、を有する。 The chemical heat storage system according to claim 4 comprises the chemical heat storage reactor according to any one of claims 1 to 3 and the supply of a reaction medium to the reaction medium diffusion layer of the chemical heat storage reactor and the reaction. It has an evaporative condenser, which performs at least one of receiving the reaction medium from the medium diffusion layer.
請求項4に記載の化学蓄熱システムは、請求項1〜3の何れか1項に記載の化学蓄熱反応器を備えているため、高蓄熱密度と軽量化が可能となる。 Since the chemical heat storage system according to claim 4 includes the chemical heat storage reactor according to any one of claims 1 to 3 , high heat storage density and weight reduction are possible.
本発明の化学蓄熱反応器、及び化学蓄熱システムによれば、高蓄熱密度と軽量化が可能となる。 According to the chemical heat storage reactor and the chemical heat storage system of the present invention, high heat storage density and weight reduction are possible.
[第1実施形態]
図1乃至図10にしたがって、本発明の第1実施形態に係る化学蓄熱システム10を説明する。なお、図中に示す矢印Hは装置上下方向(鉛直方向、積層方向)を示し、矢印Wは装置幅方向(水平方向)を示し、矢印Dは装置奥行方向(水平方向)を示す。
[First Embodiment]
The chemical heat storage system 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 10. The arrow H shown in the figure indicates the device vertical direction (vertical direction, stacking direction), the arrow W indicates the device width direction (horizontal direction), and the arrow D indicates the device depth direction (horizontal direction).
(全体構成)
図1(A)、(B)に示すように、本実施形態に係る化学蓄熱システム10は、水を蒸発させる蒸発器と水蒸気(反応媒体の一例)Wを凝縮させる凝縮器とが一体化された蒸発凝縮器12と、化学蓄熱反応器の一例としての反応器20と、蒸発凝縮器12と反応器20とを連通する連通路14とを含んで構成されている。
(overall structure)
As shown in FIGS. 1A and 1B, in the chemical heat storage system 10 according to the present embodiment, an evaporator for evaporating water and a reactor for condensing water vapor (an example of a reaction medium) W are integrated. It is configured to include an evaporation condenser 12, a reactor 20 as an example of a chemical heat storage reactor, and a communication passage 14 connecting the evaporation condenser 12 and the reactor 20.
(蒸発凝縮器)
蒸発凝縮器12は、貯留した水を蒸発させて反応器20に供給する(水蒸気Wを生成する)蒸発部、反応器20から受け取った水蒸気Wを凝縮する凝縮部、及び水蒸気Wが凝縮された水を貯留する貯留部、としての各機能を備えている。
(Evaporation condenser)
In the evaporation condenser 12, the evaporated part that evaporates the stored water and supplies it to the reactor 20 (generates water vapor W), the condensing part that condenses the water vapor W received from the reactor 20, and the water vapor W are condensed. It has each function as a storage unit for storing water.
また、蒸発凝縮器12は、内部に水が貯留される容器16を備えており、この容器16内には、水蒸気Wを凝縮する、又は水を蒸発するのに用いる熱媒流路17の一部が配置されている。さらに、熱媒流路17は、容器16内における少なくとも気相部16Aを含む部分で熱交換を行うように配置されている。そして、凝縮時には低温媒体、蒸発時には中温媒体が、熱媒流路17を流れるようになっている。 Further, the evaporation condenser 12 includes a container 16 in which water is stored, and one of the heat medium flow paths 17 used for condensing water vapor W or evaporating water in the container 16. The part is arranged. Further, the heat medium flow path 17 is arranged so as to perform heat exchange in a portion of the container 16 including at least the gas phase portion 16A. Then, a low temperature medium flows through the heat medium flow path 17 during condensation and a medium temperature medium flows through the heat medium flow path 17 during evaporation.
(連通路)
連通路14は、蒸発凝縮器12(容器16)と反応器20(後述する反応容器22)との連通、非連通を切り替えるための開閉弁19を備えている。そして、容器16、反応容器22、連通路14、及び開閉弁19は、互いの接続部位が気密に構成されており、これらの内部空間が予め真空脱気されている。
(Continuous passage)
The communication passage 14 includes an on-off valve 19 for switching between communication and non-communication between the evaporation condenser 12 (container 16) and the reactor 20 (reaction container 22 described later). The connection portions of the container 16, the reaction container 22, the communication passage 14, and the on-off valve 19 are airtightly configured, and the internal spaces thereof are evacuated in advance.
(反応器)
反応器20は、図2に示すように、反応容器22を備え、反応容器22の内部に図3に示す積層ユニット24が収容されている。
(Reactor)
As shown in FIG. 2, the reactor 20 includes a reaction vessel 22, and the lamination unit 24 shown in FIG. 3 is housed inside the reaction vessel 22.
(反応容器)
図2に示すように、反応容器22は、直方体状とされ、上方側が開放される箱状の本体部22Aと、蓋部材22Bとを備えている。そして、反応容器22の内部は、水蒸気(反応媒体の一例)が流れる反応媒体流動部26とされ、前述したように内部が真空脱気されている。
(Reaction vessel)
As shown in FIG. 2, the reaction vessel 22 has a rectangular parallelepiped shape and includes a box-shaped main body portion 22A whose upper side is open, and a lid member 22B. The inside of the reaction vessel 22 is a reaction medium flow portion 26 through which water vapor (an example of a reaction medium) flows, and the inside is evacuated as described above.
(積層ユニットにおける蓄熱材反応部の全体構成)
図3に示すように、積層ユニット24は、発熱又は蓄熱する蓄熱材反応部30と蓄熱材反応部30の下側に積層された熱流動部50とを含んで構成される積層体51が、装置上下方向に複数個(本実施形態では3個)積層されており、最上部の積層体51の上側にも熱流動部50が積層されている。
(Overall configuration of heat storage material reaction part in the laminated unit)
As shown in FIG. 3, the stacking unit 24 includes a laminated body 51 including a heat storage material reaction unit 30 that generates heat or stores heat and a heat flow unit 50 that is laminated under the heat storage material reaction unit 30. A plurality of (three in the present embodiment) are laminated in the vertical direction of the device, and the heat flow portion 50 is also laminated on the upper side of the uppermost laminated body 51.
図4に示すように、蓄熱材反応部30は、蓄熱材層32と、蓄熱材層32に上方側から積層されるフィルタ34と、フィルタ34に上方側から積層される反応媒体拡散層36とを備えている。 As shown in FIG. 4, the heat storage material reaction unit 30 includes a heat storage material layer 32, a filter 34 laminated on the heat storage material layer 32 from above, and a reaction medium diffusion layer 36 laminated on the filter 34 from above. It has.
そして、蓄熱材層32、フィルタ34、及び反応媒体拡散層36は、装置上下方向から見て同様の矩形状(本実施形態では正方形)とされ、本実施形態においては、装置上下方向に並んで非接合状態(溶接などで固定されていない状態)で積層されている(所謂積層構造)。 The heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 have the same rectangular shape (square in the present embodiment) when viewed from the vertical direction of the device, and are arranged in the vertical direction of the device in the present embodiment. It is laminated in a non-bonded state (a state where it is not fixed by welding or the like) (so-called laminated structure).
(蓄熱材反応部の蓄熱材層の構成)
蓄熱材層32は、ブロック状に形成された複数個の蓄熱成形体40と、金属材料で形成され、蓄熱成形体40が内部に配置される枠状の拘束枠の一例としてのフレーム部材44とを備えている。
(Structure of heat storage material layer in heat storage material reaction part)
The heat storage material layer 32 includes a plurality of heat storage molded bodies 40 formed in a block shape, and a frame member 44 as an example of a frame-shaped restraint frame formed of a metal material and in which the heat storage molded body 40 is arranged inside. It has.
蓄熱成形体40には、一例として、アルカリ土類金属の酸化物の1つである酸化カルシウム(CaO:蓄熱材の一例)の成形体が用いられている。この成形体は、例えば、酸化カルシウム粉体をバインダ(例えば粘土鉱物等)と混練し、焼成することで、略矩形ブロック状に形成されている。 As an example, a molded body of calcium oxide (CaO: an example of a heat storage material), which is one of the oxides of an alkaline earth metal, is used as the heat storage molded body 40. This molded product is formed into a substantially rectangular block shape, for example, by kneading calcium oxide powder with a binder (for example, clay mineral or the like) and firing it.
