JP2018058040A - Regeneration method of separation membrane module - Google Patents

Regeneration method of separation membrane module Download PDF

Info

Publication number
JP2018058040A
JP2018058040A JP2016197935A JP2016197935A JP2018058040A JP 2018058040 A JP2018058040 A JP 2018058040A JP 2016197935 A JP2016197935 A JP 2016197935A JP 2016197935 A JP2016197935 A JP 2016197935A JP 2018058040 A JP2018058040 A JP 2018058040A
Authority
JP
Japan
Prior art keywords
membrane
separation layer
module
solution
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197935A
Other languages
Japanese (ja)
Other versions
JP6780427B2 (en
Inventor
敬史 大亀
Keiji Okame
敬史 大亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016197935A priority Critical patent/JP6780427B2/en
Priority to PCT/JP2017/036221 priority patent/WO2018066631A1/en
Publication of JP2018058040A publication Critical patent/JP2018058040A/en
Application granted granted Critical
Publication of JP6780427B2 publication Critical patent/JP6780427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a composite membrane module reduced in performance by chemical cleaning of using sodium hypochlorite, an acid and alkali.SOLUTION: In a regeneration method of a membrane module of incorporating a composite membrane having a first separation layer constituted of an anionic polymer on one surface of a porous support membrane and having a second separation layer constituted of at least one kind of more cationic or anionic ionomers on a surface of the first separation layer, the regeneration method of the membrane module executes a process of contacting at least one kind or more cationic polymer solutions or anionic polymer solutions with the separation layer side of the composite membrane and a process of contacting a crosslinking agent solution in order.SELECTED DRAWING: None

Description

本発明は、次亜塩素酸ナトリウム、酸溶液、アルカリ溶液などを用いた化学的膜洗浄によって性能劣化した分離膜モジュールの再生方法に関するものであり、特に分離層を構成するポリマーを新たに補充することにより、モジュール内で分離膜をその場修復することを特徴とする分離膜モジュールの再生方法である。   The present invention relates to a method for regenerating a separation membrane module whose performance has deteriorated due to chemical membrane cleaning using sodium hypochlorite, acid solution, alkaline solution, or the like, and in particular, replenishes a polymer constituting the separation layer. Thus, the separation membrane module regeneration method is characterized in that the separation membrane is repaired in situ within the module.

膜分離による水処理、特に逆浸透(Reverse Osmosis, RO)膜またはナノろ過(Nanofiltration, NF)膜から構成されるモジュールを用いる水処理は、高分子、コロイド、無機粒子の分離はもとより、NF膜モジュールにおいては、分子量1000〜200の低分子、RO膜モジュールにおいては、分子量200以下、さらには100以下の低分子の高度な分離が可能であり、1価イオンまたは多価イオンの分離も可能であるという特長を有する。また、蒸留分離に較べて省エネルギーであり、熱による溶質の劣化や変性を伴わないという利点を有する。そのため、ROおよびNF膜モジュールは、果汁の濃縮工程、ビール酵素分離などの食品工程、海水及びかん水の淡水化による飲料水、超純水の製造、医療用途の無菌水製造、廃水からの有価物の回収など、多岐にわたる分野で利用されており、不可欠な分離プロセスとして定着している。   Water treatment by membrane separation, particularly water treatment using modules composed of reverse osmosis (RO) membrane or nanofiltration (NF) membrane, NF membrane as well as separation of polymers, colloids and inorganic particles In the module, low molecular weight of 1000 to 200 molecular weight, and in the RO membrane module, the molecular weight of 200 or less, further low molecular weight of 100 or less can be highly separated, and monovalent ions or multivalent ions can also be separated. It has the feature of being. Moreover, it has the advantage that it is energy saving compared with distillation separation, and does not accompany the deterioration and modification | denaturation of the solute by heat. Therefore, RO and NF membrane modules are used in fruit juice concentration processes, food processes such as beer enzyme separation, drinking water by desalination of seawater and brine, production of ultrapure water, production of sterile water for medical use, and valuable materials from wastewater. Has been established as an indispensable separation process.

分離膜モジュールのろ過運転においては、多様な有機物質、無機塩および無機粒子などによる膜ファウリングが起こる。ファウリングが起こった膜は透水性が低下するために、ろ過運転効率が著しく低下してしまう。ファウリング物質を除去する方法として、フラッシング、逆圧洗浄などの物理洗浄が通常行われるが、長期間のろ過運転で強固に膜表面に付着したファウリング物質を物理洗浄だけで完全除去することは難しい。そのため、次亜塩素酸ナトリウム、酸、アルカリ等による各種の化学洗浄が併用される。   In the filtration operation of the separation membrane module, membrane fouling occurs due to various organic substances, inorganic salts, inorganic particles, and the like. Since the membrane in which fouling has occurred has a reduced water permeability, the filtration operation efficiency is significantly reduced. As a method of removing fouling substances, physical washing such as flushing and back pressure washing is usually performed, but it is not possible to completely remove fouling substances firmly attached to the membrane surface by physical washing only by long-term filtration operation. difficult. Therefore, various types of chemical cleaning with sodium hypochlorite, acid, alkali, etc. are used in combination.

しかしながら、長期間、薬液に曝露された分離膜モジュールは多かれ少なかれ分離層が化学的劣化するため性能低下することは避けられない。モジュールの寿命を延長するために、各種のモジュール性能回復手段がこれまで検討されてきている。   However, the performance of the separation membrane module exposed to the chemical solution for a long period of time is inevitably deteriorated because the separation layer is chemically degraded. In order to extend the lifetime of the module, various module performance recovery means have been studied so far.

特許文献1には、逆浸透膜モジュールに、第一手段として架橋ポリアミド分離層を有する逆浸透膜モジュールに架橋ポリアミドの構成成分である多官能酸ハライドまたは多官能イソシアネートを含む有機溶媒を、逆浸透膜のスキン層に接触させて、ポリアミド分離層の再生を試みる方法が開示されており、また第二手段として水不溶性のポリマー(例えば高ケン化度のポリビニルアルコール)の溶液を逆浸透膜のスキン層に接触させる方法、が開示されている。   Patent Document 1 discloses that a reverse osmosis membrane module, a reverse osmosis membrane module having a cross-linked polyamide separation layer as a first means, an organic solvent containing a polyfunctional acid halide or polyfunctional isocyanate as a constituent component of the cross-linked polyamide is reverse osmosis. A method of trying to regenerate the polyamide separation layer by contacting the skin layer of the membrane is disclosed, and as a second means, a solution of a water-insoluble polymer (for example, polyvinyl alcohol having a high saponification degree) is used as the skin of the reverse osmosis membrane. A method of contacting a layer is disclosed.

特許文献2には、タンニン等のポリフェノール類を分離膜モジュールに加圧通水させて、分離膜性能を向上または回復させる方法が開示されている。   Patent Document 2 discloses a method for improving or recovering the performance of a separation membrane by allowing polyphenols such as tannin to pass through the separation membrane module under pressure.

しかしながら、特許文献1の第一手段のようなポリアミド膜等の性能回復手段は、モジュール内のポリアミド分離層中に残存するアミド基と酸ハライドを反応させて性能回復を行うものであり、次亜塩素酸ナトリウムによって大幅に性能低下したポリアミド膜に対しては効果が小さく、また再生処理の適用回数も限られる。さらに酸ハライドを可溶な有機溶媒はヘプタン、ヘキサン等が用いられるため、モジュール再生処理後に丁寧な洗浄処理を要するなど、膜ろ過設備内でのその場再生処理には不適である。   However, the performance recovery means such as a polyamide membrane as the first means of Patent Document 1 recovers the performance by reacting the amide group remaining in the polyamide separation layer in the module with an acid halide. It is less effective for polyamide membranes whose performance has been greatly degraded by sodium chlorate, and the number of times the regeneration treatment is applied is limited. Furthermore, heptane, hexane, or the like is used as the organic solvent that can dissolve acid halide, and therefore, it is not suitable for in-situ regeneration treatment in a membrane filtration facility, such as requiring careful washing treatment after module regeneration treatment.

また、特許文献1の第二手段のような有機ポリマー溶液を逆浸透膜のスキン層に接触させて、ポリマーコーティングを行う手法は、コート層の厚み制御が難しく、再現性よく性能回復を行うことが困難であるという問題を有する。特に、外圧ろ過式の中空糸膜モジュールにおいては、モジュール内の糸束が多数交絡し、糸同士の接触面積が大きいために、このような手法を用いた場合、均一なコート層が形成できないばかりか、糸同士がポリマーで接着してしまう問題を有する。   In addition, the method of polymer coating by bringing the organic polymer solution into contact with the skin layer of the reverse osmosis membrane as in the second means of Patent Document 1 makes it difficult to control the thickness of the coat layer, and performs performance recovery with good reproducibility. Has the problem of being difficult. In particular, in an external pressure filtration type hollow fiber membrane module, a large number of yarn bundles in the module are entangled, and the contact area between the yarns is large. Therefore, when such a method is used, a uniform coat layer cannot be formed. In addition, there is a problem that the yarns adhere to each other with a polymer.

特許文献2のポリフェノール類の溶液をモジュール内に加圧通水する方法は、分離層の表面にポリマー類を堆積させる、一種のファウリングによる膜性能回復手段であるが、特許文献2と同様に分離性が大幅に低下した分離膜に対しては、性能回復効果を得ることが困難であるという問題を有する。また、ポリフェノール類の分子間あるいは分離層とポリフェノール類の分子間に対して物理的あるいは化学的な結合が施されるものではないため、膜性能が長期的に安定しない問題を有する。   The method in which the polyphenol solution of Patent Document 2 is pressurized and passed through the module is a kind of membrane performance recovery means by fouling in which polymers are deposited on the surface of the separation layer. For separation membranes with significantly reduced separability, it is difficult to obtain a performance recovery effect. In addition, there is a problem that the membrane performance is not stable in the long term because physical or chemical bonding is not performed between the molecules of the polyphenols or between the separation layer and the molecules of the polyphenols.

特開平11−104470号公報JP-A-11-104470 特開2006−224048号公報JP 2006-224048 A

本発明は、かかる従来技術の問題に鑑みなされたものであり、その目的は、特定の分離膜の構成を有するモジュールにおいて、次亜塩素酸ナトリウム、酸類、アルカリ類等を用いた化学的膜洗浄によって低下した膜性能を再現性よく大幅に回復させる手段を提供することである。   The present invention has been made in view of such problems of the prior art, and its purpose is to perform chemical membrane cleaning using sodium hypochlorite, acids, alkalis, etc., in a module having a specific separation membrane configuration. The present invention provides a means for significantly recovering the film performance reduced by reproducibility with good reproducibility.

本発明者は、上記の目的を達成するため鋭意検討した結果、以下のような知見に基づいて、分離膜モジュールの再生方法を完成させた。   As a result of intensive studies to achieve the above object, the present inventor has completed a method for regenerating a separation membrane module based on the following knowledge.

