JP2018059009A - Carbon fiber reinforced composite material - Google Patents

Carbon fiber reinforced composite material Download PDF

Info

Publication number
JP2018059009A
JP2018059009A JP2016198554A JP2016198554A JP2018059009A JP 2018059009 A JP2018059009 A JP 2018059009A JP 2016198554 A JP2016198554 A JP 2016198554A JP 2016198554 A JP2016198554 A JP 2016198554A JP 2018059009 A JP2018059009 A JP 2018059009A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
reinforced composite
fiber
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016198554A
Other languages
Japanese (ja)
Inventor
耕志 原田
Koji Harada
耕志 原田
康雄 高木
Yasuo Takagi
康雄 高木
稔之 伊藤
Toshiyuki Ito
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016198554A priority Critical patent/JP2018059009A/en
Publication of JP2018059009A publication Critical patent/JP2018059009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber reinforced composite material constituted by a multi-shaft insertion fabric substrate and a matrix resin and excellent in mechanical physical properties.SOLUTION: There is provided a carbon fiber reinforced composite material having fiber waviness quantity in a layer direction defined as average of absolute values of deviation of a curve and a center line of the curve of 30 μm or less for all curves constituting a boundary between each reinforced fiber sheet constituting a multi-shaft insertion fabric substrate, observed in a thickness direction cross section. There is provided a carbon fiber reinforced composite material constituted by the multi-shaft insertion fabric substrate in which: a plurality of reinforced fiber sheets by arranging a plurality of tow-like carbon fiber yarns consisting of a carbon fiber with fineness of single fibers in a range of 1.2 to 2.4 dtex in parallel are contained, the sheets are laminated in such a manner that the alignment directions of the tow-like carbon fiber yarns included in respective sheets have different angles with respect to a reference direction; and the sheets are integrated with a stitch yarn, and a matrix resin.SELECTED DRAWING: None

Description

本発明は、炭素繊維糸条からなる多軸挿入編物基材と、マトリックス樹脂とから構成される炭素繊維強化複合材料に関する。   The present invention relates to a carbon fiber reinforced composite material composed of a multiaxial insert knitted base material composed of carbon fiber yarns and a matrix resin.

炭素繊維は、高い比強度および比弾性率を有するため、この炭素繊維を強化繊維としてマトリクス樹脂を含浸させた繊維強化複合材料は、優れた力学特性および軽量性に優れることから、スポーツ用途や航空・宇宙用途に加え、自動車や土木・建築、圧力容器および風車ブレードなどの一般産業用途にも幅広く展開されつつあり、更なる高性能化の要請が高い。これら繊維強化複合材料の代表的な成形方法として、オートクレーブ成形法、圧縮成形法、Resin Transfer Molding法(RTM法)およびVaRTM(Vacuum assisted ResinTransfer Molding)法等が知られている。   Since carbon fibers have high specific strength and specific elastic modulus, fiber reinforced composite materials impregnated with a matrix resin using the carbon fibers as reinforcing fibers have excellent mechanical properties and light weight. -In addition to space applications, it is being widely deployed in general industrial applications such as automobiles, civil engineering / architecture, pressure vessels, and windmill blades, and there is a strong demand for higher performance. As typical molding methods for these fiber-reinforced composite materials, an autoclave molding method, a compression molding method, a Resin Transfer Molding method (RTM method), a VaRTM (Vacuum Assisted Resin Transfer Molding) method, and the like are known.

オートクレーブ成形法では、例えば、炭素繊維糸条からなる経糸と緯糸で形成された平織り、綾織り、朱子織りなどの織物に、マトリクス樹脂を含浸させ、プリプレグとし、この織物プリプレグを成形型に積層し、必要に応じてバッグ材で覆い、それをオートクレーブで加熱・加圧(一次真空引き)して繊維強化複合材料を成形する。このオートクレーブ成形法は、プリプレグを用い加圧成形(一次真空引き)することにより、ボイドが少なく極めて信頼性の高い繊維強化複合材料が得られる利点があるが、長い成形工程を有することから、この織物を用いて製造される従来の繊維強化複合材料は、非常に高価な基材となる傾向があった。   In the autoclave molding method, for example, a woven fabric such as plain weave, twill weave, and satin weave formed of carbon fiber yarns is impregnated with a matrix resin to form a prepreg, and this woven prepreg is laminated on a mold. If necessary, it is covered with a bag material, and heated and pressurized (primary vacuum drawing) with an autoclave to form a fiber reinforced composite material. This autoclave molding method has the advantage that a highly reliable fiber-reinforced composite material with few voids can be obtained by pressure molding (primary vacuum drawing) using a prepreg, but this has a long molding process. Conventional fiber reinforced composite materials produced using woven fabrics tend to be very expensive substrates.

また、この繊維強化複合材料の機械特性等をさらに向上させるために、例えば、4枚のプリプレグを用いて、炭素繊維糸が0°/90°/±45°の交差角度をもつように積層配置する疑似等方積層方式が用いられている。この場合、±45°層については、0°/90°層に用いられるプリプレグをバイアスに切断して用いる必要があるが、このカット工程のコストや切断によるプリプレグのロスが大きいため、このような疑似等方性を有する繊維強化複合材料は、高価になる傾向があった。   In order to further improve the mechanical properties and the like of the fiber reinforced composite material, for example, using four prepregs, the carbon fiber yarns are stacked so that the crossing angle is 0 ° / 90 ° / ± 45 °. A pseudo isotropic lamination method is used. In this case, for the ± 45 ° layer, it is necessary to cut the prepreg used for the 0 ° / 90 ° layer into a bias. However, since the cost of this cutting process and the loss of the prepreg due to cutting are large, The fiber reinforced composite material having pseudo-isotropic property tended to be expensive.