ここで、蓄熱成形体40は、水和に伴って膨張して放熱(発熱)し、脱水に伴って蓄熱(吸熱)するものであり、以下に示す反応で放熱、蓄熱を可逆的に繰り返し得る構成とされている。 Here, the heat storage molded body 40 expands and dissipates heat (heat generation) with hydration, and stores heat (endothermic) with dehydration, and can reversibly repeat heat dissipation and heat storage by the reaction shown below. It is composed.
CaO + H2O ⇔ Ca(OH)2
この式に蓄熱量、発熱量Qを併せて示すと、
CaO + H2O → Ca(OH)2 + Q
Ca(OH)2 + Q → CaO + H2O
となる。
CaO + H2O ⇔ Ca (OH) 2
When the heat storage amount and the calorific value Q are shown together in this equation,
CaO + H2O → Ca (OH) 2 + Q
Ca (OH) 2 + Q → CaO + H2O
Will be.
なお、一例として、蓄熱成形体40の1kg当たりの蓄熱容量は、1.86[MJ/kg]とされている。 As an example, the heat storage capacity per 1 kg of the heat storage molded body 40 is 1.86 [MJ / kg].
また、本実施形態において、蓄熱成形体40を構成する蓄熱材の粒径とは、蓄熱材が粉体の場合はその平均粒径、粒状の場合は造粒前の粉体の平均粒径とする。これは、粒が崩壊する場合、前工程の状態に戻ると推定されるためである。 Further, in the present embodiment, the particle size of the heat storage material constituting the heat storage molded body 40 is the average particle size of the heat storage material when it is powder, and the average particle size of the powder before granulation when the heat storage material is granular. To do. This is because it is presumed that when the grains collapse, they return to the state of the previous process.
フレーム部材44は、装置上下方向から見て矩形枠状とされており、コ字状の第1部材44Aと、第1部材44Aの両端部を連結する第2部材44Bとを含んで構成されている。第2部材44Bは、第1部材44Aに対してボルト45で着脱可能に取り付けられている。 The frame member 44 has a rectangular frame shape when viewed from the vertical direction of the device, and includes a U-shaped first member 44A and a second member 44B connecting both ends of the first member 44A. There is. The second member 44B is detachably attached to the first member 44A with a bolt 45.
本実施形態では、フレーム部材44の内部に、24個の蓄熱成形体40が、フレーム部材44の中央部分を除いて密に配置されるようになっている。なお、蓄熱成形体40の配置されないフレーム部材44の中央部分には、後述する第1拘束部材92が配置される。これにより、蓄熱成形体40における水平方向(板厚方向に対して直交する直交方向)の動きは、フレーム部材44、及び第1拘束部材92によって拘束されるようになっている。そして。フレーム部材44の装置上下方向の寸法(厚み寸法)は、水和反応に伴って蓄熱成形体40が膨張した際の密度が、予め決められた蓄熱成形体40の設定密度になるように決められている。 In the present embodiment, 24 heat storage molded bodies 40 are densely arranged inside the frame member 44 except for the central portion of the frame member 44. A first restraint member 92, which will be described later, is arranged in the central portion of the frame member 44 where the heat storage molded body 40 is not arranged. As a result, the movement of the heat storage molded body 40 in the horizontal direction (orthogonal direction orthogonal to the plate thickness direction) is constrained by the frame member 44 and the first restraining member 92. And. The vertical dimension (thickness dimension) of the frame member 44 is determined so that the density when the heat storage molded body 40 expands due to the hydration reaction becomes a predetermined set density of the heat storage molded body 40. ing.
(蓄熱材反応部、フィルタ)
フィルタ34は、反応媒体拡散層36と蓄熱材層32との間に挟まれ、一例としてφ200〔μm〕の微小貫通孔(図示せず)が、フィルタ全面に多数形成された金属材料からなるエッチングフィルターである。
(Heat storage material reaction part, filter)
The filter 34 is sandwiched between the reaction medium diffusion layer 36 and the heat storage material layer 32, and as an example, an etching made of a metal material in which a large number of microthrough holes (not shown) having a diameter of 200 [μm] are formed on the entire surface of the filter. It is a filter.
そして、フィルタ34は、蓄熱成形体40を構成する蓄熱材の平均粒径より小さいろ過精度を有している。これにより、フィルタ34は、蓄熱成形体40を構成する蓄熱材の平均粒径より小さい流路を水蒸気が通過するのを許容する一方、平均粒径よりも大きい蓄熱材の通過を制限するようになっている。 The filter 34 has a filtration accuracy smaller than the average particle size of the heat storage material constituting the heat storage molded body 40. As a result, the filter 34 allows water vapor to pass through a flow path smaller than the average particle size of the heat storage material constituting the heat storage molded body 40, while restricting the passage of the heat storage material larger than the average particle size. It has become.
ろ過精度とは、ろ過効率が50〜98%となる粒子径のことであり、ろ過効率とは、ある粒子径の粒子に対する除去効率である。 The filtration accuracy is the particle size at which the filtration efficiency is 50 to 98%, and the filtration efficiency is the removal efficiency for particles having a certain particle size.
フィルタ34は、後述する第1拘束部材92を貫通させるための矩形孔35が中央に形成されており、また、2つのフィルタ片34Aに装置幅方向(矢印W方向)中央部から装置幅方向に2分割可能となっている。 The filter 34 has a rectangular hole 35 formed in the center for penetrating the first restraint member 92, which will be described later, and the two filter pieces 34A are formed in the device width direction (arrow W direction) from the center portion in the device width direction. It can be divided into two.
(蓄熱材反応部の反応媒体拡散層)
反応媒体拡散層36は、図5(A)に示すように、金属材料からなる矩形状の天板37と、天板37に固定される金属材料からなる複数の流路部材38とを備えている。流路部材38は、水蒸気が流れる装置幅行方向に延び、装置奥行方向に間隔をあけて並んでいる(図5(B)参照)。
(Reaction medium diffusion layer of heat storage material reaction part)
As shown in FIG. 5A, the reaction medium diffusion layer 36 includes a rectangular top plate 37 made of a metal material and a plurality of flow path members 38 made of a metal material fixed to the top plate 37. There is. The flow path members 38 extend in the width direction of the device through which water vapor flows, and are arranged at intervals in the depth direction of the device (see FIG. 5B).
夫々の流路部材38は、図5(B)に示すように、天板37に対して下方側に配置され、装置幅方向(矢印W方向)から見てフィルタ34(図4参照)側が開放されたU字状とされている。そして、上壁38Bが天板37の下面に溶接されている。 As shown in FIG. 5B, each flow path member 38 is arranged below the top plate 37, and the filter 34 (see FIG. 4) side is open when viewed from the device width direction (arrow W direction). It is said to be U-shaped. The upper wall 38B is welded to the lower surface of the top plate 37.
これにより、流路部材38の内側、及び隣り合う流路部材38の間に、蓄熱材層32の
蓄熱成形体40へ供給される水蒸気、又は蓄熱材層32の蓄熱成形体40から排出される水蒸気が装置幅方向に沿って流れるようになっている。
As a result, water vapor supplied to the heat storage molded body 40 of the heat storage material layer 32 or discharged from the heat storage molded body 40 of the heat storage material layer 32 between the inside of the flow path member 38 and the adjacent flow path members 38. Water vapor flows along the width direction of the device.
反応媒体拡散層36は、後述する第1拘束部材92を貫通させるための矩形孔39が中央に形成されており、また、2つの反応媒体拡散層片36Aに装置奥行方向(矢印D方向)中央部から装置奥行方向に2分割可能となっている。 The reaction medium diffusion layer 36 has a rectangular hole 39 formed in the center for penetrating the first restraint member 92 described later, and the two reaction medium diffusion layer pieces 36A are centered in the device depth direction (arrow D direction). It can be divided into two parts in the depth direction of the device.
(熱流動部)
熱流動部50は、図6、及び図7(A),(B)に示すように、上方が開口した略箱形状とされ、装置上下方向から見て矩形状の本体部52と、本体部52の開口部を覆い本体部52の内部を密閉する蓋部材54とを含んで構成されている。
(Heat flow part)
As shown in FIGS. 6 and 7 (A) and 7 (B), the heat flow portion 50 has a substantially box shape with an upper opening, and has a rectangular main body 52 and a main body when viewed from the vertical direction of the device. It is configured to include a lid member 54 that covers the opening of 52 and seals the inside of the main body 52.