本発明において、対象となる分離膜モジュールは、多孔性支持膜の表面にアニオン性官能基を有するポリマーからなる第1分離層を有し、前記第1分離層の外表面に少なくとも1種類のカチオン性ポリマーまたはアニオン性ポリマーを架橋処理してなる第2分離層を有する分離膜を含むモジュールである。   In the present invention, the target separation membrane module has a first separation layer made of a polymer having an anionic functional group on the surface of the porous support membrane, and at least one kind of cation on the outer surface of the first separation layer. Module comprising a separation membrane having a second separation layer formed by crosslinking a functional polymer or an anionic polymer.

本発明者は、前記分離膜モジュールに対して、次亜塩素酸ナトリウム等への暴露により性能低下した分離膜の分離層側にカチオン性ポリマーまたはアニオン性ポリマーの水溶液を接触させた後、さらに架橋剤溶液を充填して、前記カチオン性ポリマーまたはアニオン性ポリマーの架橋処理を行うと、驚くべきことに分離膜モジュールの分離性能が大幅に回復することを見出した。さらに、次亜塩素酸ナトリウムの曝露試験を継続し、再生処理を実施したところ、再度性能が回復することも見出した。   The inventor contacts the separation membrane module with an aqueous solution of a cationic polymer or an anionic polymer on the separation layer side of the separation membrane whose performance has deteriorated due to exposure to sodium hypochlorite or the like, and then further crosslinks. It has been surprisingly found that the separation performance of the separation membrane module is remarkably recovered when the agent solution is filled and the cationic polymer or the anionic polymer is crosslinked. Furthermore, when the exposure test of sodium hypochlorite was continued and the regeneration treatment was carried out, it was found that the performance recovered again.

この理由として、本発明の対象となる複合膜において、次亜塩素酸ナトリウムによる酸化劣化により、分離層の孔径拡大や部分剥離を受けるのは、主に分離膜最外層のポリマー架橋物からなる第2分離層である。ゆえに、内層のアニオン性官能基を含む第1分離層の劣化度合いは相対的に小さくなると考えられる。そのため、劣化したモジュールに、カチオン性ポリマー水溶液、アニオン性ポリマー水溶液および架橋剤溶液を、順次接触させることにより、静電気相互作用を介したポリマー吸着および架橋処理を再度行うことで、性能回復が実現していると考えられる。   The reason for this is that, in the composite membrane that is the subject of the present invention, the pore diameter of the separation layer and partial peeling due to oxidative degradation due to sodium hypochlorite are mainly the polymer cross-linked product of the outermost layer of the separation membrane. 2 separate layers. Therefore, it is considered that the degree of deterioration of the first separation layer containing the anionic functional group in the inner layer is relatively small. Therefore, by bringing the degraded module into contact with a cationic polymer aqueous solution, an anionic polymer aqueous solution and a cross-linking agent solution in sequence, the polymer adsorption and cross-linking treatment via electrostatic interaction is performed again, thereby realizing performance recovery. It is thought that.

本発明は、上記の知見に基づいて完成したものであり、以下の(1)〜(4)の構成を有するものである。
(1)多孔性支持膜の一方の表面にアニオン性ポリマーで構成される第1分離層を有し、前記第1分離層の表面に、少なくとも1種類以上のカチオン性またはアニオン性ポリマーから構成される第2分離層を有する複合膜を組み込んでなる膜モジュールの再生方法であって、前記複合膜の分離層側に少なくとも1種類以上のカチオン性ポリマー溶液またはアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に実施することを特徴とする膜モジュールの再生方法。
(2)前記カチオン性ポリマー溶液がカチオン性ポリビニルアルコール水溶液であることを特徴とする1に記載の方法。
(3)前記アニオン性ポリマー溶液がアニオン性ポリビニルアルコール水溶液であることを特徴とする1または2に記載の方法。
(4)前記架橋剤溶液がアルデヒド類の水溶液であることを特徴とする1〜3のいずれかに記載の方法。
(5)前記カチオン性ポリマー溶液またはアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に2回以上繰返すことを特徴とする請求項1〜4のいずれかに記載の方法。
This invention is completed based on said knowledge, and has the structure of the following (1)-(4).
(1) It has a first separation layer composed of an anionic polymer on one surface of the porous support membrane, and the surface of the first separation layer is composed of at least one kind of cationic or anionic polymer. A method for regenerating a membrane module incorporating a composite membrane having a second separation layer, the step of bringing at least one cationic polymer solution or an anionic polymer solution into contact with the separation layer side of the composite membrane, cross-linking A method for regenerating a membrane module, wherein the step of bringing the agent solution into contact is sequentially performed.
(2) The method according to 1, wherein the cationic polymer solution is a cationic polyvinyl alcohol aqueous solution.
(3) The method according to 1 or 2, wherein the anionic polymer solution is an aqueous anionic polyvinyl alcohol solution.
(4) The method according to any one of 1 to 3, wherein the crosslinking agent solution is an aqueous solution of aldehydes.
(5) The method according to any one of claims 1 to 4, wherein the step of contacting the cationic polymer solution or the anionic polymer solution and the step of contacting the crosslinking agent solution are repeated twice or more in order.

本発明は、多孔性支持膜の表面にアニオン性官能基を含むポリマーからなる第1分離層を有し、前記第1分離層の表面に少なくとも1種類以上のカチオン性官能基またはアニオン性官能基を含むポリマーの架橋物からなる第2分離層を有する特定の複合膜構造を有するモジュールにおいて、性能低下した前記複合膜モジュールに対して、前記ポリマーの水溶液および架橋剤溶液を接触させて、膜モジュールの性能を簡便かつ大幅に回復させることが可能である。そのため、複合膜モジュールの寿命をさらに長くすることができ経済的である。   The present invention has a first separation layer made of a polymer containing an anionic functional group on the surface of a porous support membrane, and at least one kind of cationic functional group or anionic functional group on the surface of the first separation layer. In a module having a specific composite membrane structure having a second separation layer made of a crosslinked product of a polymer containing a polymer, the membrane solution is brought into contact with an aqueous solution of the polymer and a crosslinking agent solution against the composite membrane module whose performance has deteriorated It is possible to easily and significantly recover the performance. Therefore, the lifetime of the composite membrane module can be further extended, which is economical.

複合膜モジュールの次亜塩素酸ナトリウム曝露処理および本発明の再生処理後の分離膜の除去率の変化を示した図である。It is the figure which showed the change of the removal rate of the separation membrane after the sodium hypochlorite exposure process of the composite membrane module and the regeneration process of this invention. 複合膜モジュールの次亜塩素酸ナトリウム曝露処理および本発明の再生処理後の分離膜の透水性の変化を示した図である。It is the figure which showed the water permeability change of the separation membrane after the sodium hypochlorite exposure process of a composite membrane module and the regeneration process of this invention. 本発明の中空糸膜モジュールでの実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment in the hollow fiber membrane module of this invention.

本発明の分離膜モジュール再生方法の対象となる複合膜の構造は、特定の構成;多孔性支持膜の表面に第1分離層を有し、さらにその外表面に第2分離層を有するものである。   The structure of the composite membrane to be subjected to the separation membrane module regeneration method of the present invention has a specific configuration: a first separation layer on the surface of the porous support membrane, and a second separation layer on the outer surface thereof. is there.

多孔性支持膜の外表面に設けられる第1分離層は、アニオン性官能基を有するポリマーで構成され、特にスルホン酸基、カルボキシル基、又はホスホン酸基を有するポリマーで構成されることが好ましい。より好ましくは、作製および入手の容易さから、スルホン酸基を有するポリマー(スルホン化ポリマー)で構成されることが好ましい。具体的には、スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリアリーレンエーテル、スルホン化ポリスルホン、スルホン化ポリフェニレンエーテル(スルホン化ポリフェニレンオキサイド)、スルホン化ポリエーテルイミド、スルホン化ポリエーテルエーテルケトン、スルホン化ポリフェニレンスルフィド、スルホン化ポリベンズイミダゾールなどから構成されることが好ましい。これらのポリマーは、第1分離層の機械強度を維持しつつ、高いスルホン酸基密度を有する。   The first separation layer provided on the outer surface of the porous support membrane is composed of a polymer having an anionic functional group, and is particularly preferably composed of a polymer having a sulfonic acid group, a carboxyl group, or a phosphonic acid group. More preferably, it is preferably composed of a polymer having a sulfonic acid group (sulfonated polymer) from the viewpoint of production and availability. Specifically, sulfonated polysulfone, sulfonated polyimide, sulfonated polyarylene ether, sulfonated polysulfone, sulfonated polyphenylene ether (sulfonated polyphenylene oxide), sulfonated polyetherimide, sulfonated polyether ether ketone, sulfonated polyphenylene It is preferably composed of sulfide, sulfonated polybenzimidazole or the like. These polymers have a high density of sulfonic acid groups while maintaining the mechanical strength of the first separation layer.

前記スルホン化ポリマーは、公知のポリマー、例えば、ポリフェニレンエーテル(ポリフェニレンオキサイド)、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミドなどをクロロ硫酸や濃硫酸を用いてスルホン化して得られたものであることが好ましい。より好ましくは、スルホン酸基を有する親水性モノマーと、スルホン酸基を有しない疎水性モノマーとを共重合させたスルホン化ポリマーを挙げることができる。このような共重合スルホン化ポリマーは、スルホン酸基の導入量を再現性良く精密に制御することができ、所望のモノマーを選択することにより、高いスルホン酸基密度を有しながら、優れた機械強度と高い耐薬品性を有するため好ましい。   The sulfonated polymer is obtained by sulfonating a known polymer such as polyphenylene ether (polyphenylene oxide), polyimide, polysulfone, polyethersulfone, polyetherimide, etc. using chlorosulfuric acid or concentrated sulfuric acid. Is preferred. More preferable examples include a sulfonated polymer obtained by copolymerizing a hydrophilic monomer having a sulfonic acid group and a hydrophobic monomer having no sulfonic acid group. Such a copolymerized sulfonated polymer can precisely control the amount of sulfonic acid groups introduced with good reproducibility, and by selecting a desired monomer, it has an excellent mechanical property while having a high sulfonic acid group density. It is preferable because of its strength and high chemical resistance.

前記共重合スルホン化ポリマーとしては、下記式(IV)で表される疎水性セグメントと、下記式(V)で表される親水性セグメントの繰り返し構造からなるポリマーを基本骨格としたスルホン化ポリアリーレンエーテル(SPAE)が好ましい。かかるポリマーは、剛直な分子骨格と優れた化学耐久性を発現し、機械強度に優れる。


上記式中、Xは下記のいずれかであり、

Yは、下記のいずれかであり、

Zは、下記のいずれかであり、

Wは、下記のいずれかであり、

YとWは、同じものが選択されることはなく、
aおよびbは、それぞれ1以上の自然数を表し、
およびRは、−SOMあるいは−SOHを表し、Mは金属元素を表し、
スルホン化ポリアリーレンエーテル共重合体中の式(IV)の繰り返し数と式(V)の繰り返し数の合計に対する式(V)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
As the copolymerized sulfonated polymer, a sulfonated polyarylene having a polymer composed of a repeating structure of a hydrophobic segment represented by the following formula (IV) and a hydrophilic segment represented by the following formula (V) as a basic skeleton: Ether (SPAE) is preferred. Such a polymer exhibits a rigid molecular skeleton and excellent chemical durability, and is excellent in mechanical strength.


