JP2018058716A - Borosilicate glass, composite powder material, and composite powder material paste - Google Patents

Borosilicate glass, composite powder material, and composite powder material paste Download PDF

Info

Publication number
JP2018058716A
JP2018058716A JP2016196284A JP2016196284A JP2018058716A JP 2018058716 A JP2018058716 A JP 2018058716A JP 2016196284 A JP2016196284 A JP 2016196284A JP 2016196284 A JP2016196284 A JP 2016196284A JP 2018058716 A JP2018058716 A JP 2018058716A
Authority
JP
Japan
Prior art keywords
powder material
composite powder
glass
bao
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016196284A
Other languages
Japanese (ja)
Other versions
JP6952949B2 (en
Inventor
久美子 姫井
Kumiko HIMEI
久美子 姫井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016196284A priority Critical patent/JP6952949B2/en
Priority to PCT/JP2017/032164 priority patent/WO2018066295A1/en
Priority to CN201780058625.5A priority patent/CN109790062B/en
Publication of JP2018058716A publication Critical patent/JP2018058716A/en
Application granted granted Critical
Publication of JP6952949B2 publication Critical patent/JP6952949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To create a glass that can be sintered at a temperature lower than or equal to 900°C without containing PbO, has low reactivity with an electrode such as an Ag external electrode, and can contribute to improvements in the wear resistance and surface smoothness of a coating layer.SOLUTION: A borosilicate glass according to the present invention is characterized by having a glass composition comprising, in mol%, SiO20-40%, BO25-45%, CaO 3-15%, SrO+BaO+ZnO 5-30%, ZrO0-6%, AlO0-8%, CuO 0-1%, with the molar ratio (SiO+CaO)/(BO+SrO+BaO+ZnO) of higher than 0.50.SELECTED DRAWING: None

Description

本発明は、ホウケイ酸系ガラス、複合粉末材料及び複合粉末材料ペーストに関し、具体的には、サーマルプリントヘッドの電極や抵抗体の被覆に用いるホウケイ酸系ガラス、複合粉末材料及び複合粉末材料ペーストに関する。   The present invention relates to a borosilicate glass, a composite powder material, and a composite powder material paste. .

サーマルプリンタでは、例えば、感熱紙を一方向に送りつつ加熱することにより、感熱紙に設けられた感熱層中の感熱色素を発色させて、画像を形成する。   In the thermal printer, for example, by heating the thermal paper while feeding it in one direction, the thermal dye in the thermal layer provided on the thermal paper is colored to form an image.

サーマルプリンタの印字部には、感熱紙を加熱するためのサーマルプリントヘッドと、感熱紙をそのサーマルプリントヘッドに向かって押圧しつつ一方向に送るための加圧ローラが備えられている。そして、サーマルプリントヘッドは、例えば、アルミナ等のセラミック基板上に、蓄熱層、ライン状の抵抗体層、電極層、被覆層(保護層)等が形成された積層基本構造を有する。   The printing unit of the thermal printer includes a thermal print head for heating the thermal paper and a pressure roller for feeding the thermal paper in one direction while pressing the thermal paper toward the thermal print head. The thermal print head has a laminated basic structure in which, for example, a heat storage layer, a line-shaped resistor layer, an electrode layer, a covering layer (protective layer), and the like are formed on a ceramic substrate such as alumina.

サーマルプリントヘッドの被覆層は、感熱紙との接触から、電極や抵抗体を保護する目的で形成される。そして、電極として、例えば、Auリード電極、Ag外部電極等が形成されており、抵抗体として、例えば、RuO抵抗体等が形成されている。 The coating layer of the thermal print head is formed for the purpose of protecting the electrode and the resistor from contact with the thermal paper. For example, an Au lead electrode, an Ag external electrode, or the like is formed as an electrode, and a RuO 2 resistor, for example, is formed as a resistor.

特公平04−002533号公報Japanese Patent Publication No. 04-002533 特開2008−150269号公報JP 2008-150269 A

被覆層は、一般的に、粉末材料(ガラス粉末)の焼成により形成される。そして、その焼成温度は、電極等の特性が劣化する事態を防止するために、900℃以下に制限される。よって、上記粉末材料は、900℃以下の温度で焼成可能であることが要求される。   The coating layer is generally formed by firing a powder material (glass powder). And the firing temperature is limited to 900 ° C. or less in order to prevent a situation in which the characteristics of the electrodes and the like are deteriorated. Therefore, the powder material is required to be calcined at a temperature of 900 ° C. or lower.

また、上記粉末材料には、Auリード電極やAg外部電極との反応性が低いことも要求される。なお、Auリード電極やAg外部電極との反応性が高いと、焼成後に電極が断線する虞がある。   The powder material is also required to have low reactivity with the Au lead electrode and the Ag external electrode. If the reactivity with the Au lead electrode or the Ag external electrode is high, the electrode may be disconnected after firing.

更に、サーマルプリントヘッドの被覆層は、感熱紙と繰り返し接触する。よって、上記粉末材料は、耐摩耗性や表面平滑性が高い被覆層を作製し易いことも要求される。   Furthermore, the coating layer of the thermal print head repeatedly contacts the thermal paper. Therefore, the powder material is also required to easily produce a coating layer with high wear resistance and surface smoothness.

これらの要求特性を満たす粉末材料として、従来まで、PbO−SiO系ガラスが使用されてきた(特許文献1参照)。 Conventionally, PbO—SiO 2 -based glass has been used as a powder material that satisfies these required characteristics (see Patent Document 1).

近年、環境保護の観点から、環境負荷物質の削減、例えばPbOの削減が推進されており、PbO−B−SiO系ガラスに代わって、各種無鉛ガラスが提案されるに到っている。例えば、特許文献2には、ZnO−B−BaO系ガラスが記載されている。 In recent years, from the viewpoint of environmental protection, reduction of environmentally hazardous substances, for example, reduction of PbO has been promoted, and various lead-free glasses have been proposed in place of PbO—B 2 O 3 —SiO 2 based glass. Yes. For example, Patent Document 2 describes ZnO—B 2 O 3 —BaO-based glass.

しかしながら、特許文献2に記載のZnO−B−BaO系ガラスは、Ag外部電極等との反応性が高いという問題を有している。 However, the ZnO—B 2 O 3 —BaO-based glass described in Patent Document 2 has a problem of high reactivity with Ag external electrodes and the like.