図7(A),(B)に示すように、本体部52の内部は、装置幅方向(矢印W方向)の中央に形成され、装置奥行方向(矢印D方向)に延びる仕切り壁56を介して一方側の第1熱媒体通過室58と、他方側の第2熱媒体通過室60とに区画されている。 As shown in FIGS. 7A and 7B, the inside of the main body 52 is formed in the center in the device width direction (arrow W direction) and is passed through a partition wall 56 extending in the device depth direction (arrow D direction). It is divided into a first heat medium passing chamber 58 on one side and a second heat medium passing chamber 60 on the other side.
本体部52の底部、即ち、第1熱媒体通過室58の底部、及び第2熱媒体通過室60の底部には、仕切り壁56と平行に配置された複数の放熱フィン62が、装置幅方向に間隔を開けて溶接されている。放熱フィン62は、装置幅方向から見て上方側(蓋部材側)が開放された略U字状とされている。 At the bottom of the main body 52, that is, the bottom of the first heat medium passing chamber 58 and the bottom of the second heat medium passing chamber 60, a plurality of heat radiation fins 62 arranged in parallel with the partition wall 56 are provided in the device width direction. Welded at intervals. The heat radiating fin 62 has a substantially U-shape with the upper side (lid member side) open when viewed from the device width direction.
また、本体部52の底部には、仕切り壁56に最も近い放熱フィン62と、仕切り壁56との間に、仕切り壁56と平行に第1隔壁64が形成されている。さらに、本体部52の底部には、仕切り壁56の長手方向中央部分と、第1隔壁64の長手方向中央部分とを連結する第2隔壁66が形成されている。 Further, at the bottom of the main body 52, a first partition wall 64 is formed between the heat radiation fin 62 closest to the partition wall 56 and the partition wall 56 in parallel with the partition wall 56. Further, a second partition wall 66 connecting the central portion in the longitudinal direction of the partition wall 56 and the central portion in the longitudinal direction of the first partition wall 64 is formed at the bottom of the main body portion 52.
ここで、第1熱媒体通過室58において、仕切り壁56と第1隔壁64との間で、且つ第2隔壁66の矢印D方向側は、第1流路68とされ、仕切り壁56と第1隔壁64との間で、且つ第2隔壁66の矢印D方向とは反対方向側は、第2流路70とされている。 Here, in the first heat medium passing chamber 58, between the partition wall 56 and the first partition wall 64, and the side of the second partition wall 66 in the direction of arrow D is the first flow path 68, and the partition wall 56 and the first partition wall 56 and the first partition wall 56. The second flow path 70 is located between the first partition wall 64 and the second partition wall 66 in the direction opposite to the arrow D direction.
一方、第2熱媒体通過室60において、仕切り壁56と第1隔壁64との間で、且つ第2隔壁66の矢印D方向側は、第3流路72とされ、仕切り壁56と第1隔壁64との間で、且つ第2隔壁66の矢印D方向とは反対方向側は、第4流路74とされている。 On the other hand, in the second heat medium passing chamber 60, between the partition wall 56 and the first partition wall 64, and the side of the second partition wall 66 in the direction of arrow D is a third flow path 72, and the partition wall 56 and the first partition wall 56 and the first partition wall 56. The fourth flow path 74 is located between the partition wall 64 and the second partition wall 66 in the direction opposite to the arrow D direction.
本体部52の底部には、第1流路68の本体部中央側の端部に連通する本体側第1の開口部76と、第2流路70の本体部中央側の端部に連通する本体側第2の開口部78と、第3流路72の本体部中央側の端部に連通する本体側第3の開口部80と、第4流路74の本体部中央側の端部に連通する本体側第4の開口部82が形成されている。 The bottom of the main body 52 communicates with the first opening 76 on the main body side that communicates with the end of the first flow path 68 on the center side of the main body and the end of the second flow path 70 on the center side of the main body. At the second opening 78 on the main body side, the third opening 80 on the main body side communicating with the end on the center side of the main body of the third flow path 72, and the end on the center side of the main body of the fourth flow path 74. A fourth opening 82 on the main body side to communicate with is formed.
図6に示すように、蓋部材54の中央には、本体側第1の開口部76(図6では図示せず)と対向する位置に蓋部材側第1の開口部84と、本体側第2の開口部78(図6では図示せず)と対向する位置に蓋部材側第2の開口部86と、本体側第3の開口部80(図6では図示せず)と対向する位置に蓋部材側第3の開口部88と、本体側第4の開口部82(図6では図示せず)と対向する位置に蓋部材側第4の開口部90とが形成されている。 As shown in FIG. 6, in the center of the lid member 54, the lid member side first opening 84 and the main body side first opening 76 are located at positions facing the main body side first opening 76 (not shown in FIG. 6). At a position facing the opening 78 (not shown in FIG. 6) of No. 2 at a position facing the second opening 86 on the lid member side and the third opening 80 on the main body side (not shown in FIG. 6). A third opening 88 on the lid member side and a fourth opening 90 on the lid member side are formed at positions facing the fourth opening 82 on the main body side (not shown in FIG. 6).
なお、熱流動部50は、金属材料で形成され、蓄熱成形体40からの圧力によって変形しないように、フィルタ34、反応媒体拡散層36よりも高い曲げ剛性を有している。 The heat flow portion 50 is made of a metal material and has a flexural rigidity higher than that of the filter 34 and the reaction medium diffusion layer 36 so as not to be deformed by the pressure from the heat storage molded body 40.
(第1拘束部材)
図3、図8、及び図9に示すように、これら複数の熱流動部50は、中央部分が金属材料で形成された角柱状の第1拘束部材92で連結されている。また、最上部の熱流動部50においては、蓋部材54の中央部分に第1拘束部材92が取り付けられている。図9に示すように、第1拘束部材92は、本体部52、及び蓋部材54に溶接(又はろう付け)55により接合されている。即ち、複数の熱流動部50と第1拘束部材92とは一体化しており、熱流動部50と熱流動部50との間隔が一定に保たれている。そして、一定の間隔に保たれた熱流動部50と熱流動部50との間に、蓄熱材反応部30(蓄熱材層32、フィルタ34、反応媒体拡散層36)が配置されている。
(1st restraint member)
As shown in FIGS. 3, 8 and 9, these plurality of heat flow portions 50 are connected by a prismatic first restraining member 92 whose central portion is formed of a metal material. Further, in the uppermost heat flow portion 50, the first restraint member 92 is attached to the central portion of the lid member 54. As shown in FIG. 9, the first restraint member 92 is joined to the main body portion 52 and the lid member 54 by welding (or brazing) 55. That is, the plurality of heat flow portions 50 and the first restraint member 92 are integrated, and the distance between the heat flow portion 50 and the heat flow portion 50 is kept constant. Then, the heat storage material reaction unit 30 (heat storage material layer 32, filter 34, reaction medium diffusion layer 36) is arranged between the heat flow unit 50 and the heat flow unit 50 maintained at regular intervals.
図6、図8、及び図9に示すように、角柱状に形成された第1拘束部材92には、本体側第1の開口部76と蓋部材側第1の開口部84とに連通する第1熱媒流路94、本体側第2の開口部78と蓋部材側第2の開口部86とに連通する第2熱媒流路96、本体側第3の開口部80と蓋部材側第3の開口部88とに連通する第3熱媒流路98、本体側第4の開口部82と蓋部材側第4の開口部90とに連通する第4熱媒流路100が、軸方向(装置上下方向)に沿って形成されている。 As shown in FIGS. 6, 8 and 9, the first restraint member 92 formed in a prismatic shape communicates with the first opening 76 on the main body side and the first opening 84 on the lid member side. The first heat medium flow path 94, the second heat medium flow path 96 communicating with the second opening 78 on the main body side and the second opening 86 on the lid member side, the third opening 80 on the main body side and the lid member side. The third heat medium flow path 98 communicating with the third opening 88, the fourth heat medium flow path 100 communicating with the fourth opening 82 on the main body side and the fourth opening 90 on the lid member side are shafts. It is formed along the direction (vertical direction of the device).