In the above formula, X is any of the following:

Y is one of the following:

Z is one of the following:

W is one of the following:

The same Y and W are not selected,
a and b each represent a natural number of 1 or more;
R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element,
Sulfonation rate expressed as a percentage of the number of repetitions of formula (V) to the total number of repetitions of formula (IV) and formula (V) in the sulfonated polyarylene ether copolymer is from 5% Is larger than 80%.

さらに、より機械強度が高く、高い柔軟性と化学耐久性を併せ持つ共重合スルホン化ポリマーとしては、下記式(I)で表される疎水性セグメントと、下記式(II)で表される親水性セグメントの繰り返し構造からなるスルホン化ポリアリーレンエーテルであることが好ましい。


上記式中、mおよびnはそれぞれ1以上の自然数を表し、RおよびRは−SOMまたは−SOHを表し、Mは金属元素を表し、スルホン化ポリアリーレンエーテル共重合体中の式(I)の繰り返し数と式(II)の繰り返し数の合計に対する式(II)の繰り返し数の百分率割合として表されるスルホン化率が、5%よりも大きく、80%よりも小さい。
Furthermore, the copolymerized sulfonated polymer having higher mechanical strength and high flexibility and chemical durability includes a hydrophobic segment represented by the following formula (I) and a hydrophilic property represented by the following formula (II). A sulfonated polyarylene ether having a repeating structure of segments is preferred.


In the above formula, m and n each represent a natural number of 1 or more, R 1 and R 2 represent —SO 3 M or —SO 3 H, M represents a metal element, and in the sulfonated polyarylene ether copolymer The sulfonation rate expressed as a percentage of the number of repetitions of formula (II) to the sum of the number of repetitions of formula (I) and (II) is greater than 5% and less than 80%.

前記ポリマーのスルホン化度の好ましいイオン交換容量IEC(すなわち、スルホン化ポリマー1g当りのスルホン酸基のミリ当量)は、0.5〜3.0meq./gであり、スルホン化率DSの好ましい範囲は、5%より大きく80%より小さい。IECおよびDSが上記範囲より低い場合は、スルホン酸基が少なすぎるため、第1分離層の表面のアニオン電荷密度が小さくなる。そのため、後述する交互積層法による第2分離層の形成工程が均一に進行しない傾向があり、好ましくない。また、IECおよびDSが上記範囲より高い場合、ポリマーの親水性が大きくなりすぎ、第1分離層が過度に膨潤するため好ましくない。より好ましいIECの範囲は0.7〜2.9meq./gであり、より好ましいスルホン化率DSの範囲は10%〜70%である。   The preferred ion exchange capacity IEC for the degree of sulfonation of the polymer (ie, milliequivalents of sulfonic acid groups per gram of sulfonated polymer) is 0.5-3.0 meq. / G, and the preferred range of sulfonation rate DS is greater than 5% and less than 80%. When IEC and DS are lower than the above ranges, the anionic charge density on the surface of the first separation layer becomes small because there are too few sulfonic acid groups. Therefore, there is a tendency that the formation process of the second separation layer by the alternating lamination method described later does not proceed uniformly, which is not preferable. Moreover, when IEC and DS are higher than the said range, since the hydrophilic property of a polymer becomes large too much and a 1st separated layer will swell excessively, it is unpreferable. A more preferable range of IEC is 0.7 to 2.9 meq. / G, and a more preferable sulfonation rate DS range is 10% to 70%.

多孔性支持膜は、ポリフェニレンエーテル(ポリフェニレンオキサイド)、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリケトン、ポリイミド、ポリアクリロニトリル、ポリスチレン、ポリフッ化ビニリデンなどの公知の溶液製膜可能なポリマーから選択されたポリマーの非対称膜であることができる。特に、WO2014/054346に開示されているように、特定のSPAE(I)(II)および(IV)(V)を溶解可能な非プロトン性極性溶媒(ジメチルスルホキシド、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトンなど)に対して不溶であるポリフェニレンエーテルの非対称膜であることが好ましい。ポリフェニレンエーテル多孔性支持膜は、上記溶媒に対して不溶または限定的な溶解性を示すために、上記のSPAEを公知のポリマーコーティング法により複合膜を容易に得ることができる。   The porous support membrane is a polymer selected from known solution-forming polymers such as polyphenylene ether (polyphenylene oxide), polysulfone, polyethersulfone, polyetherimide, polyketone, polyimide, polyacrylonitrile, polystyrene, and polyvinylidene fluoride. Asymmetric membrane. In particular, as disclosed in WO2014 / 054346, aprotic polar solvents (dimethyl sulfoxide, N-methyl-2-pyrrolidone, which can dissolve certain SPAE (I) (II) and (IV) (V), It is preferably an asymmetric membrane of polyphenylene ether that is insoluble in dimethylacetamide, dimethylformamide, γ-butyrolactone, and the like. Since the polyphenylene ether porous support membrane shows insolubility or limited solubility in the solvent, a composite membrane can be easily obtained by using the above-mentioned SPAE by a known polymer coating method.

上記のポリフェニレンエーテルは下記式(III)で表される構造である。

上記式(III)中、kは1以上の自然数を表す。
The polyphenylene ether has a structure represented by the following formula (III).

In the above formula (III), k represents a natural number of 1 or more.

多孔性支持膜に第1分離層を複合化する方法としては、公知の手法を用いることができ、具体的にはコーティング法やスプレー法などの塗布法を用いることができる。高品質な分離層を安定かつ簡便に得る観点からはコーティング法が好ましい。   As a method of combining the first separation layer with the porous support membrane, a known method can be used, and specifically, an application method such as a coating method or a spray method can be used. From the viewpoint of obtaining a high-quality separation layer stably and simply, a coating method is preferred.

上記のスルホン化ポリマーで構成された第1分離層を有する複合膜は、十分な機械強度を有し、透水性を大きくするという目的のため、NaCl阻止率が60%以下であることが好ましい。製造条件によっては、これ以上の分離性を付与することも十分可能であるが、透水性が著しく損なわれるうえに、分離層が緻密になる結果として、摩擦による膜表面の欠陥を生じやすくなるため好ましくない。NaCl阻止率は、より好ましくは30%以下である。さらに好ましくは20%以下である。ただし、NaClの阻止率の測定条件は、0.5MPa(5bar)、NaCl濃度1500ppm、(回収率は約5%)である。   The composite membrane having the first separation layer composed of the sulfonated polymer preferably has a NaCl rejection of 60% or less for the purpose of having sufficient mechanical strength and increasing water permeability. Depending on the manufacturing conditions, it is possible to impart sufficient separability, but the water permeability is significantly impaired, and as a result of the dense separation layer, defects on the membrane surface due to friction tend to occur. It is not preferable. The NaCl rejection is more preferably 30% or less. More preferably, it is 20% or less. However, the measurement conditions for the NaCl rejection are 0.5 MPa (5 bar), a NaCl concentration of 1500 ppm, and a recovery rate of about 5%.

第1分離層の厚さは、50nm以上10μm以下であることが好ましい。厚みが小さすぎる場合には、次亜塩素酸ナトリウムなどの酸化劣化の影響が生じやすくなるため好ましくない。厚みが大きすぎる場合には、透過抵抗が大きくなりすぎて十分な透水性が得られない。より好ましくは100nm以上1μm以下である。   The thickness of the first separation layer is preferably 50 nm or more and 10 μm or less. If the thickness is too small, it is not preferable because the effect of oxidative deterioration such as sodium hypochlorite tends to occur. When the thickness is too large, the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 100 nm or more and 1 μm or less.

複合膜モジュールの構成については公知のものを採用できる。好ましくは平膜を用いたスパイラル型モジュールおよび中空糸膜を束ねてなる中空糸膜モジュールを採用することができる。同様に、分離膜の形態は外圧ろ過式の中空糸膜、内圧ろ過式の中空糸膜、平膜を所望により採用することができる。   A known structure can be adopted for the composite membrane module. Preferably, a spiral type module using a flat membrane and a hollow fiber membrane module in which hollow fiber membranes are bundled can be employed. Similarly, as the form of the separation membrane, an external pressure filtration type hollow fiber membrane, an internal pressure filtration type hollow fiber membrane, and a flat membrane can be adopted as desired.

次に、第2分離層の形成方法について説明する。第2分離層は、アニオン性表面を有する第1分離層を起点として、カチオン性ポリマーおよびアニオン性ポリマーを交互に積層する方法(Layer−by−Layer法)によって形成することができる。   Next, a method for forming the second separation layer will be described. The second separation layer can be formed by a method (Layer-by-Layer method) in which a cationic polymer and an anionic polymer are alternately laminated starting from the first separation layer having an anionic surface.

本発明において、前記カチオン性ポリマーとしては、カチオン性官能基を有する変性ポリビニルアルコールが好ましい。また、アニオン性ポリマーとしては、アニオン性官能基を有する変性ポリビニルアルコールが好ましい。   In the present invention, the cationic polymer is preferably a modified polyvinyl alcohol having a cationic functional group. The anionic polymer is preferably a modified polyvinyl alcohol having an anionic functional group.

含水した複合膜モジュール内に、まず、カチオン性官能基を有する変性ポリビニルアルコール(カチオン性ポリビニルアルコール)の水溶液を充填する。一定の時間、モジュール内の第1分離層のアニオン性表面にカチオン性ポリビニルアルコール(以下、CPVAと略すことがある)溶液を接触させて、CPVAの吸着処理を行う。欠陥なくかつ薄い分離層を形成させる観点から、好ましくは10秒以上10時間以下の期間、溶液を接触させておく。より好ましくは1分以上3時間以下である。その後、CPVA水溶液を抜き出し、純水でリンスする。好ましくは10秒以上リンスを行って、膜に吸着したCPVA以外の余剰のポリマーをモジュールから除去する。   First, an aqueous solution of modified polyvinyl alcohol (cationic polyvinyl alcohol) having a cationic functional group is filled into the composite membrane module containing water. A CPVA adsorption treatment is performed by bringing a cationic polyvinyl alcohol (hereinafter abbreviated as CPVA) solution into contact with the anionic surface of the first separation layer in the module for a certain period of time. From the viewpoint of forming a thin separation layer without defects, the solution is preferably kept in contact for a period of 10 seconds to 10 hours. More preferably, it is 1 minute or more and 3 hours or less. Thereafter, the CPVA aqueous solution is extracted and rinsed with pure water. Preferably, rinsing is performed for 10 seconds or more to remove excess polymer other than CPVA adsorbed on the membrane from the module.

その後、好ましくは、アニオン性官能基を有する変性ポリビニルアルコール(以下、アニオン性ポリビニルアルコールまたはAPVAと略すことがある)の水溶液を充填し、CPVAの吸着層の表面にさらにAPVA層の吸着層を形成させる。吸着時間および純水リンス処理は、同様の方法で行えばよい。   Thereafter, preferably, an aqueous solution of a modified polyvinyl alcohol having an anionic functional group (hereinafter sometimes abbreviated as anionic polyvinyl alcohol or APVA) is filled, and an adsorption layer of an APVA layer is further formed on the surface of the adsorption layer of CPVA. Let The adsorption time and the pure water rinse treatment may be performed by the same method.