一方、生産性に優れている繊維強化複合材料の代表的な成形法としては、圧縮成形法、RTM法やVaRTM法等が挙げられる。RTM法やVaRTM法では、樹脂が含浸されていないドライな複数枚の強化繊維基材を成形型の中に配置し、これに低粘度の液状樹脂を注入することにより、強化繊維基材に樹脂を含浸させ、その状態で樹脂を硬化させることにより、強化繊維とマトリックス樹脂から構成される繊維強化複合材料を成形する。この場合、ドライな状態でも取り扱いが可能な強化繊維基材として、例えば、織物等の基材を用いる必要がある。通常の織物は、強化繊維糸条をたてよこ二方向に配した織組織を有する。そのため、経糸と緯糸の交錯点で強化繊維糸条に屈曲(クリンプ)が発生するが、このクリンプにより強化繊維の真直性が低下するため、一般的に織物は一方向繊維基材を使用した場合と比べ力学特性が劣る傾向にあった。   On the other hand, typical molding methods for fiber-reinforced composite materials having excellent productivity include compression molding, RTM, and VaRTM. In the RTM method and the VaRTM method, a plurality of dry reinforcing fiber bases not impregnated with resin are placed in a molding die, and a low-viscosity liquid resin is injected into the resin to reinforce the reinforcing fiber bases. The fiber-reinforced composite material composed of the reinforcing fibers and the matrix resin is formed by impregnating the resin and curing the resin in this state. In this case, it is necessary to use a substrate such as a woven fabric as the reinforcing fiber substrate that can be handled even in a dry state. A normal woven fabric has a woven structure in which reinforcing fiber yarns are arranged in two vertical directions. For this reason, the reinforcing fiber yarns are bent (crimped) at the intersection of the warp and weft yarns, but the straightness of the reinforcing fibers is reduced by this crimping. The mechanical properties tended to be inferior.

このような問題を解決する一手段として、一方向に平行に配列された強化繊維シートの複数層を互いに異なる角度で積層された状態でステッチ糸により一体化された多軸挿入編物基材の使用が注目されている。この基材は、強化繊維のクリンプを低減し、得られる繊維強化複合材料の力学特性を向上できるとともに、一枚で疑似等方などの性能を有しているため、前記バイアスの切断作業や、積層作業も必要としない点で、低コスト基材として期待されている。   As one means for solving such a problem, use of a multi-axis insertion knitted base material in which a plurality of layers of reinforcing fiber sheets arranged in parallel in one direction are laminated at different angles with stitch yarns Is attracting attention. This base material can reduce the crimping of the reinforcing fibers, improve the mechanical properties of the resulting fiber-reinforced composite material, and has performance such as quasi-isotropy in a single sheet, so the bias cutting operation, It is expected to be a low-cost substrate because it does not require lamination work.

特許文献1には、トウ状の炭素繊維糸の複数本が互いに並列に配列されてなる強化繊維シートの複数枚が、それぞれの強化繊維シートの炭素繊維糸の配列方向が、基準とする方向に対して、異なる角度をもって積層された状態で、ステッチ糸で一体化された多軸挿入編物基材に関する技術が記載されており、この基材とマトリクス樹脂とから、安価で、補強繊維である炭素繊維が均一に分散しているCFRPが得られるとしている。   In Patent Document 1, a plurality of reinforcing fiber sheets in which a plurality of tow-like carbon fiber yarns are arranged in parallel to each other are arranged such that the arrangement direction of the carbon fiber yarns of the respective reinforcing fiber sheets is in a reference direction. On the other hand, a technique related to a multi-axis insertion knitted base material integrated with stitch yarns in a state of being laminated at different angles is described, and carbon, which is a low-cost, reinforcing fiber, is made from this base material and matrix resin. It is said that a CFRP in which fibers are uniformly dispersed is obtained.

特許第4534409号公報Japanese Patent No. 4534409

しかし、この多軸挿入編物基材は樹脂の含浸性に劣るために、これを用いて、RTM法やVaRTM法といった液状樹脂を注入する成型方法にて製造される炭素繊維強化複合材料は、基材に厚み方向のうねり(炭素繊維の蛇行)を生じ、機械物性が低下しやすい問題があった。   However, since this multi-axis insertion knitted base material is inferior in resin impregnation property, a carbon fiber reinforced composite material produced by a molding method in which a liquid resin such as the RTM method or VaRTM method is injected is used as a base material. There was a problem that the material was swelled in the thickness direction (meandering carbon fibers), and the mechanical properties were liable to deteriorate.

そこで本発明では、多軸挿入編物基材とマトリックス樹脂とから構成される、機械物性に優れた炭素繊維強化複合材料を提供することを目的とする。   Therefore, an object of the present invention is to provide a carbon fiber reinforced composite material having a mechanical property and comprising a multi-axis insertion knitted base material and a matrix resin.

すなわち本発明の要旨は以下の通りである。
(1)厚み方向断面において観察される、多軸挿入編物基材を構成する各強化繊維シート間の境界をなす全ての曲線について、該曲線と該曲線の中心線までの偏差の絶対値の平均として定義される層方向の繊維うねり量が30μm以下である、炭素繊維強化複合材料。
(2)単繊維の繊度が1.2〜2.4dtexの範囲である炭素繊維からなるトウ状の炭素繊維糸条を複数本並列に配置した強化繊維シートを複数含み、それぞれのシートに含まれるトウ状の炭素繊維糸条の配列方向が、基準とする方向に対して異なる角度をもって積層され、ステッチ糸で一体化された多軸挿入編物基材と、マトリックス樹脂とから構成される、(1)に記載の炭素繊維強化複合材料。
(3)前記マトリックス樹脂が熱硬化性樹脂である、(2)に記載の炭素繊維強化複合材料。
(4)前記マトリックス樹脂が熱可塑性樹脂である、(2)に記載の炭素繊維強化複合材料。
That is, the gist of the present invention is as follows.
(1) The average of the absolute values of deviations between the curved line and the center line of all the curved lines forming the boundary between the reinforcing fiber sheets constituting the multiaxially inserted knitted base material observed in the cross section in the thickness direction A carbon fiber reinforced composite material having a fiber undulation amount of 30 μm or less defined in a layer direction.
(2) A plurality of reinforcing fiber sheets in which a plurality of tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness of 1.2 to 2.4 dtex are arranged in parallel are included in each sheet. The arrangement direction of the tow-shaped carbon fiber yarns is composed of a multi-axis insertion knitted base material laminated at different angles with respect to the reference direction and integrated with stitch yarns, and a matrix resin (1 The carbon fiber reinforced composite material described in the above.
(3) The carbon fiber reinforced composite material according to (2), wherein the matrix resin is a thermosetting resin.
(4) The carbon fiber reinforced composite material according to (2), wherein the matrix resin is a thermoplastic resin.