(第2拘束部材)
図3に示すように、積層ユニット24には、縦に配置された無端のベルト状に形成された4本の第2拘束部材102が積層ユニット24を囲むように巻回されている。第2拘束部材102は、ステンレススチール等の金属薄板で形成されている。
4本の第2拘束部材102の内の2本は、装置上下方向(矢印H方向)、及び装置奥行方向(矢印D方向)を周方向とし、他の2本は、装置上下方向(矢印H方向)、及び装置幅方向(矢印W方向)を周方向としており、各第2拘束部材102は、積層ユニット24の上面、下面、及び側面に接触している。
(Second restraint member)
As shown in FIG. 3, four second restraint members 102 formed in a vertically arranged endless belt shape are wound around the laminated unit 24 so as to surround the laminated unit 24. The second restraint member 102 is made of a thin metal plate such as stainless steel.
Two of the four second restraint members 102 have the device vertical direction (arrow H direction) and the device depth direction (arrow D direction) as circumferential directions, and the other two have the device vertical direction (arrow H). The direction) and the device width direction (arrow W direction) are the circumferential directions, and each of the second restraint members 102 is in contact with the upper surface, the lower surface, and the side surface of the laminating unit 24.
(他の部材)
図1に示すように、反応容器22の外部には、熱流動部50の連通先を熱源104とするか、熱利用対象物106とするかを切り替える切替部材108が備えられている。
図1、及び図2に示すように、積層ユニット24の最上部の熱流動部50の上部に接合された第1拘束部材92は、反応容器22の蓋部材22Bを貫通し、蓋部材22Bの上方に突出している。蓋部材22Bの上方に突出した第1拘束部材92と切替部材108とは複数本の配管を介して接続されている。
(Other members)
As shown in FIG. 1, the outside of the reaction vessel 22 is provided with a switching member 108 for switching whether the communication destination of the heat flow unit 50 is the heat source 104 or the heat utilization object 106.
As shown in FIGS. 1 and 2, the first restraining member 92 joined to the upper part of the heat flow portion 50 at the uppermost portion of the laminating unit 24 penetrates the lid member 22B of the reaction vessel 22, and the lid member 22B It protrudes upward. The first restraint member 92 and the switching member 108 projecting upward from the lid member 22B are connected to each other via a plurality of pipes.
ここで、熱源104からの熱媒体を、切替部材108、第1拘束部材92の第2熱媒流路96、及び第3熱媒流路98を介して熱流動部50の内部に流入させ、熱流動部50を通過した後の熱媒体を、第1拘束部材92の第1熱媒流路94、及び第4熱媒流路100を介して熱源104へ戻すことができる。 Here, the heat medium from the heat source 104 is allowed to flow into the heat flow section 50 via the switching member 108, the second heat medium flow path 96 of the first restraint member 92, and the third heat medium flow path 98. The heat medium after passing through the heat flow section 50 can be returned to the heat source 104 via the first heat medium flow path 94 of the first restraint member 92 and the fourth heat medium flow path 100.
また、切替部材108の切り替えにより、熱利用対象物106からの熱媒体を、切替部材108、第1拘束部材92の第2熱媒流路96、及び第3熱媒流路98を介して熱流動部50の内部に流入させ、熱流動部50を通過した後の熱媒体を、第1拘束部材92の第1熱媒流路94、及び第4熱媒流路100を介して熱利用対象物106へ戻すことができる。 Further, by switching the switching member 108, the heat medium from the heat utilization object 106 is heated through the switching member 108, the second heat medium flow path 96 of the first restraint member 92, and the third heat medium flow path 98. The heat medium that has flowed into the flow section 50 and has passed through the heat flow section 50 is heat-utilized through the first heat medium flow path 94 of the first restraint member 92 and the fourth heat medium flow path 100. It can be returned to the object 106.
(積層ユニットの組立手順)
以下に、積層ユニット24の組立手順の概要を説明する。
(1) 先ず、熱流動部50に第1拘束部材92を溶接55で接合し、図8に示すように、複数の熱流動部50を第1拘束部材92で連結して一体化する。
(2) 次に、図10(A)〜(C)に示すように、熱流動部50の上で、蓄熱材層32の組み立てを行う。先ず、図10(A)に示すように、熱流動部50の上にコ字状の第2部材44Bを配置すると共に、ブロック状の蓄熱成形体40を順に配置し、図10(B)に示すように、第2部材44Bの内側に蓄熱成形体40を敷き詰める。その後、第1部材44Aの側方の開口部分を塞ぐように第2部材44Bを配置し、図10(C)に示すように、第2部材44Bをボルト45で第1部材44Aに固定する。このようにして、熱流動部50の上に蓄熱材層32が組み付けられる。なお、蓄熱材層32の中央部に第1拘束部材92が貫通しているので、蓄熱材層32が熱流動部50に対して水平方向にずれることは無い。
(3) 次に、図10(D)に示すように、蓄熱材層32の上に、2つのフィルタ片34Aを向かい合わせて配置する。なお、一方のフィルタ片34Aと他方のフィルタ片34Aとを向かい合わせて当接させ後、一方のフィルタ片34Aと他方のフィルタ片34Aとの当接部分の外周縁を点状に溶接又はろう付けすることで、一方のフィルタ片34Aと他方のフィルタ片34Aとの分離を抑制することができる。
(4) 次に、図10(E)に示すように、フィルタ34の上に、2つの反応媒体拡散層片36Aを向かい合わせて配置する。なお、一方の反応媒体拡散層片36Aと他方の反応媒体拡散層片36Aとを向かい合わせて当接させ後、一方の反応媒体拡散層片36Aと他方の反応媒体拡散層片36Aとの当接部分の外周縁を点状に溶接又はろう付けすることで、一方の反応媒体拡散層片36Aと他方の反応媒体拡散層片36Aとの分離を抑制することができる。
これにより、熱流動部50と熱流動部50との間に、蓄熱材層32、フィルタ34、及び反応媒体拡散層36からなる蓄熱材反応部30が組み付けられる。
(4) その後、図3に示すように、積層ユニット24を囲むように4本の第2拘束部材102を巻回する。
(Assembly procedure of laminated unit)
The outline of the assembly procedure of the laminated unit 24 will be described below.
(1) First, the first restraint member 92 is joined to the heat flow portion 50 by welding 55, and as shown in FIG. 8, a plurality of heat flow portions 50 are connected and integrated by the first restraint member 92.
(2) Next, as shown in FIGS. 10A to 10C, the heat storage material layer 32 is assembled on the heat flow section 50. First, as shown in FIG. 10 (A), the U-shaped second member 44B is arranged on the heat flow portion 50, and the block-shaped heat storage molded body 40 is arranged in order, and in FIG. 10 (B). As shown, the heat storage molded body 40 is spread inside the second member 44B. After that, the second member 44B is arranged so as to close the lateral opening portion of the first member 44A, and as shown in FIG. 10C, the second member 44B is fixed to the first member 44A with bolts 45. In this way, the heat storage material layer 32 is assembled on the heat flow portion 50. Since the first restraint member 92 penetrates the central portion of the heat storage material layer 32, the heat storage material layer 32 does not shift in the horizontal direction with respect to the heat flow portion 50.
(3) Next, as shown in FIG. 10D, two filter pieces 34A are arranged facing each other on the heat storage material layer 32. After the one filter piece 34A and the other filter piece 34A are brought into contact with each other facing each other, the outer peripheral edge of the contact portion between the one filter piece 34A and the other filter piece 34A is welded or brazed in a dot shape. By doing so, it is possible to suppress the separation of one filter piece 34A and the other filter piece 34A.
(4) Next, as shown in FIG. 10 (E), two reaction medium diffusion layer pieces 36A are arranged facing each other on the filter 34. After the one reaction medium diffusion layer piece 36A and the other reaction medium diffusion layer piece 36A are brought into contact with each other facing each other, the one reaction medium diffusion layer piece 36A and the other reaction medium diffusion layer piece 36A are brought into contact with each other. By welding or brazing the outer peripheral edge of the portion in a dot shape, the separation of one reaction medium diffusion layer piece 36A and the other reaction medium diffusion layer piece 36A can be suppressed.
As a result, the heat storage material reaction unit 30 including the heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 is assembled between the heat flow unit 50 and the heat flow unit 50.
(4) After that, as shown in FIG. 3, four second restraint members 102 are wound around the laminated unit 24.
(化学蓄熱システムの作用、効果)
次に、化学蓄熱システム10の作用、効果について説明する。
化学蓄熱システム10において反応器20に蓄熱された熱を蓄熱材層32から発熱(放熱)させる際には、図1(B)に示すように、切替部材108により第1拘束部材92の各通路の連通先が熱利用対象物106に切り替えられる。さらに、開閉弁19を開放し、この状態で、蒸発凝縮器12の熱媒流路17に中温媒体を流し、液相部16Bの水を蒸発させる。そして、生成された水蒸気Wが連通路14内を矢印D方向に移動して、反応容器22内に供給される。
(Action and effect of chemical heat storage system)
Next, the action and effect of the chemical heat storage system 10 will be described.