アニオン性の第1分離層を起点として、上記のCPVAおよびAPVAの吸着処理は、交互に繰り返すことが可能である。少なくともCPVAの吸着を1回行うことが好ましい。より好ましくは、CPVAの吸着にAPVAの吸着を加えることが分離性能の向上効果が見られるため好ましい。前記吸着処理を2回以上行うことも好ましい。   The above-described adsorption treatment of CPVA and APVA can be alternately repeated starting from the anionic first separation layer. It is preferable to perform at least one CPVA adsorption. More preferably, APVA adsorption is added to CPVA adsorption because an effect of improving separation performance is observed. It is also preferable to perform the adsorption treatment twice or more.

CPVAおよびAPVA水溶液の濃度はそれぞれ0.01質量%〜1質量%であることが好ましい。この範囲より濃度が小さいと、吸着が十分行われず、膜性能が低下する。濃度が高すぎると、吸着層が厚くなりすぎる傾向があり、また水溶液粘度が高くなるため、吸着ムラが生じやすくなり好ましくない。   The concentrations of the CPVA and APVA aqueous solutions are each preferably 0.01% by mass to 1% by mass. When the concentration is smaller than this range, the adsorption is not sufficiently performed and the film performance is deteriorated. If the concentration is too high, the adsorption layer tends to be too thick, and the viscosity of the aqueous solution becomes high.

また、CPVAおよびAPVA水溶液の溶媒は、純水であることが好ましく、導電率が好ましくは10μS/cm以下、より好ましくは1μS/cm以下の純水を用いることが好ましい。溶媒としての水の導電率が高すぎると、前述したようにクーロン遮へいの影響により、静電相互作用を介した第1分離層への変性PVAの吸着が阻害される傾向がある。   The solvent of the CPVA and APVA aqueous solutions is preferably pure water, and it is preferable to use pure water having a conductivity of preferably 10 μS / cm or less, more preferably 1 μS / cm or less. If the conductivity of water as a solvent is too high, the adsorption of the modified PVA to the first separation layer via electrostatic interaction tends to be hindered due to the influence of Coulomb shielding as described above.

これらのCPVAおよびAPVAの吸着処理の後、アルデヒド類の水溶液をモジュール内へ充填することで、CPVAおよびAPVAの水酸基をアセタール架橋することが好ましい。架橋を施さない変性ポリビニルアルコール(PVA)の吸着層は、ほとんど分離性を有しない。架橋処理によって初めて、分画分子量100〜1000のRO膜およびNF膜の分離性能を達成することができる。さらに驚くべきことには、このような架橋吸着層は、従来の塗布法などによるPVAの分離層と比較すると、極めて均一かつ厚みが薄く形成されるために高い透水性をも両立することができる。   After the adsorption treatment of CPVA and APVA, it is preferable to acetal crosslink the hydroxyl groups of CPVA and APVA by filling the module with an aqueous solution of aldehydes. An adsorbed layer of modified polyvinyl alcohol (PVA) that is not subjected to cross-linking has almost no separability. Only after the crosslinking treatment can the separation performance of the RO and NF membranes with a molecular weight cut off of 100 to 1000 be achieved. Surprisingly, such a cross-linked adsorption layer is formed to be extremely uniform and thin as compared with a PVA separation layer formed by a conventional coating method or the like, so that both high water permeability can be achieved. .

架橋剤としてのアルデヒド類は、例えばホルムアルデヒド、グルタルアルデヒド、グリオキサール、ベンズアルデヒド、オルトフタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒドなどを好ましく用いることができる。より好ましくは、水溶性が高く、比較的毒性が低く、かつ架橋処理後の分離膜性能が良好であるという点から、グルタルアルデヒドまたはオルトフタルアルデヒドを用いることができる。   As the aldehyde as the crosslinking agent, for example, formaldehyde, glutaraldehyde, glyoxal, benzaldehyde, orthophthalaldehyde, isophthalaldehyde, terephthalaldehyde and the like can be preferably used. More preferably, glutaraldehyde or orthophthalaldehyde can be used in terms of high water solubility, relatively low toxicity, and good separation membrane performance after the crosslinking treatment.

上記のアルデヒド類架橋剤の水溶液濃度としては、0.01質量%〜20質量%であることが好ましい。この範囲より低い濃度条件においては、ポリビニルアルコールの水酸基の架橋が十分進行しない。またこの範囲より高い濃度条件においても架橋反応は進行するが、溶液の毒性が高くなり、取り扱い性が難しくなるため好ましくない。より好ましくは0.1質量%〜5質量%の範囲である。   The aqueous solution concentration of the aldehyde crosslinking agent is preferably 0.01% by mass to 20% by mass. Under a concentration condition lower than this range, crosslinking of the hydroxyl group of polyvinyl alcohol does not proceed sufficiently. The crosslinking reaction proceeds even under a concentration condition higher than this range, but this is not preferable because the toxicity of the solution becomes high and handling becomes difficult. More preferably, it is the range of 0.1 mass%-5 mass%.

上記の架橋処理において、架橋時間は10分以上40時間以下であることが好ましい。架橋時間が短すぎる場合、第2分離層の阻止性能が小さい。また、架橋時間を長くしすぎても、あまり効果がない。架橋反応を促進する観点からは、アルデヒド水溶液の温度を20℃以上60℃以下に保つことも好ましい。   In the crosslinking treatment, the crosslinking time is preferably 10 minutes or longer and 40 hours or shorter. When the crosslinking time is too short, the blocking performance of the second separation layer is small. In addition, if the crosslinking time is too long, there is not much effect. From the viewpoint of promoting the crosslinking reaction, it is also preferable to maintain the temperature of the aldehyde aqueous solution at 20 ° C. or more and 60 ° C. or less.

架橋処理の後、モジュール内は、純水で十分水洗される。膜内のアルデヒド類を完全に除去する観点から、例えば1〜10気圧程度の圧力下で純水を用いてクロスフロー運転を行うことで、洗浄効果を高めることが好ましい。さらに、オルトフタルアルデヒドのように、水溶性が幾分低く、疎水性の強い架橋剤を用いた場合は、膜内に架橋剤が残存しやすいため、例えば、亜硫酸水素ナトリウム水溶液をモジュール内に充填し、アルデヒドと付加体を形成させて洗浄効果を高めることができる。または、例えば、pH9以上のアルカリ条件下で、還元性を有する還元糖(グルコース、フルクトース、グルコサミンなど)の水溶液をモジュール内に充填し、膜外および膜内の未反応のアルデヒド基と還元糖を反応させて、解毒する処理を用いることもできる。   After the crosslinking treatment, the inside of the module is sufficiently washed with pure water. From the viewpoint of completely removing aldehydes in the membrane, it is preferable to enhance the cleaning effect by performing a cross flow operation using pure water under a pressure of about 1 to 10 atm. Furthermore, when a cross-linking agent with a slightly low water solubility and strong hydrophobicity, such as orthophthalaldehyde, is used, the cross-linking agent tends to remain in the membrane. For example, a sodium hydrogen sulfite aqueous solution is filled in the module. In addition, an aldehyde and an adduct can be formed to enhance the cleaning effect. Or, for example, under alkaline conditions of pH 9 or higher, an aqueous solution of reducing sugar (glucose, fructose, glucosamine, etc.) having reducibility is filled in the module, and unreacted aldehyde groups and reducing sugars outside and inside the membrane are removed. A process of reacting and detoxifying can also be used.

このようにして、アルデヒド類による架橋処理を完了して、十分水洗されたモジュールは、さらに、CPVAおよびAPVAの吸着処理と、アルデヒド架橋を同様の方法で再度行うことが好ましい。この吸着・架橋の処理サイクルを繰り返すことで、高度な分離性能(例えば、硫酸マグネシウム阻止率95%以上、かつ分画分子量100〜300)を得ることができる。好ましくは2回以上、吸着・架橋処理のサイクルを繰り返すことが好ましい。   Thus, it is preferable that the module which has been subjected to the crosslinking treatment with aldehydes and sufficiently washed with water is again subjected to the adsorption treatment of CPVA and APVA and the aldehyde crosslinking by the same method. By repeating this adsorption / crosslinking treatment cycle, high separation performance (for example, a magnesium sulfate rejection of 95% or more and a molecular weight cut off of 100 to 300) can be obtained. Preferably, the adsorption / crosslinking treatment cycle is repeated twice or more.

第2分離層の厚さは、1nm以上200nm以下であることが好ましい。厚みが薄すぎると変性PVAの吸着が不十分であり、分離性が十分発現しない。また、厚すぎる場合には、透過抵抗が大きくなりすぎて、透水性が十分得られない。より好ましくは5nm以上100nm以下である。   The thickness of the second separation layer is preferably 1 nm or more and 200 nm or less. When the thickness is too thin, the adsorption of the modified PVA is insufficient and the separability is not sufficiently developed. On the other hand, if it is too thick, the permeation resistance becomes too large and sufficient water permeability cannot be obtained. More preferably, it is 5 nm or more and 100 nm or less.

第2分離層を構成する変性PVAの構成について以下に説明する。   The configuration of the modified PVA constituting the second separation layer will be described below.

CPVAに含まれるカチオン性官能基の種類については、特に限定されないが、1〜4級のアンモニウム基を有することが好ましく、化学耐久性や抗菌性を有する観点から、4級アンモニウム基が特に好ましい。具体的には、CPVAは、カチオン性基を有する不飽和単量体として、ジアリルジメチルアンモニウムクロライド、3−メタクリルアミドプロピルトリメチルアンモニウムクロライド等の4級アンモニウム塩を酢酸ビニルと共重合させて、ケン化処理を行って得られるポリマーであることが好ましい。   Although it does not specifically limit about the kind of cationic functional group contained in CPVA, It is preferable to have a 1-4 quaternary ammonium group, and a quaternary ammonium group is especially preferable from a viewpoint which has chemical durability and antibacterial property. Specifically, CPVA is saponified by copolymerizing a quaternary ammonium salt such as diallyldimethylammonium chloride and 3-methacrylamideamidopropyltrimethylammonium chloride with vinyl acetate as an unsaturated monomer having a cationic group. It is preferable that it is a polymer obtained by processing.

また、CPVAを得る別の方法としては、通常の未変性ポリビニルアルコールの水酸基に、グリシジル基を有する4級アンモニウム塩をアルカリ条件下で付加反応させる方法も好ましい。グリシジル基を有する単量体としては、例えば、グリシジルトリメチルアンモニウムクロライドを好ましく用いることができる。このような付加反応によるポリビニルアルコールの変性と、上記の共重合による変性のどちらも好ましく用いることができる。また、両方の方法を実施して、2種類以上のカチオン性基をポリマーに導入してもよい。   Further, as another method for obtaining CPVA, a method in which a quaternary ammonium salt having a glycidyl group is added to a hydroxyl group of ordinary unmodified polyvinyl alcohol under an alkaline condition is also preferable. As the monomer having a glycidyl group, for example, glycidyltrimethylammonium chloride can be preferably used. Both the modification of polyvinyl alcohol by such an addition reaction and the modification by the above copolymerization can be preferably used. Moreover, both methods may be implemented to introduce two or more types of cationic groups into the polymer.