そこで、本発明は上記事情に鑑みなされたものであり、その技術的課題は、PbOを含まなくても、900℃以下の温度で焼成可能であると共に、Ag外部電極等の電極との反応性が低く、しかも被覆層の耐摩耗性や表面平滑性の向上に寄与し得るガラスを創案することである。   Therefore, the present invention has been made in view of the above circumstances, and its technical problem is that it can be fired at a temperature of 900 ° C. or less and does not contain PbO and is reactive with an electrode such as an Ag external electrode. Is to create a glass that is low and that can contribute to the improvement of wear resistance and surface smoothness of the coating layer.

本発明者は、種々の実験を行った結果、ガラス系として所定のホウケイ酸系ガラスを採択することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のホウケイ酸系ガラスは、ガラス組成として、モル%で、SiO 20〜40%、B 25〜45%、CaO 3〜15%、SrO+BaO+ZnO 5〜30%、ZrO 0〜6%、Al 0〜8%、CuO 0〜1%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.50より大きいことを特徴とする。ここで、「SrO+BaO+ZnO」は、SrO、BaO及びZnOの合量である。また、「(SiO+CaO)/(B+SrO+BaO+ZnO)」は、SiOとCaOの合量をB、SrO、BaO及びZnOの合量で割った値を指す。 As a result of various experiments, the present inventor has found that the above technical problem can be solved by adopting a predetermined borosilicate glass as the glass system, and proposes the present invention. That is, the borosilicate glass of the present invention has a glass composition of mol%, SiO 2 20-40%, B 2 O 3 25-45%, CaO 3-15%, SrO + BaO + ZnO 5-30%, ZrO 2 0. It is characterized by containing ˜6%, Al 2 O 3 0-8%, CuO 0-1% and having a molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) larger than 0.50. Here, “SrO + BaO + ZnO” is the total amount of SrO, BaO and ZnO. “(SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO)” indicates a value obtained by dividing the total amount of SiO 2 and CaO by the total amount of B 2 O 3 , SrO, BaO and ZnO.

ホウケイ酸系ガラスは、一般的に、Ag外部電極との反応性が高い。しかし、本発明のホウケイ酸系ガラスは、SiOの含有量が20モル%以上、Bの含有量が45モル%以下、CaOの含有量が3モル%以上に規制されているため、Ag外部電極との反応性が低い。 Borosilicate glass is generally highly reactive with an Ag external electrode. However, in the borosilicate glass of the present invention, the content of SiO 2 is regulated to 20 mol% or more, the content of B 2 O 3 is 45 mol% or less, and the content of CaO is regulated to 3 mol% or more. The reactivity with the Ag external electrode is low.

また、ホウケイ酸系ガラスにおいて、SiOの含有量が多い場合に、SrO、BaO及びZnOの含有量が多くなると、焼成時に長石系結晶が析出して、所望の表面平滑性を確保し難くなる場合がある。そこで、本発明のホウケイ酸系ガラスは、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)を0.50超に規制することにより、長石系結晶の析出を抑制している。 Further, in the borosilicate glass, when the content of SiO 2 is large, if the content of SrO, BaO and ZnO is increased, feldspar crystals will precipitate during firing, making it difficult to ensure the desired surface smoothness. There is a case. Therefore, the borosilicate glass of the present invention suppresses precipitation of feldspar crystals by regulating the molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) to more than 0.50.

第二に、本発明のホウケイ酸系ガラスは、ガラス組成として、モル%で、SiO 25〜40%、B 25〜40%、CaO 5〜15%、SrO 0.1〜10%、BaO 0.1〜10%、ZnO 5〜15%、ZrO 0.1〜4%、Al 0.1〜7%、CuO 0.005〜0.09%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.55以上であり、サーマルプリントヘッドの被覆に用いることが好ましい。 Second, the borosilicate glass of the present invention has a glass composition of mol%, SiO 2 25-40%, B 2 O 3 25-40%, CaO 5-15%, SrO 0.1-10%. BaO 0.1 to 10%, ZnO 5 to 15%, ZrO 2 0.1 to 4%, Al 2 O 3 0.1 to 7%, CuO 0.005 to 0.09%, molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is 0.55 or more and is preferably used for coating a thermal print head.

第三に、本発明のホウケイ酸系ガラスは、ガラス組成として、モル%で、SiO 25〜40%、B 25〜40%、CaO 5〜15%、SrO 1〜10%、BaO 1〜10%、ZnO 5〜15%、ZrO 0.5〜4%、Al 1〜7%、CuO 0.01〜0.09%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.55以上であり、サーマルプリントヘッドの被覆に用いることが好ましい。 Thirdly, borosilicate glass of the present invention has a glass composition, in mol%, SiO 2 25~40%, B 2 O 3 25~40%, CaO 5~15%, SrO 1~10%, BaO 1 to 10%, ZnO 5 to 15%, ZrO 2 0.5 to 4%, Al 2 O 3 1 to 7%, CuO 0.01 to 0.09%, molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is 0.55 or more and is preferably used for coating a thermal print head.

第四に、本発明のホウケイ酸系ガラスは、ガラス組成中に、実質的にPbOとBiを含まないことが好ましい。ここで、「実質的にPbOを含まない」とは、不純物レベルでのPbOの混入を許容するものの、積極的な導入を回避する趣旨であり、具体的にはガラス組成中のPbOの含有量が1000ppm未満(0.1モル%未満)の場合を指す。また、「実質的にBiを含まない」とは、不純物レベルでのBiの混入を許容するものの、積極的な導入を回避する趣旨であり、具体的にはガラス組成中のBiの含有量が1000ppm未満(0.1モル%未満)の場合を指す。 Fourthly, it is preferable that the borosilicate glass of the present invention does not substantially contain PbO and Bi 2 O 3 in the glass composition. Here, “substantially free of PbO” means that PbO is allowed to be mixed in at an impurity level, but avoids aggressive introduction. Specifically, the content of PbO in the glass composition Is less than 1000 ppm (less than 0.1 mol%). Further, "substantially does not contain Bi 2 O 3" and, although allowing incorporation of Bi 2 O 3 at an impurity level, it is intended to avoid aggressive introduced, in particular glass composition in This refers to the case where the content of Bi 2 O 3 is less than 1000 ppm (less than 0.1 mol%).