本発明の炭素繊維強化複合材料は、従来の多軸挿入編物基材とマトリクス樹脂とから構成される炭素繊維強化複合材料に比べて、基材の厚み方向における各強化繊維シートのうねりが少なく、機械物性に優れる。   The carbon fiber reinforced composite material of the present invention has less swell of each reinforcing fiber sheet in the thickness direction of the base material compared to a carbon fiber reinforced composite material composed of a conventional multiaxial insert knitted base material and a matrix resin, Excellent mechanical properties.

実施例1で得られる炭素繊維強化複合材料の断面画像である。1 is a cross-sectional image of a carbon fiber reinforced composite material obtained in Example 1. 比較例1で得られる炭素繊維強化複合材料の断面画像である。2 is a cross-sectional image of a carbon fiber reinforced composite material obtained in Comparative Example 1. 比較例2で得られる炭素繊維強化複合材料の断面画像である。4 is a cross-sectional image of a carbon fiber reinforced composite material obtained in Comparative Example 2.

本発明の炭素繊維強化複合材料は、多軸挿入編物基材とマトリクス樹脂とから構成されるものであり、厚み方向断面において観察される、多軸挿入編物基材を構成する各強化繊維シート間の境界をなす全ての曲線について、該曲線と該曲線の中心線までの偏差の絶対値の平均として定義される層方向の繊維うねり量が30μm以下である必要がある。   The carbon fiber reinforced composite material of the present invention is composed of a multiaxial insert knitted base material and a matrix resin, and is observed in a cross section in the thickness direction, between the reinforcing fiber sheets constituting the multiaxial insert knitted base material. For all the curves that form the boundary, the amount of fiber undulation in the layer direction, defined as the average of the absolute values of deviations from the curve to the center line of the curve, needs to be 30 μm or less.

これは、繊維うねり量が30μmを超えると、炭素繊維強化複合材料中の炭素繊維の蛇行が顕著となるために、この機械物性が損なわれる傾向にあるためである。より好ましくは25μm以下であり、より好ましくは、18μm以下である。
一方、一般的に流通している炭素繊維の使用であれば、この繊維うねり量が5μm以上であっても、この機械物性の向上を達成することができる。
This is because when the amount of fiber undulation exceeds 30 μm, the meandering of the carbon fibers in the carbon fiber reinforced composite material becomes significant, and this mechanical property tends to be impaired. More preferably, it is 25 micrometers or less, More preferably, it is 18 micrometers or less.
On the other hand, if carbon fibers that are generally distributed are used, even if the fiber undulation amount is 5 μm or more, this improvement in mechanical properties can be achieved.

ここで、多軸挿入編物基材とは、トウ状の炭素繊維糸の複数本が互いに並列に配列されてなる強化繊維シートの複数枚が、それぞれの強化繊維シートの炭素繊維糸の配列方向が、基準とする方向に対して、異なる角度をもって積層された状態で、ステッチ糸で一体化されたものをいう。
また、ここでいう曲線の中心線とは、JIS B0601(製品の幾何特性仕様−表見性状:輪郭曲線方式−用語、定義及び表面性状パラメータ)において定義された算術平均粗さの算出方法と同様に、曲線からの偏差の絶対値の合計が最小となる線のことである。
Here, the multi-axis insertion knitted base is a plurality of reinforcing fiber sheets in which a plurality of tow-like carbon fiber yarns are arranged in parallel with each other, and the arrangement direction of the carbon fiber yarns of each reinforcing fiber sheet is , Which is integrated with stitch yarn in a state of being laminated at different angles with respect to a reference direction.
The center line of the curve here is the same as the calculation method of the arithmetic average roughness defined in JIS B0601 (product geometric property specification-surface appearance property: contour curve method-term, definition and surface property parameter). In addition, it is a line that minimizes the sum of absolute values of deviation from the curve.

本発明の炭素繊維強化複合材料を構成する多軸挿入編物基材は、単繊維の繊度が1.2〜2.4dtexの範囲である炭素繊維からなるトウ状の炭素繊維糸条を用いるのが好ましい。
これは、単繊維の繊度がこの範囲であると、炭素繊維強化複合材料の製造時において、多軸挿入編物基材への樹脂の含浸性が良好となるために炭素繊維の蛇行が抑制されるとともに、かつ多軸挿入編物基材に適度なドレープ性が付与され、成形型への追従性が良好となる傾向にあるためである。
The multiaxial insertion knitted base material constituting the carbon fiber reinforced composite material of the present invention uses tow-like carbon fiber yarns made of carbon fibers having a single fiber fineness in the range of 1.2 to 2.4 dtex. preferable.
This is because, when the fineness of the single fiber is within this range, the meandering of the carbon fiber is suppressed because the resin impregnation property into the multiaxially inserted knitted base material becomes good during the production of the carbon fiber reinforced composite material. At the same time, it is because an appropriate drape property is imparted to the multi-axis insertion knitted base material, and the followability to the mold tends to be good.