一方、APVAについては、アニオン性官能基の種類は、特に限定されず、スルホン酸基、ホスホン酸基、カルボキシル基などを有するPVAを用いることができる。作製や入手が容易な観点から、スルホン酸基を有するPVAを用いることが好ましい。例えば、2−アクリルアミド−2−メチルプロパンスルホン酸塩と酢酸ビニルを共重合し、ケン化処理して得られるスルホン化PVAを用いることができる。CPVAと同様、2種類以上のアニオン性基がポリマーに導入されていてもよい。   On the other hand, for APVA, the type of anionic functional group is not particularly limited, and PVA having a sulfonic acid group, a phosphonic acid group, a carboxyl group, or the like can be used. From the viewpoint of easy production and availability, PVA having a sulfonic acid group is preferably used. For example, sulfonated PVA obtained by copolymerizing 2-acrylamido-2-methylpropane sulfonate and vinyl acetate and saponifying can be used. Similar to CPVA, two or more types of anionic groups may be introduced into the polymer.

CPVAおよびAPVAのカチオン基またはアニオン基の量は、少なくとも0.01mol%以上30mol%以下であることが好ましい。より好ましくは、0.1mol%以上20mol%以下である。イオン性官能基が、この範囲より小さいと、中空糸膜表面への吸着が十分に進行せず、膜性能が低下するので好ましくない。また、この範囲より大きすぎると、第2分離層が膨潤しすぎて、分離性能が低下するため好ましくない。   The amount of the cation group or anion group of CPVA and APVA is preferably at least 0.01 mol% to 30 mol%. More preferably, they are 0.1 mol% or more and 20 mol% or less. When the ionic functional group is smaller than this range, the adsorption to the hollow fiber membrane surface does not proceed sufficiently and the membrane performance is lowered, which is not preferable. On the other hand, if it is larger than this range, the second separation layer swells too much and the separation performance is lowered, which is not preferable.

CPVAおよびAPVAのケン化度は、60〜99mol%が好ましく、より好ましくは、70〜95mol%、さらに好ましくは75〜90mol%である。ケン化度がこの範囲より大きいと、水溶液中での変性PVA分子の分散性が悪くなる傾向があり、好ましくない。ケン化度がこの範囲より低いと、同様に水溶液の安定性が悪くなり好ましくない。このようなCPVAとして、K434(ケン化度85.5〜88.0、日本合成化学社)、C−506(ケン化度74.0〜79.0、クラレ社)、CM−318(ケン化度86.0〜91.0、クラレ社)などが挙げられる。また、APVAとしては、L−3266(ケン化度86.5〜89.0、日本合成化学社)、CKS50(ケン化度99.0以上、日本合成化学社)、AP−17(ケン化度88〜90、日本酢ビ・ポバール社)、AT−17(ケン化度92〜95、日本酢ビ・ポバール社)、AF−17(ケン化度96.5以上、日本酢ビ・ポバール社)などが挙げられる。   The degree of saponification of CPVA and APVA is preferably 60 to 99 mol%, more preferably 70 to 95 mol%, still more preferably 75 to 90 mol%. If the degree of saponification is larger than this range, the dispersibility of the modified PVA molecules in an aqueous solution tends to deteriorate, which is not preferable. When the degree of saponification is lower than this range, the stability of the aqueous solution is similarly deteriorated, which is not preferable. As such CPVA, K434 (degree of saponification 85.5-88.0, Nippon Synthetic Chemical Co., Ltd.), C-506 (degree of saponification 74.0-79.0, Kuraray), CM-318 (saponification) Degree 86.0-91.0, Kuraray Co., Ltd.). Moreover, as APVA, L-3266 (saponification degree 86.5-89.0, Nippon Synthetic Chemical Co., Ltd.), CKS50 (saponification degree 99.0 or more, Nippon Synthetic Chemical Co., Ltd.), AP-17 (saponification degree). 88 to 90, Nippon Vinegar Pover Co., Ltd.), AT-17 (degree of saponification 92 to 95, Nihon Venture Bi Pover Co., Ltd.), AF-17 (degree of saponification of 96.5 or more, Nippon Vinegar Pover Co., Ltd.) Etc.

以上の第2分離層の形成方法を、次亜塩素酸ナトリウム等を用いた化学洗浄によって劣化した膜モジュールについて、そのまま再度行うことにより、再生処理が可能であり、膜性能を回復させることができる。   The membrane module deteriorated by the chemical cleaning using sodium hypochlorite or the like as described above can be reprocessed as it is, so that the regeneration process can be performed and the membrane performance can be recovered. .

再生処理の前処理として、酸、アルカリ、オゾン、次亜塩素酸ナトリウム等の処理によりファウリング物質等を十分除去してから行うことが好ましい。   As a pretreatment for the regeneration treatment, it is preferable to sufficiently remove the fouling substance and the like by treatment with acid, alkali, ozone, sodium hypochlorite and the like.

本発明において、前記再生処理の第1の態様として、前記次亜塩素酸ナトリウム等を用いた化学洗浄によって劣化した膜モジュール内の複合膜の分離層側に少なくとも1種類以上のカチオン性ポリマー溶液またはアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に実施するのが好ましい。また、第2の態様として、前記膜モジュール内の複合膜の分離層側に少なくとも1種類以上のカチオン性ポリマー溶液を接触させる工程、少なくとも1種類以上のアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に実施することも本発明に含まれる。さらに、前記第1の態様または前記第2の態様を2回以上繰返すことも本発明の範囲内である。   In the present invention, as a first aspect of the regeneration treatment, at least one kind of cationic polymer solution on the separation layer side of the composite membrane in the membrane module deteriorated by chemical cleaning using the sodium hypochlorite or the like or It is preferable to sequentially perform the step of bringing the anionic polymer solution into contact with and the step of bringing the crosslinking agent solution into contact. Further, as a second aspect, a step of bringing at least one kind of cationic polymer solution into contact with the separation layer side of the composite membrane in the membrane module, a step of bringing at least one kind of anionic polymer solution into contact, a crosslinking agent It is also included in the present invention that the step of bringing the solution into contact is sequentially performed. Furthermore, it is within the scope of the present invention to repeat the first aspect or the second aspect two or more times.

以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the effects of the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

(中空糸支持膜の作製)
中空糸支持膜のポリマーとして、三菱エンジニアリングプラスチックス社製のポリフェニレンエーテルPX100L(以下、PPEと略す)を準備した。PPEが20質量%となるように、N−メチル−2−ピロリドン(以下、NMPと略す)を加えて混練しながら、130℃で溶解させて、均一な製膜原液を得た。
(Preparation of hollow fiber support membrane)
As a polymer for the hollow fiber support membrane, polyphenylene ether PX100L (hereinafter abbreviated as PPE) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was prepared. N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was added and kneaded at 130 ° C. so that the PPE would be 20% by mass to obtain a uniform film forming stock solution.

続いて、製膜原液を二重円筒管ノズルより、中空状に押出しながら、内液として35質量%NMP水溶液を同時に押出して成形させ、常温の空気中を空走させて、乾燥処理を行った後、30質量%のNMP水溶液(凝固浴)に30℃にて浸漬させ、PPE中空糸支持膜を作製した後、水洗処理を行った。   Subsequently, while extruding the film-forming stock solution into a hollow shape from a double cylindrical tube nozzle, a 35% by mass NMP aqueous solution was simultaneously extruded as an internal solution to be molded, and was allowed to dry in the air at room temperature. Then, it was immersed in 30 mass% NMP aqueous solution (coagulation bath) at 30 degreeC, and after producing the PPE hollow fiber support membrane, it washed with water.

得られたPPE中空糸支持膜の外径は250μm、膜厚は50μmであった。純水透過試験を行ったところ、透水量は43L/(m・h・bar)であった。 The obtained PPE hollow fiber support membrane had an outer diameter of 250 μm and a film thickness of 50 μm. When the pure water permeation test was performed, the water permeation amount was 43 L / (m 2 · h · bar).

(第1分離層の形成)
上記の式(I)で表される疎水性セグメントと上記の式(II)で表される親水性セグメントの繰り返し構造を有するSPAEを以下のようにして準備した。
(Formation of first separation layer)
An SPAE having a repeating structure of the hydrophobic segment represented by the above formula (I) and the hydrophilic segment represented by the above formula (II) was prepared as follows.

3,3′−ジスルホ−4,4′−ジクロロジフェニルスルホン2ナトリウム塩(以下S−DCDPSと略す)3.0000kg、2,6−ジクロロベンゾニトリル(以下DCBNと略す)1.7036kgを計り取り、S−DCDPSとDCBNの仕込みモル比を38:62とした。さらに4,4′−ビフェノール2.9677kg、炭酸カリウム2.4213kg、を計り取り、重合タンクに投入して窒素を流した。NMP25.9kgを加えて、150℃で50分撹拌した後、反応温度を195℃〜200℃に上昇させて反応を続けた。その後、放冷し、放冷後、重合溶液を水浴へ沈殿させた。得られたポリマーは、沸騰水中で1時間洗浄した後、純水で丁寧に水洗することで、残留した炭酸カリウムを除去した。その後、炭酸カリウムを除去した後のポリマーを乾燥させることによって、目的物であるスルホン化度DS=38%の共重合SPAEを得た。   3,3'-disulfo-4,4'-dichlorodiphenylsulfone disodium salt (hereinafter abbreviated as S-DCDPS) 3.0000 kg, 2,6-dichlorobenzonitrile (hereinafter abbreviated as DCBN) 1.7036 kg, The charged molar ratio of S-DCDPS and DCBN was 38:62. Further, 2.9679 kg of 4,4′-biphenol and 2.4213 kg of potassium carbonate were weighed and put into a polymerization tank to flow nitrogen. After adding 25.9 kg of NMP and stirring at 150 ° C. for 50 minutes, the reaction temperature was increased to 195 ° C. to 200 ° C. to continue the reaction. Thereafter, the mixture was allowed to cool, and after cooling, the polymerization solution was precipitated into a water bath. The obtained polymer was washed in boiling water for 1 hour and then carefully washed with pure water to remove residual potassium carbonate. Thereafter, the polymer after removing potassium carbonate was dried to obtain a copolymerized SPAE having a sulfonation degree DS = 38%, which was the target product.

得られたSPAEにDMSOを加えて、常温で撹拌させながら溶解させ1.0質量%濃度のSPAEコーティング溶液を得た。   DMSO was added to the obtained SPAE and dissolved while stirring at room temperature to obtain a 1.0 mass% SPAE coating solution.

PPE中空糸支持膜をSPAEコーティング溶液中にディップコートし、垂直乾燥炉内120℃で乾燥させた。その後、SPAEからなる第1分離層を有する複数の複合分離膜をワインダーに巻き取った。SEMで観察した結果、第1分離層の厚みは300nmであった。この時点で、透水量は30L/(m・h・bar)、NaCl阻止率は11%であった。 The PPE hollow fiber support membrane was dip coated in a SPAE coating solution and dried at 120 ° C. in a vertical drying oven. Thereafter, a plurality of composite separation membranes having a first separation layer made of SPAE were wound around a winder. As a result of observation by SEM, the thickness of the first separation layer was 300 nm. At this time, the water permeability was 30 L / (m 2 · h · bar), and the NaCl rejection was 11%.