第五に、本発明の複合粉末材料は、上記のホウケイ酸系ガラスからなるガラス粉末とアルミナ粉末とを含有する複合粉末材料であって、ガラス粉末の含有量が60〜90体積%、アルミナ粉末の含有量が10〜30体積%であることが好ましい。   Fifth, the composite powder material of the present invention is a composite powder material containing a glass powder composed of the above borosilicate glass and an alumina powder, and the content of the glass powder is 60 to 90% by volume, the alumina powder. The content of is preferably 10 to 30% by volume.

第六に、本発明の複合粉末材料は、軟化点が650〜850℃であることが好ましい。ここで、「軟化点」は、マクロ型示差熱分析計(DTA)で測定した第四の変曲点の温度を指す。   Sixth, the composite powder material of the present invention preferably has a softening point of 650 to 850 ° C. Here, the “softening point” refers to the temperature at the fourth inflection point measured with a macro-type differential thermal analyzer (DTA).

第七に、本発明の複合粉末材料ペーストは、複合粉末材料とビークルとを含有する粉末材料ペーストにおいて、複合粉末材料が上記の複合粉末材料であることが好ましい。   Seventh, the composite powder material paste of the present invention is preferably a composite powder material containing the composite powder material and a vehicle, wherein the composite powder material is the composite powder material described above.

本発明のホウケイ酸系ガラスは、上記の通り、ガラス組成として、モル%で、SiO 20〜40%、B 25〜45%、CaO 3〜15%、SrO+BaO+ZnO 5〜30%、ZrO 0〜6%、Al 0〜8%、CuO 0〜1%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.50より大きいことを特徴とする。上記のように各成分の含有範囲を規制した理由を以下に説明する。なお、各成分の含有範囲の説明において、%表示は、モル%を意味する。 As described above, the borosilicate glass of the present invention has a glass composition of mol%, SiO 2 20 to 40%, B 2 O 3 25 to 45%, CaO 3 to 15%, SrO + BaO + ZnO 5 to 30%, ZrO. It contains 20 to 6%, Al 2 O 3 0 to 8%, CuO 0 to 1%, and the molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is larger than 0.50. . The reason why the content range of each component is regulated as described above will be described below. In addition, in description of the containing range of each component,% display means mol%.

SiOは、ガラス骨格を形成する成分であると共に、Ag外部電極との反応性を抑制する成分である。SiOの含有量は20〜40%、好ましくは25〜40%、より好ましくは27〜38%である。SiOの含有量が少なくなると、Ag外部電極との反応性が高くなる。一方、SiOの含有量が多くなると、軟化点が不当に上昇して、900℃以下の温度で焼成し難くなる。 SiO 2 is a component that forms a glass skeleton and a component that suppresses reactivity with the Ag external electrode. The content of SiO 2 is 20 to 40%, preferably 25 to 40%, more preferably 27 to 38%. When the content of SiO 2 is reduced, the reactivity with the Ag external electrode is increased. On the other hand, when the content of SiO 2 is increased, the softening point is unduly increased, and it becomes difficult to fire at a temperature of 900 ° C. or lower.

は、ガラス骨格を形成し、ガラス化範囲を広げる成分であるが、その含有量が多くなると、Ag外部電極との反応性が高くなる。よって、Bの含有量は25〜45%であり、好ましくは25〜40%、より好ましくは27〜38%である。 B 2 O 3 is a component that forms a glass skeleton and widens the vitrification range, but when its content increases, the reactivity with the Ag external electrode increases. Therefore, the content of B 2 O 3 is 25 to 45%, preferably 25 to 40%, more preferably 27 to 38%.

CaOは、ガラスを安定化させる成分であると共に、Ag外部電極との反応性を抑制する成分である。CaOの含有量は3〜15%であり、好ましくは5〜15%、より好ましくは6〜14%である。CaOの含有量が多くなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。   CaO is a component that stabilizes the glass and suppresses reactivity with the Ag external electrode. The content of CaO is 3 to 15%, preferably 5 to 15%, more preferably 6 to 14%. When the content of CaO is increased, feldspar crystals are likely to precipitate, and the surface smoothness of the coating layer is likely to be reduced.

SrO、BaO及びZnOは、ガラスを安定化させる成分である。SrO、BaO及びZnOの合量は5〜30%であり、好ましくは10〜25%である。SrOの含有量は、好ましくは0〜12%、より好ましくは0.1〜11%、更に好ましくは1〜10%、特に好ましくは3〜9%である。BaOの含有量は、好ましくは0〜12%、より好ましくは0.1〜10%、更に好ましくは1〜10%、特に好ましくは3〜8%である。ZnOの含有量は、好ましくは0〜15%、より好ましくは1〜15%、更に好ましくは3〜15%、更に好ましくは5〜14%、特に好ましくは6〜12%である。SrO、BaO及びZnOの含有量が多くなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。   SrO, BaO and ZnO are components that stabilize the glass. The total amount of SrO, BaO and ZnO is 5 to 30%, preferably 10 to 25%. The SrO content is preferably 0 to 12%, more preferably 0.1 to 11%, still more preferably 1 to 10%, and particularly preferably 3 to 9%. The content of BaO is preferably 0 to 12%, more preferably 0.1 to 10%, still more preferably 1 to 10%, and particularly preferably 3 to 8%. The content of ZnO is preferably 0 to 15%, more preferably 1 to 15%, still more preferably 3 to 15%, still more preferably 5 to 14%, and particularly preferably 6 to 12%. When the content of SrO, BaO and ZnO is increased, feldspar crystals are likely to be precipitated, and the surface smoothness of the coating layer is likely to be reduced.

ZrOは、耐摩耗性を高める成分である。ZrOの含有量は0〜6%であり、好ましくは0.1〜5%、より好ましくは0.5〜4%であり、特に好ましくは1〜4%である。ZrOの含有量が少なくなると、耐摩耗性が低下し易くなる。一方、ZrOの含有量が多くなると、軟化点が不当に上昇して、900℃以下の温度で焼成し難くなる。 ZrO 2 is a component that enhances wear resistance. The content of ZrO 2 is 0 to 6%, preferably 0.1 to 5%, more preferably 0.5 to 4%, and particularly preferably 1 to 4%. When the content of ZrO 2 decreases, the wear resistance tends to decrease. On the other hand, when the content of ZrO 2 is increased, the softening point is unreasonably raised and it becomes difficult to fire at a temperature of 900 ° C. or lower.