また、炭素繊維糸条は単繊維の繊維軸に垂直な断面の真円度が0.7以上0.9以下であることが望ましい。真円度が0.7以上0.9以下であれば、本発明の炭素繊維強化複合材料中の炭素繊維の含有率を高くすることが可能となり、繊維強化複合材料の機械物性を維持できる傾向にあるためである。ここで、真円度は下記式(I)にて求められる値であって、Sは、単繊維の繊維軸に垂直な断面をSEM観察し、画像解析することにより得られる単繊維の断面積であり、Lは、同様に単繊維の断面の周長の長さである。
真円度 = 4πS/L (I)
The carbon fiber yarns preferably have a roundness of a cross section perpendicular to the fiber axis of the single fiber of 0.7 or more and 0.9 or less. When the roundness is 0.7 or more and 0.9 or less, the carbon fiber content in the carbon fiber reinforced composite material of the present invention can be increased, and the mechanical properties of the fiber reinforced composite material can be maintained. Because it is in. Here, the roundness is a value obtained by the following formula (I), and S is a cross-sectional area of the single fiber obtained by SEM observation and image analysis of a cross section perpendicular to the fiber axis of the single fiber. And L is the length of the circumference of the cross section of the single fiber.
Roundness = 4πS / L 2 (I)

さらに、前記炭素繊維糸条の単繊維は、その表面に長手方向に延びる溝状の凹凸を複数有し、該単繊維の円周長さが2μmの範囲での最高部と最低部の高低差が10〜80nmであることが望ましい。これは、前記高低差を10nm以上とすることによって、炭素繊維強化複合材料の製造時における、樹脂の含浸性が良好となる傾向にあるためである。また、前記高低差を80nm以下とすることによって、炭素繊維糸条の収束性が良好となり、多軸挿入編物基材の品質のバラツキが低減される傾向にあるためである。   Further, the single fiber of the carbon fiber yarn has a plurality of groove-like irregularities extending in the longitudinal direction on the surface, and the difference in height between the highest part and the lowest part when the circumferential length of the single fiber is 2 μm. Is preferably 10 to 80 nm. This is because the impregnation property of the resin tends to be good when the carbon fiber reinforced composite material is manufactured by setting the height difference to 10 nm or more. Moreover, it is because the convergence property of a carbon fiber yarn becomes favorable by the said height difference being 80 nm or less, and there exists a tendency for the variation in the quality of a multiaxial insertion knitted base material to be reduced.

本発明を構成する多軸挿入編物基材の製造に際しては、トウ状の炭素繊維糸条の複数本が互いに並列に配列されてなるシートを製造する工程と、該シートの複数毎を所望の角度に積層した状態でステッチ糸により一体化させる工程は、独立した場合と連続した場合のいずれを選択しても良い。   In producing the multi-axis insertion knitted base material constituting the present invention, a step of producing a sheet in which a plurality of tow-like carbon fiber yarns are arranged in parallel with each other, and a plurality of the sheets are formed at a desired angle. The step of integrating with the stitch yarn in the state of being laminated on the substrate may be selected as either independent or continuous.

また、炭素繊維糸条の複数本が互いに並列に配列されてなるシートを製造する工程において、トウ状の炭素繊維糸条を幅方向に拡幅して使用することが好ましい。前記シートの目付けに特に限定はないが、50〜500g/mの範囲とするのが好ましい。
前記シートの積層角度は任意の角度を選ぶ事ができ、シートに含まれる炭素繊維糸条の配列方向が、例えば、ステッチ糸が連続する方向を基準として0度、30度、45度、60度、90度の中から選ぶことができる。また、積層後に各シートがなす角度は、ステッチ糸が連続する方向を基準に対称となっていることが好ましい。
Moreover, in the process of manufacturing a sheet in which a plurality of carbon fiber yarns are arranged in parallel with each other, it is preferable to use the tow-like carbon fiber yarns in the width direction. The basis weight of the sheet is not particularly limited, but is preferably in the range of 50 to 500 g / m 2 .
The sheet stacking angle can be selected arbitrarily, and the arrangement direction of the carbon fiber yarns included in the sheet is, for example, 0 degree, 30 degrees, 45 degrees, 60 degrees with respect to the direction in which the stitch yarns continue. , You can choose from 90 degrees. Moreover, it is preferable that the angle which each sheet | seat makes after lamination | stacking is symmetrical on the basis of the direction where a stitch thread | yarn continues.

本発明の多軸挿入編物基材に使用するステッチ糸は、いずれの材質でも良く、例えばポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂からなる糸や、ビニロン繊維、炭素繊維、ガラス繊維、アラミド繊維などから選ぶことができる。   The stitch yarn used for the multi-axis insertion knitted fabric base material of the present invention may be any material, for example, yarn made of polyester resin, polyamide resin, polyolefin resin, vinylon fiber, carbon fiber, glass fiber, aramid fiber You can choose from.

本発明の炭素繊維強化複合材料を構成するマトリクス樹脂は、特に制限されるものでないが、熱硬化性樹脂や熱可塑性樹脂を使用することができる。
熱硬化性樹脂としては特に制限はないが、従来RTM成形やVaRTM成形で使用されている、例えば、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが挙げられる。
また、熱可塑性樹脂としても、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ABS樹脂、アクリル樹脂、塩化ビニル、ポリアミド6等のポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリサルフォン、ポリエーテルイミド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトンなどを使用できる。
上記の各樹脂については、その変性体を用いてもよいし、複数種の樹脂をブレンドして用いてもよい。また、熱可塑性樹脂は、各種添加剤、フィラー、着色剤等を含んでいてもよい。
The matrix resin constituting the carbon fiber reinforced composite material of the present invention is not particularly limited, but a thermosetting resin or a thermoplastic resin can be used.
Although there is no restriction | limiting in particular as a thermosetting resin, For example, an epoxy resin, a phenol resin, a vinyl ester resin, an unsaturated polyester resin, a cyanate ester resin, a bismaleimide resin, a benzo which is conventionally used by RTM molding or VaRTM molding An oxazine resin etc. are mentioned.
Also, the thermoplastic resin is not particularly limited. Polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, ABS resin, acrylic resin, polyamide such as vinyl chloride and polyamide 6, polycarbonate, polyphenylene Ether, polyethersulfone, polysulfone, polyetherimide, polyketone, polyetherketone, polyetheretherketone and the like can be used.
About each said resin, the modified body may be used and a multiple types of resin may be blended and used. Further, the thermoplastic resin may contain various additives, fillers, colorants and the like.