(モジュールの作製)
以下のように、図3に示すタイプのモジュールを作製した。上述の中空糸膜を70,000本平行に束ねた糸束1本を準備し、糸束の片方の端部を切断し、開口面をポリオレフィンのホットメルトにより目詰めした。この端部を内径80mmのポリテトラフルオロエチレン(PTFE)製の型取り容器に収めて、これにエポキシ樹脂を充填して固めた後、離型して接着端(A11)を得た。
さらに、上述の糸束の周囲を厚さ50μmのPTFEフィルムで巻いて外面を保護した状態にして、2箇所の供給液入出口(A4,A5)を備えた内径100mm、長さ1,000mmのポリ塩化ビニル製の円筒容器に充填した。その後、PTFEフィルムを引き抜いた。続いて、円筒容器を立てた状態で固定して、接着端(A11)を上側、もう片方の端部を下側にした状態で、円筒容器下部からエポキシ樹脂を流し込み、端部接着を行い、接着端(A2)を得た。開口端部(A1)は、樹脂硬化後に、中空糸膜が開口するように切削加工を行った。このモジュールにキャップ(A9)を上下取り付けて、第1分離層を有する中空糸膜モジュールを作製した。
(Manufacture of modules)
A module of the type shown in FIG. 3 was produced as follows. One yarn bundle in which 70,000 hollow fiber membranes were bundled in parallel was prepared, one end of the yarn bundle was cut, and the opening surface was clogged with a hot melt of polyolefin. This end was placed in a polytetrafluoroethylene (PTFE) mold making container having an inner diameter of 80 mm, filled with an epoxy resin and hardened, and then released to obtain an adhesive end (A11).
Further, the periphery of the above-mentioned yarn bundle is wound with a PTFE film having a thickness of 50 μm to protect the outer surface, and the inner diameter is 100 mm and the length is 1,000 mm provided with two supply liquid inlets / outlets (A4, A5). A cylindrical container made of polyvinyl chloride was filled. Thereafter, the PTFE film was pulled out. Subsequently, with the cylindrical container fixed in an upright state, with the adhesive end (A11) on the upper side and the other end on the lower side, an epoxy resin is poured from the lower part of the cylindrical container, and end bonding is performed. An adhesive end (A2) was obtained. The opening end (A1) was cut so that the hollow fiber membrane was opened after the resin was cured. A cap (A9) was vertically attached to this module to produce a hollow fiber membrane module having a first separation layer.

(親水化・含水処理)
このように作製されたモジュールに、下端の導入口(A12)からエタノールを充填し、親水化処理を2時間行った。その後、エタノールを純水に置換した。引き続き、2barの圧力にて純水でクロスフロー運転を行い、膜中のエタノールを除去した。
(Hydrophilization / moisture treatment)
The module thus produced was filled with ethanol from the lower inlet (A12) and subjected to a hydrophilic treatment for 2 hours. Thereafter, ethanol was replaced with pure water. Subsequently, a cross flow operation was performed with pure water at a pressure of 2 bar to remove ethanol in the membrane.

(実施例1)
(第2分離層の形成)
この含水状態のモジュールより純水を抜き出し、CPVA(日本合成化学社製K434)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水で5分間リンスを行った。続いて、APVA(日本合成化学社製CKS50)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水で5分間リンス処理を行った。その後、1質量%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。モジュール内を十分純水で洗浄した後、CPVAおよびAPVAの吸着処理およびグルタルアルデヒド架橋の処理サイクルをもう1回実施した。最後に十分純水で水洗して、第2分離層を有する中空糸膜モジュールを得た。
Example 1
(Formation of second separation layer)
Pure water was extracted from the water-containing module, and a 0.1 mass% aqueous solution in which CPVA (K434, manufactured by Nippon Synthetic Chemical Co., Ltd.) was dissolved in pure water was filled in the module. After performing the adsorption treatment by standing for 30 minutes, rinsing was performed with pure water for 5 minutes. Subsequently, a 0.1 mass% aqueous solution in which APVA (CKS50 manufactured by Nippon Synthetic Chemical Co., Ltd.) was dissolved in pure water was filled in the module. After performing the adsorption treatment by allowing to stand for 30 minutes, the rinse treatment was carried out with pure water for 5 minutes. Thereafter, a 1% by mass glutaraldehyde (GA) aqueous solution (added sulfuric acid as an acid catalyst and adjusted to pH = 1) was filled and subjected to crosslinking treatment for 20 hours. After the inside of the module was sufficiently washed with pure water, another treatment cycle of CPVA and APVA adsorption treatment and glutaraldehyde crosslinking was performed. Finally, it was sufficiently washed with pure water to obtain a hollow fiber membrane module having a second separation layer.

最終的なモジュール性能は、圧力5barにおける純水透過量は865L/h、純水フラックスは17.8L/(m・h)であった。また、MgSO阻止率は98.3%、NaCl阻止率は64.0%、スクロース阻止率は99.2%、グルコース阻止率は90.1%であった。 The final module performance was 865 L / h for pure water permeation at a pressure of 5 bar and 17.8 L / (m 2 · h) for pure water flux. Further, the MgSO 4 blocking rate was 98.3%, the NaCl blocking rate was 64.0%, the sucrose blocking rate was 99.2%, and the glucose blocking rate was 90.1%.

次に、前記モジュールに濃度300ppm、pH=12に調製した次亜塩素酸ナトリウム(ナカライテスク社製)の水溶液を充填した。室温で保持し、12時間ごとに次亜塩素酸ナトリウム水溶液を交換し、前後の塩素濃度をHANNA製デジタル残留塩素計(UHR)HI771で測定し、塩素濃度2点の平均値と12時間を掛け算し、曝露時間(ppm・hours)として算出した。その後、モジュールのMgSO阻止率および純水フラックスを測定した。この塩素曝露試験と膜性能試験のサイクルを繰り返した。 Next, the module was filled with an aqueous solution of sodium hypochlorite (manufactured by Nacalai Tesque) adjusted to a concentration of 300 ppm and pH = 12. Hold at room temperature, replace sodium hypochlorite aqueous solution every 12 hours, measure the chlorine concentration before and after with HANNA's digital residual chlorine meter (UHR) HI771, and multiply the average value of 2 chlorine concentrations by 12 hours The exposure time (ppm · hours) was calculated. Thereafter, the MgSO 4 rejection rate and pure water flux of the module were measured. This cycle of chlorine exposure test and membrane performance test was repeated.

積算塩素曝露量が、48,000ppm・hoursに達した時点で、MgSO阻止率は初期値の98.3%から83.1%まで低下した。ここで、CPVA(日本合成化学社製K434)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水に置換しながら5分間リンスを行った。その後、APVA(日本合成化学社製CKS50)を純水に溶解させた0.1質量%水溶液をモジュール内に充填し、30分間静置して吸着処理を行った。純水に置換処理しながら5分間リンス処理を行った後、1質量%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。その結果、MgSO阻止率は83.1%から95.2%まで回復した。 When the accumulated chlorine exposure reached 48,000 ppm · hours, the MgSO 4 rejection decreased from the initial value of 98.3% to 83.1%. Here, a 0.1 mass% aqueous solution in which CPVA (Nippon Synthetic Chemical Co., Ltd. K434) was dissolved in pure water was filled in the module. After performing the adsorption treatment by allowing to stand for 30 minutes, rinsing was performed for 5 minutes while substituting with pure water. Thereafter, a 0.1% by mass aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd. CKS50) was dissolved in pure water was filled in the module, and the module was allowed to stand for 30 minutes for adsorption treatment. After rinsing for 5 minutes while substituting with pure water, 1% by mass glutaraldehyde (GA) aqueous solution (added sulfuric acid as acid catalyst, adjusted to pH = 1) was charged, and crosslinking treatment was performed for 20 hours. It was. As a result, the MgSO 4 rejection was recovered from 83.1% to 95.2%.

(実施例2)
実施例1において膜性能回復処理を行ったモジュールについて、300ppmの次亜塩素酸ナトリウム水溶液浸漬を継続して実施した。実施例1を含む積算塩素曝露量が90,000ppm・hoursに達した時点で、MgSO阻止率は89.9%に低下した。
(Example 2)
About the module which performed the membrane performance recovery process in Example 1, 300 ppm sodium hypochlorite aqueous solution immersion was continued and implemented. When the cumulative chlorine exposure including Example 1 reached 90,000 ppm · hours, the MgSO 4 rejection decreased to 89.9%.

ここで、CPVA(日本合成化学社製K434)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水に置換しながら5分間リンスを行った。その後、APVA(日本合成化学社製CKS50)を純水に溶解させた0.1質量%水溶液をモジュール内に充填し、30分間静置して吸着処理を行った。純水に置換処理しながら5分間リンス処理を行った後、1質量%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。その後、さらにCPVA、APVA水溶液の吸着処理とGA水溶液による架橋処理のサイクルを、上記と同一の条件にて繰り返した。その結果、MgSO阻止率は98.0%まで回復した。 Here, a 0.1 mass% aqueous solution in which CPVA (Nippon Synthetic Chemical Co., Ltd. K434) was dissolved in pure water was filled in the module. After performing the adsorption treatment by allowing to stand for 30 minutes, rinsing was performed for 5 minutes while substituting with pure water. Thereafter, a 0.1% by mass aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd. CKS50) was dissolved in pure water was filled in the module, and the module was allowed to stand for 30 minutes for adsorption treatment. After rinsing for 5 minutes while substituting with pure water, 1% by mass glutaraldehyde (GA) aqueous solution (added sulfuric acid as acid catalyst, adjusted to pH = 1) was charged, and crosslinking treatment was performed for 20 hours. It was. Thereafter, a cycle of adsorption treatment of CPVA / APVA aqueous solution and crosslinking treatment with GA aqueous solution was further repeated under the same conditions as described above. As a result, the MgSO 4 rejection was recovered to 98.0%.

上記の実施例1および2の次亜塩素酸ナトリウムによる曝露および膜の再生処理におけるMgSO阻止率および純水フラックスの変化を図1および2に示す。 FIGS. 1 and 2 show the changes in the MgSO 4 blocking rate and the pure water flux during the exposure to sodium hypochlorite and the membrane regeneration treatment in Examples 1 and 2 above.

(実施例3)
(第2分離層の形成)
親水化・含水処理後のモジュールより純水を抜き出し、CPVA(クラレ社製CM318)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水で5分間リンスを行った。その後、純水で5分間リンス処理を行い、1質量%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。モジュール内を十分純水で洗浄した後、CPVAの吸着処理およびグルタルアルデヒド架橋の処理サイクルをもう1回実施した。最後に十分純水で水洗して、第2分離層を有する中空糸膜モジュールを得た。
(Example 3)
(Formation of second separation layer)
Pure water was extracted from the module after the hydrophilization / moisture treatment, and a 0.1 mass% aqueous solution in which CPVA (Kuraray CM318) was dissolved in pure water was filled in the module. After performing the adsorption treatment by standing for 30 minutes, rinsing was performed with pure water for 5 minutes. Thereafter, a rinse treatment was performed for 5 minutes with pure water, and a 1% by mass glutaraldehyde (GA) aqueous solution (added with sulfuric acid as an acid catalyst and adjusted to pH = 1) was charged, followed by a crosslinking treatment for 20 hours. After sufficiently washing the inside of the module with pure water, another CPVA adsorption treatment and glutaraldehyde crosslinking treatment cycle were performed. Finally, it was sufficiently washed with pure water to obtain a hollow fiber membrane module having a second separation layer.