Alは、耐摩耗性を高める成分である。Alの含有量は0〜8%であり、好ましくは0.1〜7%、より好ましくは1〜7%、更に好ましくは2〜6%である。Alの含有量が少なくなると、耐摩耗性が低下し易くなる。一方、Alの含有量が多くなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。 Al 2 O 3 is a component that improves wear resistance. The content of Al 2 O 3 is 0 to 8%, preferably 0.1 to 7%, more preferably 1 to 7%, and further preferably 2 to 6%. When the content of Al 2 O 3 is reduced, the wear resistance is likely to be lowered. On the other hand, when the content of Al 2 O 3 increases, feldspar crystals are likely to precipitate, and the surface smoothness of the coating layer tends to be reduced.

CuOは、Ag外部電極との反応性を顕著に抑制する成分である。CuOの含有量は0〜1%であり、好ましくは0.005〜0.09%、より好ましくは0.01〜0.08%である。CuOの含有量が多くなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。   CuO is a component that remarkably suppresses the reactivity with the Ag external electrode. The CuO content is 0 to 1%, preferably 0.005 to 0.09%, and more preferably 0.01 to 0.08%. If the CuO content is increased, feldspar crystals are likely to precipitate, and the surface smoothness of the coating layer is likely to be reduced.

モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.50より大きく、好ましくは0.55以上、より好ましくは0.60以上である。モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が小さくなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。 The molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is greater than 0.50, preferably 0.55 or more, more preferably 0.60 or more. When the molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is small, feldspar crystals are likely to precipitate and the surface smoothness of the coating layer is likely to be reduced.

上記成分以外にも、例えば、以下の成分を導入してもよい。   In addition to the above components, for example, the following components may be introduced.

上記成分以外にも、サーマルプリントヘッドの特性を大幅に損なわない限り、種々の成分を導入してもよい。例えば、軟化点を低下させるために、CsO、RbO等を合量又は単独で5%、特に1%まで導入してもよい。またガラスを安定化させるために、Y、La、Ta、SnO、TiO、Nb、P、CeO、V等を合量又は単独で10%、特に1%まで導入してもよい。 In addition to the above components, various components may be introduced as long as the characteristics of the thermal print head are not significantly impaired. For example, in order to lower the softening point, Cs 2 O, Rb 2 O, or the like may be introduced in a total amount or independently of 5%, particularly 1%. In order to stabilize the glass, Y 2 O 3 , La 2 O 3 , Ta 2 O 5 , SnO 2 , TiO 2 , Nb 2 O 5 , P 2 O 5 , CeO 2 , V 2 O 5, etc. are combined. It may be introduced up to 10%, in particular up to 1%, alone or in amount.

PbOとBiは、軟化点を低下させる成分であるが、環境負荷物質でもあるため、実質的な導入を回避することが好ましい。 PbO and Bi 2 O 3 are components that lower the softening point, but are also environmentally hazardous substances, so it is preferable to avoid substantial introduction.

本発明の複合粉末材料は、上記のホウケイ酸系ガラスからなるガラス粉末とアルミナ粉末とを含有する複合粉末材料であって、ガラス粉末の含有量が60〜90体積%、アルミナ粉末の含有量が10〜30体積%であることが好ましい。   The composite powder material of the present invention is a composite powder material containing a glass powder made of the above borosilicate glass and an alumina powder, wherein the glass powder content is 60 to 90% by volume, and the alumina powder content is It is preferable that it is 10-30 volume%.

ガラス粉末は、焼成時に融解し、被覆層を形成するための材料である。ガラス粉末は、例えば、溶融ガラスをフィルム状に成形した後、得られたガラスフィルムを粉砕、分級することにより作製することができる。   Glass powder is a material for melting during firing to form a coating layer. The glass powder can be produced, for example, by forming molten glass into a film and then crushing and classifying the obtained glass film.

ガラス粉末の含有量は、好ましくは60〜90体積%、好ましくは70〜88体積%、より好ましくは76〜85体積%である。ガラス粉末の含有量が少なくなると、緻密な被覆層を形成し難くなり、所望の表面平滑性を確保し難くなる。一方、ガラス粉末の含有量が多くなると、アルミナ粉末の含有量が相対的に少なくなるため、被覆層の耐摩耗性や熱伝導率が低下し易くなる。   The content of the glass powder is preferably 60 to 90% by volume, preferably 70 to 88% by volume, and more preferably 76 to 85% by volume. When the content of the glass powder decreases, it becomes difficult to form a dense coating layer, and it becomes difficult to ensure desired surface smoothness. On the other hand, when the content of the glass powder is increased, the content of the alumina powder is relatively decreased, so that the wear resistance and the thermal conductivity of the coating layer are easily lowered.

ガラス粉末の平均粒径D50は2.0μm以下が好ましく、最大粒径Dmaxは10μm以下が好ましい。ガラス粉末の粒度が大き過ぎると、被覆層の表面平滑性が低下し易くなり、また被覆層中に大きな泡が残存し易くなる。ここで、「平均粒径D50」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。また「最大粒径Dmax」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 The average particle diameter D 50 of the glass powder is preferably 2.0μm or less, the maximum particle diameter D max is preferably 10μm or less. If the particle size of the glass powder is too large, the surface smoothness of the coating layer tends to be lowered, and large bubbles tend to remain in the coating layer. Here, the “average particle diameter D 50 ” refers to a value measured with a laser diffractometer, and in an accumulated particle size distribution curve based on volume when measured by a laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%. “Maximum particle size D max ” refers to a value measured by a laser diffractometer, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle size is 99%.