本発明の炭素繊維強化複合材料の製造方法としては、例えば、上記の多軸挿入編物基材を成形型内に配置し、この多軸挿入編物基材をバギングフイルムで覆い、前記成形型と前記バギングフイルムの間をシールしてキャビティを形成し、前記キャビティ内を減圧して、液状樹脂組成物を吸引・注入するVaRTM法を用いることができる。VaRTM法に用いるバギングフイルム、シール材には特に限定は無く、使用するマトリクス樹脂の種類に応じて耐熱性を有する材質などを選ぶ事ができる。また、必要に応じて樹脂の拡散を促進するフローメディアを用いることができる。樹脂の注入方式としては、成形品の任意の地点から同心円状に樹脂を拡散・含浸させる多点注入方式や、成形品の任意の辺から一方向に平行に樹脂を拡散・含浸させる辺注入方式など必要に応じた方式をとることができる。   As a method for producing the carbon fiber reinforced composite material of the present invention, for example, the multi-axis insertion knitted base material is disposed in a mold, the multi-axis insertion knitted base material is covered with a bagging film, and the mold and the mold A VaRTM method can be used in which a gap is formed by sealing between bagging films, the inside of the cavity is decompressed, and a liquid resin composition is sucked and injected. There is no particular limitation on the bagging film and sealing material used in the VaRTM method, and a material having heat resistance can be selected according to the type of matrix resin used. Moreover, the flow media which accelerate | stimulate the spreading | diffusion of resin can be used as needed. As a resin injection method, a multi-point injection method in which resin is diffused and impregnated concentrically from any point of the molded product, and a side injection method in which resin is diffused and impregnated in parallel in one direction from any side of the molded product The method according to need can be taken.

また、本発明の炭素繊維強化複合材料の製造方法としては、前記多軸挿入編物基材を分割成形型内に配置し、分割型を閉じてキャビティを形成し、前記キャビティ内に液状樹脂組成物を注入させるRTM法やハイサイクルRTM法、ハイプレッシャーRTM法を挙げることができる。   Further, as a method for producing the carbon fiber reinforced composite material of the present invention, the multiaxial insert knitted base material is disposed in a split mold, the split mold is closed to form a cavity, and a liquid resin composition is formed in the cavity. RTM method, high cycle RTM method, and high pressure RTM method.

以下に成型品の評価基準として使用する、成型品の層方向の繊維うねり量の評価手法の説明を行う。   Below, the evaluation method of the fiber waviness amount in the layer direction of a molded product, which is used as an evaluation standard of the molded product, will be described.

成型品を切断後の辺が最外層の強化繊維の方向と平行となるように20mm×20mmの供試体を切り出し、供試体断面をアルミナ研磨剤(バイコウスキー社製 バイカロックス1.0CR)を使用し研磨を行う。研磨後の供試体断面をマイクロスコープ(キーエンス製 VHX−5000)を使用し、供試体断面長手方向が画面左右方向となるよう倍率20倍で供試体断面全体の撮影を行い、得られた画像を連結し1枚の供試体断面画像を得る。   Cut out a 20 mm × 20 mm specimen so that the side after cutting the molded product is parallel to the direction of the outermost reinforcing fiber, and cut the specimen cross section with an alumina abrasive (Baikalox 1.0CR manufactured by Baikowski). Use and polish. Using a microscope (VHX-5000 manufactured by Keyence), the entire cross-section of the specimen was photographed at a magnification of 20x so that the longitudinal direction of the specimen cross-section was the horizontal direction of the screen. Connect to obtain a cross-sectional image of one specimen.

供試体断面画像内に、画面左右方向に配向した0°方向繊維層と、画面垂直方向に配向した90°方向繊維層の界面が存在する。それぞれの界面のうねり曲線を次のように求める。   In the specimen cross-sectional image, there is an interface between the 0 ° direction fiber layer oriented in the horizontal direction of the screen and the 90 ° direction fiber layer oriented in the vertical direction of the screen. The waviness curve of each interface is obtained as follows.

ある界面について、供試体左下の角部の点を原点、供試体下側の成型面をx軸とし、x方向1mmおきに界面のy方向座標を計測する。計測にはマイクロスコープの寸法測定機能を使用する。得られたx、y座標の組から指定される点を繋ぎ、ある界面のうねり曲線を得る。   For a certain interface, the point at the lower left corner of the specimen is the origin, the molding surface below the specimen is the x axis, and the y coordinate of the interface is measured every 1 mm in the x direction. The measurement function of the microscope is used for measurement. By connecting the points specified from the set of the obtained x and y coordinates, a wavy curve of a certain interface is obtained.

JIS B0601(製品の幾何特性仕様−表見性状:輪郭曲線方式−用語、定義及び表面性状パラメータ)において定義された算術平均粗さの算出方法と同様に、得られたうねり曲線からの偏差の絶対値の合計が最小となる中心線を導出する。   Similar to the calculation method of arithmetic average roughness defined in JIS B0601 (Geometrical specification of product-Appearance property: Contour curve method-Terminology, definition and surface property parameter), the absolute value of deviation from the obtained waviness curve The center line with the smallest sum of values is derived.

うねり曲線と中心線の偏差の絶対値の合計を供試体断面の長さである20mmで割った値を測定している界面の繊維うねり量とする。   The value obtained by dividing the sum of the absolute values of the deviation between the undulation curve and the center line by 20 mm, which is the length of the cross section of the specimen, is the amount of fiber undulation at the interface being measured.

以上の操作を供試体断面画像内に存在する界面全てに対して行い、全ての界面におけるうねり量の合計を成型品の層方向の繊維うねり量の代表値として扱う。   The above operation is performed on all the interfaces existing in the specimen cross-sectional image, and the sum of the undulation amounts at all the interfaces is treated as a representative value of the fiber undulation amount in the layer direction of the molded product.

以下、本発明について実施例を挙げて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

[実施例1]
容量80リットルのタービン撹拌翼付きアルミニウム製重合釜(攪拌翼:240φ、55mm×57mmの2段4枚羽)に、脱イオン交換水が重合釜オーバーフロー口まで達するよう76.5リットル入れ、硫酸第一鉄(FeSO・7HO)を0.01g加え、反応液のpHが3.0になるように硫酸を用いて調節し、重合釜内の温度を57℃で保持した。
[Example 1]
Place 76.5 liters of deionized water in an aluminum polymerization kettle with a capacity of 80 liters (stirring wing: 240φ, 55 mm x 57 mm, 2 stages, 4 blades) so that the deionized water reaches the polymerization kettle overflow port. 0.01 g of ferrous iron (Fe 2 SO 4 .7H 2 O) was added and the reaction solution was adjusted with sulfuric acid so that the pH was 3.0, and the temperature in the polymerization kettle was maintained at 57 ° C.