最終的なモジュール性能は、圧力5barにおける純水透過量は915L/h、純水フラックスは18.5L/(m・h)であった。また、MgSO阻止率は97.5%、NaCl阻止率61.0%、スクロース阻止率は98.8%、グルコース阻止率は89.4%であった。 The final module performance was 915 L / h of pure water permeation at a pressure of 5 bar and 18.5 L / (m 2 · h) of pure water flux. Further, the MgSO 4 blocking rate was 97.5%, the NaCl blocking rate was 61.0%, the sucrose blocking rate was 98.8%, and the glucose blocking rate was 89.4%.

次に、前記のモジュールに濃度300ppm、pH=12に調製した次亜塩素酸ナトリウム(ナカライテスク社製)の水溶液を充填して、実施例1と同様の方法でモジュールのMgSO阻止率および純水フラックスを測定しながら、塩素曝露試験を実施した。 Next, the concentration 300ppm module, pH = 12 sodium hypochlorite was prepared by filling an aqueous solution of (Nacalai Tesque), Example 1 a similar manner to the module MgSO 4 rejection and Jun A chlorine exposure test was performed while measuring the water flux.

積算塩素曝露量が、50,000ppm・hoursに達した時点で、MgSO阻止率は初期値の97.5%から84.8%まで低下した。ここで、CPVA(クラレ社製CM318)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水に置換しながら5分間リンスを行った。その後、1質量%のグルタルアルデヒド(GA)水溶液(酸触媒として硫酸を加え、pH=1に調製)を充填し、20時間架橋処理を行った。その結果、MgSO阻止率は84.8%から94.2%まで回復した。 When the cumulative chlorine exposure reached 50,000 ppm · hours, the MgSO 4 rejection decreased from 97.5% of the initial value to 84.8%. Here, a 0.1 mass% aqueous solution in which CPVA (Kuraray CM318) was dissolved in pure water was filled in the module. After performing the adsorption treatment by allowing to stand for 30 minutes, rinsing was performed for 5 minutes while substituting with pure water. Thereafter, a 1% by mass glutaraldehyde (GA) aqueous solution (added sulfuric acid as an acid catalyst and adjusted to pH = 1) was filled and subjected to crosslinking treatment for 20 hours. As a result, the MgSO 4 rejection was recovered from 84.8% to 94.2%.

(比較例1)
実施例1と同様の方法にて中空糸複合膜のモジュールを作製した。最終的なモジュール性能は、圧力5barにおける純水透過量は853L/h、純水フラックスは17.3L/(m・h)であった。また、MgSO阻止率は98.5%、NaCl阻止率64.5%、スクロース阻止率は99.1%、グルコース阻止率は91.2%であった。
(Comparative Example 1)
A hollow fiber composite membrane module was produced in the same manner as in Example 1. The final module performance was such that the pure water permeation amount at a pressure of 5 bar was 853 L / h, and the pure water flux was 17.3 L / (m 2 · h). Further, the MgSO 4 blocking rate was 98.5%, the NaCl blocking rate was 64.5%, the sucrose blocking rate was 99.1%, and the glucose blocking rate was 91.2%.

次に、前記のモジュールに濃度300ppm、pH=12に調製した次亜塩素酸ナトリウム(ナカライテスク社製)の水溶液を充填して、実施例1と同様の方法でモジュールのMgSO阻止率および純水フラックスを測定しながら、塩素曝露試験を実施した。 Next, the concentration 300ppm module, pH = 12 sodium hypochlorite was prepared by filling an aqueous solution of (Nacalai Tesque), Example 1 a similar manner to the module MgSO 4 rejection and Jun A chlorine exposure test was performed while measuring the water flux.

積算塩素曝露量が、52,000ppm・hoursに達した時点で、MgSO阻止率は初期値の98.5%から79.5%まで低下した。ここで、CPVA(日本合成化学社製K434)を純水に溶解させた0.1質量%水溶液をモジュール内に充填した。30分間静置して吸着処理を行った後、純水に置換しながら5分間リンスを行った。その後、APVA(日本合成化学社製CKS50)を純水に溶解させた0.1質量%水溶液をモジュール内に充填し、30分間静置して吸着処理を行った。純水に置換処理しながら5分間リンス処理を行った。架橋処理は実施せず、膜性能評価を行ったところ、MgSO阻止率は79.5%から79.8%となり、明確な性能回復効果を得ることはできなかった。 When the cumulative chlorine exposure reached 52,000 ppm · hours, the MgSO 4 rejection decreased from 98.5% of the initial value to 79.5%. Here, a 0.1 mass% aqueous solution in which CPVA (Nippon Synthetic Chemical Co., Ltd. K434) was dissolved in pure water was filled in the module. After performing the adsorption treatment by allowing to stand for 30 minutes, rinsing was performed for 5 minutes while substituting with pure water. Thereafter, a 0.1% by mass aqueous solution in which APVA (manufactured by Nippon Synthetic Chemical Co., Ltd. CKS50) was dissolved in pure water was filled in the module, and the module was allowed to stand for 30 minutes for adsorption treatment. The rinse treatment was performed for 5 minutes while substituting with pure water. When the film performance was evaluated without performing the crosslinking treatment, the MgSO 4 blocking rate was 79.5% to 79.8%, and a clear performance recovery effect could not be obtained.

実施例1〜3のように化学的劣化を受けて大幅に性能が低下した複合膜モジュールは、変性ポリビニルアルコール水溶液およびアルデヒド類水溶液をモジュールに充填するという極めて簡便かつ安価な処理により、その場修復できることが明らかとなった。   The composite membrane module whose performance has been greatly reduced due to chemical degradation as in Examples 1 to 3 is repaired in situ by a very simple and inexpensive process of filling the module with a modified polyvinyl alcohol aqueous solution and an aldehyde aqueous solution. It became clear that we could do it.

以下、本発明における測定、評価手法について説明する。   Hereinafter, measurement and evaluation methods in the present invention will be described.

(SPAEポリマーのスルホン化度DSの測定)
SPAEポリマーのスルホン化度DSは以下のように評価した。真空乾燥器で100℃、1晩乾燥させたポリマー20mgを、ナカライテスク社の重水素化DMSO(DMSO−d6)1mLに溶解させ、これをBRUKER社製 AVANCE500(周波数500.13MHz、温度30℃、FT積算32回)にてプロトンNMR測定した。得られたスペクトルチャートにおいて、疎水性セグメントおよび親水性セグメントに含まれる各プロトンとピーク位置の関係を同定し、疎水性セグメントにおけるプロトンのうち独立したピークと、親水性セグメントにおけるプロトンのうち独立したピークの1個のプロトンあたりの積分強度の比から求めた。
(Measurement of sulfonation degree DS of SPAE polymer)
The degree of sulfonation DS of the SPAE polymer was evaluated as follows. 20 mg of a polymer dried at 100 ° C. overnight in a vacuum dryer was dissolved in 1 mL of deuterated DMSO (DMSO-d6) manufactured by Nacalai Tesque, and this was dissolved in AVANCE 500 (frequency: 50.13 MHz, temperature: 30 ° C., manufactured by BRUKER). Proton NMR measurement was performed at FT integration 32 times). In the obtained spectrum chart, the relationship between each proton contained in the hydrophobic segment and the hydrophilic segment and the peak position is identified, and the independent peak among the protons in the hydrophobic segment and the independent peak among the protons in the hydrophilic segment Was obtained from the ratio of the integrated intensity per proton.

(中空糸膜の形状)
3mm径または6mm径の孔を空けた3mm厚のSUS板の孔に、適量の中空糸束を詰め、カミソリ刃でカットして断面を露出させた後、Nikon社製の顕微鏡(ECLIPSE LV100)およびNikon社製の画像処理装置(DIGITAL SIGHT DS−U2)およびCCDカメラ(DS−Ri1)を用いて、断面の形状を撮影し、画像解析ソフト(NIS Element D3.00 SP6)により、中空糸膜断面の外径および内径を、該解析ソフトの計測機能を用いて測定することで中空糸膜の外径および内径および厚みを算出した。
(Shape of hollow fiber membrane)
An appropriate amount of a hollow fiber bundle was packed into a 3 mm-thick SUS plate hole with a 3 mm diameter or 6 mm diameter hole, cut with a razor blade to expose the cross section, and then a Nikon microscope (ECLIPSE LV100) and Using a Nikon image processing device (DIGITAL SIGN DS-U2) and a CCD camera (DS-Ri1), the shape of the cross-section is photographed, and a hollow fiber membrane cross-section is obtained using image analysis software (NIS Element D3.00 SP6). The outer diameter, inner diameter and thickness of the hollow fiber membrane were calculated by measuring the outer diameter and inner diameter of the hollow fiber membrane using the measurement function of the analysis software.

(第1分離層および第2分離層の厚み)
含水した状態の中空糸膜を液体窒素で凍結させ、割断し、風乾させて、その割断面にPtをスパッタリングし、日立製作所社製の走査型電子顕微鏡S−4800を用いて、加速電圧5kVで観察した。
(Thicknesses of the first separation layer and the second separation layer)
The hollow fiber membrane in a water-containing state is frozen with liquid nitrogen, cleaved, air-dried, and Pt is sputtered onto the fractured surface. Using a scanning electron microscope S-4800 manufactured by Hitachi, Ltd., at an acceleration voltage of 5 kV Observed.