アルミナ粉末は、被覆層の耐摩耗性を高める材料であり、また被覆層の熱伝導率を高める材料である。アルミナ粉末の含有量は、好ましくは10〜30体積%、好ましくは15〜23体積%である。アルミナ粉末の含有量が多くなると、長石系結晶が析出し易くなり、被覆層の表面平滑性が低下し易くなる。また、アルミナ粉末の含有量が多くなると、ガラス粉末の割合が相対的に少なくなるため、緻密な被覆層を形成し難くなり、所望の表面平滑性を確保し難くなる。   Alumina powder is a material that increases the wear resistance of the coating layer, and a material that increases the thermal conductivity of the coating layer. The content of the alumina powder is preferably 10 to 30% by volume, preferably 15 to 23% by volume. When the content of the alumina powder is increased, feldspar crystals are likely to be precipitated, and the surface smoothness of the coating layer is likely to be lowered. Further, when the content of the alumina powder is increased, the proportion of the glass powder is relatively decreased, so that it is difficult to form a dense coating layer and it is difficult to ensure desired surface smoothness.

アルミナ粉末の平均粒径D50は2.0μm以下が好ましく、最大粒径Dmaxは10μm以下が好ましい。アルミナ粉末の粒度が大き過ぎると、被覆層の表面平滑性が低下し易くなる。 The average particle diameter D 50 of the alumina powder is preferably 2.0μm or less, the maximum particle diameter D max is preferably 10μm or less. When the particle size of the alumina powder is too large, the surface smoothness of the coating layer tends to be lowered.

アルミナ粉末以外に、他のセラミック粉末を0〜10体積%、特に0〜8体積%導入してもよい。他のセラミック粉末として、種々の材料が使用可能であり、例えば、被覆層の熱膨張係数や耐磨耗性等を調整するために、ジルコニア、ムライト、シリカ、コーディエライト、チタニア、酸化スズ等の内、一種又は二種以上を添加することができる。   In addition to the alumina powder, another ceramic powder may be introduced in an amount of 0 to 10% by volume, particularly 0 to 8% by volume. Various materials can be used as other ceramic powders. For example, zirconia, mullite, silica, cordierite, titania, tin oxide, etc. are used to adjust the thermal expansion coefficient and wear resistance of the coating layer. Of these, one or more can be added.

本発明の複合粉末材料において、軟化点は、好ましくは650〜850℃、より好ましくは670〜830℃、更に好ましくは690〜810℃である。軟化点が高過ぎると、900℃以下の焼成温度で緻密な被覆層を形成し難くなり、所望の表面平滑性を確保し難くなる。一方、軟化点が低過ぎると、Ag外部電極との反応性が高くなる。   In the composite powder material of the present invention, the softening point is preferably 650 to 850 ° C, more preferably 670 to 830 ° C, and further preferably 690 to 810 ° C. When the softening point is too high, it becomes difficult to form a dense coating layer at a firing temperature of 900 ° C. or lower, and it becomes difficult to ensure desired surface smoothness. On the other hand, if the softening point is too low, the reactivity with the Ag external electrode increases.

本発明の複合粉末材料において、30〜300℃の温度範囲における平均熱膨張係数は、好ましくは53×10−7〜70×10−7/℃、より好ましくは55×10−7〜68×10−7/℃である。このようにすれば、焼成後にアルミナ基板の反りを防止し易くなる。ここで、「熱膨張係数」は、熱機械分析装置(TMA)により測定した値である。 In the composite powder material of the present invention, the average thermal expansion coefficient in the temperature range of 30 to 300 ° C. is preferably 53 × 10 −7 to 70 × 10 −7 / ° C., more preferably 55 × 10 −7 to 68 × 10. -7 / ° C. This makes it easy to prevent warping of the alumina substrate after firing. Here, the “thermal expansion coefficient” is a value measured by a thermomechanical analyzer (TMA).

本発明の複合粉末材料ペーストは、複合粉末材料とビークルとを含有する粉末材料ペーストにおいて、複合粉末材料が上記の複合粉末材料であることが好ましい。ここで、ビークルは、複合粉末材料を分散させて、ペースト化するための材料であり、通常、熱可塑性樹脂、可塑剤、溶剤等により構成される。   The composite powder material paste of the present invention is a powder material paste containing a composite powder material and a vehicle, and the composite powder material is preferably the above composite powder material. Here, the vehicle is a material for dispersing the composite powder material into a paste, and is usually composed of a thermoplastic resin, a plasticizer, a solvent, and the like.

複合粉末材料ペーストは、複合粉末材料とビークルを用意し、これらを所定の割合で混合、混練することにより作製することができる。   The composite powder material paste can be prepared by preparing a composite powder material and a vehicle, and mixing and kneading them at a predetermined ratio.

熱可塑性樹脂は、乾燥後の膜強度を高める成分であり、また柔軟性を付与する成分である。複合粉末材料ペースト中の熱可塑性樹脂の含有量は0.1〜20質量%が好ましい。熱可塑性樹脂として、ポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート、エチルセルロース等が好ましく、これらの内、一種又は二種以上を用いることが好ましい。   A thermoplastic resin is a component which improves the film | membrane intensity | strength after drying, and is a component which provides a softness | flexibility. The content of the thermoplastic resin in the composite powder material paste is preferably 0.1 to 20% by mass. As the thermoplastic resin, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose and the like are preferable, and it is preferable to use one or more of these.

溶剤は、熱可塑性樹脂を溶解させるための成分である。複合粉末材料ペースト中の溶剤の含有量は10〜30質量%が好ましい。溶剤として、ターピネオール、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート等が好ましく、これらの内、一種又は二種以上を用いることが好ましい。   The solvent is a component for dissolving the thermoplastic resin. The content of the solvent in the composite powder material paste is preferably 10 to 30% by mass. As the solvent, terpineol, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate and the like are preferable, and it is preferable to use one or more of these.