次に、重合開始50分前から、単量体に対してレドックス重合開始剤である過硫酸アンモニウムを0.10モル%、亜硫酸水素アンモニウムを0.35モル%、硫酸第一鉄(FeSO・7HO)を0.3ppm、硫酸を5.0×10−2モル%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌速度180rpm、攪拌動力1.2kW/mにて撹拌を行い、重合釜内での単量体の平均滞在時間が70分になるように設定した。 Next, from 50 minutes before the start of the polymerization, 0.10 mol% of ammonium persulfate, which is a redox polymerization initiator, 0.35 mol% of ammonium bisulfite, and ferrous sulfate (Fe 2 SO 4) 7H 2 O) is 0.3 ppm and sulfuric acid is 5.0 × 10 −2 mol% dissolved in deionized water and continuously supplied, stirring speed 180 rpm, stirring power 1.2 kW / M 3 , and the average residence time of the monomer in the polymerization kettle was set to 70 minutes.

ついで、重合開始時に、モル比でアクリロニトリル(以下「AN」と略す)98.3%、メタクリル酸2−ヒドロキシエチル(以下「HEMA」と略す)1.7%からなる単量体を水/単量体=3(質量比)となるように、単量体の連続供給を開始した。その後、重合開始1時間後に重合反応温度を50℃まで下げて温度を保持し、重合釜オーバーフロー口より連続的に重合体スラリーを取り出した。   Then, at the start of polymerization, a monomer composed of 98.3% of acrylonitrile (hereinafter abbreviated as “AN”) and 1.7% of 2-hydroxyethyl methacrylate (hereinafter abbreviated as “HEMA”) in a molar ratio, The continuous supply of the monomer was started so that the mer = 3 (mass ratio). Thereafter, 1 hour after the start of the polymerization, the polymerization reaction temperature was lowered to 50 ° C. to maintain the temperature, and the polymer slurry was continuously taken out from the polymerization kettle overflow port.

重合体スラリーには、シュウ酸ナトリウム0.37×10−2モル%、重炭酸ナトリウム1.78×10−2モル%を脱イオン交換水に溶解した重合停止剤水溶液を、重合スラリーのpHが5.5〜6.0になるように加えた。この重合スラリーをオリバー型連続フィルターによって脱水処理した後、重合体に対して10倍量の脱イオン交換水(70リットル)を加え、再び分散させた。再分散後の重合体スラリーを再度オリバー型連続フィルターによって脱水処理し、ペレット成形して、80℃にて8時間、熱風循環型の乾燥機で乾燥後、ハンマーミルで粉砕し、ポリアクリロニトリル系共重合体Aを得た。得られた共重合体Aの組成はAN単位98.0モル%、HEMA単位2.0モル%であり、比粘度は0.22であり、湿熱下融点は168℃であった。 In the polymer slurry, an aqueous solution of a polymerization terminator in which sodium oxalate 0.37 × 10 −2 mol% and sodium bicarbonate 1.78 × 10 −2 mol% were dissolved in deionized water was used. It added so that it might become 5.5-6.0. The polymer slurry was dehydrated with an Oliver type continuous filter, and 10 times the amount of deionized water (70 liters) was added to the polymer and dispersed again. The polymer slurry after re-dispersion is again dehydrated with an Oliver type continuous filter, pelletized, dried at 80 ° C. for 8 hours in a hot air circulating dryer, pulverized with a hammer mill, and polyacrylonitrile-based copolymer. Polymer A was obtained. The composition of the obtained copolymer A was AN unit 98.0 mol%, HEMA unit 2.0 mol%, the specific viscosity was 0.22, and the melting point under wet heat was 168 ° C.

この共重合体をジメチルアセトアミド等の有機溶媒に溶解して濃度21%の紡糸原液を調製した。次いで、紡浴濃度50wt%、紡浴温度35℃の紡浴条件で、湿式紡糸法にて紡糸し、前駆体繊維束を得た。この前駆体繊維束の単繊維繊度は、2.5dtex、フィラメント数は30000、繊維密度は1.18g/cm、断面形状は真円度0.86の空豆形状であった。 This copolymer was dissolved in an organic solvent such as dimethylacetamide to prepare a spinning stock solution having a concentration of 21%. Next, spinning was performed by a wet spinning method under spinning conditions of a spinning bath concentration of 50 wt% and a spinning bath temperature of 35 ° C. to obtain a precursor fiber bundle. The single fiber fineness of this precursor fiber bundle was 2.5 dtex, the number of filaments was 30000, the fiber density was 1.18 g / cm 3 , and the cross-sectional shape was an empty bean shape with a roundness of 0.86.

この前駆体繊維束を熱風循環式耐炎化炉にて240℃〜260℃の加熱空気中で伸張率+2%で耐炎化処理を60分間行った。得られた耐炎化繊維の密度は、1.351g/cmであった。 This precursor fiber bundle was subjected to a flameproofing treatment in a hot air circulation type flameproofing furnace in a heated air of 240 ° C. to 260 ° C. with an elongation rate of + 2% for 60 minutes. The density of the obtained flame-resistant fiber was 1.351 g / cm 3 .

次に、この耐炎化繊維束を、窒素雰囲気下、最高温度660℃、伸張率3.0%にて1.5分間低温熱処理し、さらに窒素雰囲気下、最高温度が1350℃の高温熱処理炉にて−4.5%の伸張の下、約1.5分間、炭素化処理して、炭素繊維束を得た。   Next, this flame-resistant fiber bundle is subjected to low-temperature heat treatment in a nitrogen atmosphere at a maximum temperature of 660 ° C. and an elongation of 3.0% for 1.5 minutes, and further to a high-temperature heat treatment furnace having a maximum temperature of 1350 ° C. in a nitrogen atmosphere. The carbon fiber bundle was obtained by carbonizing for about 1.5 minutes under an elongation of -4.5%.