When the heat stored in the reactor 20 in the chemical heat storage system 10 is generated (heated) from the heat storage material layer 32, as shown in FIG. 1 (B), each passage of the first restraint member 92 is provided by the switching member 108. The communication destination is switched to the heat utilization target 106. Further, the on-off valve 19 is opened, and in this state, a medium temperature medium is passed through the heat medium flow path 17 of the evaporation condenser 12 to evaporate the water in the liquid phase portion 16B. Then, the generated steam W moves in the communication passage 14 in the direction of arrow D and is supplied into the reaction vessel 22.
続いて、反応容器22内では、供給された水蒸気Wが反応媒体流動部26を通り、反応媒体拡散層36を流れる。そして、水蒸気Wがフィルタ34を通過して蓄熱材層32の蓄熱成形体40と接触することにより、蓄熱材層32の蓄熱成形体40は、水和反応を生じつつ発熱(放熱)する。この熱は、熱流動部50の内部を流れる熱媒体によって、熱利用対象物106に輸送される。 Subsequently, in the reaction vessel 22, the supplied water vapor W passes through the reaction medium flow unit 26 and flows through the reaction medium diffusion layer 36. Then, when the water vapor W passes through the filter 34 and comes into contact with the heat storage molded body 40 of the heat storage material layer 32, the heat storage molded body 40 of the heat storage material layer 32 generates heat (heat is dissipated) while causing a hydration reaction. This heat is transferred to the heat utilization object 106 by the heat medium flowing inside the heat flow unit 50.
図7、及び図9に示すように、熱流動部50の内部では、第1熱媒体通過室58の内部と第2熱媒体通過室60の内部において、熱媒体が矢印A方向に流れる。熱流動部50の内部には放熱フィン62が設けられており、熱媒体はこの放熱フィン62の間を通過するので、蓄熱成形体40の熱を効率的に熱媒体に伝達することができる。 As shown in FIGS. 7 and 9, inside the heat flow unit 50, the heat medium flows in the direction of arrow A inside the first heat medium passing chamber 58 and inside the second heat medium passing chamber 60. Since the heat radiation fins 62 are provided inside the heat flow unit 50 and the heat medium passes between the heat radiation fins 62, the heat of the heat storage molded body 40 can be efficiently transferred to the heat medium.
一方、化学蓄熱システム10において蓄熱材層32の蓄熱成形体40に熱を蓄熱させる際には、図1(A)に示すように、切替部材108により第1拘束部材92の各通路の連通先が熱源104に切り替えられる。さらに、開閉弁19を開放し、この状態で、熱流動部50の内部に、熱源104によって加熱された熱媒体が流れる。 On the other hand, when heat is stored in the heat storage molded body 40 of the heat storage material layer 32 in the chemical heat storage system 10, as shown in FIG. 1A, the switching member 108 communicates with each passage of the first restraint member 92. Is switched to the heat source 104. Further, the on-off valve 19 is opened, and in this state, the heat medium heated by the heat source 104 flows inside the heat flow unit 50.
この場合においても、熱流動部50の内部では、第1熱媒体通過室58の内部と第2熱媒体通過室60の内部において、熱源104によって加熱された熱媒体が矢印A方向に流れ、熱媒体の熱を効率的に蓄熱成形体40に伝達することができる。 Also in this case, inside the heat flow unit 50, the heat medium heated by the heat source 104 flows in the direction of arrow A inside the first heat medium passing chamber 58 and inside the second heat medium passing chamber 60, and heat is generated. The heat of the medium can be efficiently transferred to the heat storage molded body 40.
そして、熱流動部50の第1熱媒体通過室58と第2熱媒体通過室60を流れる熱媒体の熱によって蓄熱成形体40が脱水反応を生じ、この熱が蓄熱成形体40に蓄熱される。 Then, the heat storage molded body 40 undergoes a dehydration reaction due to the heat of the heat medium flowing through the first heat medium passing chamber 58 and the second heat medium passing chamber 60 of the heat flow unit 50, and this heat is stored in the heat storage molded body 40. ..
さらに、蓄熱成形体40から離脱された水蒸気Wは、フィルタ34から反応媒体拡散層36に流れ込む。反応媒体拡散層36に流れ込んだ水蒸気Wは、反応媒体流動部26を通り、図1(A)に示すように、連通路14を矢印E方向に流れて蒸発凝縮器12内に流れ込む。 Further, the water vapor W separated from the heat storage molded body 40 flows from the filter 34 into the reaction medium diffusion layer 36. The water vapor W that has flowed into the reaction medium diffusion layer 36 passes through the reaction medium flow unit 26, flows through the communication passage 14 in the direction of arrow E, and flows into the evaporation condenser 12 as shown in FIG. 1 (A).
そして、蒸発凝縮器12の気相部16Aにおいて、熱媒流路17を流れる冷媒によって水蒸気Wが冷却され、凝縮された水が容器16の液相部16Bに貯留される。 Then, in the gas phase portion 16A of the evaporation condenser 12, the water vapor W is cooled by the refrigerant flowing through the heat medium flow path 17, and the condensed water is stored in the liquid phase portion 16B of the container 16.
本実施形態の積層ユニット24においては、第1拘束部材92で連結された熱流動部50と熱流動部50との間に蓄熱材層32、フィルタ34、及び反応媒体拡散層36が挟持されている。これにより、蓄熱成形体40が水蒸気Wと接触して膨張した際に、熱流動部50の高い曲げ剛性と、第1拘束部材92の積層方向の引っ張り強度とを利用して、熱流動部50と熱流動部50との間に積層されている各部材の変形や積層方向の間隔が変化しまうのを抑制し、蓄熱材反応部30と熱流動部50との間での熱交換効率が低下するのを抑制することができる。 In the laminated unit 24 of the present embodiment, the heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 are sandwiched between the heat flow unit 50 and the heat flow unit 50 connected by the first restraint member 92. There is. As a result, when the heat storage molded body 40 comes into contact with the water vapor W and expands, the heat flow portion 50 utilizes the high flexural rigidity of the heat flow portion 50 and the tensile strength of the first restraint member 92 in the stacking direction. It suppresses deformation of each member laminated between the heat flow unit 50 and the interval in the stacking direction, and reduces the heat exchange efficiency between the heat storage material reaction unit 30 and the heat flow unit 50. Can be suppressed.
また、第1拘束部材92は、熱流動部50と熱流動部50との間に配置されている蓄熱材層32、フィルタ34、及び反応媒体拡散層36の中央部を貫通しているので、これら蓄熱材層32、フィルタ34、及び反応媒体拡散層36の水平方向、即ち、装置幅方向(矢印W方向)、及び装置奥行方向(矢印D方向)のずれを抑制することができる。このため、仮に蓄熱材が粉体化しても、蓄熱材層32の水平方向のずれに起因する蓄熱材の漏れは抑制される。 Further, since the first restraint member 92 penetrates the central portion of the heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 arranged between the heat flow portion 50 and the heat flow portion 50, It is possible to suppress the deviation of the heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 in the horizontal direction, that is, in the device width direction (arrow W direction) and in the device depth direction (arrow D direction). Therefore, even if the heat storage material is powdered, leakage of the heat storage material due to the horizontal displacement of the heat storage material layer 32 is suppressed.
蓄熱材層32から蓄熱材が漏れ出て、蓄熱材の密度や蓄熱材の量が減ると、蓄熱材反応部30と熱流動部50との間での熱交換効率が低下してしまう虞がある。しかしながら、本実施形態のように蓄熱材層32のずれを抑制して、蓄熱材の漏れを抑制することで、蓄熱材反応部30と熱流動部50との間での熱交換効率が低下するのを抑制することができる。 If the heat storage material leaks from the heat storage material layer 32 and the density of the heat storage material and the amount of the heat storage material decrease, there is a risk that the heat exchange efficiency between the heat storage material reaction unit 30 and the heat flow unit 50 will decrease. is there. However, by suppressing the displacement of the heat storage material layer 32 and suppressing the leakage of the heat storage material as in the present embodiment, the heat exchange efficiency between the heat storage material reaction unit 30 and the heat flow unit 50 is lowered. Can be suppressed.