サーマルプリントヘッドの被覆層は、まずAuリード電極、Ag外部電極、RuO抵抗体等が形成されたアルミナ基板上に、複合粉末材料ペーストを塗布し、所定の膜厚の塗布層を形成した後、乾燥させて、乾燥膜を得る。その後、乾燥膜を800〜900℃の温度で5〜20分間焼成することにより、被覆層(焼成膜)を形成する。なお、焼成温度が低過ぎたり、焼成時間(保持時間)が短過ぎると、乾燥膜が十分に焼結せず、被覆層の緻密性や表面平滑性が低下し易くなる。一方、焼成温度が高過ぎたり、焼成時間(保持時間)が長過ぎると、ガラス粉末とRuO抵抗体等が反応して、抵抗体の特性が劣化し易くなったり、Ag外部電極等との反応性が高くなり、電極の断線が生じる虞がある。 The coating layer of the thermal print head is formed by first applying a composite powder material paste on an alumina substrate on which an Au lead electrode, an Ag external electrode, a RuO 2 resistor, etc. are formed, and forming a coating layer having a predetermined thickness. And dried to obtain a dry film. Thereafter, the dried film is baked at a temperature of 800 to 900 ° C. for 5 to 20 minutes to form a coating layer (baked film). If the firing temperature is too low or the firing time (holding time) is too short, the dried film will not sinter sufficiently, and the denseness and surface smoothness of the coating layer will tend to be reduced. On the other hand, if the firing temperature is too high or the firing time (holding time) is too long, the glass powder reacts with the RuO 2 resistor, etc., and the characteristics of the resistor are likely to deteriorate, There is a possibility that the reactivity becomes high and the electrode is disconnected.

以下、実施例に基づいて、本発明を詳細に説明する。なお、本発明は以下の実施例に何ら限定されない。以下の実施例は単なる例示である。   Hereinafter, based on an Example, this invention is demonstrated in detail. The present invention is not limited to the following examples. The following examples are merely illustrative.

表1は、本発明の実施例(試料No.1〜4)及び比較例(試料No.5)を示している。   Table 1 shows Examples (Sample Nos. 1 to 4) and Comparative Examples (Sample No. 5) of the present invention.

次のようにして、各試料を調製した。まず表中に示すガラス組成になるように、原料を調合して、均一に混合した。次いで、白金ルツボに入れて1350〜1450℃で2時間溶融した後、フィルム状に成形した。   Each sample was prepared as follows. First, raw materials were prepared and mixed uniformly so as to have the glass composition shown in the table. Then, after putting in a platinum crucible and melting at 1350 to 1450 ° C. for 2 hours, it was formed into a film.

続いて、上記のガラスフィルムをボールミルにて粉砕した後、気流分級して平均粒径D502.0μm以下、最大粒径Dmax10μm以下のガラス粉末を得た。得られたガラス粉末が80体積%、アルミナ粉末が20体積%になるように、両者を秤量した後、十分に混合し、複合粉末材料を得た。得られた複合粉末材料について、軟化点と熱膨張係数を評価した。なお、アルミナ粉末の平均粒径D50は2.0μm以下、最大粒径Dmaxは10μm以下であった。 Subsequently, the above glass film was pulverized with a ball mill and then air-flow classified to obtain a glass powder having an average particle size D 50 of 2.0 μm or less and a maximum particle size D max of 10 μm or less. Both were weighed so that the obtained glass powder was 80% by volume and the alumina powder was 20% by volume, and then sufficiently mixed to obtain a composite powder material. About the obtained composite powder material, the softening point and the thermal expansion coefficient were evaluated. The average particle diameter D 50 of the alumina powder is 2.0μm or less and a maximum particle diameter D max were 10μm or less.

軟化点は、マクロ型示差熱分析計(DTA)で測定した第四の変曲点の温度である。   The softening point is the temperature at the fourth inflection point measured with a macro-type differential thermal analyzer (DTA).

熱膨張係数は、各複合粉末材料を加圧形成し、(軟化点+10)℃で焼成した後、直径5mm、長さ20mmに加工して、測定試料を得た上で、熱機械分析装置(TMA)により30〜300℃の温度範囲で測定した平均値である。   The thermal expansion coefficient was determined by forming each composite powder material under pressure, firing it at (softening point + 10) ° C., processing to a diameter of 5 mm and a length of 20 mm, obtaining a measurement sample, It is an average value measured in a temperature range of 30 to 300 ° C. by TMA).

次に、上記複合粉末とビークル(エチルセルロースを5質量%、且つアセチルクエン酸トリブチルを3質量%含むターピネオール)を混合し、3本ロールミルにて混練して、複合粉末材料ペーストを得た。更に、電極層(Ag外部電極層)と抵抗体層を有する蓄熱層付きアルミナ基板上に、複合粉末材料ペーストをスクリーン印刷法で塗布した後、得られた塗布膜を乾燥し、電気炉で800℃の温度で20分間焼成し、約10μm厚の焼成膜(被覆層)を得た。得られた積層膜付きアルミナ基板について、表面平滑性とAg外部電極との反応性を評価した。   Next, the composite powder and a vehicle (terpineol containing 5% by mass of ethyl cellulose and 3% by mass of tributyl acetylcitrate) were mixed and kneaded by a three-roll mill to obtain a composite powder material paste. Further, a composite powder material paste was applied by screen printing on an alumina substrate with a heat storage layer having an electrode layer (Ag external electrode layer) and a resistor layer. Firing was performed at a temperature of 20 ° C. for 20 minutes to obtain a fired film (coating layer) having a thickness of about 10 μm. About the obtained alumina substrate with a laminated film, the surface smoothness and the reactivity with an Ag external electrode were evaluated.

表面平滑性は、焼成膜の表面を顕微鏡で観察して、結晶析出がある場合を「×」、結晶析出がない場合を「○」として、評価したものである。   The surface smoothness is evaluated by observing the surface of the fired film with a microscope, assuming that there is crystal precipitation as “x”, and no crystal precipitation as “◯”.

Ag外部電極との反応性は、焼成後のAg外部電極を観察した時に、黄変が認められた場合を「×」、黄変が認められなかった場合を「○」として、評価したものである。なお、Ag外部電極の黄変は、Ag外部電極との反応性と相関があり、Ag外部電極に黄変が生じると、Ag外部電極との反応性が高いと言える。   The reactivity with the Ag external electrode was evaluated as “X” when yellowing was observed when the Ag external electrode after firing was observed, and “○” when yellowing was not observed. is there. Note that the yellowing of the Ag external electrode correlates with the reactivity with the Ag external electrode, and when yellowing occurs in the Ag external electrode, it can be said that the reactivity with the Ag external electrode is high.