得られた炭素繊維の短繊維繊度は1.25dtex(直径Dは11.42μm)であり、真円度は0.83であった。   The short fiber fineness of the obtained carbon fiber was 1.25 dtex (diameter D was 11.42 μm), and the roundness was 0.83.

得られた炭素繊維を強化繊維として用い、複数本の強化繊維が一つの軸方向に引き揃えられた、強化繊維の目付が150g/mの強化繊維シートを作製した。 Using the obtained carbon fiber as a reinforcing fiber, a reinforcing fiber sheet in which a plurality of reinforcing fibers were aligned in one axial direction and the basis weight of the reinforcing fiber was 150 g / m 2 was produced.

得られた強化繊維シート2枚を、強化繊維の軸方向が互いに直交するように積み重ね、多軸積重物とした。   The obtained two reinforcing fiber sheets were stacked so that the axial directions of the reinforcing fibers were orthogonal to each other to obtain a multiaxial stack.

ポリエステル糸(Tenzler GmBH製、dtex78f36 text.roh halbmatt、78dtex、36フィラメント)を編成してなる鎖編の拘束編地を用いて、強化繊維の方向が多軸挿入編物基材の基準方向に対して+45°/−45°となるように多軸積重物を拘束し、一体化させて多軸挿入編物基材を作製した。拘束編地におけるコース方向のウエールの密度は3回/cmであり、コース方向のウエールの間隔は5mmであった。   Using a chain knit constrained knitted fabric formed by knitting polyester yarn (manufactured by Tenzler GmBH, dtex78f36 text.roh halbmat, 78dtex, 36 filaments), the direction of the reinforcing fibers is relative to the reference direction of the multi-axis insertion knitted base The multiaxial stack was constrained to be + 45 ° / −45 ° and integrated to produce a multiaxial insertion knitted base material. The density of the wale in the course direction in the restrained knitted fabric was 3 times / cm, and the wale interval in the course direction was 5 mm.

得られた多軸挿入編物基材を繊維方向が切断後の辺と45度の角度をなすように400mm×400mmの寸法に切断し、正方形に切断された多軸挿入編物基材を強化繊維方向が([+45°/−45°]/[+45°/−45°]/[+45°/−45°]/[−45°/+45°]/[−45°/+45°]/[−45°/+45°])となるように6層を積層した。   The obtained multi-axis insertion knitted base material is cut into a dimension of 400 mm × 400 mm so that the fiber direction forms an angle of 45 degrees with the side after cutting, and the multi-axis insertion knitted base material cut into a square is reinforced fiber direction. ([+ 45 ° / −45 °] / [+ 45 ° / −45 °] / [+ 45 ° / −45 °] / [− 45 ° / + 45 °] / [− 45 ° / + 45 °] / [− 45 The six layers were laminated so that the angle would be [° / + 45 °]).

多軸挿入編物基材の積層体を深さ2mm、405mm×405mmの凹部を有する分割成形型内に配置し、分割型を閉じてキャビティを形成した。成形型の第一の開口部に接続したホースから真空引きを行った後、成形型の第一の開口部に接続したホースからエポキシ樹脂(Hexion社製Epikote05475の100重量部とHexion社製 Epikure05500の24重量部の混合物)を7.5MPaの注入圧で型内に注入した。型内にエポキシ樹脂が充満し、多軸挿入編物基材に含浸した状態で120℃に加熱し3分間保持する事で平板の複合材料パネルを得た。   The multilayer body of the multi-axis insertion knitted base material was placed in a split mold having a recess of 2 mm in depth and 405 mm × 405 mm, and the split mold was closed to form a cavity. After evacuation from the hose connected to the first opening of the mold, epoxy resin (100 parts by weight of Epikote 05475 manufactured by Hexion and Epikure 05500 manufactured by Hexion) was extracted from the hose connected to the first opening of the mold. 24 parts by weight of the mixture) was injected into the mold at an injection pressure of 7.5 MPa. The mold was filled with an epoxy resin and heated to 120 ° C. in a state of impregnating the multiaxially inserted knitted base material to obtain a flat composite panel.

得られた複合材料パネルから20mm×20mmの供試体を切り出し、図1のように供試体断面画像が得られた。供試体断面画像内に存在する10個の界面についてうねり曲線をもとめ、成型品の層方向の繊維うねり量を測定したところ、その値は16.1μmであった。   A 20 mm × 20 mm specimen was cut out from the obtained composite material panel, and a specimen cross-sectional image was obtained as shown in FIG. A waviness curve was obtained for 10 interfaces existing in the cross-sectional image of the specimen, and the amount of fiber waviness in the layer direction of the molded product was measured. The value was 16.1 μm.

この得られた平板の複合材料パネルに対し、辺が最外層の強化繊維の方向と平行となるように切り出し、ASTM D790に基づき曲げ試験を行ったところ、その強度は1053MPaであった。
[比較例1]
The obtained flat composite panel was cut out so that the side was parallel to the direction of the outermost reinforcing fiber, and subjected to a bending test based on ASTM D790. The strength was 1053 MPa.
[Comparative Example 1]

使用する炭素繊維を三菱レイヨン株式会社製、パイロフィル(登録商標)TRW40 50Lとし、実施例1と同様に多軸挿入編物基材を作製し、同様に平板の複合材料パネルを成型し、図2のように供試体断面画像が得られた。成型品の層方向の繊維うねり量を測定したところ、その値は32.2μmであった。   The carbon fiber used is made by Mitsubishi Rayon Co., Ltd., Pyrofil (registered trademark) TRW40 50L, a multi-axis insertion knitted base material is produced in the same manner as in Example 1, and a flat composite material panel is molded in the same manner as in FIG. Thus, a specimen cross-sectional image was obtained. When the amount of fiber waviness in the layer direction of the molded product was measured, the value was 32.2 μm.