ここで、蓄熱材層32の内部に配置される蓄熱成形体40において、膨張した際の膨張力が、積層方向から見た中央部で大きくなるが、大きな膨張力の作用する積層ユニット24の中央部に第1拘束部材92が配置されているので、膨張力による変形を効率的に抑制することができる。 Here, in the heat storage molded body 40 arranged inside the heat storage material layer 32, the expansion force when expanded increases in the central portion when viewed from the lamination direction, but the center of the lamination unit 24 on which the large expansion force acts. Since the first restraint member 92 is arranged in the portion, deformation due to the expansion force can be efficiently suppressed.
なお、積層ユニット24においては、第2拘束部材102が積層ユニット24を囲むように巻回されており、膨張力による外周側(中央部から離れた位置)の変形を補助的に抑制している。なお、第2拘束部材102は必要に応じて設ければよく、無くてもよい。 In the laminated unit 24, the second restraining member 102 is wound so as to surround the laminated unit 24, and the deformation of the outer peripheral side (position away from the central portion) due to the expansion force is auxiliary suppressed. .. The second restraint member 102 may or may not be provided as needed.
本実施形態の積層ユニット24においては、第1拘束部材92が積層ユニット24の側面の外側に配置されておらず、積層ユニット24の中心部を貫通しており、外側に巻回されている第2拘束部材102は金属薄板で形成されているので、積層ユニット24の側面と反応容器22の内面との間隔を狭くすることができ、反応容器22を小さくして、反応容器22の内容積を小さくすることができる。これにより、反応容器22の内容積に占める蓄熱材の蓄熱量である蓄熱密度を高くすることができる。 In the laminated unit 24 of the present embodiment, the first restraint member 92 is not arranged outside the side surface of the laminated unit 24, but penetrates the central portion of the laminated unit 24 and is wound outward. Since the 2 restraint member 102 is formed of a thin metal plate, the distance between the side surface of the laminating unit 24 and the inner surface of the reaction vessel 22 can be narrowed, and the reaction vessel 22 can be made smaller to increase the internal volume of the reaction vessel 22. It can be made smaller. As a result, the heat storage density, which is the amount of heat stored in the heat storage material in the internal volume of the reaction vessel 22, can be increased.
さらに、本実施形態の積層ユニット24においては、第1拘束部材92が、熱流動部50に対して外部から熱媒体を供給する熱媒流路としての機能と、蓄熱材層32、フィルタ34、反応媒体拡散層36を熱流動部50で拘束するための拘束部材としての機能とを有しているため、熱媒流路と拘束部材とを別々の部材で作成する必要がなく、部品点数を少なくして、軽量化を図ることができる。また、積層ユニット24の部品点数を少なくすることで、積層ユニット24の熱容量を小さくすることができ、蓄熱材と反応媒体とが反応する反応時間を短縮することができ、高性能な反応器20を実現できる。 Further, in the laminated unit 24 of the present embodiment, the first restraint member 92 functions as a heat medium flow path for supplying a heat medium to the heat flow unit 50 from the outside, and the heat storage material layer 32, the filter 34, and the like. Since it has a function as a restraining member for restraining the reaction medium diffusion layer 36 by the heat flow portion 50, it is not necessary to create the heat medium flow path and the restraining member as separate members, and the number of parts can be increased. It can be reduced to reduce the weight. Further, by reducing the number of parts of the laminated unit 24, the heat capacity of the laminated unit 24 can be reduced, the reaction time for the reaction between the heat storage material and the reaction medium can be shortened, and the high-performance reactor 20 can be used. Can be realized.
[第2実施形態]
次に、図11にしたがって、本発明の第2実施形態について説明する。なお、第1実施形態と同一部材等については、同一符号を付してその説明を省略し、第1実施形態と異なる部分を主に説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. The same members and the like as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from those in the first embodiment will be mainly described.
図11に示すように、本実施形態の積層ユニット24では、両端部を第1拘束部材92の側面に溶接112により接合した2本の第2拘束部材110が、積層ユニット24を囲むように巻回されている。本実施形態の第2拘束部材110も、ステンレススチール等の金属薄板で形成されている。 As shown in FIG. 11, in the laminated unit 24 of the present embodiment, two second restraining members 110 having both ends joined to the side surface of the first restraining member 92 by welding 112 are wound so as to surround the laminated unit 24. It is being turned. The second restraint member 110 of this embodiment is also made of a thin metal plate such as stainless steel.
ここで、2本の第2拘束部材110の内の1本は、上下方向(矢印H方向)、及び装置奥行方向(矢印D方向)を周方向とし、他の1本は、上下方向(矢印H方向)、及び装置幅方向(矢印W方向)を周方向としており、各第2拘束部材110は、積層ユニット24の上面、下面、及び側面に接触している。 Here, one of the two second restraint members 110 has the vertical direction (arrow H direction) and the device depth direction (arrow D direction) as the circumferential direction, and the other one has the vertical direction (arrow). The H direction) and the device width direction (arrow W direction) are the circumferential directions, and each of the second restraint members 110 is in contact with the upper surface, the lower surface, and the side surface of the laminating unit 24.
また、本実施形態の第2拘束部材110は、その両端部が第1拘束部材92の側面に溶接112により接合されているので、接合しない場合に比較して変形の抑制効果を高めることができる。 Further, since both ends of the second restraint member 110 of the present embodiment are joined to the side surface of the first restraint member 92 by welding 112, the effect of suppressing deformation can be enhanced as compared with the case where the second restraint member 110 is not joined. ..
[比較例]
次に、図12にしたがって、比較例について説明する。なお、前述した実施形態と同一部材等については、同一符号を付してその説明を省略し、前述した実施形態と異なる部分を主に説明する。
[ Comparison example ]
Next, a comparative example will be described with reference to FIG. The same members and the like as those in the above-described embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from the above-described embodiment will be mainly described.
第1の実施形態では、熱流動部50の中央部に第1拘束部材92を接合したが、例えば、図12に示すように、熱流動部50の形状が長方形である場合には、熱流動部50の長手方向に複数(比較例では2個)の第1拘束部材92を接合してもよい。なお、比較例の熱流動部50は、正方形であった第1の実施形態の熱流動部50を2個一組にして長方形状となるように一体化したものである。
なお、図示は省略するが、蓄熱材層32、フィルタ34、及び反応媒体拡散層36は、熱流動部50の形状に合わせて長方形に形成されている。
In the first embodiment, the first restraint member 92 is joined to the central portion of the heat flow portion 50. For example, as shown in FIG. 12, when the shape of the heat flow portion 50 is rectangular, the heat flow (the ratio Comparative Examples 2) a plurality in the longitudinal direction of the part 50 may be joined to the first constraining member 92. The heat flow section 50 of the comparative example is a set of two heat flow sections 50 of the first embodiment, which were square, and are integrated so as to form a rectangular shape.
Although not shown, the heat storage material layer 32, the filter 34, and the reaction medium diffusion layer 36 are formed in a rectangular shape according to the shape of the heat flow portion 50.
熱流動部50において、蓄熱材の膨張力の大きくなる部分がある方向に分布したり、複数個所になる場合には、熱流動部50に第1拘束部材92を複数接合し、変形を抑制することが好ましい。 In the heat flow portion 50, when the portion where the expansion force of the heat storage material is large is distributed in a certain direction or becomes a plurality of portions, a plurality of first restraint members 92 are joined to the heat flow portion 50 to suppress deformation. Is preferable.
[第3実施形態]
次に、図13にしたがって、本発明の第3実施形態について説明する。なお、前述した実施形態と同一部材等については、同一符号を付してその説明を省略し、前述した実施形態と異なる部分を主に説明する。
[ Third Embodiment ]
Next, a third embodiment of the present invention will be described with reference to FIG. The same members and the like as those in the above-described embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from the above-described embodiment will be mainly described.
図13に示すように、本実施形態の熱流動部50には、本体側第1の開口部76、本体側第3の開口部80、蓋部材側第1の開口部84、及び蓋部材側第3の開口部88とに連通する第1熱媒流路116、本体側第2の開口部78、本体側第4の開口部82、蓋部材側第2の開口部86、及び蓋部材側第4の開口部90とに連通する第2熱媒流路118が、軸方向(装置上下方向)に沿って形成された第1拘束部材114が接合されている。 As shown in FIG. 13, the heat flow portion 50 of the present embodiment includes a first opening 76 on the main body side, a third opening 80 on the main body side, a first opening 84 on the lid member side, and a lid member side. The first heat medium flow path 116 communicating with the third opening 88, the second opening 78 on the main body side, the fourth opening 82 on the main body side, the second opening 86 on the lid member side, and the lid member side. The second heat medium flow path 118 communicating with the fourth opening 90 is joined to the first restraint member 114 formed along the axial direction (vertical direction of the device).