表1から明らかなように、試料No.1〜4は、ガラス粉末のガラス組成が所定範囲に規制されているため、軟化点が低く、表面平滑性やAg外部電極との反応性の評価が良好であった。一方、試料No.5は、軟化点が低かったが、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が小さいため、表面平滑性の評価が不良であった。 As is clear from Table 1, sample No. In Nos. 1 to 4, since the glass composition of the glass powder was regulated within a predetermined range, the softening point was low, and the evaluation of surface smoothness and reactivity with Ag external electrodes was good. On the other hand, sample No. No. 5 had a low softening point, but the surface ratio was poor because the molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) was small.

Claims (7)

ガラス組成として、モル%で、SiO 20〜40%、B 25〜45%、CaO 3〜15%、SrO+BaO+ZnO 5〜30%、ZrO 0〜6%、Al 0〜8%、CuO 0〜1%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.50より大きいことを特徴とするホウケイ酸系ガラス。 As a glass composition, in mol%, SiO 2 20~40%, B 2 O 3 25~45%, CaO 3~15%, SrO + BaO + 5~30% ZnO, ZrO 2 0~6%, Al 2 O 3 0~8 %, CuO 0 to 1%, and the molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) is greater than 0.50. ガラス組成として、モル%で、SiO 25〜40%、B 25〜40%、CaO 5〜15%、SrO 0.1〜10%、BaO 0.1〜10%、ZnO 5〜15%、ZrO 0.1〜4%、Al 0.1〜7%、CuO 0.005〜0.09%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.55以上であり、サーマルプリントヘッドの被覆に用いることを特徴とする請求項1に記載のホウケイ酸系ガラス。 As a glass composition, in mol%, SiO 2 25~40%, B 2 O 3 25~40%, CaO 5~15%, SrO 0.1~10%, BaO 0.1~10%, ZnO 5~15 %, ZrO 2 0.1-4%, Al 2 O 3 0.1-7%, CuO 0.005-0.09%, molar ratio (SiO 2 + CaO) / (B 2 O 3 + SrO + BaO + ZnO) The borosilicate glass according to claim 1, wherein the borosilicate glass is used for coating a thermal print head. ガラス組成として、モル%で、SiO 25〜40%、B 25〜40%、CaO 5〜15%、SrO 1〜10%、BaO 1〜10%、ZnO 5〜15%、ZrO 0.5〜4%、Al 1〜7%、CuO 0.01〜0.09%を含有し、モル比(SiO+CaO)/(B+SrO+BaO+ZnO)が0.55以上であり、サーマルプリントヘッドの被覆に用いることを特徴とする請求項1に記載のホウケイ酸系ガラス。 As a glass composition, in mol%, SiO 2 25~40%, B 2 O 3 25~40%, CaO 5~15%, SrO 1~10%, BaO 1~10%, 5~15% ZnO, ZrO 2 0.5~4%, Al 2 O 3 1~7 %, by containing 0.01 to 0.09% CuO, the molar ratio (SiO 2 + CaO) / ( B 2 O 3 + SrO + BaO + ZnO) is 0.55 or more The borosilicate glass according to claim 1, wherein the borosilicate glass is used for coating a thermal print head. ガラス組成中に、実質的にPbOとBiを含まないことを特徴とする請求項1〜3の何れかに記載のホウケイ酸系ガラス。 The borosilicate glass according to any one of claims 1 to 3, wherein the glass composition does not substantially contain PbO and Bi 2 O 3 . 請求項1〜4の何れかに記載のホウケイ酸系ガラスからなるガラス粉末とアルミナ粉末とを含有する複合粉末材料であって、ガラス粉末の含有量が60〜90体積%、アルミナ粉末の含有量が10〜30体積%であることを特徴とする複合粉末材料。   It is a composite powder material containing the glass powder consisting of the borosilicate glass according to any one of claims 1 to 4 and an alumina powder, wherein the content of the glass powder is 60 to 90% by volume, and the content of the alumina powder Is a composite powder material, characterized in that 10 to 30% by volume. 軟化点が650〜850℃であることを特徴とする請求項5に記載の複合粉末材料。   The composite powder material according to claim 5, wherein the softening point is 650 to 850 ° C. 複合粉末材料とビークルとを含有する粉末材料ペーストにおいて、複合粉末材料が請求項5又は6に記載の複合粉末材料であることを特徴とする複合粉末材料ペースト。   A composite powder material paste comprising a composite powder material and a vehicle, wherein the composite powder material is the composite powder material according to claim 5 or 6.
JP2016196284A 2016-10-04 2016-10-04 Borosilicate glass, composite powder material and composite powder material paste Active JP6952949B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016196284A JP6952949B2 (en) 2016-10-04 2016-10-04 Borosilicate glass, composite powder material and composite powder material paste
PCT/JP2017/032164 WO2018066295A1 (en) 2016-10-04 2017-09-06 Borosilicate glass, composite powder material, and composite powder material paste
CN201780058625.5A CN109790062B (en) 2016-10-04 2017-09-06 Borosilicate glass, composite powder material, and composite powder material paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196284A JP6952949B2 (en) 2016-10-04 2016-10-04 Borosilicate glass, composite powder material and composite powder material paste

Publications (2)

Publication Number Publication Date
JP2018058716A true JP2018058716A (en) 2018-04-12
JP6952949B2 JP6952949B2 (en) 2021-10-27

Family

ID=61831388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196284A Active JP6952949B2 (en) 2016-10-04 2016-10-04 Borosilicate glass, composite powder material and composite powder material paste

Country Status (3)