この得られた平板の複合材料パネルに対し、辺が最外層の強化繊維の方向と平行となるように切り出し、ASTM D790に基づき曲げ試験を行ったところ、その強度は935MPaであり、実施例1の結果と比較し有意に小さい値となった。
[比較例2]
The obtained flat composite panel was cut out so that the sides were parallel to the direction of the outermost reinforcing fiber, and subjected to a bending test based on ASTM D790. The strength was 935 MPa. Example 1 The value was significantly smaller than the result of.
[Comparative Example 2]

使用する炭素繊維をZoltek社製、Zoltek(登録商標)PX35 50Kとし、実施例1と同様に多軸挿入編物基材を作製し、同様に平板の複合材料パネルを成型し、図3のように供試体断面画像が得られた。成型品の層方向の繊維うねり量を測定したところ、その値は30.9μmあった。   The carbon fiber used is Zoltek (registered trademark) PX35 50K manufactured by Zoltek, and a multi-axis insertion knitted base material is prepared in the same manner as in Example 1, and a flat composite material panel is molded in the same manner as in FIG. A cross-sectional image of the specimen was obtained. When the amount of fiber waviness in the layer direction of the molded product was measured, the value was 30.9 μm.

この得られた平板の複合材料パネルに対し、辺が最外層の強化繊維の方向と平行となるように切り出し、ASTM D790に基づき曲げ試験を行ったところ、その強度は959MPaであり、実施例1の結果と比較し有意に小さい値となった。   When the obtained flat composite panel was cut out so that the sides were parallel to the direction of the outermost reinforcing fiber and subjected to a bending test based on ASTM D790, the strength was 959 MPa. Example 1 The value was significantly smaller than the result of.

本発明によって、多軸挿入編物基材とマトリックス樹脂とから構成される、機械物性に優れた炭素繊維強化複合材料を提供することができる。   According to the present invention, it is possible to provide a carbon fiber reinforced composite material that is composed of a multi-axis insertion knitted base material and a matrix resin and has excellent mechanical properties.

Claims (4)

厚み方向断面において観察される、多軸挿入編物基材を構成する各強化繊維シート間の境界をなす全ての曲線について、該曲線と該曲線の中心線までの偏差の絶対値の平均として定義される層方向の繊維うねり量が30μm以下である、炭素繊維強化複合材料。   It is defined as the average of the absolute values of deviations between the curved line and the center line of all the curved lines that form the boundary between the reinforcing fiber sheets constituting the multiaxially inserted knitted base material observed in the cross section in the thickness direction. A carbon fiber reinforced composite material having a fiber undulation amount in the layer direction of 30 μm or less. 単繊維の繊度が1.2〜2.4dtexの範囲である炭素繊維からなるトウ状の炭素繊維糸条を複数本並列に配置した強化繊維シートを複数含み、それぞれのシートに含まれるトウ状の炭素繊維糸条の配列方向が、基準とする方向に対して異なる角度をもって積層され、ステッチ糸で一体化された多軸挿入編物基材と、マトリックス樹脂とから構成される、請求項1に記載の炭素繊維強化複合材料。   Including a plurality of reinforcing fiber sheets in which a plurality of tow-like carbon fiber yarns made of carbon fibers having a fineness of a single fiber in a range of 1.2 to 2.4 dtex are arranged in parallel; The arrangement direction of the carbon fiber yarn is composed of a matrix resin and a multi-axis insertion knitted base material laminated at different angles with respect to a reference direction and integrated with stitch yarns. Carbon fiber reinforced composite material. 前記マトリックス樹脂が熱硬化性樹脂である、請求項2に記載の炭素繊維強化複合材料。   The carbon fiber reinforced composite material according to claim 2, wherein the matrix resin is a thermosetting resin. 前記マトリックス樹脂が熱可塑性樹脂である、請求項2に記載の炭素繊維強化複合材料。   The carbon fiber reinforced composite material according to claim 2, wherein the matrix resin is a thermoplastic resin.
JP2016198554A 2016-10-07 2016-10-07 Carbon fiber reinforced composite material Pending JP2018059009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198554A JP2018059009A (en) 2016-10-07 2016-10-07 Carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198554A JP2018059009A (en) 2016-10-07 2016-10-07 Carbon fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JP2018059009A true JP2018059009A (en) 2018-04-12

Family

ID=61908307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198554A Pending JP2018059009A (en) 2016-10-07 2016-10-07 Carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2018059009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172765A1 (en) * 2021-02-12 2022-08-18 リンテック株式会社 Carbon fiber-reinforced plastic and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172765A1 (en) * 2021-02-12 2022-08-18 リンテック株式会社 Carbon fiber-reinforced plastic and production method therefor

Similar Documents

Publication Publication Date Title
WO2012050171A1 (en) Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10800894B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
KR20130131391A (en) Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
JP6332478B2 (en) Multi-axis insertion knitted base material manufacturing method, multi-axis insertion knitted base material, and fiber-reinforced composite material
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
CA2957247C (en) Hybrid woven textile for composite reinforcement
WO2016136791A1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
CN109944080A (en) A kind of anti-puncture fabric of graphene and preparation method thereof
JP2018059009A (en) Carbon fiber reinforced composite material
CN113573875A (en) Stitched multiaxial reinforcement
CN113292822B (en) Aramid fiber-epoxy resin based composite material and preparation method and application thereof
JP6603005B2 (en) Reinforced fiber bundle, reinforced fiber spread fabric, fiber reinforced composite, and production method thereof
El-Dessouky et al. Design, weaving and manufacture of a large 3D composite structures for automotive applications
JP2013208726A (en) Method of producing carbon fiber-reinforced composite material
JP2014163016A (en) Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
CN113981586B (en) Reinforced integrated gradient woven composite pressure cylinder for full sea depth and preparation method thereof
CN111433398A (en) Stitching yarn and NCF fabric comprising such yarn
Kumar et al. Fibers, fabrics, and fillers
Xu et al. Comparison of tensile properties of co-woven-knitted and multi-layered biaxial weft-knitted fabric reinforced composites
KR101976038B1 (en) Fiber-reinforced stiffening member for a construction structure
JP2022513924A (en) Fiber material impregnated with a thermoplastic polymer of optimum molecular weight and viscosity and its manufacturing method
TEMESGEN et al. Comparative Study on the Mechanical Properties of Weft Knitted and Warp Fabric Reinforced Composites
JP2007231425A (en) Fiber-reinforced base material and fiber-reinforced plastic
Ohtani et al. Mechanical and permeability properties of NCF with different knitting condition