本実施形態では、第1熱媒流路116から熱流動部50に熱媒体が流入し、第2熱媒流路118から熱媒体が排出されるようになっており、図12(B)に示すように、熱流動部50の内部において、矢印B方向に熱媒体を流すことができる。
なお、その他の作用、効果は第1の実施形態と同様である。
In the present embodiment, the heat medium flows into the heat flow section 50 from the first heat medium flow path 116, and the heat medium is discharged from the second heat medium flow path 118, as shown in FIG. 12 (B). As shown, a heat medium can flow in the direction of arrow B inside the heat flow unit 50.
The other actions and effects are the same as those in the first embodiment.
[第4実施形態]
次に、図14、及び図15にしたがって、本発明の第4実施形態について説明する。なお、前述した実施形態と同一部材等については、同一符号を付してその説明を省略し、前述した実施形態と異なる部分を主に説明する。
[ Fourth Embodiment ]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 14 and 15. The same members and the like as those in the above-described embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from the above-described embodiment will be mainly described.
第1の実施形態の熱流動部50の形状は、矩形であったが、図14、及び図15に示すように、本実施形態の熱流動部120は、円形である。また、第1の実施形態の第1拘束部材92は、角柱状であったが、図14に示すように、本実施形態の第1拘束部材122は、円柱状である。 The shape of the heat flow portion 50 of the first embodiment is rectangular, but as shown in FIGS. 14 and 15, the heat flow portion 120 of this embodiment is circular. Further, the first restraint member 92 of the first embodiment has a prismatic shape, but as shown in FIG. 14, the first restraint member 122 of the present embodiment has a columnar shape.
本実施形態の熱流動部120は、上方が開口し、装置上下方向から見て円形状の本体部124と、本体部124の開口部を覆い本体部124の内部を密閉する蓋部材126とを含んで構成されている。 The heat flow portion 120 of the present embodiment has a main body portion 124 having an opening at the top and a circular shape when viewed from the vertical direction of the device, and a lid member 126 that covers the opening of the main body portion 124 and seals the inside of the main body portion 124. It is configured to include.
図15(B)に示すように、本体部124の底部には、中心部に隔壁128が形成されており、隔壁128の矢印W方向側に半円状の本体側第1の開口部130が、隔壁128の矢印W方向とは反対側に本体部側第2の開口部132が形成されている。 As shown in FIG. 15B, a partition wall 128 is formed in the center of the bottom portion of the main body portion 124, and a semicircular first opening 130 on the main body side is formed on the arrow W direction side of the partition wall 128. , The second opening 132 on the main body side is formed on the side of the partition wall 128 opposite to the arrow W direction.
また、本体部124の底部には、中心部を通り、かつ装置幅方向に延びる仮想中心線FCLに沿って、隔壁128の矢印W方向側に通路134が形成され、隔壁128の矢印W方向側と反対側に通路136が形成されている。 Further, at the bottom of the main body 124, a passage 134 is formed on the arrow W direction side of the partition wall 128 along the virtual center line FCL extending in the device width direction through the center portion, and the arrow W direction side of the partition wall 128 is formed. A passage 136 is formed on the opposite side to the above.
さらに、本体部124の底部には、仮想中心線FCLを境にして通路134、及び通路136の矢印D方向側、及び矢印D方向側と反対側に、本体部124の中心部を曲率半径の中心とした複数の円弧状のフィン138が形成されている。 Further, at the bottom of the main body 124, the central portion of the main body 124 has a radius of curvature on the side opposite to the arrow D direction side and the arrow D direction side of the passage 134 and the passage 136 with the virtual center line FCL as a boundary. A plurality of arcuate fins 138 at the center are formed.
図15(A)に示すように、蓋部材126には、本体部124の本体側第1の開口部130と対向する位置に、蓋側第1の開口部140が形成され、本体部側第2の開口部132と対向する位置に、蓋側第2の開口部142が形成されている。 As shown in FIG. 15A, the lid member 126 is formed with the lid-side first opening 140 at a position facing the main body-side first opening 130 of the main body 124, and the main body-side first opening 140 is formed. A second opening 142 on the lid side is formed at a position facing the opening 132 of 2.
図14、及び図15(A)に示すように、本実施形態の第1拘束部材122には、本体側第1の開口部130と蓋側第1の開口部140に連通する第1熱媒流路144、及び本体部側第2の開口部132と蓋側第2の開口部142とに連通する第2熱媒流路146が軸方向に沿って形成されている。 As shown in FIGS. 14 and 15 (A), the first restraint member 122 of the present embodiment has a first heat medium communicating with the first opening 130 on the main body side and the first opening 140 on the lid side. A second heat medium flow path 146 that communicates with the flow path 144 and the second opening 132 on the main body side and the second opening 142 on the lid side is formed along the axial direction.
なお、図示は省略するが、熱流動部120と熱流動部120との間には、円形の蓄熱材層32、フィルタ34、及び反応媒体拡散層36が配置されている。 Although not shown, a circular heat storage material layer 32, a filter 34, and a reaction medium diffusion layer 36 are arranged between the heat flow unit 120 and the heat flow unit 120.
本実施形態では、熱流動部120に対して、第1拘束部材122の第1熱媒流路144から熱媒体が流入し、第2熱媒流路146から熱媒体が排出される。図15(B)に示すように、熱流動部120の内部では、熱媒体が通路134を矢印C方向に流れた後、フィン138とフィン138との間を流れ、最後に、通路136を矢印C方向に流れるようになっている。
なお、その他の作用、効果は第1の実施形態と同様である。
In the present embodiment, the heat medium flows into the heat flow section 120 from the first heat medium flow path 144 of the first restraint member 122, and the heat medium is discharged from the second heat medium flow path 146. As shown in FIG. 15B, inside the heat flow section 120, the heat medium flows through the passage 134 in the direction of arrow C, then flows between the fins 138 and 138, and finally, the passage 136 is indicated by an arrow. It is designed to flow in the C direction.
The other actions and effects are the same as those in the first embodiment.
[その他の実施形態]
なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。
[Other Embodiments]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments can be taken within the scope of the present invention. That is clear to those skilled in the art.
上記実施形態の熱流動部50の本体部52では、図7(B)に示すように、第1熱媒体通過室58の底部、及び第2熱媒体通過室60の底部に、複数の放熱フィン62が溶接されていたが、放熱フィン62は、図7(C)に示すように、第1熱媒体通過室58の底部、及び第2熱媒体通過室60の底部に対して一体的に形成(例えば、本体部52の切削加工により)されていてもよい。 In the main body 52 of the heat flow section 50 of the above embodiment, as shown in FIG. 7B, a plurality of heat radiating fins are formed on the bottom of the first heat medium passing chamber 58 and the bottom of the second heat medium passing chamber 60. Although the 62 was welded, the heat radiation fins 62 were integrally formed with respect to the bottom of the first heat medium passing chamber 58 and the bottom of the second heat medium passing chamber 60, as shown in FIG. 7C. It may be (for example, by cutting the main body 52).