Country Link
JP (1) JP6952949B2 (en)
CN (1) CN109790062B (en)
WO (1) WO2018066295A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247825B2 (en) * 2018-12-17 2023-03-29 Agc株式会社 Glass composition, composite powder material, composite powder material paste, printer head for laser printer, and thermal printer head
CN110550864B (en) * 2019-09-29 2022-09-02 长沙新材料产业研究院有限公司 Low-expansion-coefficient insulating medium slurry and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001755A1 (en) * 1977-10-15 1979-05-16 Bayer Ag Grounding enamel, free of fluorine and alumina, for enameling steel sheets and enameled steel sheets
JPS55126550A (en) * 1979-03-20 1980-09-30 Hoya Corp Green contrast filter for crt display device
JPS5761642A (en) * 1980-09-29 1982-04-14 Ngk Insulators Ltd Ground coat frit composition for sheet steel enamel
JPH01103456A (en) * 1987-10-19 1989-04-20 Oki Electric Ind Co Ltd Thermal head substrate and production thereof
JPH06191885A (en) * 1992-12-22 1994-07-12 Asahi Glass Co Ltd Sealing glass and circuit parts
JPH0950708A (en) * 1995-08-07 1997-02-18 Murata Mfg Co Ltd Conductive paste and layered ceramic electronic components
JP2000264677A (en) * 1999-03-17 2000-09-26 Mitsubishi Materials Corp Glass composition, paste using the same, green sheet, electric insulator, bulkhead for pdp and pdp
JP2002167234A (en) * 2000-11-30 2002-06-11 Nippon Electric Glass Co Ltd Sealing glass for vacuum double-walled metal container
JP2002185109A (en) * 2000-12-14 2002-06-28 Tokuyama Corp Method of separately recovering substrate
WO2004047124A1 (en) * 2002-11-21 2004-06-03 Tdk Corporation Resistor paste, resistor and electronic part
JP2008214176A (en) * 2007-02-06 2008-09-18 Mitsubishi Electric Corp Ceramic powder for green sheet and multilayer ceramic substrate
JP2014096277A (en) * 2012-11-09 2014-05-22 Nippon Electric Glass Co Ltd Seal material for solid oxide type fuel battery use
WO2016111063A1 (en) * 2015-01-09 2016-07-14 株式会社日立ハイテクファインシステムズ Lithium ion battery, method for manufacturing same, and apparatus for manufacturing lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025209B2 (en) * 2006-09-27 2012-09-12 地方独立行政法人 東京都立産業技術研究センター Lead-free borosilicate glass frit and glass paste for forming an insulating layer
CN101164939B (en) * 2006-10-19 2010-08-18 北京印刷学院 Leadless barium borate low melting glass and application thereof
DE102008007338B4 (en) * 2007-02-06 2011-08-25 Mitsubishi Electric Corp. Ceramic powder for a blank, multilayer ceramic substrate, and method for producing a multilayer ceramic substrate
JP5454414B2 (en) * 2010-08-18 2014-03-26 住友金属鉱山株式会社 Thick film conductor forming composition, thick film conductor formed using the composition, and chip resistor using the thick film conductor
JP2015131743A (en) * 2014-01-14 2015-07-23 日本電気硝子株式会社 Composite powder and composite powder paste

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001755A1 (en) * 1977-10-15 1979-05-16 Bayer Ag Grounding enamel, free of fluorine and alumina, for enameling steel sheets and enameled steel sheets
JPS55126550A (en) * 1979-03-20 1980-09-30 Hoya Corp Green contrast filter for crt display device
JPS5761642A (en) * 1980-09-29 1982-04-14 Ngk Insulators Ltd Ground coat frit composition for sheet steel enamel
JPH01103456A (en) * 1987-10-19 1989-04-20 Oki Electric Ind Co Ltd Thermal head substrate and production thereof
JPH06191885A (en) * 1992-12-22 1994-07-12 Asahi Glass Co Ltd Sealing glass and circuit parts
JPH0950708A (en) * 1995-08-07 1997-02-18 Murata Mfg Co Ltd Conductive paste and layered ceramic electronic components
JP2000264677A (en) * 1999-03-17 2000-09-26 Mitsubishi Materials Corp Glass composition, paste using the same, green sheet, electric insulator, bulkhead for pdp and pdp
JP2002167234A (en) * 2000-11-30 2002-06-11 Nippon Electric Glass Co Ltd Sealing glass for vacuum double-walled metal container
JP2002185109A (en) * 2000-12-14 2002-06-28 Tokuyama Corp Method of separately recovering substrate
WO2004047124A1 (en) * 2002-11-21 2004-06-03 Tdk Corporation Resistor paste, resistor and electronic part
JP2008214176A (en) * 2007-02-06 2008-09-18 Mitsubishi Electric Corp Ceramic powder for green sheet and multilayer ceramic substrate
JP2014096277A (en) * 2012-11-09 2014-05-22 Nippon Electric Glass Co Ltd Seal material for solid oxide type fuel battery use
WO2016111063A1 (en) * 2015-01-09 2016-07-14 株式会社日立ハイテクファインシステムズ Lithium ion battery, method for manufacturing same, and apparatus for manufacturing lithium ion battery

Also Published As

Publication number Publication date
WO2018066295A1 (en) 2018-04-12
JP6952949B2 (en) 2021-10-27
CN109790062A (en) 2019-05-21
CN109790062B (en) 2021-11-26

Similar Documents

Publication Publication Date Title
JP3775556B2 (en) Plasma display panel materials and glass powder
JP6206832B2 (en) Bismuth glass composition, powder material and powder material paste
JP2005041734A (en) Glass for dielectric formation and dielectric formation material for plasma display panel
JP5370909B2 (en) Dielectric material for plasma display panel
JP2007126350A (en) Barrier rib forming material for plasma display panel and glass composition for barrier rib forming material
JP2011084447A (en) Non-lead glass and composite material
WO2018066295A1 (en) Borosilicate glass, composite powder material, and composite powder material paste
JP5674235B2 (en) Bismuth-based lead-free glass and composite materials
JP2011079718A (en) Bismuth-based non-lead glass and composite material
JP6315403B2 (en) Powder material and powder material paste
JP2009021205A (en) Dielectric material for plasma display panel
JP4114121B2 (en) Material for plasma display panel and glass composition
TW200405889A (en) Dielectric material for a plasma display panel
JP2011219334A (en) Dielectric formation glass paste for plasma display panel
JP6804042B2 (en) Bismuth glass, composite powder material and composite powder material paste
JP2007091566A (en) Dielectric material for plasma display panel
JP2005038824A (en) Dielectric structure of plasma display panel
JP3693151B2 (en) Material for plasma display panel and glass powder
JP4161102B2 (en) Dielectric material for plasma display panel
JP2012033454A (en) Dielectric material for plasma display panel
JP2009102199A (en) Dielectric material for plasma display panel
WO2016017732A1 (en) Bismuth glass composition, powder material and powder material paste
JP2005317247A (en) Dielectric structure of plasma display panel
JP2015168588A (en) glass composition, powder material and powder material paste
JP2005158476A (en) Dielectric material for plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210912

R150 Certificate of patent or registration of utility model

Ref document number: 6952949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150