(中空糸膜モジュールのろ過評価)
実施例および比較例で作製したモジュールについて、供給水タンク、圧力ポンプからなるモジュール試験装置に接続し、クロスフローにてろ過試験を実施した。評価圧力は5bar(0.5MPa),供給液温度は25℃に統一した。回収率は5%になるように供給液流量を調節した。分離試験の溶質として塩化ナトリウム(NaCl)、硫酸マグネシウム(MgSO)、スクロース(分子量342)、グルコース(分子量180)をそれぞれ用いた。溶質濃度は全て1500mg/Lに調製した。約1時間ろ過運転を行った後、膜からの透過水量を試験装置の流量計で測定するとともに、透過液をサンプリングし、溶質濃度を測定した。
圧力あたり透水量(FR)は下記式より算出した。
FR[L/(m・h・bar)]=透過水量[L]/膜面積[m]/採取時間[分]/運転圧力[bar]
(Filtration evaluation of hollow fiber membrane module)
About the module produced by the Example and the comparative example, it connected to the module test apparatus which consists of a supply water tank and a pressure pump, and performed the filtration test by the crossflow. The evaluation pressure was unified at 5 bar (0.5 MPa), and the supply liquid temperature was unified at 25 ° C. The feed liquid flow rate was adjusted so that the recovery rate was 5%. Sodium chloride (NaCl), magnesium sulfate (MgSO 4 ), sucrose (molecular weight 342), and glucose (molecular weight 180) were used as solutes for the separation test. All solute concentrations were adjusted to 1500 mg / L. After performing the filtration operation for about 1 hour, the amount of permeated water from the membrane was measured with the flow meter of the test apparatus, the permeate was sampled, and the solute concentration was measured.
The water permeation amount (FR) per pressure was calculated from the following formula.
FR [L / (m 2 · h · bar)] = permeated water amount [L] / membrane area [m 2 ] / collection time [min] / operating pressure [bar]

供給液がNaClまたはMgSOの場合には、ろ過試験で採取した膜透過水と、供給水溶液について、電気伝導率計(東亜ディーケーケー社CM−25R)を用いて導電率を測定し、イオン阻止率を下記式より算出した。
阻止率[%]=(1−ろ過液の導電率[μS/cm]/供給水溶液の導電率[μS/cm])×100
When the feed solution is NaCl or MgSO 4 , the conductivity of the membrane permeate collected in the filtration test and the feed aqueous solution is measured using an electric conductivity meter (Toa DKK Corporation CM-25R), and the ion blocking rate is measured. Was calculated from the following formula.
Blocking rate [%] = (1−conductivity of filtrate [μS / cm] / conductivity of feed aqueous solution [μS / cm]) × 100

供給液がスクロースまたはグルコースの場合には、前記透水量測定で採取した膜透過水と、供給水溶液の糖濃度を、フェノール硫酸法により評価した。具体的には、試験管に1.0mLの上記の供給液または透過液を、純水で10倍に希釈したものを入れ、5%フェノール水溶液を1.0mL加えて攪拌する。そのうえに濃硫酸(96%濃度)を5.0mL速やかに加えて、攪拌する。呈色した溶液を、490nmにて吸光度測定を行い、あらかじめ作成した検量線から濃度を算出し、10倍した値を実際の濃度値とする。フェノール硫酸法において、各糖濃度と吸光度の間の線形性が良好な範囲は、0〜200mg/Lまでであるため、上記の1500mg/Lの供給液またはろ過液は10倍に希釈して測定を行う。溶質の阻止率は下記式から算出した。
阻止率[%]=(1−ろ過液の糖濃度[mg/L]/供給水溶液の糖濃度[mg/L])×100
When the feed solution was sucrose or glucose, the membrane permeated water collected by the water permeation measurement and the sugar concentration of the feed aqueous solution were evaluated by the phenol-sulfuric acid method. Specifically, 1.0 mL of the above-mentioned supply liquid or permeate diluted 10-fold with pure water is placed in a test tube, and 1.0 mL of a 5% phenol aqueous solution is added and stirred. On top of that, 5.0 mL of concentrated sulfuric acid (96% concentration) is quickly added and stirred. The colored solution is subjected to absorbance measurement at 490 nm, the concentration is calculated from a calibration curve prepared in advance, and the value obtained by multiplying by 10 is used as the actual concentration value. In the phenol-sulfuric acid method, the range where the linearity between each sugar concentration and absorbance is good is from 0 to 200 mg / L. Therefore, the above-mentioned 1500 mg / L supply solution or filtrate is diluted 10 times and measured. I do. The solute rejection was calculated from the following equation.
Blocking rate [%] = (1−sugar concentration of the filtrate [mg / L] / sugar concentration of the feed aqueous solution [mg / L]) × 100

本発明によれば、特定の分離膜の構成を有する複合膜モジュールにおいて、化学的洗浄により膜性能が低下したモジュールの性能を、簡便な処理で大幅に複数回再生できるために、膜ろ過プロセスを長寿命化することが可能である。   According to the present invention, in the composite membrane module having a specific separation membrane configuration, the performance of the module whose membrane performance has deteriorated due to chemical cleaning can be regenerated a large number of times by simple processing. It is possible to extend the life.

A1 : 中空糸膜開口面
A2 : 接着部1
A3 : 中空糸膜束
A4 : 供給液入口
A5 : 供給液出口
A6 : 透過液集水部
A7 : 透過液出口
A8 : 耐圧容器
A9 : キャップ
A10 : 接合部
A11 : 接着部2
A12 : 洗浄流体導入口
A1: Hollow fiber membrane opening surface
A2: Adhesion 1
A3: Hollow fiber membrane bundle
A4: Supply liquid inlet
A5: Supply liquid outlet
A6: Permeate collector
A7: Permeate outlet
A8: Pressure vessel
A9: Cap
A10: Joint
A11: Adhesive part 2
A12: Cleaning fluid inlet

Claims (5)

多孔性支持膜の一方の表面にアニオン性ポリマーで構成される第1分離層を有し、前記第1分離層の表面に、少なくとも1種類以上のカチオン性またはアニオン性ポリマーから構成される第2分離層を有する複合膜を組み込んでなる膜モジュールの再生方法であって、前記複合膜の分離層側に少なくとも1種類以上のカチオン性ポリマー溶液またはアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に実施することを特徴とする膜モジュールの再生方法。   A first separation layer composed of an anionic polymer on one surface of the porous support membrane, and a second composed of at least one kind of cationic or anionic polymer on the surface of the first separation layer; A method for regenerating a membrane module incorporating a composite membrane having a separation layer, the step of bringing at least one kind of cationic polymer solution or anionic polymer solution into contact with the separation layer side of the composite membrane, and a crosslinking agent solution A method for regenerating a membrane module, wherein the steps of contacting are sequentially performed. 前記カチオン性ポリマー溶液がカチオン性ポリビニルアルコール水溶液であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the cationic polymer solution is a cationic polyvinyl alcohol aqueous solution. 前記アニオン性ポリマー溶液がアニオン性ポリビニルアルコール水溶液であることを特徴とする請求項1または2に記載の方法。   The method according to claim 1, wherein the anionic polymer solution is an aqueous anionic polyvinyl alcohol solution. 前記架橋剤溶液がアルデヒド類の水溶液であることを特徴とする請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the crosslinking agent solution is an aqueous solution of aldehydes. 前記カチオン性ポリマー溶液またはアニオン性ポリマー溶液を接触させる工程、架橋剤溶液を接触させる工程を順に2回以上繰返すことを特徴とする請求項1〜4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the step of contacting the cationic polymer solution or the anionic polymer solution and the step of contacting the crosslinking agent solution are repeated twice or more in order.
JP2016197935A 2016-10-06 2016-10-06 How to regenerate the separation membrane module Active JP6780427B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016197935A JP6780427B2 (en) 2016-10-06 2016-10-06 How to regenerate the separation membrane module
PCT/JP2017/036221 WO2018066631A1 (en) 2016-10-06 2017-10-05 Method for regenerating separation membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197935A JP6780427B2 (en) 2016-10-06 2016-10-06 How to regenerate the separation membrane module

Publications (2)

Publication Number Publication Date
JP2018058040A true JP2018058040A (en) 2018-04-12
JP6780427B2 JP6780427B2 (en) 2020-11-04

Family

ID=61831017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197935A Active JP6780427B2 (en) 2016-10-06 2016-10-06 How to regenerate the separation membrane module

Country Status (2)

Country Link
JP (1) JP6780427B2 (en)
WO (1) WO2018066631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049623A1 (en) * 2019-09-13 2021-03-18 東洋紡株式会社 Composite film and composite film manufacturing method
WO2021200982A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Polyphenylene-based semipermeable membrane and manufacturing method therefor
WO2024043163A1 (en) * 2022-08-24 2024-02-29 東洋紡株式会社 Porous membrane and purification method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024150779A1 (en) * 2023-01-13 2024-07-18 東洋紡株式会社 Semi-permeable membrane and semi-permeable membrane module
WO2024150780A1 (en) * 2023-01-13 2024-07-18 東洋紡株式会社 Semipermeable membrane and semipermeable membrane module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213686A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Reverse osmosis membrane separation method and reverse osmosis membrane stabilizer
JP2012250192A (en) * 2011-06-03 2012-12-20 Nitto Denko Corp Composite semipermeable membrane and manufacturing method thereof
JP2014128760A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Rejection enhancing method of reverse osmosis membrane, rejection enhancing processing agent and reverse osmosis membrane
WO2015141653A1 (en) * 2014-03-19 2015-09-24 東洋紡株式会社 Composite separation membrane
WO2017064936A1 (en) * 2015-10-13 2017-04-20 東洋紡株式会社 Composite separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213686A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Reverse osmosis membrane separation method and reverse osmosis membrane stabilizer
JP2012250192A (en) * 2011-06-03 2012-12-20 Nitto Denko Corp Composite semipermeable membrane and manufacturing method thereof
JP2014128760A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Rejection enhancing method of reverse osmosis membrane, rejection enhancing processing agent and reverse osmosis membrane
WO2015141653A1 (en) * 2014-03-19 2015-09-24 東洋紡株式会社 Composite separation membrane
WO2017064936A1 (en) * 2015-10-13 2017-04-20 東洋紡株式会社 Composite separation membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049623A1 (en) * 2019-09-13 2021-03-18 東洋紡株式会社 Composite film and composite film manufacturing method
JPWO2021049623A1 (en) * 2019-09-13 2021-03-18
CN114364450A (en) * 2019-09-13 2022-04-15 东洋纺株式会社 Composite film and method for producing composite film
JP7226569B2 (en) 2019-09-13 2023-02-21 東洋紡株式会社 Composite membrane and method for manufacturing composite membrane
CN114364450B (en) * 2019-09-13 2023-12-22 东洋纺株式会社 Composite film and method for producing composite film
WO2021200982A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Polyphenylene-based semipermeable membrane and manufacturing method therefor
JP2021159784A (en) * 2020-03-30 2021-10-11 東洋紡株式会社 Polyphenylene-based semi-permeable membrane and method for producing the same
WO2024043163A1 (en) * 2022-08-24 2024-02-29 東洋紡株式会社 Porous membrane and purification method

Also Published As

Publication number Publication date
JP6780427B2 (en) 2020-11-04
WO2018066631A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2018066631A1 (en) Method for regenerating separation membrane module
JP6094922B1 (en) Composite separation membrane
US10040032B2 (en) Complex nanofiltration membrane and the preparation thereof
JP4936438B2 (en) Method for producing dry composite semipermeable membrane
WO2018003949A1 (en) Hollow fiber composite membrane module and method for producing same
US10427109B2 (en) Composite semipermeable membrane and production thereof
WO2020241860A1 (en) Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
CN103635242A (en) Thin film composite membranes embedded with molecular cage compounds
EP2857088B1 (en) Method for manufacturing a reverse osmosis membrane
JP5578300B1 (en) Composite separation membrane
EP1919601A1 (en) Nano composite hollow fiber membrane and method of manufacturing the same
CN106457165B (en) Composite semipermeable membrane
JP6256705B2 (en) Composite separation membrane
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
US11389771B2 (en) Asymmetric composite membrane and a method of preparation thereof
KR102113397B1 (en) Reverse osmosis membrane for osmotic backwashing process and method of manufacturing the same
JP2018012072A (en) Forward osmosis membrane and method for manufacturing the same
JP6743810B2 (en) Hollow fiber type semipermeable membrane, hollow fiber membrane module and forward osmosis water treatment method
JP7226569B2 (en) Composite membrane and method for manufacturing composite membrane
CN113490542A (en) Composite hollow fiber membrane and method for producing composite hollow fiber membrane
KR102357400B1 (en) Hollow fiber type nano-composite membrane and manufacturing method thereof
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R151 Written notification of patent or utility model registration

Ref document number: 6780427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350