20 反応器(化学蓄熱反応器の一例)
22 反応容器
24 積層ユニット
32 蓄熱材層
34 フィルタ
36 反応媒体拡散層
40 蓄熱材成形体(蓄熱材)
44 フレーム部材(拘束枠)
50 熱流動部(第1の熱交換部、第2の熱交換部)
51 積層体
92 第1拘束部材
94 第1熱媒流路(熱媒流路)
96 第2熱媒流路(熱媒流路)
98 第3熱媒流路(熱媒流路)
100 第4熱媒流路(熱媒流路)
102 第2拘束部材
114 第1拘束部材
116 第1熱媒流路(熱媒流路)
118 第2熱媒流路(熱媒流路)
120 熱流動部
122 第1拘束部材
144 第1熱媒流路
146 第2熱媒流路
W 水蒸気(反応媒体)
20 Reactor (Example of chemical heat storage reactor)
22 Reaction vessel 24 Laminating unit 32 Heat storage material layer 34 Filter 36 Reaction medium diffusion layer 40 Heat storage material molded body (heat storage material)
44 Frame member (restraint frame)
50 Heat flow section (first heat exchange section, second heat exchange section)
51 Laminated body 92 First restraint member 94 First heat medium flow path (heat medium flow path)
96 Second heat medium flow path (heat medium flow path)
98 Third heat medium flow path (heat medium flow path)
100 4th heat medium flow path (heat medium flow path)
102 Second restraint member 114 First restraint member 116 First heat medium flow path (heat medium flow path)
118 2nd heat medium flow path (heat medium flow path)
120 Heat flow unit 122 1st restraint member 144 1st heat medium flow path 146 2nd heat medium flow path W Water vapor (reaction medium)
Claims (4)
前記積層ユニットを内部に収容する容器と、
積層された前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタを貫通して前記第1の熱交換部と前記第2の熱交換部とを連結し、内部に前記第1の熱交換部の内部空間と前記第2の熱交換部の内部空間とを連通すると共に、前記第1の熱交換部の内部空間と前記第2の熱交換部の内部空間に対して前記積層体の外部から前記熱媒体を出入りさせる熱媒流路を備えた第1拘束部材と、
を備え、
前記第1拘束部材は、前記蓄熱材層、前記反応媒体拡散層、及び前記フィルタの中心部を貫通すると共に、前記第1の熱交換部の中心部と前記第2の熱交換部の中心部とを連結している、化学蓄熱反応器。 A heat storage material layer in which a heat storage material that expands by combining with a reaction medium and generates heat or desorbs and stores heat is arranged inside, and a reaction medium diffusion in which a reaction medium flows on one side of the heat storage material layer. A layer, a filter arranged between the heat storage material layer and the reaction medium diffusion layer and having a plurality of pores formed therein, and a heat storage material layer laminated on the opposite side to the filter, and a heat medium is provided inside. A laminated body including a first heat exchange section having a flowing space, and the first heat exchange section arranged on the side opposite to the first heat exchange section with respect to the laminated body. The heat storage material layer, the reaction medium diffusion layer, and the filter are sandwiched between them, and a space through which the heat medium flows is provided, and the heat medium supplies heat to the heat storage material and heat from the heat storage material. A laminated unit including a second heat exchange unit that performs at least one of recovery, and
A container for accommodating the laminated unit inside and
The first heat exchange section and the second heat exchange section are connected through the laminated heat storage material layer, the reaction medium diffusion layer, and the filter, and the first heat exchange section is inside. From the outside of the laminate with respect to the internal space of the first heat exchange section and the internal space of the second heat exchange section while communicating the internal space of the first heat exchange section with the internal space of the second heat exchange section. A first restraint member provided with a heat medium flow path for allowing the heat medium to enter and exit,
Equipped with a,
The first restraining member penetrates the heat storage material layer, the reaction medium diffusion layer, and the central portion of the filter, and the central portion of the first heat exchange portion and the central portion of the second heat exchange portion. A chemical heat storage reactor that connects with .
前記化学蓄熱反応器の前記反応媒体拡散層への反応媒体の供給及び前記反応媒体拡散層からの反応媒体の受け取りのうち少なくとも一方を行う蒸発凝縮器と、
を有する化学蓄熱システム。 The chemical heat storage reactor according to any one of claims 1 to 3 and
An evaporation condenser that supplies the reaction medium to the reaction medium diffusion layer of the chemical heat storage reactor and receives the reaction medium from the reaction medium diffusion layer at least one of them.
Has a chemical heat storage system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016048626A JP6798115B2 (en) | 2016-03-11 | 2016-03-11 | Chemical heat storage reactor and chemical heat storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016048626A JP6798115B2 (en) | 2016-03-11 | 2016-03-11 | Chemical heat storage reactor and chemical heat storage system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017161202A JP2017161202A (en) | 2017-09-14 |
JP6798115B2 true JP6798115B2 (en) | 2020-12-09 |
Family
ID=59857857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016048626A Active JP6798115B2 (en) | 2016-03-11 | 2016-03-11 | Chemical heat storage reactor and chemical heat storage system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6798115B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6930402B2 (en) * | 2017-12-05 | 2021-09-01 | 株式会社豊田中央研究所 | Chemical heat storage reactor |
JP7331607B2 (en) * | 2019-10-09 | 2023-08-23 | 株式会社豊田中央研究所 | Chemical heat storage reactor and method for manufacturing chemical heat storage reactor |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61217693A (en) * | 1985-03-22 | 1986-09-27 | Nippon Pillar Packing Co Ltd | Heat exchanger |
JPS6237691A (en) * | 1985-08-09 | 1987-02-18 | Toshiba Corp | Heat accumulating device |
JP2686527B2 (en) * | 1987-10-30 | 1997-12-08 | 昭和アルミニウム株式会社 | Radiator |
JPH0283031U (en) * | 1988-12-17 | 1990-06-27 | ||
JPH0642887A (en) * | 1992-02-20 | 1994-02-18 | Ishigaki Mech Ind Co | Heat accumulator |
JPH0571678U (en) * | 1992-02-28 | 1993-09-28 | 株式会社土屋製作所 | Heat exchanger |
JP3386844B2 (en) * | 1993-06-01 | 2003-03-17 | カルソニックカンセイ株式会社 | Oil cooler |
DE19722074A1 (en) * | 1997-05-27 | 1998-12-03 | Knecht Filterwerke Gmbh | Plate heat exchangers, in particular oil / coolant coolers for motor vehicles |
JPH11142073A (en) * | 1997-11-11 | 1999-05-28 | Toyo Radiator Co Ltd | Aluminum oil cooler-containing radiator tank |
JP2000357531A (en) * | 1999-06-15 | 2000-12-26 | Fuji Electric Co Ltd | Solid polymer electrolyte fuel cell |
SE529808C2 (en) * | 2006-04-06 | 2007-11-27 | Alfa Laval Corp Ab | plate heat exchangers |
JP5239962B2 (en) * | 2009-03-16 | 2013-07-17 | パナソニック株式会社 | Thermal storage device and hot water heater provided with the same |
DE102010042068A1 (en) * | 2010-10-06 | 2012-04-12 | Behr Gmbh & Co. Kg | Heat exchanger |
JP5821834B2 (en) * | 2012-12-26 | 2015-11-24 | 株式会社豊田中央研究所 | Chemical heat storage reactor, chemical heat storage system |
EP3179190A1 (en) * | 2015-12-11 | 2017-06-14 | Alfa Laval Corporate AB | Plate heat exchanger |
-
2016
- 2016-03-11 JP JP2016048626A patent/JP6798115B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017161202A (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821834B2 (en) | Chemical heat storage reactor, chemical heat storage system | |
JP6232196B2 (en) | Box, chemical heat storage reactor and chemical heat storage system | |
JP6798115B2 (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6148885B2 (en) | Filter, chemical heat storage reactor, and chemical heat storage system | |
JP6578747B2 (en) | Reaction vessel, reactor, heat storage system | |
JP6400925B2 (en) | Heat storage system | |
JP6783503B2 (en) | Reactor, heat storage system and restraint frame | |
JP6973066B2 (en) | Chemical heat storage reactor | |
JP6838450B2 (en) | Chemical heat storage reactor | |
JP6428413B2 (en) | Chemical heat storage reactor, chemical heat storage system | |
JP6411758B2 (en) | Thermal storage reactor, thermal storage system | |
JP6597222B2 (en) | Chemical heat storage reactor, chemical heat storage system, and method of manufacturing chemical heat storage reactor | |
JP6613931B2 (en) | Reactor body manufacturing method | |
JP6930405B2 (en) | Chemical heat storage reactor | |
JP2017089924A (en) | Reaction vessel, heat storage system, and cramping frame | |
JP6593153B2 (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6733482B2 (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6838475B2 (en) | Chemical heat storage reactor and chemical heat storage reactor system | |
JP6364198B2 (en) | Thermal storage reactor and thermal storage system | |
JP6511974B2 (en) | Chemical heat storage reactor, chemical heat storage system | |
JP6578889B2 (en) | Reactor, heat storage system | |
JP2016217638A (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6777984B2 (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6627529B2 (en) | Chemical heat storage reactor and chemical heat storage system | |
JP6743607B2 (en) | Chemical heat storage reactor and chemical heat storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200501 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200908 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200908 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200917 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6798115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |